
THE CASE FOR THE
HOLISTIC LANGUAGE RUNTIME SYSTEM

Martin Maas* Krste Asanovic* Tim Harris John Kubiatowicz*

*University of California, Berkeley Oracle Labs Cambridge

Cloud Data Centers in 2020

3"

Talk Outline
1. Holistic Runtime Systems

Details, Advantages, Programming Model

2. Cloud Data Center Trends
Holistic Runtimes tackle the challenges of 2020

3. Challenges & Future Work
Research Directions & Opportunities

17"

PART I
Holistic Runtime Systems

18"

Holistic Runtime Systems

21"

CPUs" Accelerators" DRAM"

High-speed Interconnect"

CPUs" Accelerators" DRAM"…"

Profiling"

JIT" GC"

Objects"

Program 1 Program 2"
Per-node Runtime"

Node" Node"

Target accelerators"

Objects"

Threads"
Profiling"

JIT" GC"

Objects"

Program 1 Program 2"

Objects"

Threads"

Bulk Storage"

Peripherals"
"

I/O, External
Network Interface"

"

Fine-grained sharing by coordinating within each
node and across (e.g. GC)"

"
Dynamic service fusion/inlining/etc." Adding resources at finer granularity"

Ultra-low latency RPCs under load"

Holistic Runtime Systems

23"

CPUs" Accelerators" DRAM"

High-speed Interconnect"

CPUs" Accelerators" DRAM"…"

Profiling"

JIT" GC"

Objects"

Program 1 Program 2"
Per-node Runtime"

Client #1" App A" App B" Client #2" App C" App D"Service Interfaces"

Coordinate GC"

Share JIT/profiling results"
Transparent relocation of
execution and data"

Schedule work on available runtime instances!

Distributed Runtime"

Node" Node"

Manage distributed heaps"

Failure tolerance"

Target accelerators"

Enforce SLAs"

Objects"

Threads"
Profiling"

JIT" GC"

Objects"

Program 1 Program 2"

Objects"

Threads"

Bulk Storage"

Peripherals"
"

I/O, External
Network Interface"

"

Application"

Programming Model

24"

Distributed Runtime System"

Service A" Service B"

Per-node 
Runtime"

Per-node 
Runtime"

Service A" Service B"

Application"

Service C"

Bulk
Storage"

Service C" Service A"

RDMA-style transfers

Service interfaces

Legacy Application Support

29"

Rack-scale Machine"

Legacy Code VMs"

Commodity OS"

Native"
App"

Native"
App"

Holistic Runtime System"

Java Language
Compatibility Layer"

 Python Language
Compatibility Layer"

Java App" Python App"

Applicability
• Would be useful today to run managed
workloads on Infiniband clusters

• But really benefit from tightly coupled
nodes and hardware support

• Excellent fit for future data centers
31"

PART II
Cloud Data Center Trends

32"

Cloud Forecast for 2020

Hardware Workloads Languages

33"

Cloud Data Centers in 2014

Hardware Workloads Languages

35"

Chanpipat,"FreeDigitalPhotos.net"

Chanpipat,"FreeDigitalPhotos.net"

Cloud Data Centers in 2014

Workloads Languages

Chanpipat,"FreeDigitalPhotos.net"

36"

• Custom machines from commodity parts
• Redundant/unused components (I/O
interfaces, peripherals, etc.)

• Inefficiency in energy and hardware cost

Hardware

Chanpipat,"FreeDigitalPhotos.net"

Cloud Data Centers in 2014

Languages

Chanpipat,"FreeDigitalPhotos.net"

Hardware
37"

• Mostly developed in-house (e.g. Hotmail)
• Some interactive, mostly batch jobs
• Interleaved with external workloads

Workloads

Chanpipat,"FreeDigitalPhotos.net"

Cloud Data Centers in 2014

Chanpipat,"FreeDigitalPhotos.net"

Hardware Workloads
38"

• Workloads written by mixture of systems
programmers and domain experts

• Mix of native and managed languages
(external workloads often managed)

Languages

Critical Workloads in 2014
• Tune workloads to underlying cluster

• Provision lightly loaded nodes for jobs
with low-latency requirements

• Write latency-critical applications in
native languages (usually C++)

40"

Cloud Data Centers in 2020

Hardware Workloads Languages

41"

Cloud Data Centers in 2020

Workloads Languages Hardware
42"

Chanpipat,"FreeDigitalPhotos.net"

Chanpipat,"FreeDigitalPhotos.net"

Cloud Data Centers in 2020

Workloads Languages

Chanpipat,"FreeDigitalPhotos.net"

• Volume of cloud market growing ! eco-
nomically feasible to design custom SoCs

• Need to reduce energy and hardware cost
• Software benefits from hardware support

Hardware
44"

Chanpipat,"FreeDigitalPhotos.net"

Cloud Data Centers in 2020

Workloads Languages

Chanpipat,"FreeDigitalPhotos.net"

Hardware
45"

CPU" CPU" x10B100"

Vector Core"

Accelerators"

Crypto"

Custom"SystemBonBChip"

SoC SoC SoC SoC …"

~1,000"SoC’s"

High-speed Interconnect

RAM RAM RAM RAM …"

NVM Storage NVM Storage NVM Storage

NIC"

RDMA unit (bulk storage)"

Chanpipat,"FreeDigitalPhotos.net"

Cloud Data Centers in 2020

Languages

Chanpipat,"FreeDigitalPhotos.net"

Hardware

• New workloads: e.g. sensor interactions,
AR, live translation, remote gaming

• More interactive (require low-latency)
• Mostly from external customers

Workloads
46"

Chanpipat,"FreeDigitalPhotos.net"

Cloud Data Centers in 2020

Languages

Chanpipat,"FreeDigitalPhotos.net"

Hardware Workloads
47"

Cloud Service Provider (Platform-as-a-Service) – Cloud API

Customer A

Service A" Service B"

Customer B

Service A" Service B"

Chanpipat,"FreeDigitalPhotos.net"

Cloud Data Centers in 2020

Chanpipat,"FreeDigitalPhotos.net"

Hardware Workloads

• Mostly written by external application
developers (cloud will be main platform)

• Will almost exclusively use high-level
languages and frameworks

Languages

48"

Chanpipat,"FreeDigitalPhotos.net"

Implications

Mostly
interactive

Productivity
languages

Rack-scale
machines

50"

Tune applications the underlying cluster

Chanpipat,"FreeDigitalPhotos.net"

Implications

Mostly
interactive

Productivity
languages

Rack-scale
machines

51"

Tune applications the underlying cluster The Cloud is becoming more opaque !
fine-tuning infeasible (and not portable)

Chanpipat,"FreeDigitalPhotos.net"

Implications

Mostly
interactive

Productivity
languages

Rack-scale
machines

52"

Provision lightly loaded nodes for jobs
with low-latency requirements

Chanpipat,"FreeDigitalPhotos.net"

Implications

Mostly
interactive

Productivity
languages

Rack-scale
machines

53"

Provision lightly loaded nodes for jobs
with low-latency requirements

Radical over-provisioning will cease to
be cost-effective ! sharing

Chanpipat,"FreeDigitalPhotos.net"

Implications

Mostly
interactive

Productivity
languages

Rack-scale
machines

54"

Write latency-critical applications in
native languages (usually C++)

Chanpipat,"FreeDigitalPhotos.net"

Implications

Mostly
interactive

Productivity
languages

Rack-scale
machines

55"

Write latency-critical applications in
native languages (usually C++)

Cloud will be exclusively programmed
with high-level languages

Cloud Workloads written in managed
languages, latency-sensitive and not
tuned to the underlying platform

56"

Holistic Runtime Systems exploit rack-
scale machines to run them efficiently

57"

PART III
Challenges & Future Work

58"

Garbage Collection
• Garbage Collection of tera- or peta-
byte sized heaps unsolved problem

• Bulk+local storage (e.g. RAMCloud)

• Cross-node references ! Distributed
Garbage Collection

59"

Fault Isolation
• Faulting application or SoC must not
bring down rack-scale machine

• Isolation/lifecycle support in Java:
JSR-121, Multi-tasking VM

• Potential for HW support (Mondriaan)
60"

Performance Guarantees
• Probabilistic performance and tail
latency guarantees for service calls

• High-level goals (e.g. Tessellation OS)

• Need predictable GC performance
(HW support is work in progress)

61"

Conclusion

62"

Conclusion
• Cloud data centers are changing:

• Rack-scale machines, interactive/ex-
ternal workloads, managed languages

• Current software stack is a bad fit

• Are Holistic Runtimes the solution?
63"

Thank you! Any Questions?"

Martin Maas, Krste Asanovic, Tim Harris, John Kubiatowicz

maas@eecs.berkeley.edu, krste@eecs.berkeley.edu,
timothy.l.harris@oracle.com, kubitron@eecs.berkeley.edu

64"

Backup Slides

65"

Frameworks & Extensibility

66"

Application"

Storage APIs"
Parallel

Computing APIs"
Replication APIs"

Storage 
Libraries"

Job-scheduling &
Resource Allocation"

Unified Failure
Handling"

Application
Developers"

System
Programmers"

Auto- 
Tuners"

HolisJc"Language"RunJme"System"

Application"

Why Managed Languages?
• Much better productivity and safety

• Abstract away hardware details and
can transparently tune to platform

• Semantics allow fine-grained sharing

• Good for service-oriented architecture
68"

Programmability Crisis
• Productivity programmers...

• ...programming for an increasingly
complex but opaque platform...

• ...with strict latency requirements
under high sharing of machines

67"

Problems with current stack
• Current software stack is a bad fit:

• Interference: Intra- and inter-node

• Redundancy: JIT, class library, etc.

• Composability: RPC latencies

• Elasticity: Start-up/boot times
71"

