
Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 1

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 2

Towards Whatever-Scale

Abstractions for Data-Driven

Parallelism

Tim Harris, Maurice Herlihy, Yossi Lev, Yujie Liu,

Victor Luchangco, Virendra J. Marathe, Mark Moir

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 3

The following is intended to provide some insight into a line of research in Oracle Labs.

It is intended for information purposes only, and may not be incorporated into any

contract. It is not a commitment to deliver any material, code, or functionality, and

should not be relied upon in making purchasing decisions. Oracle reserves the right to

alter its development plans and practices at any time, and the development, release,

and timing of any features or functionality described in connection with any Oracle

product or service remains at the sole discretion of Oracle. Any views expressed in this

presentation are my own and do not necessarily reflect the views of Oracle.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 4

Diversity
Blades have 100+ h/w threads, large machines have 1000s

SuperCluster T5-8

2 * T5-8 compute nodes

QDR (40 Gb/sec) InfiniBand

SuperCluster M6-32

Up to 32 M6 processors

Up to 32 TB

Cache coherent interconnect

T5-1B

16-cores

128GB-512GB DRAM

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 5

Diversity
Boundary becoming blurred between “machine” and “cluster”

Partial

failures

Remote

access to

memory

Cache-

coherent

memory

Fast

access

times to

data in

RAM

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 6

Diversity
Heterogeneity between processor families

Specialized X64 (E5-2660)

8 cores

2 threads per core

256K L2 per core

20M shared L3

Turbo boost

SPARC (T5)

16 cores

8 strands per core

128K L2 per core

8M shared L3

2 out-of-order pipelines

1 FGU & Accelerators

Critical thread optimization

…

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 7

Domino

 Distributed shared memory model

 Data driven computation – tasks are triggered

when data they watch is updated

 Phases – provide some control over when

tasks are scheduled, avoid bad ordering

 Single address space implementation

 Control for asynchronous communication and

waiting within a task

 NUMA & cluster implementation sketches

An example whatever-scale abstraction

HotPar ’13

WRSC ’14

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 8

Domino

 Distributed shared memory model

 Data driven computation – tasks are triggered

when data they watch is updated

 Phases – provide some control over when

tasks are scheduled, avoid bad ordering

 Single address space implementation

 Control for asynchronous communication and

waiting within a task

 NUMA & cluster implementation sketches

An example whatever-scale abstraction

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 9

Recap: A Data-Driven SSSP algorithm

S

1

1

1
1

1 1 1 1

10

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 10

Recap: A Data-Driven SSSP algorithm

0

∞

∞

∞
∞ ∞ ∞ ∞ S

1

1

1
1

1 1 1 1

Directed edge

Update

10

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 11

Recap: A Data-Driven SSSP algorithm

0

1

1

∞
∞ ∞ ∞ ∞ S

1

1

1
1

1 1 1 1

Directed edge

Update

10

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 12

Recap: A Data-Driven SSSP algorithm

0

1

1

∞
∞ ∞ ∞ ∞ S

1

1

1
1

1 1 1 1

Directed edge

Update

10

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 13

Recap: A Data-Driven SSSP algorithm

0

1

1

∞
∞ ∞ ∞ ∞ S

1

1

1
1

1 1 1 1

Now what?

Directed edge

Update

10

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 14

Recap: A Data-Driven SSSP algorithm

0

1

1

∞ ∞ ∞ ∞ S

1

1
10

1
1

1 1 1 1

T1

T2

Directed edge

Update

11

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 15

Recap: A Data-Driven SSSP algorithm

0

1

1

∞ ∞ ∞ ∞ S

1

1
10

1
1

1 1 1

T1

T2

Directed edge

Update

 11
1

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 16

Recap: A Data-Driven SSSP algorithm

0

1

1

S

1

1
10

1
1

1 1 1

T1

Directed edge

Update

1

1
 11

 ∞ ∞ ∞
1

 12

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 17

Recap: A Data-Driven SSSP algorithm

0

1

1

S

1

1
10

1
1

T1

Directed edge

Update

1

1
 11

1 1 1
 ∞ ∞ ∞

1
 12

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 18

Recap: A Data-Driven SSSP algorithm

0

1

1

S

1

1
10

1
1

T1

Directed edge

Update

1

1
 11

1 1 1
 ∞ ∞

1
 12 13

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 19

Recap: A Data-Driven SSSP algorithm

0

1

1

S

1

1
10

1
1

T1

Directed edge

Update

1

1
 11

1 1 1
 ∞ ∞

1
 12 13

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 20

Recap: A Data-Driven SSSP algorithm

0

1

1

S

1

1
10

1
1

T1

Directed edge

Update

1

1
 11

1 1 1
 ∞

1
 12 13 14

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 21

Recap: A Data-Driven SSSP algorithm

0

1

1

S

1

1
10

1
1

T1

Directed edge

Update

1

1
 11

1 1 1
 ∞

1
 12 14 13

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 22

Recap: A Data-Driven SSSP algorithm

0

1

1

S

1

1
10

1
1

T1

Directed edge

Update

1

1
 11

1 1 1
 ∞

1
 12 14 13

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 23

Recap: A Data-Driven SSSP algorithm

0

1

1

S

1

1
10

1
1

T1

Directed edge

Update

1

1
 11

1 1 1

1
 12 13 99 14

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 24

Recap: A Data-Driven SSSP algorithm

0

1

1

2

S

1

1
10

1
1

T1

Directed edge

Update

1 1 1

1
 12 14 13 99

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 25

Recap: A Data-Driven SSSP algorithm

0

1

1

2

S

1

1
10

1
1

T1

Directed edge

Update

 12
1 1 1

1

 12 14 13 99

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 26

Recap: A Data-Driven SSSP algorithm

0

1

1

2

S

1

1
10

1
1

Directed edge

Update

 3
1 1 1 1

 14 13 99

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 27

Recap: A Data-Driven SSSP algorithm

0

1

1

2

S

1

1
10

1
1

Directed edge

Update

 3
1 1 1 1

 14 13 99

Too much

wasted work

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 28

Recap: A Data-Driven SSSP algorithm

0

1

1

2

S

1

1
10

1
1

Directed edge

Update

 3
1 1 1 1

 14 13 99

Too much

wasted work

Possible

exponential

work

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 29

Recap: A Data-Driven SSSP algorithm

Constraint spectrum

Looking for

intermediate

sweet spots

No constraints

(potential for lots

of wasted work

e.g. Naïve DD)

Excessive constraints

(little parallelism

e.g. Dijkstra SSSP)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 30

Recap: A Data-Driven SSSP algorithm

 Pseudo-code:

x triggers f() --- writing to x creates a task to run this.f() in the current

phase

x triggers deferred f() – writing to x creates a task to run this.f() in the

next phase

 Semantics: single sequence of phases, no task in phase N+1 starts

until phase N is complete

“deferred” triggers and phases

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 31

Recap: A Data-Driven SSSP algorithm

Naïve DD

1

4

16

64

256

1024

4096

16384

65536

1 2 4 8 16 32 48 64 72 96 112 128

E
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
e
c
s
)

of Threads

Dijkstra

BF-OMP

DD-Wild

DD-Phased

Architecture:

2-socket, SPARC T2+

128-thread

Input graph: ca-HepPh

#vertices: 12008

#edges: 237042 Bellman-Ford
Dijkstra

Phased DD

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 32

Domino

 Distributed shared memory model

 Data driven computation – tasks are triggered

when data they watch is updated

 Phases – provide some control over when

tasks are scheduled, avoid bad cases

 Single address space implementation

 Control for asynchronous communication and

waiting within a task

 NUMA & cluster implementation sketches

An example whatever-scale abstraction

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 33

Programming model
Distributed objects with synchronous RPC

class Node {

 int v triggers deferred compute();

}

SSSP example – each graph

node holds its current distance

“v” from the root, and updates to

the distance trigger the method

“compute” to be run in the next

phase.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 34

Programming model
Distributed objects with synchronous RPC

class Node {

 int v triggers deferred compute();

 gRef Node[] neighbors;

}

“neighbors” is an array of

“global-ref-to-Node”, identifying

possibly-remote objects

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 35

Programming model
Distributed objects with synchronous RPC

class Node {

 int v triggers deferred compute();

 gRef Node[] neighbors;

 void compute() {

 for (int i = 0; i < numNeighbors; i ++) {

 neighbors[i].updateDistance(v+1);

 }

 }

}

Simple synchronous implementation,

calling an “updateDistance” method

on each neighbor (which in turn may

write to “v” on that object)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 36

Programming model
“async” and “do…finish”

 …

 void compute() {

 for (int i = 0; i < numNeighbors; i ++) {

 neighbors[i].updateDistance(v+1);

 }

 }

 …

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 37

Programming model
“async” and “do…finish”

 …

 void compute() {

 do {

 for (int i = 0; i < numNeighbors; i ++) {

 async neighbors[i].updateDistance(v+1);

 }

 } finish;

 }

 …

async: if any of these calls needs

to wait for RPC, then execution can

proceed through the rest of the loop

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 38

Programming model
“async” and “do…finish”

 …

 void compute() {

 do {

 for (int i = 0; i < numNeighbors; i ++) {

 async neighbors[i].updateDistance(v+1);

 }

 } finish;

 }

 …

async: if any of these calls needs

to wait for RPC, then execution can

proceed through the rest of the loop

finish: execution cannot proceed

past here until all of the RPCs

complete

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 39

Programming model

 As in Barrelfish:

– “async” work is independent of threading

– “async” must be statically within “do/finish”

– Only switch on blocking

 We do not need concurrency control on local variables

 Locals captured by “async” will remain alive

– A simple cactus-stack implementation is sufficient

 In the absence of blocking, “synchronous elision” only valid behavior

Design decisions

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 40

Three different scale implementations

 Run within a single address space

 “gRef T” is just a “*T”

 “RPC” is just a normal method call

 “do/finish” and “async” are ignored

 Pool of worker threads with per-worker dequeues

 Work-stealing for load balancing

 SNZI objects used to track work in phases

Single-machine SMP

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 41

Three different scale implementations

 Run within a single address space

 Logically distribute objects between NUMA domains

 A “gRef T” holds a NUMA domain ID and a bare pointer

 Cross-domain operations on gRefs use message passing

 Currently, “do/finish”, and “async” built manually using call-backs and a

“split task” abstraction

 Separate worker threads in each NUMA domain

 Separate SNZI objects in each NUMA domain, plus a shared top-level

counter

Single-machine NUMA

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 42

Three different scale implementations

 Retain same structure as NUMA, except:

 Use RDMA to transfer batches of RPC requests/responses

 Cannot rely on shared top-level counter for detecting phase changes

Cluster with InfiniBand

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 43

Concluding thoughts

 Work in progress

 To what extent do we need async/do-finish in the distributed case?

– Two sources of parallelism

– Do we need both?

 Should we relax the “phase” concept?

– Allow two adjacent phases to run concurrently?

– How much synchronization is needed to avoid poor performance?

– Can we combine this synchronization with messages needed for RPC?

Implementation and practical evaluation is work-in-progress

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. 44

