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ABSTRACT
Knowledge bases, which consist of a collection of entities, attributes,
and the relations between them are widely used and important for
many information retrieval tasks. Knowledge base schemas are of-
ten constructed manually using experts with specific domain knowl-
edge for the field of interest. Once the knowledge base is gen-
erated then many tasks such as automatic content extraction and
knowledge base population can be performed, which have so far
been robustly studied by the Natural Language Processing commu-
nity. However, the current approaches ignore visual information
that could be used to build or populate these structured ontologies.
Preliminary work on visual knowledge base construction only ex-
plores limited basic objects and scene relations. In this paper, we
propose a novel multimodal pattern mining approach towards con-
structing a high-level “event” schema semi-automatically, which
has the capability to extend text only methods for schema construc-
tion. We utilize a large unconstrained corpus of weakly-supervised
image-caption pairs related to high-level events such as “attack”
and “demonstration” to both discover visual aspects of an event,
and name these visual components automatically. We compare
our method with several state-of-the-art visual pattern mining ap-
proaches and demonstrate that our proposed method can achieve
dramatic improvements in terms of the number of concepts dis-
covered (33% gain), semantic consistence of visual patterns (52%
gain), and correctness of pattern naming (150% gain).
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Figure 1: We propose a novel system to automatically discover and
name visual patterns specific to each high-level event which helps
experts construct event schema and related knowledge bases.

1. INTRODUCTION
With recent advances in computer vision, researchers have been

able to demonstrate impressive performance at near-human level
capabilities in difficult tasks such as image recognition. For exam-
ple, computer vision systems now have the ability to recognize if
a dog, cat, or car appears in an image. These advances are made
possible by utilizing the massive amount of image datasets and la-
bel annotations, sometimes also with bounding boxes around the
objects of interest within the image. However, the difficulty with
the current systems is that every time when we want to learn a new
visual concept, users must be looped in to manually define the tar-
get class and label the training data. Also, it is unclear how we
can know apriori for a particular domain what the most important
concepts we want to focus on and train corresponding detectors.
For example, if an ontology expert is asked to construct a schema
to describe high-level events like “attack”, what visual classes or
concepts are most relevant and can be automatically detected? Can
we use data mining to discover such relevant classes directly from
data available from the domain and use the discovered concepts to
help the expert to build the new schema? Our intuition tells us that
“gun”, “knife”, or “explosion”, could be important things to try to
detect from the images. However without inspecting the content of
the images our preconceived notions of what is important may only
tell part of the story of a given event. We will show later that other
concepts such as “smoke”, “air strike”, and “police” might actu-



Named pattern: “President Barack” Named pattern: “Military”

Named pattern: “bomb attack”Named pattern: “vigil”

Figure 2: Examples of the localized patterns automatically discov-
ered and named by the proposed multimodal approach.

ally appear much more frequently in the specific data corpus in the
domain, but it would be difficult to know these concepts appear fre-
quently without first inspecting a portion of the images. Situations
like this can arise in many application domains (like sports, secu-
rity, and open source content). Thus, there are great needs for au-
tomatically discovering concepts relevant to events of interest from
data corpora in various specific domains.

In response to the challenge mentioned above, in this work we
attempt to answer the following question: given a specific target
domain and associated data corpora, how do we develop automatic
methods to rapidly discover salient multimodal patterns that are se-
mantically coherent, visually consistent, and can be automatically
named with semantic concepts relevant to the high-level events in
the target domains. The proposed architecture is described in Fig.
1. We use artifical neural network models to generate visual and
text representation for image-caption pairs, and apply the associa-
tion rule mining algorithm to discover multimodal visual patterns.
In this work, we use news as an example domain and image caption
pairs as example multimodal corpora to demonstrate the effective-
ness of the proposed methods. But the overall proposed framework
is general and can be easily extended to other domains.

In many applications like personalized news or social media track-
ing, it’s often necessary to process information at the high-level
event level (such as “Baltimore Riot” or “Syria Bombing”). Us-
ing knowledge bases to improve event-level processing has been a
major research topic. In this work, we specifically focus on dis-
covery of named multimodal patterns related to events in a specific
domain. We use such patterns as candidate concepts that can be
used to assist knowledge experts to construct new event knowledge
bases.

As shown in Fig. 1 and 2, a pattern is formed by a collection
of localized instances within images (referred to as image patches
later in the paper) and their associated text captions. We specifi-
cally focus on patterns that are represented by both text and image
modalities. We also emphasize the importance of the automatic
naming process in order to assign semantic concepts relevant to
high-level events (such as “explosion”, “vigil” concepts for “at-
tack” event). Such automatic discovery and naming processes will
produce a pool of high-quality multimodal concepts that are se-
mantically coherent, visually consistent, and semantically relevant
to specific events of interest.

The proposed discovery and naming methods for multimodal
patterns are distinct from the existing work in mining of visual
patterns. Recently, [21] and [12] proposed discovery of represen-
tative and discriminative visual patterns as mid-level image rep-
resentation in order to improve image classification performance,
compared to the traditional representations using low-level features
(such as visual bags of words). Visual patterns have also been used
to summarize image collections by [31] [18]. Although such vi-

sual patterns capture unique visual characteristics that can be used
to separate image classes, they often do not correspond to clear
semantic concepts that are at a level suitable for defining entities
included in high-level events. For example, visual patterns discov-
ered in [12] from the MIT scene dataset are often at the lower level
like chairs, windows, or furniture parts that do not meet the needs
of high-level knowledge base construction.

Evaluation of pattern mining and naming is challenging due to
the novelty of the problem and the subjectiveness of the task. It’s
important to note the goal is not to improve image classification
tasks like what has been done in past works [12] [7]. Instead, our
focus is on semantic naming of the discovered patterns and their
relatedness to high-level events as mentioned earlier. In this work,
we propose expert evaluation methods to compare the proposed ap-
proaches with several state-of-the-art baselines for visual discovery
and naming procedures. The contributions of this paper can be
summarized as follows:

• We develop a novel multimodal mining framework for dis-
covering visual patterns from a collection of image-caption
pairs and automatically naming the discovered patterns, pro-
ducing a large pool of semantic concepts specifically relevant
to a high-level event. The named visual patterns can be used
to construct event schema needed in the knowledge base con-
struction process.

• The proposed system can discover many novel semantic con-
cepts not covered by existing visual ontologies such as Im-
ageNet. This helps break the aforementioned bottleneck in
extending existing visual classifiers to new domains.

• Our system exploits the joint multimodal representations in
discovering unique patterns, which are shown to be more vi-
sually coherent and semantically correct, compared to base-
lines using separate processing of individual media modali-
ties.

2. RELATED WORK
Low-level image features such as SIFT [15] and Bag-of-Words

methods were widely used as a representation for image retrieval
and classification. However, researchers have proven that these
low-level features are insufficient for representing the semantic mean-
ing of images. Mid-level image feature representations are often
used to achieve better performance in a variety of computer vision
tasks. Some frameworks for using middle level feature represen-
tations, such as [11, 28, 29, 30], have achieved excellent perfor-
mance in object recognition and image retrieval. ImageNet [5],
was introduced and has led to breakthroughs in tasks such as ob-
ject recognition and image classification due to the availability of
a massive amount of well-labeled data. Each of the images within
ImageNet is manually labeled. Thus, it is a very expensive and
time-consuming task. Other similar datasets, including SUN[25],
MSCOCO [13], and UCF101 [22] are created for object/scene/concept
classification tasks. However, the manually defined ontologies are
quite limited and oftentimes do not extend to real-world data, and
therefore may not cover the concepts needed to build an event schema
for high-level events. This work looks beyond a manually defined
ontology, and instead focuses on mining multimodal patterns au-
tomatically from weakly supervised data to attempt to unbind re-
searchers from the need for costly supervised datasets. We ap-
proach this problem from a multi-modal perspective (using the im-
age and caption together), which allows us to name and discover
higher-level image concepts.



Visual pattern mining is an important task since it is the founda-
tion of many middle-level feature representation frameworks. [9]
and [31] use low-level features and a hashing approach to mine vi-
sual patterns from image collections. [26] utilizes a spatial random
partition to develop a fast image matching approach to discover vi-
sual patterns. All of these methods obtain image patches from the
original image collection either by random sampling or salient ob-
ject proposal and utilize image matching or clustering to discover
similar patches to create visual patterns. These methods are compu-
tationally intense, because they have to examine possibly hundreds
or thousands of image patches from each image. These methods
rely heavily on low-level image features, and therefore do not often
produce image patches that exhibit high-level semantic meaning.
The generated image patterns are typically visually duplicated or
near-duplicated image patches.

Convolutional neural networks (CNN) have achieved great suc-
cess in many research areas [20], [10]. Recently, [12] combined the
image representation from a CNN and the association rule mining
technique to effectively mine visual patterns. They first uniformly
sampled image patches from the original image and extracted the
fully connected layer response as features for each image patch uti-
lized in an association rule mining framework. This approach is
able to find consistent visual patterns, but cannot guarantee the dis-
covered visual patterns are relevant to specific events and can be
used in event schema construction. Most of the existing visual pat-
tern mining work focuses on how to find visually consistent pat-
terns.

Other related works focus on visual knowledge mining. [6] pro-
pose a visual instance mining system to find the unique visual el-
ements that are the most distinctive for a certain geo-spatial area.
They attempt to answer the question “What makes Paris looks like
Paris?”, which is answered by the visual patterns discovered by
their system. They first collect images from Google Street View.
Then the images are sampled to obtain image patches at different
scales. A discriminative clustering approach is proposed to take
into account the weak geographic supervision and discover the vi-
sual patterns with the unique character of a specific city. This idea
is very inspiring, as the visual patterns discovered are used not only
as a mid-level representation, but as valuable knowledge by them-
selves.

The NEIL system [3] is another example of visual knowledge
mining work. NEIL automatically discovers common sense rela-
tionships and labels instances of given visual categories. In NEIL,
the discovered knowledge consists of relationships between prede-
fined objects and concepts. The NEIL system is also able to find
new visual instances of given categories. However, while NEIL is
limited to a predefined ontology, our proposed multimodal pattern
mining method aims to discover and name new objects/concepts
from an unstructured set of image-caption pairs.

Another category of related works is image captioning. In re-
cent years, many researchers have focused on teaching machines
to understand images and captions jointly. Image caption gener-
ation focuses on automatically generating a caption that directly
describes the content in an image using a language model. Multi-
modal CNN [8] is often used to generate sentences for the images.
All the existing works use supervised approaches to learn a lan-
guage generation model based on carefully constructed image cap-
tions created for this task. The datasets used in caption generation,
such as the MSCoco dataset [13] consist of much simpler sentences
than appear in news image-caption pairs. We differ from these ap-
proaches in that we do not try to generate a caption for images, but
instead use them jointly to mine and name the patterns that appear
throughout the images.

3. MULTIMODAL PATTERN MINING
In this section, we discuss our multimodal pattern mining (MMPM)

framework. In particular, we will describe how we collect a large-
scale dataset, generate feature-based transactions from the images
and captions, and discover and name semantic visual patterns.

3.1 Weakly Supervised Event Dataset Collec-
tion

We believe that by using weakly supervised image data from
target categories that are sufficiently broad, we can automatically
discover meaningful and easily nameable image patch patterns for
structured ontology generation. To accomplish this task, we collect
a set of image caption pairs from a variety of types of news event
categories.

We begin by crawling the complete Twitter feeds of four promi-
nent news agencies, the Associated Press, Al Jazeera, Reuters, and
CNN. Each of these agencies has a prominent Twitter presence,
and tweet links to their articles multiple times a day. We collect
the links to the articles and then download the HTML file from
each extracted link. The articles span the time frame from 2007-
2015, and cover a variety of different topics. We then parse the raw
HTML files and find the image and caption pairs from the down-
loaded news articles. Through this process, we were able to collect
approximately 280k image-caption pairs.

Once we have collected the dataset, we want to find image-caption
pairs that are related to different events covered in news. We uti-
lized the event ontology that was defined for the Knowledge Base
Population (KBP) task in the National Institute for Standards and
Technology Text Analysis Conference in 2014 to provide supervi-
sion to our dataset. Within this task, there is an event track with the
stated goal to “extract information such that the information would
be suitable as input to a knowledge base.” This track goal closely
models the goals of learning patterns that are easily nameable with
semantic concepts and hence could be used in knowledge base pop-
ulation. This makes this ontology a perfect fit for our task.

The KBP event task utilizes the ontology defined by the Lingus-
tic Data Consortium in 2005 [24]. This event ontology contains 34
distinct event types; the events are broad actions that appear com-
monly throughout news documents, such as demonstrate, divorce,
and convict. Provided in the training data with these event ontolo-
gies is a list of trigger words for each of the events that are used to
detect when an event appears in text data. An example of some of
the trigger words used for the demonstrate event are: protest, riot,
insurrection, and rally. We search each of the captions for a trigger
word from the event category, and if an image caption contains that
trigger word, we assign that image caption pair to the given event
category. An example of the number of images for some represen-
tative events can be seen in Table 1.

Table 1: Number of images per event category for some of the most
popular event categories in our dataset.

Event # of Images Event # of Image

Attack 52649 Injure 5853

Demonstrate 20933 Transport 51187

Elect 9265 Convict 1473

Die 26475 Meet 32787

3.1.1 Review of Pattern Mining
In this section, we will review the basic ideas and definitions

necessary for pattern mining. Assume that we are given a set of n
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Figure 3: The visual transaction generation pipeline utilizing the last convolutional layer of a convolutional neural network. Using this
pipeline, we are able to obtain representations of each image that can localize the presence of a pattern within the image. We use convolutional
layers from AlexNet as an example.

possible observations X = {x1, x2, ...xn}; a transaction, T , is a
set of observations such that T ⊆ X . Given a set of transactions
S = {T1, T2, ...Tm} containing m transactions, our goal is to find
a particular subset of X , say t∗, which can accurately predict the
presence of some target element y ∈ Ta, given that t∗ ⊂ Ta and
y ∩ t∗ = ∅. t∗ is referred to as a frequent itemset in the pattern
mining literature. The relationship from t∗ → y is known as an
association rule. The support of t∗ reflects how often t∗ appears in
S and is defined as,

s(t∗) =
|{Ta|t∗ ⊆ Ta, Ta ∈ S}|

m
(1)

Our goal is to find association rules that accurately predict the
correct event category for the image-caption pairs. Therefore, we
want to find patterns such that if t∗ appears in a transaction there
is a high likelihood that y, which represents an event category, ap-
pears in that transaction as well. We define the confidence as the
likelihood that if t∗ ⊆ T then y ∈ T , or,

c(t∗ → y) =
s(t∗ ∪ y)

s(t∗)
. (2)

3.1.2 Transaction Generation from Images
Certain portions of a CNN are only activated by a smaller region

of interest (ROI) within the original image. Throughout this paper,
we will utilize the CNN defined in [10], which is a common CNN
structure that is often used for computer vision tasks. The last layer
in which the neurons in that layer do not correspond to the entire
image is the output of the final convolutional and pooling layer.
Based on this observation, for each image we find the maximum
magnitude response from a particular feature map from this layer
of the CNN. The last pooling layer of [10] is commonly known
as “pool5”. This layer consists of 256 filters; and the response
of each of the filters over a 6 × 6 mapping of the image. The
corresponding ROI from the original image in which all the pixels
in that region contribute to the response of a particular neuron in the

pool5 layer is a 196×196 image patch from the 227×227 resized
image. These 196 × 196 image patches come from a zero-padded
representation of the image with zero-padding around the image
edges of 64 pixels and a stride of 32. Namely, from a 227 × 227
scaled input image, a total of 6×6 (36) patch areas are covered from
all the stride positions, resulting in a 6 × 6 feature map for each
filter in this layer. Using this approach, we are able to leverage the
existing architecture to compute the filter responses for all patches
at once without actually changing the network structure. This idea
allows us to extract image patch patterns in a way that is much more
efficient than many current pattern mining methods, which utilize
a sampling approach.

We use the pre-trained CNN model from [10], trained on the Im-
ageNet dataset for extracting the pool5 features for the news event
images. For each image, we keep the maximum response over the
6 × 6 feature map and set other non-maximal values to zero for
all 256 filters, which is similar to non-maximum suppression that
appears throughout the CNN literature. This operation finds the
patch triggering the highest response in each filter and helps avoid
redundant patches in the surrounding neighborhood in the image
that may also generate high responses. The above process results
in a 256-dimensional feature vector representation for each image
patch. We then set the nonzero items in this feature vector to 1.
This creates a binary representation of which filters are activated
for each image patch. We use these sparse binarized features to
build transactions for each image patch as discussed in Sec. 3.1.1,
where the nonzero dimensions are the items in our transaction.

By utilizing the architecture of the CNN directly, we are able
to efficiently extract image features that come from specific ROI
that are suitable for pattern mining. The current state-of-the-art
pattern mining technique proposed by [12] requires a sampling of
the image patches within each image and then operating the entire
CNN over this sampled and resized image patch. This procedure
is very costly, because the CNN must be used to extract features
from a number of sampled images that can be orders of magni-
tude larger than the dataset size. For example, for the MIT indoor
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dataset, the authors of [12] sample 128 × 128 size image patches
with a stride of 32 from images that have been resized such that
their smallest dimension is of size 256. Thus, the number of image
samples that are taken for each image is greater than or equal to
( 256−128

32
+ 1)2 = 25. The full CNN must operate on all of these

sampled images. In contrast, our method works directly on the im-
ages themselves without any sampling, but still has the ability to
localize images within the dataset. We are able to extract represen-
tations for 36 image patches from an image while only having the
CNN operate on the image once. By leveraging the structure of the
CNN during test or deployment, our method is at least 25 times
less computationally intensive than the current state of the art. We
will discuss the speed-up we have in deploying our event-specific
pattern mining compared with other approaches in our experiment
section. Fig. 3 shows our visual transaction generation pipeline in
detail.

In this paper, we choose to use the response map of the pooling
layer after the last convolutional layer to build the image transac-
tions. This choice is inspired by the research on visualizing the con-
volutional neural network [27] and the recent success of using con-
volutional layers for object semantic segmentation [14] [19]. Those
works have proved that the filters in the last convolutional layers
have strong capability to capture the semantic objects in the input
images. Thus, we use this particular setup in our model. However,
it is important to note that our proposed multimodal framework
is very flexible so that the image transaction generation model or
the text transaction generation model can be replaced by other ad-
vanced models to achieve even better results.

3.1.3 Transaction Generation from Captions
We have discussed how we generated transactions by binarizing

and thresholding the CNN features that are extracted from the im-
ages. Similarly, we require an analogous algorithm for generating
transactions from image captions.

We begin by cleaning each of the image captions by removing
stopwords and other ancillary words that are not relevant (HTML
tags or URLs). We then tokenize each of the captions and find
all of the words that appear in at least 10 captions in our dataset.
Once we find these words, we use the skip-gram model proposed
in [16] that was trained on a corpus of Google News articles to
map each word to a 300-dimensional embedded space. This model
works well in our setting, because the structure of image captions

Large Scale Image-Caption Dataset

Deep Neural Network Image
And Three-Level Text Embedding

Generated Image-Caption Transactions and
Associate Rule Data Mining

Semantically Consistent Patterns

Pattern Naming Algorithm

Korean Ferry Discovered
NameCaption Text Caption Text Caption Text
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Maritime police search for 
missing passengers in 

front of the Korean ferry 
with sunk at the sea.

Figure 5: Our full multimodal pattern discovery and naming
pipeline

is similar to that of news article text, which this model was trained
on. The skip-gram model works well in our context because words
with similar uses end up being embedded close to each other in
the feature space. Words such as “religious clergy”, “priest”, and
“pastor” all end up close in Euclidean distance after embedding
and far away from words that are not similar. We cluster the words
using K-means clustering to generate 1,000 word clusters.

To generate transactions for each caption, we map each word
back to its corresponding cluster, then include that cluster index in
the transaction set. We remove patterns that contain cluster indices
that are associated with commonly used words by having a high
confidence score threshold as defined in Eq. 2. The cluster indices
that frequently appear in captions from a particular event category
but rarely for other categories are found through our association
rule mining framework.

We require our discovered patterns to contain items from both
the visual and text transactions. By requiring words with similar
meaning to appear in all captions of a visual pattern, we are able
to discard patterns that may be visually similar but semantically in-
coherent. The skip-gram-based algorithm is able to handle differ-
ences in word choice and structure between captions to effectively
encode meaning into our multimodal transactions.

3.2 Mining the Patterns
We add the event category of each image as an additional item

in the generated transaction for each of the image caption pairs.
Inspired by [12], we use the popular apriori algorithm [1] to find
patterns within the transactions that predict which event category
the image belongs to. We only find the association rules that have
a confidence higher than 0.8, and calculate the support threshold
that ensures that at least 30 image patches exhibit a found pattern.
Finally, we also remove any rules that only contain items generated
from the image or caption transactions, ensuring that we only retain
truly multimodal patterns. Therefore, our pattern requirements can
be described mathematically as,

c(t∗ → y) ≥ cmin

s(t∗) ≥ smin

t∗ ∩ I �= ∅
t∗ ∩C �= ∅. (3)

where as defined in Eq 1 and Eq 2, y is the event category of



the image-caption pair, cmin is the minimum confidence threshold,
smin is our minimum support threshold, I represents the items gen-
erated from the image transaction pipeline, and C are those gener-
ated from the caption pipeline. At the end, each multimodal pattern
t* contains a set of visual items (fired filter responses in pool5 in
CNN model) and a set of text patterns (clusters in the skip-gram
embedded space).

3.3 Naming the Patterns
We name the generated patterns so that they can be used for

higher-level information extraction tasks, such as event schema gen-
eration. We leverage the fact that we have captions associated with
each of the images to generate names for each pattern.

We begin the process of name generation by removing the words
that are not generally useful for naming but appear often in cap-
tions. The words that are removed include standard English lan-
guage stop words (or, I, etc.), the name of each month, day, and
directional words such as “left” and “right”. After cleaning the
caption words, we then encode both unigram and bigrams into a
vector using tf-idf encoding. We ignore any unigrams or bigram
that does not appear at least 10 times across our caption dataset.

Once these words are removed we then sum the TF-IDF vec-
tor representations of each word in all of the captions associated
with a particular pattern. We then take the argument max over the
summed TF-IDF representations to obtain the name for this pattern.
The word embedding described in Sec. 3.1.3 ensures that words
with semantically similar usages and meanings will be clustered
together, and the TF-IDF naming algorithm chooses the most ap-
propriate word from the associated clusters for a particular pattern.
This procedure is explained mathematically in the following way:
Let p be a found multimodal itemset (pattern), and Tk is the multi-
modal transaction for the k’th generated transaction in our dataset.
We define the set P as all the indices of transactions that contain p,
or P = {i|p ⊆ Ti, ∀i}. In Eq. 4, V is our vocabulary, Wk is the
set of words from the k’th caption, Ip(w) is an indicator function
on whether w corresponds to a word cluster in the itemset of p, and
wkj is the j’th word in the k’th caption,

wname = argmax
w∈V

∑

k∈P

∑

wkj∈Wk

Ip(wkj) ∗ tfidf(wkj) (4)

Once the names are found, we remove any name that appears
in more than 10% of the captions of a particular event. This is
important because for particular events like “injure”, words such as
injure and wounded appear across many captions, and may lead to
poor naming. Some examples of discovered patterns and the names
that we have assigned to them can be seen in Fig 6. Our full pattern
naming algorithm and pipeline can be seen in Fig 5.

4. EVALUATION

4.1 Baseline Methods
In this paper, we propose a complete end-to-end pipeline for dis-

covering and naming visual patterns from large-scale image-text
datasets, in particular news event-related content. The discovered
visual patterns with names are used to help linguists build the mul-
timodal event schema. To the best of our knowledge, there is no
existing research that attempts to solve the specific problem that we
have addressed. However, some existing techniques can be modi-
fied and then used to address this problem. We propose 3 different
baseline approaches based on some state-of-the-art pattern mining
techniques and then compare our approach with those baselines.

4.1.1 Baseline 1: Object Proposal and Clustering
(OPC)

We follow the commonly used pipeline that is widely used in
the visual pattern mining literature [6] [4] for this baseline ap-
proach. We first sample the images at multiple scales to obtain
image patches, and then image features are extracted from each
patch. The patches are then clustered using K-Means clustering to
group the image patches into visual patterns. We use existing state-
of-the-art methods in each component to implement this baseline.
Selective Search [23] is used to propose multi-scale image patches.
The response from second to last fully connected layer of the CNN,
VGG19 [20], is used as the feature representation of each image
patch. We attempted different cluster numbers for the K-Means al-
gorithm and report the best performance in the following section.
The selection of parameters is discussed in Sec. 4.4.

To name the discovered visual patterns, we utilize topics dis-
covered by Latent Dirichlet Allocation (LDA) [2] to find pattern
names from the associated caption text for each visual pattern. We
first collect all the image captions from one visual pattern, and this
collection of captions represents a document in our LDA frame-
work. Then we discover n topics over all the documents, in this
work, n was set to be 1,000. Each document is then assigned to be
generated from some distribution over the topics. We first take the
intersection of the set of all the words from its document and the set
of the topic words from the topic. The words in this intersection are
then ranked based on the corresponding topic score for each word.
The word ranking score can be seen in Eq. 5 where wi is the word
being ranked, Wk is the set of words that appear in the captions of
a pattern, Tj is the set of words from the jth topic, and tij is topic
score for word wi in relation to topic j. In this equation, Tj repre-
sents the topic that is chosen by LDA to be most representative of
this document.

wscore(wi) =
∑

wi∈Wk∩Tj

tij (5)

We choose the top 3 words based on our above ranking algorithm
to name each visual pattern.

4.1.2 Baseline 2: Mid-level Deep Pattern Mining
(MDPM)

MDPM is proposed by Li et al. in [12]. They use the response
of a fully connected layer of a pre-trained CNN to build trans-
actions and apply association rule mining to find visual patterns.
Their method is the most similar current approach to ours, but they
only use visual information in their approach, while we use both vi-
sual and text modalities to build the multimodal transactions. This
method is a state-of-the-art approach for visual pattern mining, and
we will demonstrate the performance gains that can be achieved
using multimodal information as opposed to visual only. We use
the code provided by the authors of [12] in our experiments. As
their method is designed for finding visual patterns only, we use the
same LDA naming algorithm introduced in section 4.1.1 to name
the discovered visual patterns.

4.1.3 Baseline 3: Object Detection to Find Concepts
from Image Dataset (OD)

With the recent rapid development of artificial neural networks
for image classification, researchers can accurately detect objects
and concepts from images. We use a pre-trained convolutional neu-
ral network model [20] to detect concepts and objects from our
dataset. We select the top k frequently detected objects/concepts in
each event as k visual patterns. We set k to be 50 in our experi-
ment. Naturally, all the images with the same detected concept are
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Figure 6: Some examples of named visual patterns discovered by
our MMPM. These examples are discovered for the “attack” event.
Although each pattern may contain more images, we only show the
first six images for each pattern.

grouped as a visual pattern, and the name of the synset correspond-
ing to the detected visual pattern is used as the pattern name.

4.2 Subjective Evaluation
We first show some examples of visual patterns discovered by

our method and the baseline approaches in Fig. 6 and 7. Some
subjective conclusions can be drawn from the illustration. These
conclusions are representative of the algorithms and the patterns
that are generated by all of the methods.

Image patch sampling-based approaches (OPC and MDPM) have
a tendency to find low-level visual patterns. Examples of this are
solid color patches and partial objects (Visual Pattern 2 and 3 in
Fig. 7). This is due to the fact that these methods sample image
patches at the beginning of their pipeline, which is necessary for
discovering visual patterns at different scales. However, the solid
color patches and partial object patches are often produced using
these approaches. Unfortunately, it is very difficult and expensive
to avoid generating such patches by either a random/uniform image
patch sampling approach or using object proposals. It is, therefore,
not a surprise to find meaningless or very low-level conceptual im-
age patterns, such as color similarity or “bars”, as can be seen in
“Visual Pattern 2” in Fig. 7. In our MMPM method, we use the
response map of the last convolutional layer of a CNN to gener-
ate visual transactions and localize the image patches. It has been
shown in [27] and [32] that the filters in the last convolutional layer
of a CNN are particularly useful in capturing high-level seman-

Visual Pattern 1:

Visual Pattern 2:

Visual Pattern 3:

Figure 7: Some examples of visual patterns discovered by baseline
1: object proposal and clustering (OPC) approach. It is important to
note that OPC is also capable of finding meaningful concepts. We
selectively show these examples to demonstrate the common prob-
lem with OPC. For example, the partial object in “visual pattern
2” and the solid color pattern in “visual pattern 3”. These types of
patterns are not useful for multimodal event schema construction.

tic concepts/objects from local regions in an image. This high-
level semantic nature of the filters we use in conjunction with the
text information that we extract from the captions naturally leads
to higher-level semantically meaningful patterns than the baseline
approaches. Another issue with visual-only approaches is that the
visual clustering based approach (OPC) fails to distinguish differ-
ent semantic concepts if they have the similar visual appearances.
For example, “Visual Pattern 1” in Fig. 7 shows a mix of patches
that were generated from images containing “rocket”, “smoke”,
and “air strike” concepts. It is an obvious drawback of a visual-
only approach and particularly difficult to overcome since those
concepts are indeed visually similar. Our MMPM approach can
overcome this problem by involving the semantically relevant text
information from image captions to distinguish between visually
similar patterns. Examples of “air strike”, “burns”, “smoke”, and
“rockets” and the differences can be seen in Fig. 6.

4.3 Quantitative Evaluation
We evaluate the quality of multimodal visual patterns by evalu-

ating whether the named visual patterns generated by each method



can be used to construct an event schema. The names of visual pat-
terns are usually used as entities or arguments in the multimodal
event schema. The images from the visual pattern are used as vi-
sual examples and can be further used to train visual classifiers to
expand the visual example set. To obtain this annotation, we have
hired linguists and others who have experience in designing struc-
tured event schemas and ontologies. We give the annotators a set
of named visual patterns for each event. The task they complete
is to build a multimodal event schema using the concepts provided
by the pattern mining methods. The linguist is asked to determine
if the pattern name, which is a unigram or bigram, and the associ-
ated images can be used to construct an event schema based on the
following three criteria:

1. Event relatedness: The discovered concepts (pattern names
and related images) are relevant to the event, and would be
useful entities or attributes in an event schema for that event.

2. Visual semantic coherence: The visual pattern associated
with the name is semantically consistent. Namely, the im-
ages shown under the pattern depict a coherent semantic con-
cept, and not a mix of many different concepts. If the major-
ity of images in a pattern are consistent, with few outliers,
the pattern is considered to exhibit this property.

3. Text-visual matching: The pattern name correctly describes
the semantic concept of the visual pattern.

In our experiment, three experts 1 examine the event relatedness
of approximately 2,500 unique pattern names discovered from the
dataset we described in Sec. 3.1 by our method and the baselines.
We also check the visual semantic coherence and name quality
(text-visual matching) of 10,000 visual patterns. Each pattern name
is checked by three experts to determine the event relatedness in-
dependently. To avoid bias, the discovered pattern names from all
the methods are mixed and then presented to the experts without
the information of which method discovers the pattern name. Sim-
ilarly, the semantic coherence and name quality of each pattern are
also checked by three experts independently without bias. The fi-
nal results reported in the following sections are determined using
majority vote of all the examiners.

4.3.1 Coverage of the Discovered Concepts
We want to measure how many concepts are correctly discovered

by each method and how many unique concepts each method is re-
sponsible for. This experiment does not aim to prove which method
is better, but we make the point that the proposed MMPM can find
additional concepts that cannot be discovered by the baseline visual
pattern mining plus a naming algorithm and do not currently exist
in the current concept/object ontologies defined by computer vision
researchers, such as ImageNet[5], Places[33], MIT Indoor[17], and
others. Table 2 shows the coverage of discovered concepts for each
method. The metrics shown are averaged across each of the events
tested for each method. We show two metrics for each method: 1.
the number of detected concepts by each method relevant to a par-
ticular event, and 2. The number of unique concepts that a method
detects relevant to the event and that are not found by other meth-
ods.

The MMPM method finds many more event relevant concepts
than other approaches, with at least 33% increase. Among the dis-
covered concepts in each event, there are approximately 58 unique
concepts that cannot be found by any other baseline methods. Com-
pared with the commonly used visual ontology ImageNet, over

1The evaluators include a linguist and two CS PhD students.

Table 2: Average number of relevant concepts discovered by each
method (per event), and number of unique concepts that are only
discovered by each method

Method # concepts discovered (per event) # unique concepts

OPC 73 29

OD 5 3

MDPM 50 25

MMPM 97 58

Table 3: Number of found patterns in news events.

Event # of Patterns Event # of Patterns

Attack 573 Convict 0

Demonstrate 1247 Die 146

Elect 42 Injure 45

Meet 5159 Transport 509

95% of the concepts discovered by MMPM are not covered by
the ImageNet ontology. We find that there are only around 5 re-
lated concepts discovered by the visual ontology ImageNet for each
event. This demonstrates the narrowness of current state-of-the-art
visual ontologies. Those visual concepts do not meet the needs of
high-level knowledge base construction, particularly for events. It
is therefore important to adopt a multimodal approach to concept
discovery.

4.3.2 Visual Semantic Coherence
A pattern is judged to be semantically coherent if the majority of

annotators judge patches associated with the patter have consistent
semantic concepts. As shown in Table 5, all the methods achieve
reasonable results in finding visual patterns that exhibit semantic
coherence. We can see that our method outperforms the compet-
ing baselines by a large margin, and exhibits a 52% performance
improvement over the current state-of-the-art approach. The abil-
ity to leverage the text information in our algorithm for discovering
patterns tends to lead to patterns that exhibit this semantic coher-
ence, because we ensure that not only is the visual content similar
in appearance, but the corresponding text content also has similar
meaning. The other approaches that utilize only visual information
can be misled by image patches that are visually similar but share
little to no semantic similarity, as shown in Fig. 7. The added visual
semantic coherence of our patterns allows them to be leveraged in
event schema construction, which demonstrates why we are able to
find more patterns suitable for this task as shown in Fig. 6.

4.3.3 Correctness of Visual Pattern Names
We show the accuracy of attempting to name the visual patterns

in Table 6. MMPM significantly outperforms the other methods
for visual pattern naming, with approximately 150% improvement
in naming accuracy. This is because MMPM combines informa-
tion from both visual and textual modalities to build the image cap-
tion representations, and therefore the discovered patterns tend to
be more semantically consistent, and are discovered based on the
appearance of semantically similar words in the captions. MMPM
can distinguish different semantic concepts even if they are visually
similar, as shown in the naming results. The baseline approaches
first find the visual patterns and then use the LDA naming model
to name the visual patterns. In this approach, text is not lever-
aged in the pattern discovery process. In such cases, the naming



Table 4: Concepts (visual pattern names) discovered in “attack”
event using our multimodal pattern mining method

air strike damage rockets

aggravated assault dead security forces

army destroyed shot

arrested explosion strike

bomb fighting tank

bomb attack forces tear gas

bomber gun terrorist

burns helicopter troops

confrontation riot police

Table 5: Semantic coherence of the visual patterns. We show the
percent of semantically coherent visual patterns among all the pat-
terns discovered by each method.

Method Semantically Coherent Visual Patterns (%)

OPC 33.76

OD 31.25

MDPM 50.15

MMPM 76.32

algorithm cannot find correct names for these patterns, because the
patterns may be visually similar, but semantically different. We
noticed that the performance of baseline 3, object detection, does
not achieve good performance in pattern semantic coherence and
name quality evaluation. The cross-domain issue is the reason why
baseline using object detectors trained in a different domain could
not achieve high performance. However, the comparison is still ap-
propriate since our method and other baselines also use the same
network architecture and pretrained model without fine-tuning us-
ing the target dataset (although we only use the top five convolu-
tional layers). This demonstrates again the deficiency of existing
visual ontology and object detectors in extracting knowledge in a
new target domain, and importantly why we require a multimodal
approach to find visual patterns for event schema construction, par-
ticularly when naming them is important.

4.4 Discussion of Parameters
We discuss some parameters of MMPM and baseline methods

in this section. As is natural in clustering methods, the number of
clusters is an important tunable parameter. In baseline 1, OPC, we
tried different numbers of clusters in the experiments. The clusters
are formed over each event. Instead of setting a unique cluster num-
ber for all the events, we calculated the number of clusters as the
number of patches in each event divided by the expected number of
patches in each cluster. We tried {20, 30, 50} as the expected num-
ber of patches in each cluster. We only report the best performance
in the experiment section. Since we use the apriori algorithm [1]
for association rule mining in our MMPM method and baseline 2
MDPM method, there are two tunable parameters within the al-
gorithm: support rate and confidence rate; we discussed them in
Section 3.2. In general, our performance is not sensitive to those
two parameters. However, we do note that a small support rate may
lead to finding many duplicate visual patterns for both methods.
The number of selected concepts in baseline 3 (object detection) is
not sensitive to parameters. In our experiment, the top 50 concepts
are able to cover all the potential discovered concepts in the Image-
Net ontology. We examined the top 100 concepts, but we found

Table 6: Evaluation of naming the discovered patterns. The accu-
racy of each method is shown.

Method Pattern Naming Accuracy (%)

OPC 15.0

OD 21.4

MDPM 23.0

MMPM 57.4

that there were no “relevant concepts” discovered after the top 50
concepts for each event.

4.5 Complexity and Efficiency
MMPM is not only effective for finding and naming multimodal

visual patterns, but it is also quite efficient when compared with
the baseline approaches. Most current state-of-the-art pattern min-
ing methods work on the image patch level. The complexity of
the algorithm can be roughly estimated by the number of patches.
Since the value of the response map of the last convolutional layer
is usually sparse, on average, we only select about 3−5 patches per
image after non-max suppression. (We ignore the transactions that
only contain “0” in each dimension of the feature vector.) Com-
pared with the other baselines, object proposal usually generates
hundreds of image patches per image and MDMP generates ap-
proximately one hundred patches per image. Therefore, our method
is faster by more than an order of magnitude than competing ap-
proaches, because as discussed in Sec. 3.1.2 our method works on
an image level, unlike other approaches. It is important to note
that although our method takes the whole image as input, it is still
able to localize the visual patterns, similar to the other image patch
based methods. The actual running time of our experiments demon-
strates what we have described here. We run our experiments on the
same workstation with two Intel Xeon E5 CPUs, 64GB memory,
and Nvidia TITAN X GPU. The dataset used in our experiments
has about 100,000 images. MMPM takes about 2 hours to finish
the entire pipeline, including feature extraction, transaction gener-
ation, pattern mining, and naming. OPC takes about 18 hours, and
MDPM requires approximately 36 hours. It is necessary to mention
that MDPM is implemented in MATLAB by the original authors of
[12]. The actual running time may be improved by using a more
efficient implementation.

5. CONCLUSIONS
We have developed a novel dataset and algorithm for mining

and naming multimodal visual patterns from a corpus of high-level
news event image caption pairs. Our multimodal pattern mining
method is able to discover patterns that are more informative than
the state-of-the-art vision-only approaches, and accurately name
those patterns. These patterns are then leveraged to build multi-
modal event schemas for each particular news event. We demon-
strate that our method discovered patterns that greatly outperform
other competing methods for this task. This work represents the
first approach for using multimodal pattern mining to discover and
name high-level semantically meaningful image patterns for event
schema construction. The combination of our ability to find mean-
ingful patterns and name them allows for many applications in
high-level information extraction tasks, such as knowledge base
population using multimodal documents and automatic event on-
tology creation. Our work can be leveraged as a bridge between
structured information extraction tasks in the Computer Vision and
Natural Language Processing communities.
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