
Applications of Formal Methods to Data
Wrangling and Education

Sumit Gulwani

Microsoft Corporation, Redmond, WA, USA
sumitg@microsoft.com

Data Wrangling

Data is the new oil. The digital revolution and evolution of social media, cloud
computing, and IoT has led to massive amounts of digital data. This data is
the new currency of the digital world since it can help drive business processes
and decisions including advertising and recommendation systems. However, this
data is locked up in semi-structured formats such as spreadsheets, text/log files,
JSON/XML, webpages, and pdf documents. Data wrangling refers to the tedious
process of converting such raw data to a more structured form that allows explo-
ration and analysis for drawing insights. While data scientists spend 80% of their
time wrangling data, programmatic solutions to data manipulation are beyond
the expertise of 99% of end users who do not know programming. Programming
by Examples (PBE) [6] can enable easier and faster data wrangling.

We have developed PBE technologies for many wrangling tasks including
string/number/date transformations, extraction of tabular data from log files or
webpages, and formatting or table layout transformations. Some of these tech-
nologies appear in mass-market industrial products. The FlashFill PBE technol-
ogy [4] for string transformations ships as a feature in Excel 2013. The FlashEx-
tract PBE technology [8] for extracting structured data out of log files ships as
the ConvertFrom-string Powershell cmdlet in Windows 10 and the custom field
extraction capability in Azure Operations Management Suite (OMS).

Our scalable algorithmic approach to synthesizing non-trivial scripts in real
time involves two key ingredients from formal methods [11]: (a) restricting the
search to an appropriate domain-specific language (DSL) and modeling inverse
semantics of the DSL operators, which enables top-down propagation of goal-
directed search obligations, (b) operations over grammars/languages (such as
intersection, filtering) that enable computation of a sub-language of the under-
lying DSL s.t. each program in the sub-language is consistent with the examples.
This sub-language sets up the structure for cross-disciplinary techniques to deal
with ambiguity in the examples [10]. In particular, we use machine learning based
ranking techniques to predict an intended program within this sub-language, and
active-learning based interaction models to converge to an intended program.

Education

Formal methods can assist with repetitive tasks in Education including problem
generation and feedback generation, for a variety of subjects including program-



ming, logic, mathematics, and language learning [5]. This can facilitate interac-
tive and personalized education in both standard and online classrooms.

Problem generation: Generating fresh problems with specific solution charac-
teristics (e.g., difficulty level, use of a certain set of concepts) is a tedious task
for the teacher. Automating it can enable personalized workflows for students
and help prevent plagiarism (each student can get a different problem with
same characteristics). Test input generation techniques can help with generation
of procedural problems [3], while template-based generalization techniques [12]
and saturation-based reasoning [1] can help with generation of proof problems.

Feedback generation: This involves identifying whether the student’s solution is
incorrect and, if so, the nature of the error and potential fix. Automating it can
save teachers time, and enable consistency in grading. It can enable providing im-
mediate feedback to students thereby improving student learning. Counterexam-
ple generation can explain why a computational artifact like program, automata,
or CFG [9] is incorrect. Repair techniques can help fix the student’s incorrect
solution [13] or predict whether the student misread the problem description [2].
Trace analysis can help generate strategy-level feedback [7].

References

1. U. Ahmed, S. Gulwani, and A. Karkare. Automatically generating problems and
solutions for natural deduction. In IJCAI, 2013.

2. R. Alur, L. D’Antoni, S. Gulwani, D. Kini, and M. Viswanathan. Automated
grading of DFA constructions. In IJCAI, 2013.

3. E. Andersen, S. Gulwani, and Z. Popovic. A trace-based framework for analyzing
and synthesizing educational progressions. In CHI, 2013.

4. S. Gulwani. Automating string processing in spreadsheets using input-output ex-
amples. In POPL, 2011.

5. S. Gulwani. Example-based learning in computer-aided stem education. CACM,
Aug 2014.

6. S. Gulwani. Programming by examples (with applications to data wrangling). In
Verification and Synthesis of Correct and Secure Systems. IOS Press, 2016.

7. S. Gulwani, I. Radiek, and F. Zuleger. Feedback generation for performance prob-
lems in introductory programming assignments. In FSE, 2014.

8. V. Le and S. Gulwani. FlashExtract: a framework for data extraction by examples.
In PLDI, 2014.

9. R. Madhavan, M. Mayer, S. Gulwani, and V. Kuncak. Automating grammar com-
parison. In OOPSLA, 2015.

10. M. Mayer, G. Soares, M. Grechkin, V. Le, M. Marron, A. Polozov, R. Singh,
B. Zorn, and S. Gulwani. User interaction models for disambiguation in program-
ming by example. In UIST, 2015.

11. O. Polozov and S. Gulwani. Flashmeta: A framework for inductive program syn-
thesis. In OOPSLA, 2015.

12. R. Singh, S. Gulwani, and S. Rajamani. Automatically generating algebra prob-
lems. In AAAI, 2012.

13. R. Singh, S. Gulwani, and A. Solar-Lezama. Automated feedback generation for
introductory programming assignments. In PLDI, 2013.


