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Reinforcement learning

Environment

e Learning by trial-and-error
e Learning is driven by a (numerical) reward signal, which may be delayed
e Goal: maximize a cumulative measure of reward (eg discounted sum)

e Draws ideas from animal learning/psychology, control, operations
research
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Contrast: Supervised learning

e Training experience: a set of /abeled examples of the form

<ZE1 L2 ...Tnp, y>,
where x; are values for input variables and y is the output
e This implies the existence of a “teacher” who knows the right answers

e Goal: minimize the prediction error (loss) function
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Contrast: Unsupervised learning
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e Training experience: unlabelled data (eg gene level activity)

e What to learn: interesting associations in the data (often no single
correct answer)

e E.g., clustering, dimensionality reduction

e Typical goal: produce a model that maximizes data likelihood
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Reinforcement Learning Framework

Environment

e At every time step t, the agent perceives the state of the environment
e Based on this perception, it chooses an action
e The action causes the agent to receive a numerical reward

e Prediction: Learn the expected cumulated future reward given the current
state and current way of behaving

e Control: Find a way of choosing actions, called a policy which maximizes
the agent’s long-term expected return
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Prediction Example: Medical Time Series (Apex Project)

e T[he states are cardio-respiratory measurements
e Reward is the patient outcome at the end of the procedure (delayed)
e Policy is unknown (hospital practice)
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Control Example: Atari Games (Mnih et al, 2015)

e [he states are board positions in which the agent can move
e The actions are the possible joystick moves allowed by the game

e Reward is given by the points achieved in the game
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Key Features of RL Control

e The learner is not told what actions to take, instead it find finds out
what to do by trial-and-error search

Eg. Players trained by playing thousands of simulated games, with no
expert input on what are good or bad moves

e [ he environment is stochastic

e The reward may be delayed, so the learner may need to sacrifice short-
term gains for greater long-term gains

Eg. Player might get reward only at the end of the game, and needs to
assign credit to moves along the way

e The learner has to balance the need to explore its environment and the
need to exploit its current knowledge

Eg. One has to try new strategies but also to win games
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Implementing reinforcement learning

e A policyn:S x A—|0,1] is a way of choosing actions

e The value of a state is the expected value of a long-term return
(cumulative function of the rewards)
— E.g. average reward per time step over a long horizon
— E.g. Discounted return:

V*(S) — mBXEw[Tt—H + Yri4o + ’727“t_|_3 —+ ... |St = 8]

where v € [0, 1] is a discount factor (probability of the task finishing
at each step, or inflation rate) and 7 dictates the choices of action
e One can also condition on actions as well as states: Q)(s,a)
e General approach: approximate the value of the current policy from data,
then use these values to guide policy change
e |f an action leads to an improved state of affairs, the tendency to pick it
is strengthened (i.e., the action is reinforced)
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The Curse of Dimensionality

e Values are governed by nice recursive equations:

Vit1(s) < max ro(s) + VZPa(s/|s)Vk(s/) , Vs € S
! s'eS
e The number of states grows exponentially with the number of state
variables (the dimensionality of the problem)

E.g. in Go, there are 1017 states

e The action set may also be very large or continuous
E.g. in Go, branching factor is ~ 100 actions

e The solution may require chaining many steps to find any information
E.g. in Go games take =~ 200 actions
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How to Handle RL Big Data

e Approximate the iterations (using sampling, cf. asynchronous dynamic
programming, temporal-difference learning)

e Generalize the value function to unseen states using function
approximation

e Shape the time scale and nature of the actions using temporal abstraction
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Simplifying the iterations
Temporal-difference (TD) learning (Sutton, 1988)

e Instead of looping over all states as in a Bellman backup target:

s'eS

<'ra(s) + vaa(s/|s)Vk(s/)) Vs € S

we will sample transition and use the samples
e Estimated value at time ¢: V' (s¢)
e Estimated value at time ¢t + 1: 7401 + vV (S411)
e Temporal-difference error.

0 = [rey1 + 9V (st41)] — Vi(se)

This is the surprise based on the new information at time step ¢ + 1
e Main idea: use TD-error to drive the learning of the correct values
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Representing Value Functions

e Instead of using vectors with one entry per state, suppose that V is
represented by some function approximator taking as input a description
of the state, or feature vector ¢,

e E.g. Fitted Value lteration:

Given (s,a,s’,r) tuples and a current estimate Q(s,a), form a data
set of inputs ¢s and outputs r + ymax, Q(¢s,a’) and train a new
approximation for ()

e We gain both in terms of space, and in terms of ability to generalize
data to new situations

e Note that unlike in supervised learning, target values depend on the
current approximator which causes interesting theoretical issues
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What kind of function approximators?

e Linear (e.g. Sutton, 1998; Silver et al, 2010; Keller et al, 2006)
e Random projections (Fard et al, 2012)

e Nearest-neighbor

e Kernels (e.g. Barreto et al, 2012, 2013)

e Neural networks / deep architectures (e.g. Mnih et al, 2015)

e Randomized trees (e.g. Ernst et al, 2006)
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Example: TD-Gammon (Tesauro, 1990-1995)
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e Early predecessor of AlphaGo
e Learning from self-play, using TD-learning
e Became the best player in the world

e Discovered new ways of opening not used by people before
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Example: AlphaGo (Silver et al, 2015-present)

Policy network Value network

P, (@ls) v, )

* Perceptions: state of the board

* Actions: legal moves

* Reward: +| or -1 at the end of the game

* Trained by playing games against itself

* Invented new ways of playing which seem superior
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Policy Search

e Sometimes, the value function might be complex but the policy itself
may be simple (Farahmand et al, 2015)

e Instead of relying on the value function, one can search through a space
of parametrized policies 7y

e Qutline:

1. Initialize candidate policy
2. Repeat
— Estimate a new direction in which to move the parameters (using
Monte Carlo, value-based methods etc)
— Adjust the policy
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Actor-critic architecture
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e Clear optimization objective: average or discounted return
e Continual learning
e Handles both discrete and continuous states and actions

MSR Cambridge Al Summer School, July 2017



What is temporal abstraction?

e Consider an activity such as cooking dinner

— High-level steps: choose a recipe, make a grocery list, get groceries,

cook,...
— Medium-level steps: get a pot, put ingredients in the pot, stir until

smooth, check the recipe ...
— Low-level steps: wrist and arm movement while driving the car,

stirring, ...

e All have to be seamlessly integrated!
e Cf. macro actions in classical Al, controllers in robotics
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Formalization of temporal abstraction

e Hierarchical abstract machines (Parr, 1998)

e MAXQ (Dietterich, 1998)

e Dynamic motion primitives (Schaal et al. 2004)

e Skills (Konidaris et al, 2009)

e Feudal RL (Dayan, 1994)

e Options (Sutton, Precup & Singh, 1999; Precup, 2000)
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Options framework

e Suppose we have an MDP (S, A, r, P,~)

e An option w consists of 3 components

— An initiation set of states I,, C S (aka precondition)
— A policy m, : § x A — [0, 1]
Tw(a|s) is the probability of taking a in s when following option w
— A termination condition 8, : S — [0, 1]:
B, (s) is the probability of terminating the option w upon entering s
e Eg., robot navigation: if there is no obstacle in front (1), go forward
(7,,) until you get too close to another object (3,,)

Cf. Sutton, Precup & Singh, 1999; Precup, 2000
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Options as behavioral programs

e (Call-and-return execution

— Option is a subroutine which gets called by a policy over options 7
— When called, w is pushed onto the execution stack
— During the option execution, the program looks at certain variables
(aka state) and executes an instruction (aka action) until a termination
condition is reached
— The option can keep track of additional /ocal variables, eg counting
number of steps, saturation in certain features (e.g. Comanici, 2010)
— Options can invoke other options
e Interruption
— At each step, one can check if a better alternative has become available
— If so, the option currently executing is interrupted (special form of
concurrency)
e [he option identity is also a form of memory: what is the agent currently
trying to achieve? Cf. Shaul et al, 2014, Kulkarni et al, 2016
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Option models

e Option model has two parts:

1. Expected reward r,(s): the expected return during w's execution from
S
— Needed because it is used to update the agent's internal
representations
2. Transition model P,(s’|s): a sub-probability distribution over next
states (reflecting the discount factor v and the option duration) given
that w executes from s
— P specifies where the agent will end up after the option/program
execution and when termination will happen

e Models are predictions about the future, conditioned on the option being
executed
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Option models provide semantics

e Programming languages: preconditions (initiation set) and postconditions
e Models of options represent (probabilistic) post-conditions
e Models that are compositional, can be used to reason about the policy

over options
e Sequencing

Yojws = Ty + Pw1r02

Pw1w2 — Pwlpwg

Cf. Sutton et al, 1999, Sorg & Singh, 2010
e Stochastic choice: can take expectations of reward and transition models
e These are sufficient conditions to allow Bellman equations to hold
e Silver & Ciosek (2012): re-write model in one matrix, compose models
to construct programs
Eg. good generalization in Towers of Hanoi
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MDP + Options = Semi-Markov Decision Precess

Time ——

MDP ,/\/\/ IState
SMDP W

Options —v/\ /\/,
over MDP A

e Introducing options in an MDP induces a related semi-MDP

e Hence all planning and learning algorithms from classical MDPs transfer
directly to options (Cf. Sutton, Precup & Singh, 1999; Precup, 2000)

e But planning and learning with options can be much faster!
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lllustration: Navigation

with cell-to-cell
primitive actions

with room-to-room
options

lteration #0 Iteration #1 lteration #2
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lllustration: Random landmarks

e Generate a lot of options, then worry about which are useful!

e Large set of landmarks, i.e. states in the environment, chosen at random
(Mann, Mannor & Precup, 2015)

e Rough planner which can get to a landmark from its vicinity, by solving
a deterministic relaxation of the MDP
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Landmark-based approximate value iteration gets a good solution much faster!
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The anatomy of the reward option model

e Primitive action model: r,(s) = E[r¢|s; = s, a; = a]
e Option model:

ro(s) =Elry +yria1 + ... st = s,wp = W]

e This expectation indicates a Markov-style property, as it depends only on
the identity of the state and the option, not on the time step

e Notice the model is basically a value function so we can write Bellman
equations for the model:

wa als)|raq(s +ZW (1 = Bu(s"))rw(s))]

e This means that we can use RL methods to learn the models of options!
e Very similar equations hold for the transition model
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Intra-option algorithms

Learning about one option at a time is very inefficient

In fact, we may not want to execute options at all

Instead, learn about all options consistent with the behaviour

In some sense, a form of attention

E.g. action-value function, tabular case

On single-step transition (s,a,r,s’), for all w that could have been
executing in s and taken a:

Qa(s,w) = Qals,w)+ alra(s) +v(1 — u(s))Qals’,w) +
+ ’76@0(3/) Z Hi)a;X QQ(Slv w/) T QQ(57 w)]

Red: continuation. Blue: termination
e In general function approximation, importance sampling will need to be
used (several papers on this)
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Frontier: Option Discovery

e Options can be given by a system designer

e |f subgoals / secondary reward structure is given, the option policy can be
obtained, by solving a smaller planning or learning problem (cf. Precup,
2000)

o What is a good set of subgoals / options?
e This is a representation discovery problem
e Studied a lot over the last 15 years

e Bottleneck states and change point detection currently the most
successful methods
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Goals of our current work

e Explicitly state an optimization objective and then solve it to find a set
of options

e Handle both discrete and continuous set of state and actions

e Learning options should be continual (avoid combinatorially-flavored
computations)

e Options should provide improvement within one task (or at least not
cause slow-down...)
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Actor-critic architecture
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e Clear optimization objective: average or discounted return
e Continual learning
e Handles both discrete and continuous states and actions
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Option-critic architecture (Bacon et al, 2017)

Behavior policy
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e Parameterize internal policies and termination conditions
e Policy over options is computed by a separate process (planning, RL, ...)
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Formulation

e The option-value function of a policy over options 7 is given by

Qr,(s,w) Zﬂ'w als)Qu(s,w,a)
where

Qu(s,w,a) =r1.(s) + ’yZPa(s’\s)U(w, s')

e The last quantity is the utility from s’ onwards, given that we arrive in
s’ using w

U(w,s") = (1 = Bu(s)Qnqg (s, w) + Bu(8) Vig ()
e We parameterize the internal policies by 8, as m,, ¢, and the termination

conditions by v, as 3, .
e Note that 0 and v can be shared over the options!
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Main result: Gradient updates

e Suppose we want to optimize the expected return: E {Qm(s, w)}
e The gradient wrt the internal policy parameters 6 is given by:

E {alog ﬂgée(a‘S)QU(Sa W, CL)}

This has the usual interpretation: take better primitives more often inside
the option

e The gradient wrt the termination parameters v is given by:

. {_aﬁgﬁs')Am(S,,w)}

where A, = Qr, — Vr, is the advantage function
This means that we want to lengthen options that have a large advantage
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Results: Options transfer
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e 4-rooms domain, tabular representations, value functions learned by Sarsa

e Learning in the first task no slower than using primitives

e Learning once the goal is moved faster with the options
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Results: Nonlinear function approximation
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e Atari simulator, DQN to learn value function over options, actor as above
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e Performance matching or better than DQN
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Results: Learned options are intuitive

e In rooms environment, terminations are more likely near hallways
(although there are no pseudo-rewards provided)

e In Seaquest, separate options are 1I.géarned to go up and down

Option 0 Option 1
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What are beneficial options

e Successful simultaneous learning of terminations and option policies

e But, as expected, options shrink over time unless a margin is required
for the advantage

Cf. time-regularized options, Mann et al, (2014)

e [ntuitively, using longer options increase the speed of learning and
planning (but may lead to a worse result in call-and-return execution)

e What is the right tool to formalize this intuition?
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A proposal: Deliberation cost

e Assumption: executing a policy is cheap, deciding what to do is expensive

— Many choices may need to be evaluated (branching factor over actions)

— In planning, many next states may need to be considered (branching
factor over states)

— Evaluating the function approximator might be expensive (e.g. if it is

a deep net)
e Deliberation is also expensive in animals:

— Energy consumption (to engage higher-level brain function)
— Missed opportunity cost: thinking too long means action is delayed
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Problem formulation

e Let ¢(s,w) be the immediate cost of deliberating to choose w in s

e In the call-and-return model, it is easy to see that we have a value
function that expresses total deliberation cost given by the following
Bellman equation:

Q:(s,w) = —c(s,w) + ZPw ZTFQ "1s"YQ.(s", W)

e \We can obtain (). using learning, value iteration etc
e New objective: maximize reward with reasonable effort

max  [Qa(s, w) + £Qc(s, w)]

e ¢ > 0 controls the trade-off between value and computation effort (¢ =0
means optimizing original reward)
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lllustration: 4 rooms, option-critic
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e Emphasizing deliberation cost, shifts the policy towards using options

e Number of iterations of planning is smaller for higher deliberation cost
penalties

e When options are learned in one task and then used to plan in a different
task, options obtained with deliberation costs are more robust
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Conclusions

e Reinforcement learning is useful for temporal prediction under uncertainty
as well as stochastic control

e Good representations exist to re-shape the state and action space to
handle larger problems, and increase efficiency

e Temporal abstraction methods developed in reinforcement learning
provide syntax and semantics of behavioral programs

e Option-critic allows using policy gradient ideas for continual learning of
temporal abstractions, but there are lots of things to do:

— More empirical work in option construction

— Tighter integration with Neural Turing Machines and similar models

— Improved reward shaping, eg see new Ms Pacman results from van
Seijn et al, Maluuba/Microsoft

— Other execution models
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