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Talk Outline 
1. Holistic Runtime Systems 

Details, Advantages, Programming Model 

2. Cloud Data Center Trends 
Holistic Runtimes tackle the challenges of 2020 

3. Challenges & Future Work 
Research Directions & Opportunities 
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PART I 
Holistic Runtime Systems 
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Holistic Runtime Systems 
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Application"

Programming Model 
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Legacy Application Support 
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Applicability 
• Would be useful today to run managed 
workloads on Infiniband clusters 

• But really benefit from tightly coupled 
nodes and hardware support 

• Excellent fit for future data centers 
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PART II 
Cloud Data Center Trends 
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Cloud Forecast for 2020 

Hardware Workloads Languages 
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Cloud Data Centers in 2014 

Hardware Workloads Languages 
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Cloud Data Centers in 2014 

Workloads Languages 
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• Custom machines from commodity parts 
• Redundant/unused components (I/O 
interfaces, peripherals, etc.) 

• Inefficiency in energy and hardware cost 

Hardware 
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Cloud Data Centers in 2014 

Languages 

Chanpipat,"FreeDigitalPhotos.net"

Hardware 
37"

• Mostly developed in-house (e.g. Hotmail) 
• Some interactive, mostly batch jobs 
• Interleaved with external workloads 

Workloads 
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Cloud Data Centers in 2014 
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Hardware Workloads 
38"

• Workloads written by mixture of systems 
programmers and domain experts 

• Mix of native and managed languages 
(external workloads often managed) 

Languages 



Critical Workloads in 2014 
• Tune workloads to underlying cluster 

• Provision lightly loaded nodes for jobs 
with low-latency requirements 

• Write latency-critical applications in 
native languages (usually C++) 
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Cloud Data Centers in 2020 

Hardware Workloads Languages 
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Cloud Data Centers in 2020 

Workloads Languages Hardware 
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Cloud Data Centers in 2020 

Workloads Languages 
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• Volume of cloud market growing ! eco-
nomically feasible to design custom SoCs 

• Need to reduce energy and hardware cost 
• Software benefits from hardware support 

Hardware 
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Cloud Data Centers in 2020 
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Hardware 
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Cloud Data Centers in 2020 

Languages 
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Hardware 

• New workloads: e.g. sensor interactions, 
AR, live translation, remote gaming 

• More interactive (require low-latency) 
• Mostly from external customers 

Workloads 
46"



Chanpipat,"FreeDigitalPhotos.net"

Cloud Data Centers in 2020 

Languages 
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Hardware Workloads 
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Cloud Service Provider (Platform-as-a-Service) – Cloud API 

Customer A 

Service A" Service B"

Customer B 

Service A" Service B"
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Cloud Data Centers in 2020 

Chanpipat,"FreeDigitalPhotos.net"

Hardware Workloads 

• Mostly written by external application 
developers (cloud will be main platform) 

• Will almost exclusively use high-level 
languages and frameworks 

Languages 
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Implications 

Mostly 
interactive 

Productivity 
languages 

Rack-scale 
machines 
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Tune applications the underlying cluster 
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Tune applications the underlying cluster The Cloud is becoming more opaque ! 
fine-tuning infeasible (and not portable) 
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Provision lightly loaded nodes for jobs 
with low-latency requirements 
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Provision lightly loaded nodes for jobs 
with low-latency requirements 

Radical over-provisioning will cease to 
be cost-effective ! sharing 
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Implications 
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Write latency-critical applications in 
native languages (usually C++) 

Cloud will be exclusively programmed 
with high-level languages 



Cloud Workloads written in managed 
languages, latency-sensitive and not 
tuned to the underlying platform 
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Holistic Runtime Systems exploit rack-
scale machines to run them efficiently 
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PART III 
Challenges & Future Work 
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Garbage Collection 
• Garbage Collection of tera- or peta-
byte sized heaps unsolved problem 

• Bulk+local storage (e.g. RAMCloud ) 

• Cross-node references ! Distributed 
Garbage Collection 
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Fault Isolation 
• Faulting application or SoC must not 
bring down rack-scale machine 

• Isolation/lifecycle support in Java: 
JSR-121, Multi-tasking VM 

• Potential for HW support (Mondriaan ) 
60"



Performance Guarantees 
• Probabilistic performance and tail 
latency guarantees for service calls 

• High-level goals (e.g. Tessellation OS ) 

• Need predictable GC performance 
(HW support is work in progress) 
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Conclusion 
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Conclusion 
• Cloud data centers are changing: 

• Rack-scale machines, interactive/ex-
ternal workloads, managed languages 

• Current software stack is a bad fit 

• Are Holistic Runtimes the solution? 
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Thank you! Any Questions?"

Martin Maas, Krste Asanovic, Tim Harris, John Kubiatowicz 

maas@eecs.berkeley.edu, krste@eecs.berkeley.edu, 
timothy.l.harris@oracle.com, kubitron@eecs.berkeley.edu 
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Backup Slides 
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Frameworks & Extensibility 
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Why Managed Languages? 
• Much better productivity and safety 

• Abstract away hardware details and 
can transparently tune to platform 

• Semantics allow fine-grained sharing 

• Good for service-oriented architecture 
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Programmability Crisis 
• Productivity programmers... 

• ...programming for an increasingly 
complex but opaque platform... 

• ...with strict latency requirements 
under high sharing of machines 
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Problems with current stack 
• Current software stack is a bad fit: 

• Interference: Intra- and inter-node 

• Redundancy: JIT, class library, etc. 

• Composability: RPC latencies 

• Elasticity: Start-up/boot times  
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