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Reinforcement learning

• Learning by trial-and-error

• Learning is driven by a (numerical) reward signal, which may be delayed

• Goal: maximize a cumulative measure of reward (eg discounted sum)

• Draws ideas from animal learning/psychology, control, operations
research
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A big success story: AlphaGo

The first AI
Go player to 

defeat a human 
(9 dan) 

champion
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Contrast: Supervised learning

• Training experience: a set of labeled examples of the form

〈x1 x2 . . . xn, y〉,
where xj are values for input variables and y is the output

• This implies the existence of a “teacher” who knows the right answers

• Goal: minimize the prediction error (loss) function
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Contrast: Unsupervised learning

• Training experience: unlabelled data (eg gene level activity)

• What to learn: interesting associations in the data (often no single
correct answer)

• E.g., clustering, dimensionality reduction

• Typical goal: produce a model that maximizes data likelihood
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Reinforcement Learning Framework

• At every time step t, the agent perceives the state of the environment

• Based on this perception, it chooses an action

• The action causes the agent to receive a numerical reward

• Prediction: Learn the expected cumulated future reward given the current
state and current way of behaving

• Control: Find a way of choosing actions, called a policy which maximizes
the agent’s long-term expected return
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Prediction Example: Medical Time Series (Apex Project)
 

3-50 
 

 

 

Figure   3-1: Configuration for Data Collection at the NICU: (a) Ergotron cart with laptop, 

Respitrace RIP data acquisition, Masimo pulse oximeter, PowerLab data acquisition 

hardware, (b) View of the Ergotron adjacent to an incubator, (c) Infant with a nasal NIV 

apparatus, 3-lead ECG and 2-band RIP. The pulse oximeter is on the right hand. 

 

• The states are cardio-respiratory measurements

• Reward is the patient outcome at the end of the procedure (delayed)

• Policy is unknown (hospital practice)

MSR Cambridge AI Summer School, July 2017 6



Control Example: Atari Games (Mnih et al, 2015)

Extended Data Figure 2 | Visualization of learned value functions on two
games, Breakout and Pong. a, A visualization of the learned value function on
the game Breakout. At time points 1 and 2, the state value is predicted to be ,17
and the agent is clearing the bricks at the lowest level. Each of the peaks in
the value function curve corresponds to a reward obtained by clearing a brick.
At time point 3, the agent is about to break through to the top level of bricks and
the value increases to ,21 in anticipation of breaking out and clearing a
large set of bricks. At point 4, the value is above 23 and the agent has broken
through. After this point, the ball will bounce at the upper part of the bricks
clearing many of them by itself. b, A visualization of the learned action-value
function on the game Pong. At time point 1, the ball is moving towards the
paddle controlled by the agent on the right side of the screen and the values of

all actions are around 0.7, reflecting the expected value of this state based on
previous experience. At time point 2, the agent starts moving the paddle
towards the ball and the value of the ‘up’ action stays high while the value of the
‘down’ action falls to 20.9. This reflects the fact that pressing ‘down’ would lead
to the agent losing the ball and incurring a reward of 21. At time point 3,
the agent hits the ball by pressing ‘up’ and the expected reward keeps increasing
until time point 4, when the ball reaches the left edge of the screen and the value
of all actions reflects that the agent is about to receive a reward of 1. Note,
the dashed line shows the past trajectory of the ball purely for illustrative
purposes (that is, not shown during the game). With permission from Atari
Interactive, Inc.
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• The states are board positions in which the agent can move

• The actions are the possible joystick moves allowed by the game

• Reward is given by the points achieved in the game
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Key Features of RL Control

• The learner is not told what actions to take, instead it find finds out
what to do by trial-and-error search

Eg. Players trained by playing thousands of simulated games, with no
expert input on what are good or bad moves

• The environment is stochastic

• The reward may be delayed, so the learner may need to sacrifice short-
term gains for greater long-term gains

Eg. Player might get reward only at the end of the game, and needs to
assign credit to moves along the way

• The learner has to balance the need to explore its environment and the
need to exploit its current knowledge

Eg. One has to try new strategies but also to win games
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Implementing reinforcement learning

• A policy π : S ×A → [0, 1] is a way of choosing actions
• The value of a state is the expected value of a long-term return

(cumulative function of the rewards)

– E.g. average reward per time step over a long horizon
– E.g. Discounted return:

V ∗(s) = max
π

Eπ[rt+1 + γrt+2 + γ2rt+3 + . . . |st = s]

where γ ∈ [0, 1] is a discount factor (probability of the task finishing
at each step, or inflation rate) and π dictates the choices of action

• One can also condition on actions as well as states: Q(s, a)
• General approach: approximate the value of the current policy from data,

then use these values to guide policy change
• If an action leads to an improved state of affairs, the tendency to pick it

is strengthened (i.e., the action is reinforced)
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The Curse of Dimensionality

The Game of Go

~10170 unique positions

~200 moves long

~200 branching factor

~10360 complexity

• Values are governed by nice recursive equations:

Vk+1(s)← max
a∈A

ra(s) + γ
∑
s′∈S

Pa(s
′|s)Vk(s′)

 , ∀s ∈ S

• The number of states grows exponentially with the number of state
variables (the dimensionality of the problem)

E.g. in Go, there are 10170 states

• The action set may also be very large or continuous

E.g. in Go, branching factor is ≈ 100 actions

• The solution may require chaining many steps to find any information

E.g. in Go games take ≈ 200 actions
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How to Handle RL Big Data

• Approximate the iterations (using sampling, cf. asynchronous dynamic
programming, temporal-difference learning)

• Generalize the value function to unseen states using function
approximation

• Shape the time scale and nature of the actions using temporal abstraction
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Simplifying the iterations
Temporal-difference (TD) learning (Sutton, 1988)

• Instead of looping over all states as in a Bellman backup target:ra(s) + γ
∑
s′∈S

Pa(s
′|s)Vk(s′)

 , ∀s ∈ S

we will sample transition and use the samples

• Estimated value at time t: V (st)

• Estimated value at time t+ 1: rt+1 + γV (st+1)

• Temporal-difference error:

δ = [rt+1 + γV (st+1)]− V (st)

This is the surprise based on the new information at time step t+ 1

• Main idea: use TD-error to drive the learning of the correct values
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Representing Value Functions

• Instead of using vectors with one entry per state, suppose that V is
represented by some function approximator taking as input a description
of the state, or feature vector φs
• E.g. Fitted Value Iteration:

Given 〈s, a, s′, r〉 tuples and a current estimate Q(s, a), form a data
set of inputs φs and outputs r + γmaxa′Q(φs′, a

′) and train a new
approximation for Q

• We gain both in terms of space, and in terms of ability to generalize
data to new situations

• Note that unlike in supervised learning, target values depend on the
current approximator which causes interesting theoretical issues
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What kind of function approximators?

• Linear (e.g. Sutton, 1998; Silver et al, 2010; Keller et al, 2006)

• Random projections (Fard et al, 2012)

• Nearest-neighbor

• Kernels (e.g. Barreto et al, 2012, 2013)

• Neural networks / deep architectures (e.g. Mnih et al, 2015)

• Randomized trees (e.g. Ernst et al, 2006)

• ...
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Example: TD-Gammon (Tesauro, 1990-1995)

• Early predecessor of AlphaGo

• Learning from self-play, using TD-learning

• Became the best player in the world

• Discovered new ways of opening not used by people before
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Example: AlphaGo (Silver et al, 2015-present)Example: AlphaGo

• Perceptions: state of the board
• Actions: legal moves
• Reward: +1 or -1 at the end of the game
• Trained by playing games against itself
• Invented new ways of playing which seem superior

 

The Game of Go

~10170 unique positions

~200 moves long

~200 branching factor

~10360 complexity
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Policy Search

• Sometimes, the value function might be complex but the policy itself
may be simple (Farahmand et al, 2015)

• Instead of relying on the value function, one can search through a space
of parametrized policies πθ

• Outline:

1. Initialize candidate policy
2. Repeat

– Estimate a new direction in which to move the parameters (using
Monte Carlo, value-based methods etc)

– Adjust the policy
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Actor-critic architecture

Value
function

Environment

Policy

at+1st

Actor

rt

Gradient

Critic TD error

• Clear optimization objective: average or discounted return

• Continual learning

• Handles both discrete and continuous states and actions

MSR Cambridge AI Summer School, July 2017 18



What is temporal abstraction?

• Consider an activity such as cooking dinner

– High-level steps: choose a recipe, make a grocery list, get groceries,
cook,...

– Medium-level steps: get a pot, put ingredients in the pot, stir until
smooth, check the recipe ...

– Low-level steps: wrist and arm movement while driving the car,
stirring, ...

• All have to be seamlessly integrated!

• Cf. macro actions in classical AI, controllers in robotics
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Formalization of temporal abstraction

• Hierarchical abstract machines (Parr, 1998)

• MAXQ (Dietterich, 1998)

• Dynamic motion primitives (Schaal et al. 2004)

• Skills (Konidaris et al, 2009)

• Feudal RL (Dayan, 1994)

• Options (Sutton, Precup & Singh, 1999; Precup, 2000)
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Options framework

• Suppose we have an MDP 〈S,A, r, P, γ〉
• An option ω consists of 3 components

– An initiation set of states Iω ⊆ S (aka precondition)
– A policy πω : S ×A → [0, 1]
πω(a|s) is the probability of taking a in s when following option ω

– A termination condition βω : S → [0, 1]:
βω(s) is the probability of terminating the option ω upon entering s

• Eg., robot navigation: if there is no obstacle in front (Iω), go forward
(πω) until you get too close to another object (βω)

Cf. Sutton, Precup & Singh, 1999; Precup, 2000
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Options as behavioral programs

• Call-and-return execution

– Option is a subroutine which gets called by a policy over options πΩ

– When called, ω is pushed onto the execution stack
– During the option execution, the program looks at certain variables

(aka state) and executes an instruction (aka action) until a termination
condition is reached

– The option can keep track of additional local variables, eg counting
number of steps, saturation in certain features (e.g. Comanici, 2010)

– Options can invoke other options
• Interruption

– At each step, one can check if a better alternative has become available
– If so, the option currently executing is interrupted (special form of

concurrency)
• The option identity is also a form of memory: what is the agent currently

trying to achieve? Cf. Shaul et al, 2014, Kulkarni et al, 2016
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Option models

• Option model has two parts:

1. Expected reward rω(s): the expected return during ω’s execution from
s
– Needed because it is used to update the agent’s internal

representations
2. Transition model Pω(s

′|s): a sub-probability distribution over next
states (reflecting the discount factor γ and the option duration) given
that ω executes from s
– P specifies where the agent will end up after the option/program

execution and when termination will happen

• Models are predictions about the future, conditioned on the option being
executed
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Option models provide semantics

• Programming languages: preconditions (initiation set) and postconditions
• Models of options represent (probabilistic) post-conditions
• Models that are compositional, can be used to reason about the policy

over options
• Sequencing

rω1ω2 = rω1 + Pω1ro2

Pω1ω2 = Pω1Pω2

Cf. Sutton et al, 1999, Sorg & Singh, 2010
• Stochastic choice: can take expectations of reward and transition models
• These are sufficient conditions to allow Bellman equations to hold
• Silver & Ciosek (2012): re-write model in one matrix, compose models

to construct programs

Eg. good generalization in Towers of Hanoi
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MDP + Options = Semi-Markov Decision Precess

SMDP

Time

MDP
State

Options 

over MDP

Fig. 1. The state trajectory of an MDP is made up of small, discrete-time transitions,
whereas that of an SMDP comprises larger, continuous-time transitions. Options
enable an MDP trajectory to be analyzed in either way.

tion 4 considers the problem of effectively combining a given set of options
into a single overall policy. For example, a robot may have pre-designed con-
trollers for servoing joints to positions, picking up objects, and visual search,
but still face a difficult problem of how to coordinate and switch between
these behaviors [17,22,38,48,50,65–67]. Sections 5 and 6 concern intra-option
learning—looking inside options to learn simultaneously about all options con-
sistent with each fragment of experience. Finally, in Section 7 we illustrate a
notion of subgoal that can be used to improve existing options and learn new
ones.

1 The Reinforcement Learning (MDP) Framework

In this section we briefly review the standard reinforcement learning frame-
work of discrete-time, finite Markov decision processes , or MDPs , which forms
the basis for our extension to temporally extended courses of action. In this
framework, a learning agent interacts with an environment at some discrete,
lowest-level time scale, t = 0, 1, 2, . . . On each time step, t, the agent perceives
the state of the environment, st ∈ S, and on that basis chooses a primitive
action, at ∈ Ast . In response to each action, at, the environment produces one
step later a numerical reward, rt+1, and a next state, st+1. It is convenient to
suppress the differences in available actions across states whenever possible;
we let A =

�
s∈S As denote the union of the action sets. If S and A, are fi-

nite, then the environment’s transition dynamics can be modeled by one-step
state-transition probabilities,

pa
ss� = Pr{st+1 = s� | st = s, at = a},

4

• Introducing options in an MDP induces a related semi-MDP

• Hence all planning and learning algorithms from classical MDPs transfer
directly to options (Cf. Sutton, Precup & Singh, 1999; Precup, 2000)

• But planning and learning with options can be much faster!
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Illustration: Navigation

Room s Ex am ple

Iteration #0 Iteration #1 Iteration #2

with ce ll-to-ce ll
primit ive  act ions

Iteration #0 Iteration #1 Iteration #2

with room-to-room
opt ions

V (goal )=1

V (goal )=1
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Illustration: Random landmarks

• Generate a lot of options, then worry about which are useful!

• Large set of landmarks, i.e. states in the environment, chosen at random
(Mann, Mannor & Precup, 2015)

• Rough planner which can get to a landmark from its vicinity, by solving
a deterministic relaxation of the MDP
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Figure 6: Example trajectories for policies derived from the last (K = 30) iteration of PFVI, OFVI, and
LAVI on the continuous two rooms domain. For LAVI, the landmark hyperspheres are drawn as black ovals.
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Figure 7: Two-Rooms: Comparison of planning with PFVI, OFVI, and LAVI with 100 landmarks in the
continuous two rooms domain. (a) Performance of policies derived from each iteration of PFVI, OFVI, and
LAVI. (b) Time in seconds to compute each iteration of PFVI, OFVI, and LAVI.

inventory requires making large jumps in the state-space (e.g., going from 0 inventory to maximum inventory
levels) in a single timestep.

5.3 Continuous Two Rooms Domain

We implemented a continuous-state version of the two rooms domain introduced by Şimşek and Barto
[2004]. Given the agent’s current state as a point hx, yi, the new state after executing a primitive action was
obtained by hx, yi+N (µ, �) where N (µ, �) is an instance of the normal distribution with mean µ = (�x,�y)
depending on the action (up, down, left, or right) and standard deviation � = (0.05, 0.05). If the agent was
blocked by a wall or boundary then it did not move. OFVI was given a single additional option (in addition
to the primitive actions), which transitions the agent from the doorway to the goal region. Landmarks for
LAVI and LOFVI were uniformly sampled from the state-space and di↵erent landmarks sets were sampled
for each trial.

We used Euclidean distance as a metric over the state-space and selected ⌘ = 0.05 and d+ = 15. We used
a greedy local planner that chose the action transitioning the agent closest to the landmark state, unless the
landmark and agent were in di↵erent rooms. In that case, the planner selected the action that transitioned
the closest to the doorway region. We ran all conditions for K = 30 iterations.

For the continuous Two-Rooms domain Figure 6 shows sample trajectories for the final policy derived
by PFVI, OFVI, and LAVI. Even with K = 30 iterations, PFVI was not able to derive a successful policy.
However, with additional iterations (not shown), PFVI does eventually learn a path to the goal region.
The policy derived by OFVI moves more directly toward the goal state, while the policy derived by LAVI
transitions from landmark to landmark. Although this results in a longer path to goal, LAVI is still able to
solve the task.

13

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
LAVI

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
PFVI

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
OFVI

Figure 6: Example trajectories for policies derived from the last (K = 30) iteration of PFVI, OFVI, and
LAVI on the continuous two rooms domain. For LAVI, the landmark hyperspheres are drawn as black ovals.

0 5 10 15 20 25 30

Iteration #
0.0

0.5

1.0

1.5

2.0

2.5

Pe
rfo

rm
an

ce

LAVI(100)
LOFVI(100)
OFVI
PFVI

PFVI
OFVI

LO
FVI(1

00
)

LA
VI(1

00
)

0

5

10

15

20

25

30

Ti
m

e
(s

)p
er

Ite
ra

tio
n

(a) (b)

Figure 7: Two-Rooms: Comparison of planning with PFVI, OFVI, and LAVI with 100 landmarks in the
continuous two rooms domain. (a) Performance of policies derived from each iteration of PFVI, OFVI, and
LAVI. (b) Time in seconds to compute each iteration of PFVI, OFVI, and LAVI.

inventory requires making large jumps in the state-space (e.g., going from 0 inventory to maximum inventory
levels) in a single timestep.

5.3 Continuous Two Rooms Domain

We implemented a continuous-state version of the two rooms domain introduced by Şimşek and Barto
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Landmark-based approximate value iteration gets a good solution much faster!
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The anatomy of the reward option model

• Primitive action model: ra(s) = E[rt|st = s, at = a]

• Option model:

rω(s) = E[rt + γrt+1 + . . . |st = s, ωt = ω]

• This expectation indicates a Markov-style property, as it depends only on
the identity of the state and the option, not on the time step

• Notice the model is basically a value function so we can write Bellman
equations for the model:

rω(s) =
∑

a

πω(a|s)[ra(s) +
∑

s′

γ(1− βω(s′))rω(s′)]

• This means that we can use RL methods to learn the models of options!

• Very similar equations hold for the transition model
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Intra-option algorithms

• Learning about one option at a time is very inefficient
• In fact, we may not want to execute options at all!
• Instead, learn about all options consistent with the behaviour
• In some sense, a form of attention
• E.g. action-value function, tabular case

On single-step transition 〈s, a, r, s′〉, for all ω that could have been
executing in s and taken a:

QΩ(s, ω) = QΩ(s, ω) + α[ra(s) + γ(1− βω(s′))QΩ(s
′, ω) +

+ γβω(s
′)
∑

s′

max
ω′

QΩ(s
′, ω′)−QΩ(s, ω)]

Red: continuation. Blue: termination
• In general function approximation, importance sampling will need to be

used (several papers on this)
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Frontier: Option Discovery

• Options can be given by a system designer

• If subgoals / secondary reward structure is given, the option policy can be
obtained, by solving a smaller planning or learning problem (cf. Precup,
2000)

• What is a good set of subgoals / options?

• This is a representation discovery problem

• Studied a lot over the last 15 years

• Bottleneck states and change point detection currently the most
successful methods
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Goals of our current work

• Explicitly state an optimization objective and then solve it to find a set
of options

• Handle both discrete and continuous set of state and actions

• Learning options should be continual (avoid combinatorially-flavored
computations)

• Options should provide improvement within one task (or at least not
cause slow-down...)
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Actor-critic architecture

Value
function

Environment

Policy

at+1st

Actor

rt

Gradient

Critic TD error

• Clear optimization objective: average or discounted return

• Continual learning

• Handles both discrete and continuous states and actions
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Option-critic architecture (Bacon et al, 2017)
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The Option-Critic Architecture

where �QU,w(s, !, a) is the difference between the ap-
proximation and its true target. We can guarantee equal-
ity under two conditions: 1) The learning algorithm under-
lying QU,w minimizes the squared error distance and has
reached convergence 2) The gradient of the function ap-
proximator satisfies the equality:

@

@w
QU,w(s, !, a) =

@

@✓
⇡!,✓ (a | s)

1

⇡!,✓ (a | s)
(8)

This conditions simply mirror their MDP counterpart in the
original policy gradient theorem. The same conditions also
hold for the advantage function, used in the termination
gradient. This time however, we have:

@

@⇠
A⌦,⇠(s, !) =

@

@#
�!,#(s)

For more details, we invite you to consult the supplemen-
tary material.

4. Option-critic architecture
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TD error
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Behavior policy

Figure 1: The option-critic architecture consists of a set of
options, a policy over them and a critic. Gradients can be
derived from the critic for both the intra-option policies and
termination functions. The execution model is suggested
pictorially by a switch ? over the contacts (. Switching
can only take place when a termination event is encoun-
tered.

The algorithmic implementation of theorems 1 and 2 gives
rise to the option-critic learning architecture (fig. 1), in
reference to the gradient-based actor-critic architectures
(Sutton, 1984; Peters et al., 2005; Degris et al., 2012).
Although option-critic is conceptually identical to actor-
critic, we sought to make a distinction between our holis-
tic approach to learning options and one in which intra-
option policies would be learned with regular policy gradi-
ent methods in a pseudo-reward context.

Since two types of gradients are needed to learn the options,
the critic part of the option-critic architecture consists in

Figure 2: Layout of the four-rooms domain and value func-
tion obtained by option-critic

.

QU (s, !, a) or the negative advantage function (or both).
In this work, we do not seek to use a critic for learning
the policy over options. Note that the problem of learning
a parametrized policy over options can be solved readily
using the policy gradient theorem (see section 2). Using
options has the advantage of reducing a large (potentially
continuous) set of primitive actions to a potentially much
smaller set of discrete options. In this case, the policy over
options can be found using planning methods over the op-
tions models.

5. Experiments
In order to illustrate our approach, we present some pre-
liminary experiments in the four-rooms domain (Sutton et
al., 1999). We fixed the initial state in the upper left cor-
ner and defined a terminal state in the lower right corner.
A penalty of -1 was incurred at every step and for every
action taken in the direction of a wall (resulting in a non-
elastic collision) and a terminal reward of 100 was obtained
upon taking an action leading to the goal state. Primitive
actions were defined as the one-step transitions to the next
cell in each of the four cardinal directions: north, east, west,
south. Any action could fail with probability 0.1, in which
case the agent would simply remain in the same state. The
discount factor for this MDP was set to to 0.9.

We chose to parametrize the intra-option policies using the
softmax distribution:

⇡! (a | s) =
exp✓|

!�(s,a)

P
a0 exp✓|

!�(s,a)

@

@✓
log ⇡! (a | s) = �(s, a)�

X

b

⇡! (b | s)�(s, b)

where � is a state-action basis function. In this experiment,
we used a simple a one-hot encoding of state-action pairs
as basis functions. We defined the termination through the

• Parameterize internal policies and termination conditions

• Policy over options is computed by a separate process (planning, RL, ...)
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Formulation

• The option-value function of a policy over options πΩ is given by

QπΩ
(s, ω) =

∑

a

πω(a|s)QU(s, ω, a)

where
QU(s, ω, a) = ra(s) + γ

∑

s′

Pa(s
′|s)U(ω, s′)

• The last quantity is the utility from s′ onwards, given that we arrive in
s′ using ω

U(ω, s′) = (1− βω(s′))QπΩ
(s′, ω) + βω(s

′)VπΩ
(s′)

• We parameterize the internal policies by θ, as πω,θ, and the termination
conditions by ν, as βω,ν
• Note that θ and ν can be shared over the options!
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Main result: Gradient updates

• Suppose we want to optimize the expected return: E
{
QπΩ

(s, ω)
}

• The gradient wrt the internal policy parameters θ is given by:

E
{
∂ log πω,θ(a|s)

∂θ
QU(s, ω, a)

}

This has the usual interpretation: take better primitives more often inside
the option

• The gradient wrt the termination parameters ν is given by:

E
{
−∂βω,ν(s

′)

∂ν
AπΩ

(s′, ω)

}

where AπΩ
= QπΩ

− VπΩ
is the advantage function

This means that we want to lengthen options that have a large advantage
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Results: Options transfer
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• 4-rooms domain, tabular representations, value functions learned by Sarsa

• Learning in the first task no slower than using primitives

• Learning once the goal is moved faster with the options
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Results: Nonlinear function approximation

Figure 3: Termination probabilities for the option-critic
agent learning with 4 options. The darkest color represents
the walls in the environment while lighter colors encode
higher termination probabilities.

In the two temporally extended settings, with 4 options
and 8 options, termination events are more likely to occur
near the doorways (Figure 3), agreeing with the intuition
that they would be good subgoals. As opposed to (Sutton,
Precup, and Singh 1999), we did not encode this knowledge
ourselves but simply let the agents find options that would
maximize the expected discounted return.

Pinball Domain

Figure 4: Pinball: Sample trajectory of the solution found
after 250 episodes of training using 4 options All options
(color-coded) are used by the policy over options in success-
ful trajectories. The initial state is in the top left corner and
the goal is in the bottom right one (red circle).

In the Pinball domain (Konidaris and Barto 2009), a ball
must be guided through a maze of arbitrarily shaped poly-
gons to a designated target location. The state space is con-
tinuous over the position and velocity of the ball in the x-
y plane. At every step, the agent must choose among five
discrete primitive actions: move the ball faster or slower, in
the vertical or horizontal direction, or take the null action.
Collisions with obstacles are elastic and can be used to the
advantage of the agent. In this domain, a drag coefficient of
0.995 effectively stops ball movements after a finite num-
ber of steps when the null action is chosen repeatedly. Each
thrust action incurs a penalty of �5 while taking no action
costs�1. The episode terminates with +10000 reward when
the agent reaches the target. We interrupted any episode tak-
ing more than 10000 steps and set the discount factor to 0.99.

We used intra-option Q-learning in the critic with linear
function approximation over Fourier bases (Konidaris et al.

2011) of order 3. We experimented with 2, 3 or 4 options.
We used Boltzmann policies for the intra-option policies and
linear-sigmoid functions for the termination functions. The
learning rates were set to 0.01 for the critic and 0.001 for
both the intra and termination gradients. We used an epsilon-
greedy policy over options with ✏ = 0.01.
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Figure 5: Learning curves in the Pinball domain.

In (Konidaris and Barto 2009), an option can only be
used and updated after a gestation period of 10 episodes. As
learning is fully integrated in option-critic, by 40 episodes a
near optimal set of options had already been learned in all
settings. From a qualitative point of view, the options ex-
hibit temporal extension and specialization (fig. 4). We also
observed that across many successful trajectories the red op-
tion would consistently be used in the vicinity of the goal.

Arcade Learning Environment
We applied the option-critic architecture in the Arcade
Learning Environment (ALE) (Bellemare et al. 2013) using
a deep neural network to approximate the critic and repre-
sent the intra-option policies and termination functions. We
used the same configuration as (Mnih et al. 2013) for the
first 3 convolutional layers of the network. We used 32 con-
volutional filters of size 8⇥8 and stride of 4 in the first layer,
64 filters of size 4 ⇥ 4 with a stride of 2 in the second and
64 3 ⇥ 3 filters with a stride of 1 in the third layer. We then
fed the output of the third layer into a dense shared layer of
512 neurons, as depicted in Figure 6. We fixed the learning
rate for the intra-option policies and termination gradient to
0.00025 and used RMSProp for the critic.

⇡⌦(·|s)

{�!(s)}
{⇡!(·|s)}

Figure 6: Deep neural network architecture. A concatenation
of the last 4 images is fed through the convolutional layers,
producing a dense representation shared across intra-option
policies, termination functions and policy over options.

We represented the intra-option policies as linear-softmax

• Atari simulator, DQN to learn value function over options, actor as above
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Figure 8: Learning curves in the Arcade Learning Environment. The same set of parameters was used across all four games: 8
options, 0.01 termination regularization, 0.01 entropy regularization, and a baseline for the intra-option policy gradients.
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Figure 9: Up/down specialization in the solution found by option-critic when learning with 2 options in Seaquest. The top bar
shows a trajectory in the game, with “white” representing a segment during which option 1 was active and “black” for option 2.

use the DQN framework to implement a gradient-based op-
tion learner, which uses intrinsic rewards to learn the internal
policies of options, and extrinsic rewards to learn the pol-
icy over options. As opposed to our framework, descriptions
of the subgoals are given as inputs to the option learners.
Option-critic is conceptually general and does not require
intrinsic motivation for learning the options.

Discussion
We developed a general gradient-based approach for learn-
ing simultaneously the intra-option policies and termination
functions, as well as the policy over options, in order to opti-
mize a performance objective for the task at hand. Our ALE
experiments demonstrate successful end-to-end learning of
options in the presence of nonlinear function approxima-
tion. As noted, our approach only requires specifying the
number of options. However, if one wanted to use additional
pseudo-rewards, the option-critic framework would easily
accommodate it. In this case, the internal policies and ter-
mination function gradients would simply need to be taken
with respect to the pseudo-rewards instead of the task re-
ward. A simple instance of this idea, which we used in some
of the experiments, is to use additional rewards to encour-
age options that are indeed temporally extended by adding
a penalty whenever a switching event occurs. Our approach
can work seamlessly with any other heuristic for biasing the
set of options towards some desirable property (e.g. compo-
sitionality or sparsity), as long as it can be expressed as an
additive reward structure. However, as seen in the results,
such biasing is not necessary to produce good results.

The option-critic architecture relies on the policy gradient

theorem, and as discussed in (Thomas 2014), the gradient
estimators can be biased in the discounted case. By intro-
ducing factors of the form �t

Qt
i=1(1 � �i) in our updates

(Thomas 2014, eq (3)), it would be possible to obtain un-
biased estimates. However, we do not recommend this ap-
proach since the sample complexity of the unbiased esti-
mators is generally too high and the biased estimators per-
formed well in our experiments.

Perhaps the biggest remaining limitation of our work is
the assumption that all options apply everywhere. In the case
of function approximation, a natural extension to initiation
sets is to use a classifier over features, or some other form of
function approximation. As a result, determining which op-
tions are allowed may have similar cost to evaluating a pol-
icy over options (unlike in the tabular setting, where options
with sparse initiation sets lead to faster decisions). This is
akin to eligibility traces, which are more expensive than us-
ing no trace in the tabular case, but have the same complex-
ity with function approximation. If initiation sets are to be
learned, the main constraint that needs to be added is that the
options and the policy over them lead to an ergodic chain in
the augmented state-option space. This can be expressed as
a flow condition that links initiation sets with terminations.
The precise description of this condition, as well as sparsity
regularization for initiation sets, is left for future work.
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Results: Learned options are intuitive

• In rooms environment, terminations are more likely near hallways
(although there are no pseudo-rewards provided)

Figure 3: Termination probabilities for the option-critic
agent learning with 4 options. The darkest color represents
the walls in the environment while lighter colors encode
higher termination probabilities.

In the two temporally extended settings, with 4 options
and 8 options, termination events are more likely to occur
near the doorways (Figure 3), agreeing with the intuition
that they would be good subgoals. As opposed to (Sutton,
Precup, and Singh 1999), we did not encode this knowledge
ourselves but simply let the agents find options that would
maximize the expected discounted return.

Pinball Domain

Figure 4: Pinball: Sample trajectory of the solution found
after 250 episodes of training using 4 options All options
(color-coded) are used by the policy over options in success-
ful trajectories. The initial state is in the top left corner and
the goal is in the bottom right one (red circle).

In the Pinball domain (Konidaris and Barto 2009), a ball
must be guided through a maze of arbitrarily shaped poly-
gons to a designated target location. The state space is con-
tinuous over the position and velocity of the ball in the x-
y plane. At every step, the agent must choose among five
discrete primitive actions: move the ball faster or slower, in
the vertical or horizontal direction, or take the null action.
Collisions with obstacles are elastic and can be used to the
advantage of the agent. In this domain, a drag coefficient of
0.995 effectively stops ball movements after a finite num-
ber of steps when the null action is chosen repeatedly. Each
thrust action incurs a penalty of �5 while taking no action
costs�1. The episode terminates with +10000 reward when
the agent reaches the target. We interrupted any episode tak-
ing more than 10000 steps and set the discount factor to 0.99.

We used intra-option Q-learning in the critic with linear
function approximation over Fourier bases (Konidaris et al.

2011) of order 3. We experimented with 2, 3 or 4 options.
We used Boltzmann policies for the intra-option policies and
linear-sigmoid functions for the termination functions. The
learning rates were set to 0.01 for the critic and 0.001 for
both the intra and termination gradients. We used an epsilon-
greedy policy over options with ✏ = 0.01.
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Figure 5: Learning curves in the Pinball domain.

In (Konidaris and Barto 2009), an option can only be
used and updated after a gestation period of 10 episodes. As
learning is fully integrated in option-critic, by 40 episodes a
near optimal set of options had already been learned in all
settings. From a qualitative point of view, the options ex-
hibit temporal extension and specialization (fig. 4). We also
observed that across many successful trajectories the red op-
tion would consistently be used in the vicinity of the goal.

Arcade Learning Environment
We applied the option-critic architecture in the Arcade
Learning Environment (ALE) (Bellemare et al. 2013) using
a deep neural network to approximate the critic and repre-
sent the intra-option policies and termination functions. We
used the same configuration as (Mnih et al. 2013) for the
first 3 convolutional layers of the network. We used 32 con-
volutional filters of size 8⇥8 and stride of 4 in the first layer,
64 filters of size 4 ⇥ 4 with a stride of 2 in the second and
64 3 ⇥ 3 filters with a stride of 1 in the third layer. We then
fed the output of the third layer into a dense shared layer of
512 neurons, as depicted in Figure 6. We fixed the learning
rate for the intra-option policies and termination gradient to
0.00025 and used RMSProp for the critic.
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Figure 6: Deep neural network architecture. A concatenation
of the last 4 images is fed through the convolutional layers,
producing a dense representation shared across intra-option
policies, termination functions and policy over options.

We represented the intra-option policies as linear-softmax

• In Seaquest, separate options are learned to go up and down
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Figure 8: Learning curves in the Arcade Learning Environment. The same set of parameters was used across all four games: 8
options, 0.01 termination regularization, 0.01 entropy regularization, and a baseline for the intra-option policy gradients.
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Figure 9: Up/down specialization in the solution found by option-critic when learning with 2 options in Seaquest. The top bar
shows a trajectory in the game, with “white” representing a segment during which option 1 was active and “black” for option 2.

use the DQN framework to implement a gradient-based op-
tion learner, which uses intrinsic rewards to learn the internal
policies of options, and extrinsic rewards to learn the pol-
icy over options. As opposed to our framework, descriptions
of the subgoals are given as inputs to the option learners.
Option-critic is conceptually general and does not require
intrinsic motivation for learning the options.

Discussion
We developed a general gradient-based approach for learn-
ing simultaneously the intra-option policies and termination
functions, as well as the policy over options, in order to opti-
mize a performance objective for the task at hand. Our ALE
experiments demonstrate successful end-to-end learning of
options in the presence of nonlinear function approxima-
tion. As noted, our approach only requires specifying the
number of options. However, if one wanted to use additional
pseudo-rewards, the option-critic framework would easily
accommodate it. In this case, the internal policies and ter-
mination function gradients would simply need to be taken
with respect to the pseudo-rewards instead of the task re-
ward. A simple instance of this idea, which we used in some
of the experiments, is to use additional rewards to encour-
age options that are indeed temporally extended by adding
a penalty whenever a switching event occurs. Our approach
can work seamlessly with any other heuristic for biasing the
set of options towards some desirable property (e.g. compo-
sitionality or sparsity), as long as it can be expressed as an
additive reward structure. However, as seen in the results,
such biasing is not necessary to produce good results.

The option-critic architecture relies on the policy gradient

theorem, and as discussed in (Thomas 2014), the gradient
estimators can be biased in the discounted case. By intro-
ducing factors of the form �t

Qt
i=1(1 � �i) in our updates

(Thomas 2014, eq (3)), it would be possible to obtain un-
biased estimates. However, we do not recommend this ap-
proach since the sample complexity of the unbiased esti-
mators is generally too high and the biased estimators per-
formed well in our experiments.

Perhaps the biggest remaining limitation of our work is
the assumption that all options apply everywhere. In the case
of function approximation, a natural extension to initiation
sets is to use a classifier over features, or some other form of
function approximation. As a result, determining which op-
tions are allowed may have similar cost to evaluating a pol-
icy over options (unlike in the tabular setting, where options
with sparse initiation sets lead to faster decisions). This is
akin to eligibility traces, which are more expensive than us-
ing no trace in the tabular case, but have the same complex-
ity with function approximation. If initiation sets are to be
learned, the main constraint that needs to be added is that the
options and the policy over them lead to an ergodic chain in
the augmented state-option space. This can be expressed as
a flow condition that links initiation sets with terminations.
The precise description of this condition, as well as sparsity
regularization for initiation sets, is left for future work.
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What are beneficial options

• Successful simultaneous learning of terminations and option policies

• But, as expected, options shrink over time unless a margin is required
for the advantage

Cf. time-regularized options, Mann et al, (2014)

• Intuitively, using longer options increase the speed of learning and
planning (but may lead to a worse result in call-and-return execution)

• What is the right tool to formalize this intuition?
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A proposal: Deliberation cost

• Assumption: executing a policy is cheap, deciding what to do is expensive

– Many choices may need to be evaluated (branching factor over actions)
– In planning, many next states may need to be considered (branching

factor over states)
– Evaluating the function approximator might be expensive (e.g. if it is

a deep net)

• Deliberation is also expensive in animals:

– Energy consumption (to engage higher-level brain function)
– Missed opportunity cost: thinking too long means action is delayed
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Problem formulation

• Let c(s, ω) be the immediate cost of deliberating to choose ω in s

• In the call-and-return model, it is easy to see that we have a value
function that expresses total deliberation cost given by the following
Bellman equation:

Qc(s, ω) = −c(s, ω) +
∑

s′

Pω(s
′|s)
∑

ω′

πΩ(ω
′|s′)Qc(s′, ω′)

• We can obtain Qc using learning, value iteration etc

• New objective: maximize reward with reasonable effort

max
Ω

E [QΩ(s, ω) + ξQc(s, ω)]

• ξ ≥ 0 controls the trade-off between value and computation effort (ξ = 0
means optimizing original reward)
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Illustration: 4 rooms, option-critic

where ⇠ is a scalar controlling the tradeoff between value and computation cost. Such a tradeoff
between value and control is a central idea in the bounded optimality framework and has been
referred to as the expected value of control [Shenhav et al., 2013].

If the agent has at its disposal both primitive and temporally extended options, as ⇠ goes to 0, the
value of Q⌦ dominates and favours policies which use only primitives. Increasing ⇠ emphasizes the
expense of deliberation and favours recruiting more multi-steps options.

3.3 Optimization
The goal of finding a good set of options can now be specified as optimizing objective (2). Intu-
itively, the optimization involves searching through the space of possible option sets for one which
maximizes QV C . This optimization could be solved in various ways, depending how we define
the space of possible options. We leverage recent results on gradient-based optimization for op-
tions [Bacon and Precup, 2015] to provide an incremental algorithm for constructing options from
data. The option-critic architecture extends the actor-critic architecture [Sutton, 1984] and policy
gradient theorem [Sutton et al., 2000] for the purpose of learning options. An assumption of this
framework is that options policies and termination functions can be parametrized with stochastic
and differentiable functions. If these conditions are met, it provides gradients for any reward-like
objective with respect to the parametrization. We note, however, that the general approach does not
depend on using this type of optimization.

4 Illustration
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To illustrate these ideas, we conducted preliminary experiments in the four-rooms navigation do-
main [Sutton et al., 1999]. Primitive actions are moves in the four cardinal directions. Any action
fails with probability 0.1, in which case the agent simply remains in the same state. A penalty of -1
is incurred at every time step. We fixed the initial state in the upper left corner and defined a terminal
state in the lower right corner.

In a first experiment, we defined an option for each room, terminating at one of the hallway states.
We learned the option policies (parametrized by the softmax distribution) over 1000 iterations of
the option-critic architecture. We then augmented the set of learned hallway options with primitive
actions and planned an optimal policy by policy iteration. In each step of policy iteration, Q⌦

and Qc are computed by policy evaluation for the current candidate policy over options. Figure 2a
shows that as the cost of deliberation increases, the optimal policy over the joint objective discards
primitive options in favor of the temporally extended (hallway) options, as expected.

We also investigated whether the deliberation cost would impact the structure of the policies when all
components are learned simultaneously: policies within options, termination functions and policy
over options. In fact, we would hope that our objective would provide a speedup when planning
with primitive actions augmented with the learned options. As opposed to the previous experiment,
options were not pre-designed beyond the choice of parametrization: softmax for the policies and
tanh for the terminations. We computed the optimal policy over the MDP by value iteration and
augmented the set of options with primitives. We then computed the root mean square error (RMSE)
to the optimal value function at every planning step over the augmented set of options. When the
deliberation cost is increased through ⇠, we see in Fig. 2b that the structure of the learned options
changes in such a way as to obtain faster planning later on.

3

• Emphasizing deliberation cost, shifts the policy towards using options

• Number of iterations of planning is smaller for higher deliberation cost
penalties

• When options are learned in one task and then used to plan in a different
task, options obtained with deliberation costs are more robust
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Conclusions

• Reinforcement learning is useful for temporal prediction under uncertainty
as well as stochastic control

• Good representations exist to re-shape the state and action space to
handle larger problems, and increase efficiency

• Temporal abstraction methods developed in reinforcement learning
provide syntax and semantics of behavioral programs

• Option-critic allows using policy gradient ideas for continual learning of
temporal abstractions, but there are lots of things to do:

– More empirical work in option construction
– Tighter integration with Neural Turing Machines and similar models
– Improved reward shaping, eg see new Ms Pacman results from van

Seijn et al, Maluuba/Microsoft
– Other execution models
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