
Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 1 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 2 

Towards Whatever-Scale 

Abstractions for Data-Driven 

Parallelism 

Tim Harris, Maurice Herlihy, Yossi Lev, Yujie Liu, 

Victor Luchangco, Virendra J. Marathe, Mark Moir 



Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 3 

The following is intended to provide some insight into a line of research in Oracle Labs. 

It is intended for information purposes only, and may not be incorporated into any 

contract.  It is not a commitment to deliver any material, code, or functionality, and 
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alter its development plans and practices at any time, and the development, release, 

and timing of any features or functionality described in connection with any Oracle 

product or service remains at the sole discretion of Oracle.  Any views expressed in this 
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Diversity 
Blades have 100+ h/w threads, large machines have 1000s 

SuperCluster T5-8 

2 * T5-8 compute nodes 

QDR (40 Gb/sec) InfiniBand 

SuperCluster M6-32 

Up to 32 M6 processors 

Up to 32 TB 

Cache coherent interconnect 

 

T5-1B 

16-cores 

128GB-512GB DRAM 
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Diversity 
Boundary becoming blurred between “machine” and “cluster” 

Partial 

failures 

Remote 

access to 

memory 

Cache-

coherent 

memory 

Fast 

access 

times to 

data in 

RAM 
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Diversity 
Heterogeneity between processor families 

Specialized X64 (E5-2660) 

8 cores  

2 threads per core 

256K L2 per core 

20M shared L3 

Turbo boost 

SPARC (T5) 

16 cores 

8 strands per core 

128K L2 per core 

8M shared L3 

2 out-of-order pipelines 

1 FGU & Accelerators 

Critical thread optimization 

 

… 
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Domino 

 Distributed shared memory model 

 Data driven computation – tasks are triggered 

when data they watch is updated 

 Phases – provide some control over when 

tasks are scheduled, avoid bad ordering 

 Single address space implementation 

 Control for asynchronous communication and 

waiting within a task  

 NUMA & cluster implementation sketches 

 

 

 

An example whatever-scale abstraction 

HotPar ’13  

WRSC ’14 
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Recap: A Data-Driven SSSP algorithm 
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Recap: A Data-Driven SSSP algorithm 
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Recap: A Data-Driven SSSP algorithm 
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Recap: A Data-Driven SSSP algorithm 

Constraint spectrum 

Looking for 

intermediate 

sweet spots 

No constraints 

(potential for lots 

of wasted work 

e.g. Naïve DD) 

Excessive constraints 

(little parallelism 

e.g. Dijkstra SSSP) 
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Recap: A Data-Driven SSSP algorithm 

 Pseudo-code: 

 

x triggers f() --- writing to x creates a task to run this.f() in the current 

phase 

 

x triggers deferred f() – writing to x creates a task to run this.f() in the 

next phase 

 

 Semantics: single sequence of phases, no task in phase N+1 starts 

until phase N is complete 

“deferred” triggers and phases 
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Recap: A Data-Driven SSSP algorithm 

Naïve DD 
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Dijkstra 

BF-OMP 

DD-Wild 

DD-Phased 

Architecture: 

2-socket, SPARC T2+ 

128-thread  

 

Input graph: ca-HepPh 

#vertices: 12008 

#edges:    237042 Bellman-Ford 
Dijkstra 

Phased DD 
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Domino 

 Distributed shared memory model 

 Data driven computation – tasks are triggered 

when data they watch is updated 

 Phases – provide some control over when 

tasks are scheduled, avoid bad cases 

 Single address space implementation 

 Control for asynchronous communication and 

waiting within a task  

 NUMA & cluster implementation sketches 

 

 

 

An example whatever-scale abstraction 
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Programming model 
Distributed objects with synchronous RPC 

class Node {  

  int v triggers deferred compute(); 

 

    

 

    

       

         

  

  

} 

SSSP example – each graph 

node holds its current distance 

“v” from the root, and updates to 

the distance trigger the method  

“compute” to be run in the next  

phase. 
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Programming model 
Distributed objects with synchronous RPC 

class Node {  

  int v triggers deferred compute(); 

 

  gRef Node[] neighbors; 

 

    

       

         

  

  

} 

“neighbors” is an array of 

“global-ref-to-Node”, identifying 

possibly-remote objects  
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Programming model 
Distributed objects with synchronous RPC 

class Node {  

  int v triggers deferred compute();  

 

  gRef Node[] neighbors; 

 

  void compute() { 

     for (int i = 0; i < numNeighbors; i ++) { 

       neighbors[i].updateDistance(v+1); 

     } 

  } 

} 

Simple synchronous implementation, 

calling an “updateDistance” method 

on each neighbor (which in turn may 

write to “v” on that object) 
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Programming model 
“async” and “do…finish” 

  … 

 

  void compute() { 

 

        for (int i = 0; i < numNeighbors; i ++) { 

           neighbors[i].updateDistance(v+1); 

        } 

 

  } 

 

  … 
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Programming model 
“async” and “do…finish” 

  … 

 

  void compute() { 

     do { 

        for (int i = 0; i < numNeighbors; i ++) { 

           async neighbors[i].updateDistance(v+1); 

        } 

     } finish; 

  } 

 

  … 

async: if any of these calls needs  

to wait for RPC, then execution can  

proceed through the rest of the loop 
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Programming model 
“async” and “do…finish” 

  … 

 

  void compute() { 

     do { 

        for (int i = 0; i < numNeighbors; i ++) { 

           async neighbors[i].updateDistance(v+1); 

        } 

     } finish; 

  } 

 

  … 

async: if any of these calls needs  

to wait for RPC, then execution can  

proceed through the rest of the loop 

finish: execution cannot proceed 

past here until all of the RPCs  

complete 
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Programming model 

 As in Barrelfish: 

– “async” work is independent of threading 

– “async” must be statically within “do/finish” 

– Only switch on blocking 

 We do not need concurrency control on local variables 

 Locals captured by “async” will remain alive 

– A simple cactus-stack implementation is sufficient 

 In the absence of blocking, “synchronous elision” only valid behavior 

Design decisions 
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Three different scale implementations 

 Run within a single address space 

 “gRef T” is just a “*T” 

 “RPC” is just a normal method call 

 “do/finish” and “async” are ignored 

 Pool of worker threads with per-worker dequeues 

 Work-stealing for load balancing 

 SNZI objects used to track work in phases 

 

Single-machine SMP 
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Three different scale implementations 

 Run within a single address space 

 Logically distribute objects between NUMA domains 

 A “gRef T” holds a NUMA domain ID and a bare pointer 

 Cross-domain operations on gRefs use message passing 

 Currently, “do/finish”, and “async” built manually using call-backs and a 

“split task” abstraction 

 Separate worker threads in each NUMA domain 

 Separate SNZI objects in each NUMA domain, plus a shared top-level 

counter 

Single-machine NUMA 
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Three different scale implementations 

 Retain same structure as NUMA, except: 

 Use RDMA to transfer batches of RPC requests/responses 

 Cannot rely on shared top-level counter for detecting phase changes 

 

Cluster with InfiniBand 
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Concluding thoughts 

 Work in progress 

 To what extent do we need async/do-finish in the distributed case? 

– Two sources of parallelism 

– Do we need both? 

 Should we relax the “phase” concept? 

– Allow two adjacent phases to run concurrently? 

– How much synchronization is needed to avoid poor performance? 

– Can we combine this synchronization with messages needed for RPC? 

 

 

Implementation and practical evaluation is work-in-progress 
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