
ARTIFICIAL INTELLIGENCE 159

Tensor Product Variable Binding and
the Representation of Symbolic
Structures in Connectionist Systems

Paul Smolensky
D e p a r t m e n t o f C o m p u t e r Science and

Inst i tute o f Cogni t ive Science , Univers i ty o f Co lorado ,

Bou lder , C O 80309-0430, U S A

ABSTRACT

A general method, the tensor product representation, is defined for the connectionist representation
of value~variable bindings. The technique is a formalization of the idea that a set of value~variable
pairs can be represented by accumulating activity in a collection of units each of which computes the
product of a feature of a variable and a feature of its value. The method allows the fully distributed
representation of bindings and symbolic structures. Fully and partially localized special cases of the
tensor product representation reduce to existing cases of connectionist representations of structured
data. The representation rests on a principled analysis of structure; it saturates gracefully as larger
structures are represented; it permits recursive construction of complex representations from simpler
ones; it respects the independence of the capacities to generate and maintain multiple bindings in
parallel; it extends naturally to continuous structures and continuous representational patterns; it
permits values to also serve as variables; and it enables analysis of the interference of symbolic
structures stored in associative memories. It has also served as the basis for working connectionist
models of high-level cognitive tasks.

I. Introduction

Connectionist models rely on parallel numerical computation rather than the
serial symbolic computation of traditional AI models, and with the inroads of
connectionism has come considerable debate about the roles these two forms
of computation should play in AI. While some presume the approaches to be
diametrically opposed, and argue that one or the other should be abandoned,
others argue that the two approaches are so compatible that in fact connection-
ist models should just be viewed as implementations of symbolic systems.

In [41] (and also in [36, 38]) [have argued at considerable length for a more
complex view of the roles of connectionist and symbolic computation in
cognitive science. A one-sentence summary of the implications of this view for
AI is this: connectionist models may well offer an opportunity to escape the

Artificial Intelligence 46 (1990) 159-216
0004-3702/90/$03.50 © 1990 -- Elsevier Science Publishers B.V. (North-Holland)

160 P. SMOLENSKY

brittleness of symbolic AI systems, a chance to develop more human-like
intelligent systems--but only if we can find ways of naturally instantiating the
sources of power of symbolic computation within fully connectionist systems. If
we ignore the connectionist approach, we may miss an excellent opportunity
for formally capturing the subtlety, robustness, and flexibility of human
cognition, and for elucidating the neural underpinnings of intelligence. If we
ignore the symbolic approach, we throw out tremendous insights into the
nature of the problems that must be solved in creating intelligent systems, and
of techniques for solving these problems; we probably doom the connectionist
approach to forever grappling with simple cognitive tasks that fall far short of
the true capacity of human intelligence. If we use connectionist systems merely
to implement symbolic systems, we might get AI systems that are faster and
more tolerant of hardware faults, but they will be just as brittle.

The present paper is part of an effort to extend the connectionist framework
to naturally incorporate the ingredients essential to the power of symbolic
computation, without losing the virtues of connectionist computation. This
extended version of connectionist computation would integrate, in an intimate
collaboration, the discrete mathematics of symbolic computation and the
continuous mathematics of connectionist computation. This paper offers an
example of what such a collaboration might look like.

One domain where connectionist computation has much to gain by incor-
porating some of the power of symbolic computation is language. The prob-
lems here are extremely fundamental. Natural connectionist representation of
a structured object like a phrase-structure tree----or even a simple sequence of
words or phonemes--poses serious conceptual difficulties, as I will shortly
discuss. The problem can be traced back to difficulties with the elementary
operation of binding a value to a variable.

I begin in Section 1.1 by discussing why natural connectionist representation
of structured objects is a problem. I list several properties of the solution to
this problem that is presented in this paper. In Section 1.2, I respond to the
possible connectionist criticism that it is misguided to even try to solve this
problem. Then, in Section 1.3, I outline the rest of the paper.

Before proceeding it is worth commenting on where the research reported
here fits into an overall scheme of connectionist AI. As in the traditional
approach, in the connectionist approach several components must be put
together in constructing a model. Elements of the task domain must be
represented, a network architecture must be designed, and a processing
algorithm must be specified. If the knowledge in the model is to be provided by
the designer, a set of connections must be designed to perform the task. If the
model is to acquire its knowledge through learning, a learning algorithm for
adapting the connections must be specified, and a training set must be designed
(e.g., a set of input/output pairs). For most of these aspects of connectionist
modeling, there exists considerable formal literature analyzing the problem and

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 161

offering solutions. There is one glaring exception: the representation compo-
nent. This is a crucial component, for a poor representation will often doom
the model to failure, and an excessively generous representation may essential-
ly solve the problem in advance. Representation is particularly critical to
understanding the relation between connectionist and symbolic computation,
for the representation often embodies most of the relation between a symboli-
cally characterized problem (e.g. a linguistic task) and a connectionist solution.

Not only is the connectionist representation problem a central one, it is also
a problem that is amenable to formal analysis. In this paper the problem will
be characterized as finding a mapping from a set of structured objects (e.g.
trees) to a vector space, the set of states of the part of a connectionist network
representing those objects. The m61ange of discrete and continuous mathe-
matics that results is reminiscent of a related classical area of mathematics: the
problem of representing abstract groups as collections of linear operators on a
vector space. The discrete aspects of group theory and the continuous aspects
of vector space theory interact in a most constructive way. Group representa-
tion theory, with its application to quantum physics, in fact offers a useful
analogy for the connectionist representation of symbolic structures. The world
of elementary particles involves a discrete set of particle species whose
properties exhibit many symmetries, both exact and approximate, that are
described by group theory. Yet the underlying elementary particle state spaces
are continuous vector spaces, in which the discrete structure is imbedded. In
the view that guides the research reported here, in human language processing,
the discrete symbolic structures that describe linguistic objects are actually
imbedded in a continuous connectionist system that operates on them with
flexible, robust processes that can only be approximated by discrete symbol
manipulations.

One final note on terminology. In most of this paper the structures being
represented will be referred to as symbolic structures, because the principal
cases of interest will be objects like strings and trees. Except for the considera-
tion of particular symbolic structures, however, the analysis presented here is
of structured objects in general; it therefore applies equally well to objects like
images and speech trains which are not typically considered "symbolic struc-
tures." With this understood, in general discussions I will indiscriminately refer
to objects being represented as "structures," "structured objects," or "sym-
bolic structures."

I.I. Distributed representation and variable binding in connectionist systems

I have called the problem considered in this paper that of finding "natural"
connectionist representation of structured objects and variable bindings. In fact
what I refer to is the problem of finding connectionist representations that are
fully distributed. The notion of distributed representation is central to the power

162 P. SMOLENSKY

Output front back tensed stop nasal hi-freq Io-freq

Units 0 0 0 0 0 • 0

n o o o o o o o o o o o o o o

Input

Units

0 0 0 0 0 0 O a
0 0 0 0 0 0 0
0 0 0 • 0 0 0
0 0 0 0 0 0 0
• 0 0 0 0 0 0 n
0 0 • 0 0 • O ~
0 0 0 0 0 0 O~
0 • 0 0 0 0 O -

Fig. 1. The NETtalk system of Sejnowski and Rosenberg [35] illustrates both distributed and local
connectionist representations.

of the connectionist approach (e.g., [1, 15, 24, 34, 37, 41]; for an opposing
view, see [10]). To illustrate the idea of distributed representation, consider
the NETtalk system, a connectionist network that learns to pronounce written
English [35] (see Fig. 1). Each output of this network is a phonetic segment,
e.g. the vowel [i] in the pronunciation of the word we. Each phonetic segment
is represented in terms of phonetic features; for [i], we have: front = 1,
tensed = 1, high-frequency = 1, back = 0, stop = 0, nasal = 0, and so forth.
There is one output processor in the network for each of the phonetic features,
and its numerical value indicates whether that feature is present (1) or absent
(0). Each phonetic segment is therefore represented by a pattern of activity
over the numerous output processors, and each output processor participates in
the representation of many different outputs. This defines a distributed repre-
sentation of the output phonetic segment.

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 163

At the opposite end of a connectionist representational spectrum are local
representations. These too are illustrated by NETtalk; this time, in the input.
Each NETtalk input consists of a letter to be pronounced together with the
three preceding and three following letters to provide some context. For each
of these seven letters there is a separate pool of input processors in the
network, and within each pool there is a separate processor for each letter. In
the input representation, in each of the seven pools the single processor
corresponding to the letter present is assigned activity 1, and the remaining
processors in the pool are all assigned activity 0. This representation is local in
two senses. Most obviously, different letters are represented by activity in
disjoint localities--in single processing units. Unlike the output activity, there
is no overlap of the activity representing alternative values. The other sense of
locality is that the activity representing different letter positions are all disjoint:
each pool localizes the activity representing one letter position.

The input representation in NETtalk illustrates the problems of representing
structures and of variable binding in connectionist networks. The input is a
string of seven characters (of which the middle one is to be pronounced).
There is a pool of processing units dedicated to representing each item in this
string. Each pool can be viewed as a slot in the structure: a variable. The value
of each variable is a pattern of activity residing in its pool of units. In NETtalk
this pattern is localized; we will later consider examples of models in which the
corresponding pattern is distributed throughout the pool. Regardless of the
patterns used to represent the values, in such systems the variables are localized
regions of the network. These variables are in fact registers, and the great
majority of connectionist systems have represented structured data using them.
Yet registers are hardly natural or desirable within connectionist models. In
order to make available in the processing of structured data the full power of
connectionist computation that derives from distributed representation, we
need to use distributed representations of variables in addition to distributed
representations of values.

In this paper a completely distributed representational scheme for variable
binding is analyzed: the tensor product representation. The tensor product of an
n-dimensional vector v and an m-dimensional vector w is simply the nm-
dimensional vector v ® w whose elements are all possible products viw j of an
element of v and an element of w. This vector v ® w is a tensor of rank two: its
elements are labelled by two indices i and j. A tensor of rank one is simply an
ordinary vector labelled by a single index, and a tensor of rank zero is a scalar.
Tensors of rank higher than two arise by taking tensor products of more than
two ordinary vectors; if w is an/-dimensional vector, then u ® v ® w is a tensor
of rank three, the nml-dimensional vector consisting of all products uivjw~.
The tensor product generalizes the matrix algebra concept of outer product to
allow third- and higher-order products; the more general apparatus of tensor

164 P. SMOLENSKY

algebra is needed here because the recursive use of tensor product representa-
tions leads to tensors of rank higher than two. 1

In the tensor product representat ion, both the variables and the values can
be arbitrarily nonlocal, enabling (but not requiring) representat ions in which
every unit is part of the representat ion of every constituent in the structure. In
this paper , applications of the tensor product scheme to the connectionist
representat ion of complex structured objects are explored. Features of the
tensor product representat ion, most of which distinguish it f rom existing
representations, include the following (corresponding section numbers are
indicated in parentheses):

• The representat ion rests on a principled and general analysis of structure:
role decomposit ion (Section 2.2.1).

• A fully distributed representat ion of a structured object is built f rom
distributed representat ions of both the structure 's constituents and the
structure's roles (Section 2.2.4).

• Nearly all previous connectionist representat ions of structured data, em-
ploying varying degrees of localization, are special cases (Section 2.3).

• If a structure does not saturate the capacity of a connectionist network that
represents it, the components of the structure can be extracted with
complete accuracy (Section 3.1).

• Structures of unbounded size can be represented in a fixed connectionist
network, and the representat ion will saturate gracefully (Section 3.2).

• The representat ion applies to continuous structures and to infinite net-
works as naturally as to the discrete and finite cases (Section 3.3).

• The binding operations can be simply per formed in a connectionist net-
work (Section 3.4).

• The representat ion respects the independence of two aspects of parallelism
in variable binding: generating vs. maintaining bindings (Section 4.1).

• The constituents of structure can be simply extracted in a connectionist
network (Section 3.4.2).

• A value bound to one variable can itself be used as a variable (Section
3.6).

• The representat ion can be used recursively, and connectionist representa-
tions of operations on symbolic structures, and recursive data types, can be
naturally analyzed (Section 3.7).

• Retrieval of representat ions of structured data stored in connectionist
memories can be formally analyzed (Section 3.8).

'For treatments of tensor algebra, see [19, 26, 48]; for a short presentation directed to the
current work, see [39, Appendix[. While this paper will not make extensive use of tensor calculus,
setting the connectionist issues discussed here in the framework of tensor algebra provides a useful
link to well-established mathematics. Certain virtues of the tensor calculus, such as the way it
systematically manages the multiple indices associated with higher-rank tensors, have already
proved important for actual connectionist systems built on tensor product representations [3-7].

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 165

• A general sense of optimality for activity patterns representing roles in
structures can be defined and analyzed (Section 3.9).

• A connectionist "recirculation" learning algorithm can be derived for
finding these optimal representations (Section 3.9).

1.2. Connectionist representation of symbolic structures

The general issue behind the research reported here is the representation in
connectionist systems of symbolic structures. This issue figures prominently in
the argument of Fodor and Pylyshyn [11] that connectionist models are
inadequate on fundamental representational grounds, and the work reported
here began as a response to this attack; for responses to Fodor and Pylyshyn
based in part on the work reported here, see [40, 42].

A more concrete motivation for pursuing this issue are the challenges facing
connectionist modeling of higher cognitive processes such as language. Here
our central question takes the form: What are computationally adequate
connectionist representations of strings, trees, sentences?

This section is addressed to connectionists who may find this question
misguided. The essence of the connectionist approach, they might say, is to
expunge symbolic structures from models of the mind. I must agree that the
connectionist approach is rather far from a "language of thought" view of
cognition in which all mental states are formalized as symbolic structures.
However there still remains in connectionism an important role to be played by
language and symbolic structures, even if that role is substantially reduced
relative to its counterpart in the traditional radically symbolic approach. I have
argued this point in some detail in [41], and will only summarize the relevant
conclusions here.

Any connectionist model of natural language processing must cope with the
questions of how linguistic structures are represented in connectionist models.
A reasonable starting point would seem to be to take linguistic analysis of the
structure of linguistic objects seriously, and to find a way of representing this
structure in a connectionist system. Since the majority of existing representa-
tions of linguistic structure employ structures like trees and strings, it is
important to find adequate connectionist representations of these symbolic
structures. It may well turn out that once such representations are understood,
new connectionist representations of linguistic structures will be developed that
are not truly representations of symbolic structures but which are more
adequate according to the criteria of linguistics, computational linguistics,
psycholinguistics, or neurolinguistics. It seems likely, however, that such
improvements will rest on prior understanding of connectionist representations
of existing symbolic descriptions of linguistic structure.

The importance to the connectionist approach of representing linguistic
structures goes well beyond models of natural language processing. Once

166 P. SMOLENSKY

adequate connectionist representations are found for linguistic structures, then
these can serve as the basis for connectionist models of conscious, serial,
rule-guided behavior. This behavior can be modeled as explicit (connectionist)
retrieval and interpretation of linguistically structured rules. Adequate connec-
tionist models of such behavior are important for connectionist models of
higher thought processes.

One line of thought in the connectionist approach implies that analyses of
connectionist representations of symbolic structures are unnecessary. The
argument goes something like this. Just as a child somehow learns to internally
represent sentences with no explicit instruction on how to do so, so a
connectionist system with the right learning rule will somehow learn the
appropriate internal representations. The problem of linguistic representation
is not to be solved by a connectionist theorist but rather a connectionist
network.

In response to this argument I have five points.

(1) In the short term, at least, our learning rules and network simulators do
not seem powerful enough to make network learning of linguistic
representation feasible.

(2) Even if such learning is feasible at some future point, we will still need
to explain how the representation is done. There are two empirical
reasons to believe that such explanation will require the kind of analysis
begun in this paper: explanation of the computation of real neural
networks has turned out to require much analysis, as mere observation
has proved woefully inadequate; the same has turned out to be true even
of the self-organized connectionist networks that perform computations
vastly simpler than most of natural language processing,

(3) It is important to try to build bridges as soon as possible between
connectionist accounts of language processing and existing accounts; the
problem is just too difficult to start all over again from scratch.

(4) We would like to be able to experiment now with connectionist learning
models of rather complex linguistic skills (e.g. parsing, anaphoric resolu-
tion, and semantic interpretation, all in complex sentences). For now, at
least, such experiments require connectionist representation of linguistic
structures to serve as inputs and outputs. We want to study the learning
of the operations performed on linguistic structures without waiting
many years for the completion of the study of the learning of the
linguistic representations themselves.

(5) Language is more than just a domain for building models, it is a
foundation on which the entire traditional theory of computation rests.
To understand the computational implications of connectionism, it is
crucial to know how the basic concepts of symbolic computation and
formal language theory relate to connectionist computation.

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 167

Of course, exploiting connectionist representations of the sort of symbolic
structures used in symbolic AI by no means commits one to a full connectionist
implementation of symbolic AI, which, as stated earlier, would miss most of
the point of the connectionist approach. The semantic processing of a connec-
tionist representation of a parse tree should not be performed by a connection-
ist implementation of serially applied symbolic rules that manipulate the tree;
rather, the processing should be of the usual connectionist sort: massively
parallel satisfaction of multiple soft constraints involving the micro-elements
forming the distributed representation of the parse tree. Thus in this paper
connectionist representations of pop and cdr will be mathematical relations
between patterns of activity, not processes carried out over time in a connec-
tionist network as part of an extended serial computation (in contrast to [44]).
The view behind the present research is not that mental operations are always
serial symbol manipulations (although a few are); rather the view is that the
information processed often has useful symbolic descriptions, and that these
descriptions should be taken seriously. (This view is spelled out in detail in
[41].)

1.3. Outline of the paper

In Section 2, the notion of connectionist representation is formally defined and
the tensor product representation is constructed. Examples are considered, and
the various special cases that reduce to previous connectionist representations
are discussed. In Section 3, a number of properties of the tensor product
representation are proved and several extensions discussed. The connectionist
representation of symbolic operations is defined, and examples for strings and
trees are considered. Retrieval of symbolic structures represented in connec-
tionist memories by the tensor product representation is analyzed. Finally,
work reported elsewhere is briefly summarized concerning a sense of optimality
for patterns representing roles in structures, and a connectionist
"recirculation" algorithm for learning these optimal representations. Section 4
is a summary and conclusion.

2. Connectionist Representation and Tensor Product Binding:
Definition and Examples

In this section I first formally characterize the notion of connectionist repre-
sentation. Next, the problem of representing structured objects is reduced to
three subproblems: decomposing the structures via roles, representing conjunc-
tions, and representing variable/value bindings. First role decompositions are
discussed, and then the superpositional representation of conjunction and the
tensor product representation for variable/value bindings is defined. Next I
show how various special cases of the tensor product representation yield the
previous connectionist representations of structured data.

168 r'. SMOLENSKY

2.1. Connectionist representation

In this paper, the question of how to represent symbolic structures in connec-
tionist systems will be formalized as follows.

Connectionist representations are patterns of activity over connectionist
networks; these patterns can extend over many processors in the network, as in
distributed representations, or be localized to a single processor, as in a local
representation. Such a pattern is a collection of activation values: a vector with
one numerical component for every network processor. The space of repre-
sentational states of a connectionist network thus lies in a vector space, the
dimension of which is equal to the number of processors in the network. Each
processor corresponds to an independent basis vector; this forms a dis-
tinguished basis for the space. In many connectionist networks the processor's
values are restricted in some way; such restrictions are important for considera-
tion of the dynamics of the network but are not central to the representational
issues considered here, and they will be ignored. (For expositions of the
application of vector space theory-- l inear a lgebra-- to connectionist systems,
see, e.g., [16, 37].)

Definition 2.1. The activity states of a connectionist network are the elements of
a vector space V which has a distinguished basis {~i}.

Whenever I speak of a vector space representing the states of a connectionist
network, a distinguished basis will be implicitly assumed. Rarely will it be
necessary to deal explicitly with this basis. Sometimes it will be useful to use
the canonical inner product associated with the distinguished basis: the one in
which the basis vectors are orthogonal and of unit norm. (Equivalently, this
inner product of two vectors can be computed as the sum of the products of
corresponding vector components with respect to the distinguished basis).
Whenever | speak of activity patterns being orthogonal, or of their norm, these
concepts are taken to be defined with respect to this canonical inner product;
the inner product of vectors u and v will be denoted u . v .

Definition 2.2. A connectionist representation of the symbolic structures in a set
S is a mapping ~F from S to a vector space V.

The kinds of sets S we will study are sets of strings and sets of binary trees.
Of central concern are the images under the mapping ~ of the relations
between symbolic structures and their constituents, and the images of the
operations transforming symbolic structures into other structures. Also im-
portant are basic questions about the representation mapping such as whether
distinguishable symbolic structures have distinguishable representations:

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 169

Definition 2.3. A connectionist representation ~ is faithful iff it is one-to-one
and there is no structure that it maps to the zero vector 0 E V.

2.2. Tensor product representation: Definition

The representation of structured objects explored in this paper requires first
that structures be viewed as possesing a number (possibly unbounded) of roles
which, for particular instances of the structure, are individually bound to
particular fillers. For example, a string may be viewed as possessing an infinite
set of roles {rl, r 2 } where r i is the role of the ith element in the string. A
particular string of length n involves binding the first n roles to particular
fillers. For example, the string aba involves the bindings {a/r~, b/r2, a/r3} ,
using a notation in which f /r denotes the binding of filler f to role r; in this
string, the roles r i for i > 3 are all unbound. Now note that the structure has
been characterized as the conjunction of an unordered set of variable bindings.
The problem of representing the structure has been reduced to the problems of

(1) representing the structure as a conjunction of filler/role bindings;
(2) representing the conjunction operation;
(3) representing the bindings in a connectionist network.

These problems are respectively considered in Sections 2.2.1 through 2.2.3 and
brought together in Section 2.2.4.

In Section 3.7.3, we will see that the representations we build using roles and
fillers are equivalent to those we would have built by viewing structures as a
number of elements engaged in certain structural relations.

2.2.1. Role decompositions of symbolic structures

As a formal definition of roles and fillers, I will take the following:

Definition 2.4. Let S be a set of symbolic structures. A role decomposition F/R
for S is a pair of sets (F, R), the sets of fillers and roles, respectively, and a
mapping

tZr/R:FX R---> Pred(S); (f , r) ~ f / r .

For any pair f ~ F, r E R, the predicate on S IJbF/R(f, r) = f/r is expressed: f
fills role r.

The role decomposition has single-valued roles iff for any s E S and r E R,
there is at most one f E F such that f/r(s) holds.

The role decomposition is recursive iff F = S.
A role decomposition determines a mapping

/3 : S--->2rxR ; s ~ { (f , r) Jf/r(s)}

170 P. SMOLENSKY

that associates to each s E S the set [3(s) of filler~role bindings in s. The
mapping [3 will be called the filler~role representation of S induced by the role
decomposition.

The role decomposition is faithful iff [3 is one-to-one.
The role decomposition is finite iff for each s E S, the set of bindings in s,

[3(s), is finite.

Throughout this paper all role decompositions will be assumed to be finite,
except in sections where the infinite case is explicitly considered.

Recursive role decompositions are heavily used in the standard description
of symbolic structures. For example, the description of a LISP S-expression as
a structure whose car and cdr are both S-expressions is a recursive decomposi-
tion via the roles car and cdr. The tensor product representation to be
presented shortly will be used to analyze recursive role decompositions (Sec-
tion 3.7), but in this paper, the representations we consider will not be defined
using recursive role decompositions; that is possible, but goes beyond the scope
of this paper.

Faithful role decompositions are particularly useful because the filler/role
representations they induce allow us to identify each symbolic structure with a
predicate having a simple conjunctive form which forms the basis of tensor
product representation:

Theorem 2.5. Let F/R be a role decomposition of S. For each s o E S, define the
predicate ~'~,~ by:

7r, o(s) = A f/r(s)
(f ,r)~13(so)

where /x denotes conjunction; ~rso(s) is true iff the structure s contains all the
filler~role bindings in s o . Then if the role decomposition is faithful, the structure
s o can be recovered from the predicate Irso.

Proof. This result follows immediately from the following lemma:

Lemma 2.6. The mapping [3 of the role decomposition maps elements of S into
subsets of F x R. These subsets possess a partial order, set inclusion C_, which
can be pulled back to S via [3:

S I ~ S 2 i f f ~(S1)~($2).

Suppose F/R is faithful. Then with respect to the partial order <~, the set of
elements of S for which the predicate ~,o holds has a unique least element, which
is s o. In this way s o can be recovered from its corresponding predicate Trio.

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 171

Proof of Lenuna 2.6. Since [3(s) is the set of filler/role bindings in s, s~ ~< s 2 iff
the bindings in s~ are a subset of those of s2:

s l~<s 2 iff [for a l l f E F a n d r E R , f / r (S a) ~ f / r (s 2)].

Now consider the set of elements s satisfying the predicate 7rs0:

s (%) := (s e s l % (0)

= {s E S I for all f E F and r E R, f/r(so) ~ f/r(s)}

={s Slso<-S).

This set contains s 0, and s o is a least element; it remains to show that there is
no other least element. Consider any other element s 1 in S(~'s0). Since /x is
faithful and s I ~ So, there is at least one binding f /r not shared by s o and s 1.
Since s i E S(Trs0) and s o is a least element of S(Tr~0), we must havef/r(sl) ^ -if~
r(So). This implies -l(s 1 ~< So) so sl cannot be a least element in S(rr, o) []

2.2.2. Connectionist representation of conjunction

The representation of conjunction in connectionist models has traditionally
been performed with pattern superposition, i.e. vector addition. If two propo-
sitions are each represented in a connectionist system by some pattern of
activity, the representation of the conjunction of those propositions is the
pattern resulting from superimposing the individual patterns. This paper adopts
this method. In terms of the representation mapping gt, we can write:

Definition 2.7. A connectionist representation ~ employs the superpositional
representation of conjunction iff:

The representation of the conjunction of a collection of propositions is the
sum of the representations of the individual propositions.

Note that, like conjunction, vector addition is an operation possessing the
properties of associativity and commutativity. Were this not so, vector addition
could not be used to represent conjunction.

Applying the superpositional representation of conjunction to the case at
hand:

Definition 2.8. Suppose S is a set of symbolic structures and F/R is a role
decomposition of S with fillers F and roles R. Suppose that ~b is a connection-

172 P. SMOLENSKY

ist representation of the filler/role bindings:

qrb : (f /r l f E F, rE R}---~ V

where V is a vector space. Then ~F/R, the connectionist representation of S
induced by F/R, the superpositional representation of conjunction, and ~b, is

~r/R:S--+V ; S~-+ ~ grb(f/r) .
(f , r)~ (s)

The use of vector addition to represent conjunction has pervasive implica-
tions for the faithfulness of representations. If the representations of a ^ b and
c ^ d are to be distinguishable, then a + h and c + d must be different. This
constrains the possible patterns a, b, c and d that can represent a, b, c and d. It
will be guaranteed that a + b and c + d will be different if the vectors a, b, c
and d are all linearly independent: no one can be expressed as a weighted
superposition of the others. In order to guarantee the faithfulness of repre-
sentations, it will often be necessary to impose the restriction of linearly
independent representing patterns for the constituents. This restriction is an
expensive one, however, since to have n linearly independent patterns one
must have at least n nodes in the network. And, as we will see below in Section
3.8, some sets of structures contain so many shared bindings that they cannot
be given linearly independent representations, no matter how the bindings are
represented; this is true, for example, of the set of strings {ax, bx, ay, by},
decomposed by the roles of first_position, second_position.

The addition operation used for superposition in this paper is arithmetic
addition, in which 1 + 1 = 2; in other words, the scalars for the vector spaces
are real numbers under numerical addition. An important variation of this
analysis would be to consider vector spaces over Boolean scalars under logical
addition (OR): 1 + 1 --- 1. This variation can still be regarded as tensor product
representation, but with respect to a different set of scalars; the result would
have quite a different character. Boolean tensor product representations are
needed to exactly describe a number of existing connectionist models that use
Boolean-valued units and correspondingly use Boolean rather than numerical
superposition to represent conjunction. Comparing real-valued and Boolean
tensor product representations in general is like comparing connectionist
models with real-valued units to those with Boolean units: there are a variety
of advantages and disadvantages to each. To mention just two, threshold
operations can often allow retrievals from lightly-loaded Boolean systems to be
exact [50]; but, on the whole, the mathematics of real scalars is simpler. For
this reason, this paper begins the analysis of tensor product representations
with the real-valued case.

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 173

2.2.3. Connectionist representation o f variable binding

It remains to consider the representation of filler/role bindings; this section
introduces the tensor product representation.

The tensor product representation of a value/variable binding is quite simple
to define (see Fig. 2). To bind a filler f to a role r we first represent f as a
pattern of activity f over a set of "filler" units { j7¢ } and represent r as a pattern
of activity r over a set of "role" units {~'p }. The bin~ng f / r is represented by a
pattern of activity f / r over a set of "binding" units {b6p}, of which there is one
for each pair of filler and role units. The activity of the binding unit b~p is the
activity of the filler unit j7 in the pattern f times the activity of the role unit ~'p
in the pattern r.

This procedure is readily characterizable in vector terminology. The repre-
sentation of the role r is a vector r in a vector space V n. V n is a real vector
space with dimension equal to the number of units ~'p. The representation of
the filler f is a vector f in a vector space VF, a real vector space with dimension
equal to the number of units iT. The representation of the binding f / r is the
tensor produc t vector f / r = f ® r in the tensor product vector space V 8 =
V F ® V R. V B is a real vector space with dimension equal to the product of the
dimensions of V F and V R. The components of the vector f / r are related to the
components of f and r as follows. Each filler unit j7 corresponds to a vector f6
in V F (the vector representing the pattern of activity in which that unit has
activity 1 and all other units have activity zero). The complete set of vectors

Fi l ler
Units

0 ol
f

0

Binding Units

0 0 ~ 0 0 0

0 0 L 0 0 0
rL" f i r PI

0 O/@ 0 0

0 0 ~ 0 0 O
L. p]
i ~ r

0 0 © 0 0
Role Units

Fig. 2. The tensor product representation for filler/role bindings.

174 P. SMOLENSKY

(f~} forms the distinguished basis for V r and any vector f in Vr can be
expressed in terms of this basis as a sequence of real numbers; these are the
activities of all the units in the pattern corresponding to f. Exactly the same
story holds for the roles. Then the tensor product space V B = V F ® V R has as a
basis the set of vectors {b6p--f~ Qfp}. The ~bp component (b~p = (f / r) ~ p) of
the vector b = f / r = f ® r representing the binding is the product of the
component of f (f6) and the p component of r (rp):

b 6p = f/r,~p = feor p .

Definition 2.9. Let F / R be a role decomposition of S. Let qz F and ~g be
connectionist representations of the fillers and roles:

gtF " F---> VF , q/R : R---> VR .

Then the tensor p r o d u c t representat ion o f the f i l ler~role b indings induced by ~
and g'g is the mapping:

g t b : { f / r [f e F , r E R } - - + V u ® V R ; f / r ~ F (f) ® q t R (r) .

Fig. 3 shows an example specially chosen for visual transparency. Consider
an application to speech processing, and imagine that we are representing the

Fi l ler

(Energy)

0

0

0

0 0 O @ O

© © • • @

© ® • • •

© © • • @

© @ • • •

Role (Time)
Fig. 3. A visually transparent example of the tensor product representation of a filler/role binding.

Darker units are more active.

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 175

amount of energy in a particular frequency band over time. For the roles here
we take a series of time points and for the fillers the amount of energy in the
band. In Fig. 3, the roles are represented as patterns of activity over five units.
Each role rp is a time point and is represented as a peaked pattern centered at
unit p; the figure shows the case p = 4. Each filler f6 is an energy level; in Fig. 3
this is represented as a pattern of activity over four units: a single peak
centered at the energy level being represented. The binding pattern is a
two-dimensional peak centered at the point whose x- and y-coordinates are the
time and energy values being bound together.

The example of Fig. 3 is visually transparent because of the simple geometri-
cal structure of the patterns. Of course there is nothing in the binding
mechanism itself that requires this. The distributed representation of roles and
fillers can be arbitrary patterns and in general the tensor product of these
patterns will be even more visually opaque than are the patterns for the roles
and fillers: see Fig. 4. However the mathematical simplicity of tensor product
binding makes the general case as easy to analyze as special cases like that of
Fig. 3.

2.2.4. Tensor product representation

Putting together the previous representations, we have:

Definition 2.10. Let F/R be a role decomposition of S, and let ~F and ~n be
connectionist representations of the fillers and roles. Then the corresponding

Fi l l e r

0

0

@

@ 0 0 @ O

• © 0 • @

• @ 0 • •

@ 0 0 @

• @ 0 • •
Role

Fig. 4. A generic example of the tensor product representation of a filler/role binding.

176 p. SMOLENSKY

tensor product representation of S is

II~" S----~ VF~ VR ; s~---> ~ q.tF(f)QaltR(r) .
(f, r)~t3(s)

If we identify s with the conjunction of the bindings it contains, and if we let
f = ~F(f) and r = ~R(r), we can write this in the more transparent form

~ (A f i i / r i)=~ f i®r i •

The interpretation of the activity of binding units in the tensor product
representat ion depends on the interpretation of the filler and role units. If the
filler or role representat ions are local, then each filler or role unit individually
represents a particular filler or role, respectively. If the filler or role representa-
tion is distributed, the activation of an individual node may indicate the
presence of an identifiable feature in the entity being represented. This was
true of the example given in Section 1.1" each of the output units represents a
phonetic feature in the phonetic segment output by the network. For exposi-
tory simplicity, we can consider a local representat ion to be one where a given
" fea ture" is present in exactly one represented object, and a given object
possesses exactly one " fea ture . " Then if the binding unit b~p is active in the
tensor product representat ion of a structure s, the interpretat ion is that the
feature represented by f~ is present in a filler of a role possessing the feature k" o .
In this sense, b ¢o p represents the conjunction of the features represented by f4, and
~ 2
rp. By using the tensor product representat ion recursively, we can produce
conjunctions of more than two features; this will be considered in Section
3.7.3.

2.3. Previous representations and special cases of tensor product representation

Section 3 analyzes the general propert ies of the tensor product representation.
Before proceeding to this general analysis, it is useful to examine a number of
special cases of the tensor product representat ion because these turn out to
include nearly all previous cases of connectionist representat ions of structured
objects.

2.3.1. Role decompositions

The examples of previous connectionist representat ions of structured objects
that we shall consider employ only a few role decompositions.

2 For a more precise formulation, consider a simple case where the activity of unit 37 is 1 or 0,
and indicates the truth value of the proposition "there exists x among the represented objects such
that the predicate)7 holds of x"; and suppose 7 can be similarly interpreted. Then b~, indicates the
truth value of the proposition "there exists x among the represented objects such that both
predicates)7 and Fp hold of x." If this is true of n different values of x, in the superposition
representing the structure as a whole, the value of/~,p will be n.

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 177

Definition 2.11. Suppose S is the set of strings of length no more than n from
an alphabet A. Let F = A, and let R = {ri}7=l, where r i is the role "occupies
the ith position in the string." Then F/R is the positional role decomposition of
S.

This is the example given above in Section 2.2, in which the string aba is
represented by bindings {a/rl, b/r2, a/r3}. This decomposition is finite, has
single-valued roles, and is faithful. This decomposition is the most obvious one,
and the one most often used in previous connectionist systems.

The positional decomposition has an obvious extension to the case of finite
strings of arbitrary length, where the set of roles becomes infinite; I will treat
this as the case of the above definition with n = ~. In the infinite case the
decomposition is still faithful, still has single-valued roles, and is still finite,
since the strings are all of finite length. The infinite case will be used later to
explore saturation of the tensor product representation.

There is a less obvious role decomposition of strings that is used, as we shall
shortly see, to advantage by Rumelhart and McClelland [33]; it forms the basis
of their "Wickelfeature" representation. (The properties of this role decompo-
sition are crucial to many of the criticisms of this model presented in [17, 27,
28] .)

Definition 2.12. Suppose S is the set of strings of length no more than n from
an a lphabetA. L e t F = A U { < , > } , w h e r e < and > are two new symbols
meaning "left string boundary" and "right string boundary" respectively. Let
R = {rx_y I x E F, y E F}, where rxy is the role "is immediately preceded by x
and immediately followed by y." F/R is a role decomposition of S called the
1-neighbor context decomposition.

Under this decomposition, the string aba becomes the set of bindings
(a/r< b, b/ra a, a/rb >}. This decomposition does not have single-valued roles
and i sno t fafthful if"n I> 4 (the strings a 3 and a n can't be distinguished). There
is an obvious generalization to the k-neighbor context decomposition: this is
faithful if n < 2k + 2. 3

There are also obvious generalizations of the 1-neighbor context decomposi-
tion to differing size contexts on the left and right. A special case is the
representation of pairs, say strings with n = 2, where the roles are R =
{r x I x E F}: the right-neighbor context. The pair ab is represented as the
single binding a / r b. This role decomposition, we shall see, is used in a
powerful technique called conjunctive coding.

3This decomposition gives the initial and final substrings of length up to 2k, and all internal
substrings of length 2k + 1. These substrings uniquely determine strings of length no more than
2k + 1. The strings a 2k+1 and a 2 k + 2 can't be distinguished, however, so the decomposition is not
faithful if n > 2k + 1.

178 P. SMOLENSKY

While it is true that the positional role decomposition is more faithful than
context decompositions for the representation of a single structure, it turns out
that if multiple structures are to be simultaneously represented, the positional
decomposition can be less faithful than the context decomposition. Suppose we
are to represent the conjunction of ab and cd by superimposing the representa-
tion of the two pairs. What gets represented is the union of the binding sets of
the two structures. In the case of positional roles, this union is {a/r~, b/re,
c/r 1, d/r2}; now it is impossible to distinguish what is being represented from
the conjunction of ad and cb. However, with the right-neighbor context
decomposition, the union of the binding sets is {a/r b, c/r d}, which is not at
all confusable with the conjunction of ad and cb. Wit-h context decompositions
confusions can of course also result; these decompositions are not even faithful
for representing single structures, when the same fillers appear multiple times
in the same context.

An additional virtue of context decompositions is that they give rise to
connectionist representations that give the network direct access to the kind of
information needed to capture the regularities in many context-sensitive tasks;
we shall discuss this below for the specific example of the Rumelhart and
McClelland [33] model.

2.3.2. Connectionist representations

Having discussed a few of the role decompositions that have been used in
connectionist representations of structures, we can now consider a number of
examples of such representations. These are grouped according to the degree
of locality in the representations of roles and fillers; we therefore start by
distinguishing local and distributed connectionist representations in general,
and then examine the degree of locality of various existing representations of
structured objects.

2.3.2.1. Local and distributed representations
Local representations dedicate an individual processor to each item repre-
sented. In terms of the vector space of network states, these individual
processors correspond to the members of the distinguished basis. Thus:

Definition 2.13. Let ~ be a connectionist representation of a set X in a vector
space V with distinguished basis {~i}. 1/" is a local representation iff it is a
one-to-one mapping of the elements of X onto the set of basis vectors {~i}.

A connectionist representation that is not a local representation is a distribut-
ed representation.

(For a more refined analysis of this distinction, see [43].)

2.3.2.2. Purely local representations of symbolic structures
The first special case of the tensor product representation is the most local one.

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 179

®

0

Fil ler [~ 0
(Letter)

@

@

@ @ @ @

@ ,@ @ @

0 O 0 0

@ @ @ @

@ @ @ @

© 0 ® @

Role (Position)

Fig, 5. A purely local tensor product representation of four-letter strings.

Definition 2.14. Let ~r/n be the tensor product representation of S induced by
a role decomposition F/R of S and two connectionist representations ~F and
~R" Then ~F/n is a purely local tensor product representation if ~F and ~R are
both local representations.

This case is illustrated for the representation of strings in Fig. 5. If the filler
and role patterns both involve the activity of only a single processor, then the
tensor product pattern representing their binding will also involve only a single
unit. In other words, if 1/f F and qt R are both local representations, then IIJF/R is a
local representation of individual bindings.

Purely local tensor product representations have been used along with the
positional role decomposition of strings in many connectionist models; for
example:

• As was already mentioned in Section 1.1 and illustrated in Fig. 1, NETtalk
[35] uses the purely local representation of Fig. 5 to represent seven-letter
input strings.

• The interactive activation model of the perception of letters in words [23,
32] uses the representation shown in Fig. 5 for representing four-letter
strings, at its intermediate or "letter" level of representation. This to6 is a
purely local tensor product representation.

180 P. SMOLENSKY

• The T R A C E model of speech perception [21] uses a purely local representa-
tion of strings of phonemes, although some of the positional roles involve
overlapping time intervals.

• Fanty's [8] parser uses a purely local tensor product representation involv-
ing a positional role decomposition of trees.

• Feldman's [9] connectionist system for visual processing uses a representa-
tion that includes the tensor product of a local representation for visual
features (including color, size, and shape) and a local representation for
position in the visual field.

In many of these models, the local representation of roles is not made explicit
in the usual description of the model, but is rather implicit in the structure of
the representation. The same is true of the semi-local case we take up next.

2.3.2.3. Semi-local representations of symbolic structures
The next most local special case is this.

Definition 2.15. Let ~r/n be the tensor product representation of S induced by
a role decomposition F/R of S and two connectionist representations ~ r and
~n. If ~ r is a distributed representation and ~n is a local representation, then
~r/n is a semi-local tensor product representation or a role register repre-
sentation.

If the filler representation is a distributed pattern and the role representation
involves the activity of a single unit, the result is a copy of the filler pattern in a
pool of units dedicated to the role: see Fig. 6.

Semi-local tensor product representations have been widely used in conjunc-
tion with positional role decompositions:

• The letter perception model [23, 32] uses a semi-local representation of
letters at its lowest or "letter feature" level; this is the example shown in
Fig. 6. A set of units is dedicated to the representation of the first letter's
features; a letter is represented as a pattern of activity over these units,
where each unit indicates whether a particular line segment is or is not
present in the first letter. There are identical copies of this "first letter
register" for the second, third, and fourth letter.

• An early version of NETtalk (Charles Rosenberg, unpublished communi-
cation, 1985) used a semi-local representation for the input string: the ith
letter was represented by a pattern of activity over a set of units dedicated
to the ith position, and each unit indicated whether a particular ortho-
graphic feature (e.g., closed loop, ascending line) was present in that
letter.

• In Hinton's [13] semantic net model, relationships of the form R(x, y)
(e.g., has_color(clyde, grey)), are represented by placing three distributed

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE

~ 0 0 • 0

DO

Fil ler

(Letter)

DO

DO

0

0 0 0 0

0 0 0 0

0 • 0 0

0 • 0 0

0 • 0 0

Role (Position)

Fig. 6. A semi-local tensor product representation of four-letter strings.

181

patterns of activity representing the fillers of the roles R, x, and y in pools
dedicated to those roles. (There is an additional pool as well.)

• The model of Riley and Smolensky [29] that answers qualitative questions
about a fixed simple electric circuit also uses a semi-local representation.
Each role is a circuit variable (e.g., the current, or the resistance of one of
the resistors) and the fillers are the qualitative values increases, decreases,
stays_constant. Each filler is represented as a small pattern in a pool of two
units dedicated to the corresponding role.

• Touretzky and Hinton's [46] connectionist production system interpreter
uses productions with two symbolic triples on the condition side; each
triple is represented by a pattern of activity in a separate pool of units.
(The representation of the triples themselves are considered in the next
section.)

• The McClelland and Kawamoto [22] model that learns to assign case to the
nouns appearing in a standard sentence frame uses a semi-local representa-
tion of its input. Each input is an instance of the frame: The N] V the N 2
with the N 3. The roles here are the three nouns and the verb, and each
filler is represented by a pattern of activity in a pool of units dedicated to
the corresponding role.

182

2.3.2.4. Fully distributed representations of symbolic structures
Now we come to the most distributed case:

P. S M O L E N S K Y

Definition 2.16. Let ~r/n be the tensor product representation of S induced by
a role decomposition F/R of S and two connectionist representations ~r and
~n. If ~r and ~R are both distributed representations, then ~r/n is a fully
distributed tensor product representation.

Examples of fully distributed representations include the following:

• A visually transparent example of a fully distributed tensor product
representation using the positional role decomposition was given in Fig. 3.
The patterns representing roles here are examples of coarse coding repre-
sentations described in Hinton, McClelland, and Rumelhart [15]. It is
traditional to focus on the numerous positions (roles) that activate a
particular role unit (its "receptive field"); the formulation here focuses on
the numerous role units activated by a particular positional role. These are
merely two perspectives on the many-to-many mapping between positions
and units.

• The McClelland and Kawamoto [22] model mentioned earlier can be
viewed as using a fully distributed representation of the output. Each
output is a set of bindings of noun fillers to the case-frame slots of the
verb. This output can be viewed as having roles like loves-agent, loves-
patient, eat-instrument, break-patient, and so on; these roles can in turn be
viewed as structured objects with two sub-roles: verb and case-role. The
patterns representing the overall roles are the tensor product of a distribut-
ed pattern representing the verb (built from semantic verb features) and a
local representation of the case-role. The representation of the overall
roles is thus semi-local. The representation of the output as a whole is the
tensor product of this distributed (albeit semi-local) representation of the
roles and a distributed representation of the fillers (built of semantic
features of nouns). This is an example of the kind of recursive tensor
product representation that will be discussed in Section 3.7.3. Because of
this recursive structure, the output units in this model represent three-way
conjunctions of features for nouns, verbs, and semantic roles. (The
"features" of semantic roles used in the model are of the local type
mentioned in Section 2.3.2.4: they are in one-to-one correspondence with
the semantic roles. A more distributed version of this model would employ
real features of semantic roles, where each semantic role is a distributed
pattern of features. Then the roles in the output as a whole would have
fully distributed representations instead of semi-local ones.)

• An example of a fully distributed representation employing the 1-neighbor
context decomposition is the Rumelhart and McClelland [33] model that

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 183

F i l l e r

(phonetic
segment)

frnt 0
bck O

tnsd 0

0
stp 0
nsl 0

gld O

0 0 0 0 0 0
ql, 0 • 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
• 0 • 0 0 0

• 0 • 0 0 0
wb_frnt wb_bck wb_tnsd frnt_bck bck_wb

Role (l-neighbor phonetic context)

Fig. 7. The principal representation used in Rumelhart and McClelland [33] for phonetic strings.
The abbreviations used are wb = w o r d _ b o u n d a r y , f r n t = f ron t , b c k = back , tnsd = tensed, stp =

stop; nsl = nasal; g ld = glide.

learns to form the past tense of English verbs; see Fig. 7. In this model,
elements of S are strings of phonetic segments. The word "weed" corre-
sponds to the string [w][i][d] which has the bindings {w/r<_i, i/rw_d,
d/ri_>}. The representation of this string is thus

w®r</+i®rw_ a+d®r~>.

The filler vectors (e.g. w) are distributed patterns over a set of units
representing phonetic features (e.g., rounded, front, stop). The role
vectors (e.g. r< i) are patterns of activity over a set of units each of which
represents the conjunction of a feature of the left neighbor (<) and a
feature of the right neighbor (i). (In this model, both < and > possess the
single feature word_boundary.) As in the previous example, since the
roles are composite objects, they are in fact themselves further decom-
posed into sub-roles. The pair of phonetic segments defining the context is
decomposed using the fight-neighbor context decomposition, and the
pattern representing the role r a b is the tensor product of patterns of
phonetic features for [a] and [b]~ To reduce the number of units in the
network, many of the units arising in this further decomposition of the
roles were in fact discarded. The overall structure of the representation of
the roles can still be productively viewed as a tensor product from which
some units have been thrown away.

184 P. SMOLENSKY

• Touretzky and Hinton's [46] representation of triples of letters can be
viewed as the same sort of third-order tensor product as in the last
example, but in which even more binding units are discarded. Their
representation involves a set of units a = 1 , N, each of which re-

(L~ , _ ~ , L ~): unit a is active in the sponds to three groups of letters (i) 1,(2) (3)
representation of (l (1), l (2), l (3)) iff l (i) E L (i) for i = 1, 2 and 3. To relate ot
this to the tensor product representation, imagine three pools of N units,
one pool for each letter in the triple. In the ith pool, unit ~7(~ i) is active iff
0) 0) l E L ~ : each letter is represented by a pattern in the corresponding

pool. Create a binding unit for each triple of units, one from each pool; it
is active iff the corresponding three units are active. This is the tensor
product representation of the triples induced by the 1-neighbor context
decomposition, with the roles further decomposed by the right-neighbor
context decomposition, as in the previous example. Now if we throw out
all the binding units corresponding to (u , , ur), except the N

.~7(I) ."(2) ~ (3) "diagonal" ones corresponding to (u u~), we get Touretzky and
Hinton's representation.

• Hinton [13] suggested an extension to his implemented model using fully
distributed representations in which each unit represented a conjunction of
features of an object, a relation, and a role.

• Derthick's p~KLONE system [2] and Dolan and Dyer's story understanding
system [4, 5] both use the fully distributed form of tensor product repre-
sentation.

• Touretzky and Geva's DUCS system [45] uses fully distributed filler/role
bindings that, while currently lacking a mathematical basis like that of
tensor product representations, have many of their desirable properties,
while requiring potentially far fewer units.

Having mentioned Rumelhart and McClelland's [33] use of context decom-
positions, it is worth elaborating on remarks of Section 2.3.1 about the
advantages of context decompositions over simpler positional decompositions.
Many regularities in language depend on the context in which a constituent
finds itself, rather than its absolute position. This is particularly true in
phonology; the regularities that must be learned in order to form the past
tenses of English verbs typically depend on neighbor relations: for example,
the rule for "regular" verbs involves replacing x/ry_> by the bindings {X/ry~,
^/rx d, d/r^ >} if x has feature dental, (weed--> weeded); otherwise, by the
b i n d i n g s { X / r y _ d , d/r x >} if x has feature voiced, (buzz--> buzzed) or by the
bindings (X / r y _ t , t/r x ~} if x does not have feature voiced(bus ~ bussed). Thus
the featural representation of phonetic segments together with the context
decomposition of the string provides the network with just the kind of
representation of phonetic strings that it needs in order to learn the regularities
characterizing this task (a point elaborated in detail in [17]).

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 185

2.4. Relations among purely local, semi-local, and fully distributed
representations

Purely local, semi-local and fully distributed representations look quite differ-
ent on the surface. Are they really as different as they seem? According to the
definitions, the only difference is the relation between the representation
vectors and the distinguished basis vectors indicating the individual processing
units. Does this really matter?

As discussed at length in Smolensky [37], the answer depends on the
dynamics driving the connectionist network, and not solely on the representa-
tions themselves. If the dynamics is linear, so that the activity of every unit is
exactly a weighted sum of the activity of its neighbors in the network, then
networks using purely local, semi-local and fully distributed representations
will have exactly isomorphic behavior, subject to a few qualifications. Under
the linear transformations that map these three cases into each other, locality is
not preserved, so that local damage to the networks will have different effects,
and what can be learned via the usual local connectionist learning procedures
will be different. If the network contains nonlinear units, the isomorphism
fails. Also, assuming finite networks, the local case accommodates only a fixed,
finite set of fillers and roles; the semi-local case allows an unlimited number of
fillers but only a finite set of roles. The fully distributed case, however, can
accommodate an infinite set of fillers and roles in a finite network, since the
vectors representing both the roles and fillers can be arbitrary activity patterns
drawn from vector spaces which, while having finite dimension, contain a
continuous infinity of distinct vectors; this will be discussed further in Section
3.2.

3. Tensor Product Representation: Properties

In Section 2, I defined the tensor product representation and showed how a
number of representations used in previous connectionist models are various
special cases of the tensor product representation. In this section, I will discuss
a number of general properties of this representation. The case of interest is
fully distributed representation; while some of the results apply also to the
more localized special cases, in these cases they become rather trivial.

3.1. Unbinding

Until now I have ignored a crucial and obvious question: if the representations
of all the variable bindings necessary for a particular structure are superim-
posed on top of each other in a single set of binding units, how can we be sure
the binding information is all kept straight? In this section we explore this
question via the unbinding process: taking the tensor product representation
for a complex structure and extracting from it the filler for a particular role.
Under what conditions can we perform this unbinding operation accurately?

186 P. SMOLENSKY

Theorem 3.1. Let ~FIn be a tensor product representation induced by a role
decomposition with single-valued roles. Suppose the vectors representing the
roles bound in a structure s are linearly independent. Then each role can be
unbound with complete accuracy: for each bound role r i there is an operation
which takes the vector ~F/R(S) representing s into the vector fs representing the
filler fi bound to r i.

Proof. If the role vectors {r/} being used are linearly independent, then they
form a basis for the subspace of V R that they span. To this basis there
corresponds a dual basis {Ui} [19, p. 82]. Each element in this dual basis is a
linear mapping from V R into the real numbers with the property that

{~ if i = j ,
Us(rY) = 6iJ = if i ~ j .

That is, U~ maps the single role vector r i to 1 and all other role vectors to 0. If
we make use of the canonical inner product on the vector space VR, then the
dual vector U s can be expressed as the operation of taking the inner product
with respect to some vector u i in Vn:

U / (v) = v . u s

for all v in V R. Call {us} the unbinding vectors for roles {ri}. Now let s be the
tensor product representation of a structure in which the roles {rs) are bound
to the fillers {f,}. Then we can extract f~ from s, or unbind r s, by taking a
partial inner product of s with the unbinding vector Us:

s

:= 2 fj(ry.Us) = 2 fy$iy = fs- []
J J

Connectionist algorithms for computing the unbinding vectors will be dis-
cussed in Section 3.4.2.

Definition 3.2. The procedure defined in the preceding proof is the exact
unbinding procedure.

Let unbinding of role r s be performed as in the previous proof, but in place
of the unbinding vector u s use the role vector r s itself. This is the self-addressing
unbinding procedure.

Unlike the exact unbinding procedure, the self-addressing unbinding proce-
dure is defined for any set of role vectors, even if they are not linearly
independent.

D I S T R I B U T E D R E P R E S E N T A T I O N O F S Y M B O L I C S T R U C T U R E 187

T h e o r e m 3.3. Suppose the self-addressing procedure is used to unbind roles. I f
the role vectors are all orthogonal, the correct filler pattern will be generated,
apart from an overall magnitude factor. Otherwise, the pattern generated will be
a weighted superposition of the pattern of the correct filler, fi, and all the other
fillers, (fj} j~e" In this superposition, the weight of each erroneous pattern fj
relative to the correct pattern fe, the intrusion of role j into role i, is

r e -r / IIr/ll
iir, = cos o . Ilr, ll

where Oji is the angle between the vectors rj and r i.

P r o o f .

S " r i = (~ f / ® r i) "re=~'fi(r/'ri)j

= (r e • r i) f / + ~ (rj • re) f / •
j ~ i

In this weighted superposition, the ratio of the coefficient of each incorrect
filler fj to that of the correct filler fi is

r j . r i

r i • r i •

The denominator is Ilrell 2 and the numerator is cos 0.11r/ll IIr, ll, giving the
claimed result. []

Note that if two roles have very similar representations, there can be
substantial confusion about what their respective fillers are. The next section
provides a quantitative result on the intrusion of one role on another. If the
role vectors are linearly independent, the exact unbinding procedure can be
used to eliminate intrusions, but the unbinding vectors must be computed.

Since the tensor product binding representation is symmetric between role
and filler, the unbinding procedures given above can also be used to retrieve a
role pattern from the filler pattern to which it is bound. While there is no
asymmetry between role and filler in the representation of a single binding, an
asymmetry may however result from the combination of many bindings in the
representation of a structured object. For while role decompositions often
involve single-valued roles, it is uncommon to encounter single-valued fillers.
Thus while there will often be a unique filler indexed by a given role, there will
sometimes be several roles associated with a single filler. In the latter case, an

188 P. SMOLENSKY

unbinding that is pe r fo rmed using the filler pa t tern as an index will genera te
the superposi t ion of all the role vectors bound to that filler. 4

3.2. Graceful saturation

Like a digital m e m o r y with n registers, a connect ionis t system that uses n pools
of units to represent a s t ructure with n roles has a discrete saturat ion point.
Structures with no more than n roles filled can be represen ted precisely, but for
larger s tructures some informat ion must be omi t ted entirely. The form of
saturat ion characterist ic of connect ionis t systems (e.g., connect ionis t
memories) is less discrete than this; this is one aspect of the "graceful
degrada t ion" advert ised for connect ionis t systems.

Aspects of the graceful degrada t ion not ion can be formally character ized as
follows:

Definition 3.4. Let F/R be a role decompos i t ion of S. A connect ionis t repre-
sentat ion ~ of S has unbounded sensitivity with respect to F/R if for arbitrarily
large n,

varies as f~ varies, for each i = 1, 2 , . . . , n.
If for sufficiently large n the representa t ion of structures containing n

fil ler/role bindings is not faithful, then ~ saturates.
If ~ saturates and has u n b o u n d e d sensitivity then ~ possesses graceful

saturation.

The tensor p roduc t representa t ion, unlike local and role register representa-
tions, can exhibit graceful saturat ion. To show this, I now consider an example
that also illustrates how fully distr ibuted tensor p roduc t representa t ions can be
used to represent an infinite n u m b e r of roles in a f ini te-dimensional vector
space cor responding to a finite connect ionis t ne twork.

Theorem 3.5. Suppose S is the set of finite strings (with no upper bound on
length), and let {ri}~= l be the positional roles. Let the vec tor s {ri};= 1 be unit

4Related to unbinding are Mozer's pullout networks [25]. These networks take an input that
represents a mixture of several coherent objects and "pulls out" the vector representing a single
object, suppressing the representation of the others. This is done by setting up connections
encoding a set of constraints that define what it means for a vector to represent a coherent object,
and using relaxation to settle on a single coherent representation. At least in this normal usage,
pullout networks solve a problem that is related to but different from unbinding. The starting point
of unbinding is a representation of a single coherent object (structure); the problem is, given a role
in the structure, find what fills it (or vice versa).

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 189

vectors in N-dimensional space, randomly chosen according to the uniform
distribution. Then this tensor product representation possesses graceful satura-
tion. The expected value of the magnitude of the intrusion of role i into role j is
proportional to N t/2. The number of bindings n that can be stored before the
expected total magnitude of intrusions equals the magnitude of the correct
pattern increases as N ~/2

Proof. Since all role vectors have unit length, from Theorem 3.3, the expected
value of the magnitude of the intrusion is

f Icos oji I v (o j ,) dOji.
1

E l =
0

Here VN_ 1 is the N - 1-dimensional volume of the unit sphere in N-space, and
V(0ji) is the volume of the subset of the unit sphere in N-space consisting of all
vectors having angle Oij with the vector ri. This subset is in fact a sphere in
N - 1-space with radius sin 0ji. To see this, choose a Cartesian coordinate
system in N-space in which the first coordinate direction lies along r~. Then the
first coordinate x 1 of all points in the subset is cos 0j~. Since all points lie on the
unit sphere, we have

N N

1= E x~ = COS20ji + E X~
i = 1 i = 2

which implies

N

E x] = 1-cos20ii • 2 = sin 0ji .
i = 2

Thus the subset is a sphere in N - 1-space with radius sin 0ji. Therefore

V(Oji) = . N--2 VN_ 2 sin Off.

Thus the expected intrusion is

~r/2

vu_ f EI - VN I 2 sinN-20 COS 0 dO
0

1

_ Vu_2 f VN_ 2 2
VN_I 2 Z N-2 d z - VN_I N - 1

0

(using the substitution z = cos 0 which implies dz = - s i n 0 dO). The ratio of
volumes of spheres of successive dimensions Vu_2/VN_ 1 is a complex expres-

190 P. SMOLENSKY

sion taking different forms depending on whether N is odd or even (see the
Append ix o f [39]). Since these details are quite i rrelevant to the general
behavior as N increases, we can look at the mean of two successive such ratios
(using the geometr ic mean since the quanti t ies are ratios) which is given by the
simple expression 5

X/(N - 1)/2'n".

The result then is

J 2
E1

-rr(N - 1) "

As claimed, the expected interference falls as N -1/2.
For a s t ructure involving n bindings, the expected total magni tude of

intrusions o f all {r j } j , , i into r i is (n - - 1)EI. This equals unity at

•/1 1)1/2 n = ~ "rr (N - + 1

which increases as the square- roo t o f N. []

The est imate of interference given in the preceding theorem is a very
conservat ive one, since it computes the expected sum of the absolute values of
all intrusions. In fact, for any given c o m p o n e n t of the desired filler, the errors
caused by intrusions will be of bo th signs, producing a net e r ror much smaller
than the worst case analyzed above.

3.3. Continuous structures and infinite-dimensional representations

Certain structures are charac ter ized by a con t inuum of roles. Strings, for
example, have a natural extension to a con t inuum of positions. Examples o f
such cont inuous one-d imens ional "s t r ings" include speech input and m o t o r
output ; a two-dimensional example is an image.

The tensor p roduc t representa t ion extends natural ly to the case of a con-
t inuum of roles. The representa t ion of the conjunct ion of bindings extends
natural ly f rom the sum over a discrete set of bindings to an integral over a
con t inuum of bindings.

5There is a rough calculation that suggests that, as the dimension N grows, the expected inner
product of unit-length role vectors should decrease with the square root of N. Suppose for the first
N role vectors we chose an orthonormal basis. For the next vector, suppose we choose one that is
equidistant from all the others; an example is the vector whose components in the orthonormal
basis are C-~(1, 1 , . . . , 1). In order for this vector to have unit length, the normalization constant
C must be X/~. Now the inner product of this vector with any of the others is C -1 = N ~/2.

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 191

Definition 3.6. Let F/R be a role decomposition of S, not necessarily finite, and
let d/z(r) be a measure on R. Let suppR(s) be the subset of R containing roles
which are bound in s, and suppose F/R has single-valued roles. Suppose given
the connectionist representations

~e : F--> V F ; f~--> f ,

~R:R--->VR ; r~-~r

and assume these functions are measurable with respect to d/~(r). Then the
corresponding tensor product representation of S is

~FF/R(S)= f f(r) @r d/x(r).
suppR(S)

~FF/R(S) is defined only for those s for which the integral is well-defined:
suppR(s) must be a measurable set and the integral must converge.

If the role decomposition is finite, and d ~ is counting measure, then this
reduces to the previous definition of the tensor product representation.

In the case of a continuous string, we can take the roles to be r(t) for a
continuous time index t. For the measure we can use ordinary Lebesque
measure on t. Then if each role is represented by a pattern r(t) and the fillers
by the patterns f(t), the entire continuous string is represented by
,f f (t) ® r (t) d t . This representation of the continuous structure goes over
exactly to the discrete case if it happens that the fillers are discrete step-
functions of time. Suppose the filler f(t) is constant over the interval [ti, ti+x]
with value f r Then the representation of the string is

f f(t) ® r(t) dt
t

t i+ l

t i

l i + l

=~'~ f f i®r (t) dt
i

I i

t i + l

=~f i® f r(/)dt
i

l i

= E fi ®ri
i

where the vector representing the discrete role for the time slot [ti, ti+l] is the

192 P. SMOLENSKY

integral of the vectors representing the time points in the slot:

l i + l

r i := f r(t) d t .
fi

The representation of a continuous string can be visualized with the help of
the example illustrated in Fig. 3, which shows a tensor product binding
between a time and the energy level of a speech formant. The patterns
representing the energy level and time are peaks centered at the values being
represented; this can apply to continuous represented values as well as discrete
ones. The pattern r 4 representing time i = 4 (shown in Fig. 3) is a peak
centered on the fourth role unit; a pattern r(4.2) representing time t = 4.2
would be derived by taking a peak on the continuous line centered at 4.2 and
evaluating it at the integer values i = 1, 2 ,5. One can similarly generate
patterns representing continuous energy levels f(t). As in the discrete case, the
tensor product representation of the binding f (t) /r(t) then becomes a two-
dimensional peak centered at (t, f(t)) , evaluated at points with integer coordi-
nates. Superimposing the representation of the bindings for all t, we get the
representation of the continuous string of energy levels: it resembles a
smeared-out version of the graph of energy versus time, the activity of each
unit in the grid of Fig. 3 being greater the closer it lies to the actual graph.

In the representation illustrated in Fig. 3, the role and filler vector spaces
have finite dimensions (5 and 4, respectively). In such a case it is of course
impossible for all the role vectors to be linearly independent; that would
require an infinite-dimensional role vector space. The tensor product repre-
sentation applies as well to infinite-dimensional vector spaces as to finite-
dimensional ones. In that case the patterns representing roles (and possibly
also fillers) would not be patterns defined by a finite number of values as shown
in Fig. 3 but could rather be curves defined over a continuous segment. The
peaked patterns representing energy levels and times could be smooth Gaus-
sians over a fixed interval, with mean equal to the quantity being represented
and with variance, say, some fixed value. Then the representation of each
binding would be a two-dimensional smooth Gaussian with mean at the point
with x- and y-coordinates equal to the time and energy values, respectively.

If the role space is infinite-dimensional, then so too will be the binding
space. To view this space as the states of a connectionist network would
require postulating an infinite number of units, one for each dimension of the
space. The infinite-dimensional case is of interest not for computer simulation
but for analysis; patterns which are functions of a continuous variable pose no
particular difficulty for analysis relative to patterns which are finite-dimensional
vectors.

It is significant that the tensor product representation extends so naturally to

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 193

continuous collections of roles, continuous sets of fillers, and vectors for
representing roles and fillers that are continuous patterns. As I have argued
elsewhere [41], an important characteristic of a number of connectionist
networks is the existence of an underlying continuous model. Thus one
indication that a connectionist representational scheme is well-motivated is that
it has a natural continuous extension, even if particular simulation models take
advantage only of the discrete case.

3.4. Connectionist mechanisms for binding and unbinding

The tensor product representation has so far been characterized mathematical-
ly, without any discussion of how such a representation might be set up and
used in a connectionist system. In this section I consider first the creation of
bindings and then I take up unbinding.

3.4.1. Parallel binding in connectionist systems

The most immediate application of the tensor product representation is to
models learning to map some structured input to structured output; for
example, the surface form of a sentence to its parsed form. Here it is not the
job of the network to set up the tensor product representations: in presenting
the input/output pairs to the network during training, the modeler must
convert the symbolic inputs and outputs to their vector representations, and
this can be done directly by using the mathematical definition of the tensor
product representation.

In more complex applications, a network might be so constructed as to
internally perform variable binding via the tensor product. A convenient way
to achieve this is to use so-called sigma-pi processing units [30]. Such a unit has
a number of input sites at each of which connections from a number of other
processors converge. For each site o-, the sigma-pi unit takes the product of all
the inputs {I~i} there; it then adopts as its value u a weighted sum over all
sites, with one weight w~ per site:

P= E W~, U [~i
o~ i

Using sigma-pi units, tensor product binding can be easily achieved in a
connectionist network: see Fig. 8. The network consists of a set of filler units
f~, a set of role units ~',, and set of binding units b~,, one for each pair of filler
and role units. Each binding unit is a sigma-pi unit with a single site with unit
weight. Converging on the site of the binding unit b6p are two connections, one
from f6 and one from ~'p. Then if the filler and role patterns f and r are set up
on the filler and role units, the binding units will set up the representation of
the binding f / r .

Fig. 9 shows a network equivalent to the one shown in Fig. 8. Here the

194 P. SMOLENSKY

Fi l ler
Units

Binding Units

XD XD ~ ~)

X3 X3 ..@ X3

4)

X)

X3

m

)
Role Units

Fig. 8. A network using sigma-pi binding units to perform tensor product binding.

Binding Units

Fi l ler
Units

0- , -

0-- -

@_,._

0--,,--

0

0 z)

Q

Role Units

Fig, 9. A network using multiplicative junctions to perform tensor product binding.

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 195

product occurs not at the unit but at the junction of two connections; the two
activities entering the triangular junction [12] from the filler and role units are
multiplied together and the result is sent along the third line to the binding
unit.

The representation of complex structures requires superimposing multiple
filler/role bindings. There are two obvious ways of doing this: sequentially and
in parallel. In the sequential case, one binding is performed at a time, and the
binding units accumulate their activity over time. This can be achieved with the
network shown in Fig. 8 if we use accumulating sigma-pi binding units obeying

dv - E w~ I - i i~ , .
dt ~ i

Equivalently, serial binding can be performed by the network of Fig. 9 if the
binding units accumulate activity over time.

In order to superimpose all N bindings in parallel, we need to extend the
network shown in Fig. 8, creating nodes { f~) N , (~) N },~=1: see }o-=1 and (r o Fig. 10,
which illustrates the simplest case, N = 2. Now each sigma-pi binding unit has
N sites instead of one; each site" has unit weight. Each site o- on binding unit/~-~p

(,~) ~o) receives a pair of connections from the nodes)7 and rp . Now we can bind N
pairs of roles and fillers in parallel. In the o'th filler pool we set up the pattern

F i l l e r

U n i t s

. _ j -

O -
j v

@,

O ,

4 ¢

I ¢

B i n d i n g U n i t s

,.c.J

Role Un i t s

d

)
)

Fig. 10. An extension of the network of Fig. 8 that can perform two variable bindings in parallel.

196 P. SMOLENSKY

f~ representing f , and on the crth role poo l we set up the pattern r,r
representing r~,. The value of binding unit bop is then

The pattern of activity on the binding units is thus the correct tensor product
representation of the structure. Fig. 11 is the equivalent of Fig. 10 using
multiplicative junctions instead of sigma-pi units.

There is no need to perform all the binding serially or in parallel; the
mechanisms of sequential and parallel combination of bindings are indepen-
dent, and can be combined. If there are N pools of filler and role units, N
bindings can be established in parallel, and if the binding units accumulate
activity over time, further bindings can be added sequentially, up to N at a
time.

There are two senses in which bindings are occurring in parallel here.
Bindings are generated in parallel, N at a time; the generation capacity is
sharply defined by N. At the same time, multiple bindings are being maintained
in parallel; the binding units can simultaneously support multiple bindings
superimposed on each other. The maintenance capacity of the representation is

Binding Units

Role Units
Fig. 11. An extension of the network of Fig. 9 that can perform two variable bindings in parallel.

(Unlabelled units have been shaded to enhance readability.)

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 197

not sharply defined, due to the graceful saturation of the representation. The
scale of the maintenance capacity is, however, set by n, the number of role
units in each of the N sets.

For the network shown in Fig. 10, the generation and maintenance capacities
are independent; this contrasts with most existing connectionist systems. For
example, the McClelland and Rumelhart letter perception model processes
exclusively four letter words. Strings of length n = 4 can be represented; the
maintenance capacity is precisely defined at four letters. The binding of all four
letters to their positions are all performed in parallel; the generation capacity is
also N = 4. If different roles correspond to different regions of a parallel
network, as in local and semi-local representations, it is natural that these roles
should all be sent activiation in parallel. If the different roles share a common
set of units, as in fully distributed representations, there comes the space/time
trade-off we have seen above: duplicate machinery to permit parallel binding,
or wait while multiple bindings are performed serially.

It seems intuitive that the two binding capacities ought to be independent
characteristics of the degree of parallelism in a processing system. In many
human cognitive processes, for example, the generation capacity of binding
appears to be much smaller than the maintenance capacity: N ~ n. In visual
perception we are able to maintain rich percepts involving a huge number of
bindings of properties to locations, but it turns out that at any one time
(requiring approximately 50 msec) our visual systems can only establish the
bindings for a small region of the visual field [47]. The large number of
bindings that we maintain in parallel are generated a small fraction at a time
through an extended sequential process. In discourse processing, syntactic and
semantic processes seem to indicate that many constituents in complex struc-
tures are being maintained and processed in parallel, yet only a small fraction
of these constituent/role bindings are generated at once. If one looks at the
processing of small linguistic and/or visual items whose size fits within the
binding generation capacity (e.g. four-letter words), the distinction between
the generation and maintenance capacities does not assert itself. However,
connectionist models of more complex, extended tasks such as reading whole
passages must respect the distinction between these two aspects of parallelism;
the tensor product representation offers a natural way to do so, because the
machinery needed to create one binding can also create the others: there is no
need to build separate hardware to create each binding, as is typically done
with local or semi-local representations.

3.4.2. Connectionist unbinding mechanisms

The mathematics of the unbinding procedure was described in Section 3.1. It is
easy to implement this procedure in a connectionist network; in fact, the
network of Fig. 9 can be used for unbinding as well as for binding. We presume
that the binding units are supporting a pattern of activity which is the tensor

198 P. SMOLENSKY

product representation of a structure. To unbind role r~, a pattern of activity is
first set up on the role units: for the exact unbinding procedure, this pattern
should be that of the unbinding vector ug; for the self-addressing unbinding
procedure, the pattern should be r~. As a result of the activity in the role and
binding units, a pattern of activity arises on the filler units. At each triangular
junction, the activity of the connected role and binder units are multiplied
together and sent to the connected filler unit, which adds up all the inputs it so
receives (I assume, following [12], that the triangle junctions operate symmet-
rically, multiplying the activities arriving on any two lines and_sending the
product out along the third line.) Thus the activity of filler unit f6 is

P

This is the correct activity to implement the unbinding procedures of Section
3.1. With the extended network shown in Fig. 11, N roles can be unbound
simultaneously.

This procedure has been defined for retrieving a filler from a role. By
interchanging roles and fillers, it can also be used to retrieve a role from a
filler, subject to the caveat of Section 3.1 about non-single-valuedness.

The unbinding vectors needed for the exact unbinding procedure can be
stored in a network in a number of ways. Using an additional group of units, a
local representation of roles for unbinding could be used, so that when it was
desired to unbind a given role, the corresponding unit could be activated, and
the weights on connections emanating from that unit could be used to set up
the corresponding unbinding vector on the role units. Alternatively, the
additional group of units could be used with a distributed representation; the
actual vector representing r i could be set up on these units, and feedforward
connections could then set up the corresponding unbinding vector ui on the
role units. It is always possible to perform this mapping linearly when the role
vectors are linearly independent, which is also the condition required for the
unbinding vectors to be defined in the first place. In fact, the Widrow-Hoff
learning rule can be used to learn the weights necessary to map the {r~} into
the {ui}, provided a teacher can present the target vectors {ui}. Since the
matrix of {Ui} is just the inverse of the matrix of {ri}, iterative matrix inversion
algorithms implemented in a connectionist network can be used to compute the
{u~} from the {ri}. One simple way to do this is as follows (see also [18]).
Using Widrow-Hoff learning, train a simple linear associator to map each r i to
the ith unit vector, i.e., to a local representation of roles with a unique unit
active per role. When the ri are linearly independent, this is always possible.
Now, we make the connections in this linear associator bi-directional and
symmetric. If a role vector r~ is placed on the input units of the associator, it
will create a local pattern on the output units. If we send this activity

DISTRIBUTED R E P R E S E N T A T I O N OF SYMBOLIC S T R U C T U R E 199

backwards along the same connections, then the new pattern set up on the
6 input units will be exactly u i.

3.5. Binding unit activities as connection weights

In Section 3.4.1 we discussed one way of generating the tensor product
representation of a structure: sequentially representing individual filler/role
pairs on the role and filler units, while each binding unit takes the product of
the activities of its corresponding pair of role and filler units. These products
then accumulate on the binding units as the individual pairs are presented. This
procedure is formally identical to the Hebbian learning procedure for storing
the associations between roles and corresponding fillers: each binding unit
plays the role of the connection between a role and filler unit, and its activity
plays the role of the weight or strength of that connection. Furthermore, the
self-addressing unbinding mechanism described in Section 3.4.2 is formally
identical to the use of the Hebbian weight matrix to associate a pattern over
the role units with the corresponding pattern on the filler units.

This relationship between binding units and connections suggests avenues for
further exploration, two of which will now be briefly described.

3.5.1. From Hebbian to Widrow-Hoff weights

In Section 3.1 it was pointed out that the pattern needed for exact unbinding of
role ri, the unbinding vector ui, is not in general equal to the role vector r~; the
retrieval and role patterns are equal only if the role vectors are orthonormal.
This corresponds to a well-known property of the Hebbian weight matrix:
associations will be correctly formed by the Hebbian learning procedure if and
only if the input patterns are orthogonal. There is a more complex learning
procedure than the Hebbian one which produces a matrix with better retrieval
capability than the Hebbian matrix: the Widrow-Hoff [49] or delta rule [30].
This suggests replacing the Hebbian matrix corresponding to the tensor
product representation with the Widrow-Hoff matrix. With this new repre-
sentation, the self-addressing unbinding procedure would produce correct
results as long as the role vectors are linearly independent: orthogonality is not
required. Unfortunately, this Widrow-Hoff representation is considerably
more difficult to write down, analyze, and actually construct in a connectionist
network. For example, the Widrow-Hoff learning procedure, unlike the
Hebbian one, requires repeated presentations of the set of items to be stored.

6The weights {Wkj } needed to map the {r,} to the output basis vectors satisfy Ej Wkj(r~) j = Ski. In
other words, W is the inverse of the matrix of role vectors. The kth row of W is thus just the
unbinding vector uk; i.e., if we define (uk)j = Wkj, then u k • r~ = ~,~ which is the defining property of
the unbinding vectors. When ri is sent through W, it sets up the ith unit vector, and when this is
s e n t back through the same connections, the j th activity is E, Wkj(/~k~) = W u = (U~)j. That is, the
vector ri has been replaced by the vector ui.

200 r'. SMOLENSKY

A relaxation process could be used to do Widrow-Hoff binding [D. Rumel-
hart, personal communication], but it would require that all filler/role pairs be
simultaneously presented to the relaxation network. This would break the
independence, discussed in Section 3.4.1, of the generation and maintenance
capacities for binding.

3.5.2. Relation to Connection Information Distribution

The relation between tensor product binding units and Hebbian weights
suggests another development of the present analysis. In McClelland's [20]
Connection Information Distribution (CID) scheme, the activity of certain
units determine the weights between others. Unbinding could be naturally
carried out in a CID as follows. The represented structure would be active in a
set of binder units which would set the weights between role and filler units.
This would create a machine that transforms role patterns to filler patterns (to
the approximation to which unbinding vectors equal role vectors). Figure 11
can be viewed as a CID in which the binder units are setting weights in a
collection of N role/filler associators.

Despite the intimate relation between tensor product binding units and
connection weights, it should be emphasized that the primary purpose of the
tensor product representation is not to serve as an apparatus for filler/role
associations: it is rather to provide a pattern of activity representing a
structured object which can then be used for processing the object as a whole.
This is the reason why the elements of the tensor product representation have
been viewed as the activities of units rather than the strength of connections.
The CID allows us to use unit activities as connection strengths, giving us
simultaneous access to both aspects of the representation.

3.6. Values as variables

It is often important for the value bound to a variable to in fact itself be a
variable to which a value is to be bound. The tensor product binding
representation allows for this in the following way. Out of the representation
for the variable/value binding can be extracted the pattern of activity that
represents the value. This pattern can in turn be used as the pattern represent-
ing a variable, and used in another binding on other binding units where it is
bound to a value. The situation is depicted in Fig. 12.

3.7. Representation of symbolic operations; recursive decompositions

So far we have not considered the representation of symbolic operations:
mappings from S to itself. Examples that will now be considered are the stack
operations push and pop and the LISP operators car, cdr, and cons. Under-
standing such operations are important for treating recursive role decomposi-

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 201

Value

Vat

V a r i a b l e 1

Fig. 12. A network capable of representing two value/variable bindings in which the same
entity--the pattern of activity over the diagonally-aligned units---serves as the value in the first

binding (Value~) and the variable in the second binding (Variable2).

tions, since in such a decomposit ion each role is in fact an opera tor mapping S
into S.

The definition we need to get started is

Definition 3.7. Let O : S---~ S be an opera tor on S and ~ : S---~ V be a connec-
tionist representat ion of S. Then a corresponding representation of 0 is an
opera tor

O: V---> V ; v ~--> Ov

with the proper ty

=

2 0 2 P. S M O L E N S K Y

3.7.1. Stack operations: push and pop

In this section we consider the basic stack operations, push and pop. To keep
complications to a minimum, two simplifications will be made. In place of a
stack containing complex elements, simple strings from a fixed alphabet will be
used to model the essential stack structure of linear ordered elements with a
first element. The second simplification will be to consider an infinite stack,
i.e., no limit to the length of the strings modeling the stack.

Let S be the set of finite-length strings from an alphabet A. Let F / R be the
positional role decomposition of Definition 2.11. Let gt F be a faithful repre-
sentation of F, and let ~n be a representation of R in which the role vectors
{r~}~= 0 representing the positional roles {r~}~= 0 are all linearly independent.
This means that V n is an infinite-dimensional space. (The analysis can easily be
modified to strings of length no more than n, in which case V n can be
n-dimensional; the finite case just introduces uninteresting complications.) For
simplicity, assume that the role vectors span the space V R and therefore form a
basis.

The positional role decomposition has the property that if r~ is unbound, so is
rj if j > i. Thus the representations of strings are all in a restricted subspace of
V:

Definition 3.8. The string subset of V is

V s = { ~ i f i ® r ~ l f o r a l l i , i f f i = 0 , then for all j > i, f j = 0 } .

Theorem 3.9. The pop operation on S is represented by a linear transformation

pop on V:

p o p : V - > V ; ~ f i ® r i ~ - > ~ ' ~ f i ® r z _ l .
i i

The operation push a on S is represented by an affine transformation push~

pusha : V---> g ; E f i @ r i ~ - - > a ~ r o + E f i ~ r i + l .
i i

on V:

Both pop and push a map V s into V s, for all a ~ O.

Proof. First note that the definitions of pop and push given in the theorem are
adequate because every vector in V = V r ® V R can be uniquely expressed in the
form E i fl ®r i since {ri} is a basis of V R. That pop is linear and push is affine is
easily checked.

Suppose s is the string a o a l . . . a n and that the characters have representa-

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 203

tions rttF(ai)= a i. Then

~ (p o p (s)) = ~ (a l a 2 . . , a n)

: ~ a i @ r i _ l = pop ~ a i @ r i = p o p f f - t (s) .
i = l i=O

Thus pop is a representation of pop . Similarly, push, is a representation of
push a •

air(push a (s)) = ~(aaoa l . . . a n)

= a®r 0 + ~ ai~ri+l
i = 0

= push. ~ a i @ r i = push, ~ (s) . []
i=O

3.7.2. L I S P binary tree operations: car, cdr, and cons

Let S be the set of LISP S-expressions built from a set of atoms A. We define a
role decomposition as follows. For the fillers, take F = A. A typical role,
r011011 , is defined as follows. The predicate a/rollOll is " the caddaddr is the
atom a." The roles are indexed by finite bit strings, and correspond to
compositions of car and cdr operations, with 0 indicating car and 1 indicating
cdr. Note that these roles are to be filled only by atoms. Thus, for example, the
S-expression s = (a . (b .c)) contains the bindings {a/ro, b/rol , c / r l l } ; the role r l
is unbound- -no t because s has no cdr, but because the cdr is not an atom. The
role indexed by the empty sting e is special: the predicate a~ G is "is the atom
a . "

This decomposition is faithful and has single-valued roles. If objects like
circular lists are considered valid S-expressions, then the decomposition is not
finite.

This role decomposition has the property that if r x is bound, then ry x is
unbound, where y x is the concatenation of the bit strings y and x. In particular,
if r~ is bound, no other role can be; this is exactly the case for atoms. Lists are
S-expressions for which the cdr is never a non-nil atom, at all levels of
imbedding; in other words, for all bit strings x, r~x is unbound or bound to nil.

Let g'R map each r x into a corresponding vector r x in a basis of an
infinite-dimensional vector space V R. Let ~F be a faithful representation of
F = A in Ve, and let n i l := ~e(n i l) . Now we investigate the properties of the
induced tensor product representation ~.

Definition 3.10. The atomic subspace of V is

V a = { f ® r , If~ VF) = Vv ®span ({ r , }) •

204 P. SMOLENSKY

The non-atomic subspace of V is

Vna=l Z fx ®rx I fx ~VF}= VF®span({r~[x# e}) . ~X#C
The S-subset of V is

Vs={~x fx®rxl for all x, if fx=O, then for all y, fyx=O }.

The list subset of V is

Vt={~x fx®rx EVsl for all x, fl~ # O ~ f l x = n i l } .

Note that V s is not closed under vector addition. For example, ~ ((a)) +
~(((b))) corresponds to a mixture of two list structures; it possesses the
bindings {a/r o, b/roo }, violating the condition defining V s. Thus V s is not a
vector space. The same example also shows that V t is not a vector space.

Now we are ready for representations of the operators car, cdr, and cons.

Definition 3.11. Define two linear transformations T O and T 1 on V R by the
following actions on the basis {rx}"

To:Vn-->VR; r~0~-->rx; r~l~->0; r,~-->0

TI:Vn-->VR; rxi~--~r~; rxo~-->0; r,~-->0

Theorem 3.12. The following linear transformations on V are representations of
the operators car and cdr:

car : ~ fx ®rx ~--> ~ fx ®T0r x , cdr : ~ f~ ® r~ ~->'~ fx ®T~r x .
x X x x

Proof. The representation of an S-expression s can be written

~ (s) = Z f y ® r y = f ~ ® r ~ + Z f~o®rxo + Z f~l ®r~l •
y X x

Now f~o = cxr(car(s)), where cxr denotes the composition of cars and cdrs
corresponding to the bit string x. So if t = car(s), then fxo = cxr(t). Thus the
filler of r~0 in s is the filler of r x in t = car(s). Conversely, any filler of r~ in t is a
filler of rxo in s. Thus the representation of car(s) is

~(car(s)) = ~'~ fxo ® rx
X

= ear[f~ ®r~ + ~ fxo ®rxo + ~ f x l ® r x l] = c a r ~ (s) .
x X

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 205

This shows that car represents car. By replaying this argument with car
replaced by cdr and with 0 and 1 interchanged, we see that cdr represents cdr.
The linearity of car and cdr are immediate consequences of the linearity of T O
and T~. []

R e m a r k . The operators car and cdr treat nil like all other atoms: they map it
to 0. This corresponds to the car and cdr of all atoms, including nil, being
undefined. If car and cdr are defined to be undefined on all non-nil atoms, but
to take nil to nil, then the above definitions of car and cdr have to be changed
if they are to represent car and cdr: the definitions must include the ad hoc
stipulation that n i l ® r e is mapped to itself, while a ® r e is mapped to 0 for all
vectors a representing non-nil atoms. This does not destroy the linearity of c a r

and cdr as long as the vector nil is linearly independent of the representations
of all non-nil atoms. It does however destroy the property that f ® r ~ f ® T r ,
where the transformation of the role is independent of its filler.

T h e o r e m 3.13. Let u o and u 1 be two vectors in V. Then there is a unique vector
v in Vna such that

c a r v - - u o ,

c d r v = u 1 .

Define

cons : V × V-->Vna ; (Uo, u ,) ~-->v.

Then this function is:

c o n s : f x ® r x , ~] f ~ ® r , ~ f x ® r x o + ~] y ® r y l .
Y Y

c o n s is a representation o f the cons function on S.

Proof. Let

u o - ~] f ~ ® r x ,
x

u, = q®ry,
Y

v=E ®rx0+Z ®r..
x y

206

Then

and

P. S M O L E N S K Y

carv-car[x®rxo ®ryl]= ®rx=Uo
y x

cdrv--cdrl x ®rx0 ®ryl] Ul
Y y

Furthermore, v ~ V,~ so v satisfies the required conditions. These conditions
completely determine v: the car condition determines the fillers of all {rx0),
the cdr condition determines the fillers of all {rxl }, and the condition that v be
in Vn, implies that the only remaining role, r , , must be unfilled.

Since car and cdr represent car and cdr, it follows that cons represents cons .

To see this, let

s = cons (s o, s l) ,

u0 = ~(so),

u~ = q ' (s ,) .

Then, since car represents car, and c a r (s) = s o ,

c a r ~(s) = ~ (c a r (s)) = qr(So) = u 0

and similarly

car ~(s) = u 1 .

By the previous part of the proof, this implies that

~(s) = cons(u 0, u 1) .

In other words,

~ (c o n s (s o , sl)) = cons(~(So) , 1/)'(S 1)).

Thus cons represents cons . []

Just as complex structures in S can be constructed from atoms by successive
applications of cons , so the tensor product representation of these items can
similarly be constructed by successive applications of c o n s on the vectors

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 207

representing atoms:

~(a) = a/tr(a) ® r e .

Using cons to build up complex representations from simpler ones allows us to
exploit the recursive role decomposition of S provided by car and cdr.

The analysis of strings in Section 3.7.1 can be viewed as a subset of this
analysis of S-expressions, The alphabet is identified with the set of atoms, and
the ith positional role r i of the string is identified with r0iu, where i u is the unary
representation of i: i u = 11 . . .1 (i times). The operator pop becomes cdr and
pusha(s) becomes cons(a, s).

As emphasized in the introduction, the primary goal of this research is
representations of structured data that can support effective massively parallel
processing. As an example, with the representation of binary trees discussed
here, it is possible to determine in one operation whether the atom a appears
anywhere in the tree; as pointed out in Section 3.1, the unbinding operations
can be performed with respect to fillers as well as roles, and with a simple
linear unbinding operation we can compute what role is filled by a. (As
mentioned in Section 3.1, if there are multiple roles filled by a, the pattern
computed will be the superposition of the vectors representing those roles). 7

3.7.3. Recursive construction of tensor product representations

Related to recursive decomposition is the recursive construction of tensor
product representations. This occurs when the fillers or roles are themselves
structures that are decomposed by a new role decomposition. In other words,
having decomposed S in terms of F and R, we now take F or R as a new S' and
decompose it in terms of new fillers F ' and roles R'. Consider the case of
decomposition of R. If the role decomposition of R is F'/R', then the binding
f/r is itself a set of bindings f / (f ' / r ') . The tensor product representation of
such a finer-grained binding is then

f®(f'®r').

In this case we are led to third-order (or, by further recursion, higher-order)
tensor products, that is, to tensors of rank three or higher. The binding units
can be interpreted as representing third- (or higher-) order conjunctions of
features.

This recursive structure is just what we see in the Rumelhart and McClelland
[33] past-tense learning model. Here the original role decomposition of
phonetic strings is the 1-neighbor context decomposition. Each role rxy is itself

7 Determining whether a tree contains a certain subtree (rather than a certain atom) can also be
done in a single operation, if the role vectors are chosen in an appropriately recursive fashion;
however this requires further development of the analysis that goes beyond the scope of this paper.

208 P. SMOLENSKY

a structured object, whose structure is determined by the pair (x, y). These
pairs can be decomposed by the right-neighbor role decomposition, in which x
fills the role has right neighbor y, r'_y. Thus the binding i/r w d (the vowel in
weed) becomes i/(w/r'_d) and the final representation is the thqrd-order tensor
product

i ® w ® r ' d .

In fact, in this model, this is just i ® w ® d , since the role v e c t o r r' d is just d.
Equivalently, we can take the more naturally ordered product w ®] ® d as the
representation of the subsequence wid. (This same result could have been
arrived at through other routes, e.g., a left-neighbor decomposition of the
1-neighbor contextual roles.)

At this point we can now consider whether it would not have been better to
view a structure not as a set of roles and fillers, but rather as a set of
constituents engaged in certain mutual relations. The letter sequence abc, e.g.,
could be viewed as the constituents a, b, and c engaged in the relations
left-of(a, b) and left-of(b, c). This could be used to construct a tensor product
representation in which left-of(a, b) was represented by the tensor product of
three vectors representing left-of, a and b.

This variation of the role/filler construction adopted above has certain
advantages, but in the end produces a representation which is just a special
case of the role/filler construction. As we have just seen, using contextual
roles, we can view abc as having roles left_of_b, left_of_c filled, respectively,
by a and b. Then, considering the roles in turn as structures, we view lef t_orb
as having a subrole left_of filled by b. Then the recursive role/filler construc-
tion leads to a representation of a/ le f t_ofb which is the tensor product of the
three vectors representing left_of, b and a; this representation is equivalent to
that of left_of(a, b).

Essentially, applying the role/filler construction recursively using contextual
roles amounts to a standard trick from mathematical logic for reducing
functions and relations taking multiple arguments---e.g., the two-place relation
left_of--to nested functions and relations taking only one argument--e.g. , the
one-place relation left_of_b constructed from the one-place function left_of:
left_of(a,b)=left_of_b(a); left_of_b= left_of(b). In this sense, structural
decomposition via multiple-argument functions and relations can be seen as
syntactic sugar for certain kinds of recursive filler/role decompositions.

3.8. Storage of structured data in connect ionist m e m o r i e s

One of the primary uses of connectionist representations is as objects of
associations in associative memories: associative memories are connectionist-
implemented mappings from a vector representing a cue to a vector represent-
ing the retrieved item. Because of its mathematical simplicity it is possible to

D I S T R I B U T E D R E P R E S E N T A T I O N O F S Y M B O L I C S T R U C T U R E 209

analyze the use of tensor product representations in such memories. Here I
analyze the case of pair association since it is simpler than the content-
addressed auto-association case which is perhaps a purer example of connec-
tionist "memory" [30].

We start with the simplest possible case.

Theorem 3.14. Suppose ~r/R is a tensor product representation of S induced by
a decomposition with single-valued roles, with representations of fillers and roles
in which all filler vectors are mutually orthogonal as are all role vectors. Let
{s (k) } be a subset of S, and let the vectors representing these structures, {s(k)}, be
associated in a connectionist network using the Hebb rule with the patterns
{t(k)}. Then if the structures {s ~k)} share no common fillers (i.e., for each role,
all structures have different fillers), the associator will function perfectly; other-
wise there will be cross-talk that is monotonic in the degree of shared fillers. In
particular, the output associated with s <t) is proportional to

where

t (t) + ~ /xtkt (A)
k # l

~£lk =

Ilfl'>ll llr, II 2
e q) =r (~) i : J t J i

II ')ll=llrill
i

Proof. The Hebbian weights are

W = ~ t (k) s (k)T .

k

Thus the output generated from the input representing s (t) is:

Ws (t) = a t (k) s (k) T s (t)

k

= ~ t (k ' [~ / f ~ k ' ® r l] ' [~ f ~ ' ® r ,]

= ~ t(k)~'~ E (f}k)" g'))(ri • rj)
k i j

i k) 2 2

= ~ t(k)E ,5,,ll k)l1211ril12
i

: [~i I[~k)llEllril[2] t't)+ k~, [~ [[~')[[2llril]2 s],(k)

210 P. SMOLENSKY

The first term here is the correct associate t (t) weighted by a positive coeffi-
cient. The second term is a sum of all other (incorrect) associates {t(k)}k~,t,
each weighted by a nonnegative coefficient. These coefficients will all vanish if
there are no common fillers. Taking the ratio of the coefficient of t (~) to that of
t (° gives the desired result. []

The Hebb rule is capable of accurately learning associations to patterns that
are orthogonal. If the patterns are not necessarily orthogonal but are still
linearly independent, the associations can be accurately stored in a connection-
ist memory using the more complex Widrow-Hof f [49] or delta learning
procedure [30]. So the question is, what collections of symbolic structures have
linearly independent representations under the tensor product representation?
To answer this question, it turns out to be important to define the following
concept:

Definition 3.15. Let F/R be a role decomposition of S and let k ~ s (k) be a
sequence of elements in S. An annihilator of k ~ s (k) with respect to R / F is a
sequence of real numbers k ~-~ a (~), not all zero, such that, for all fillers f E F,
and all roles r E R,

~ (k) = 0 .
k : f / r E ~ (s (k))

For example, consider the sequence of strings (ax, bx, ay, by). With respect
to the positional role decomposition, this has annihilator (+ 1 , - 1 , - 1 , +1),
since for each filler/role binding in {a/r 1, b/r 1, x /r 2, Y/r2}, the corresponding
annihiulator elements are { + 1, - 1}, which sum to zero.

Theorem 3.16. Suppose ~ is a tensor product representation of the structures S,
and that k ~ s (k) is a sequence of distinct elements in S. Suppose that the filler
vectors f representing the fillers bound in the elements {s (k)} are all linearly
independent, and that the same is true of the role vectors r representing the roles
bound in the elements s (~). I f k ~-~ s (~) has no annihilator with respect to F/R,
then associations to the tensor product representations {~(si)} can all be
simultaneously and accurately stored in a connectionist memory by using the
Widrow-Hof f learning rule.

ProoL Let

~(s(k)) = ~ ~ k) ® r i .
i

Here we use the same set of roles (ri} for all structures {s(k)}; this can always
be done provided we allow the filler vector ~k) to equal the zero vector

whenever the role r i is unbound in structure s (k).

D I S T R I B U T E D R E P R E S E N T A T I O N OF S Y M B O L I C S T R U C T U R E 211

By the remarks immediately preceding Definition 3.15, it is sufficient to
show that the patterns {~(s(k))} are all linearly independent. Suppose on the
contrary that there are coefficients {a(k)}, not all zero, such that

o = E
k

: ~ k a ~ k ' [~ k ' ® r i] : ~ / [~k a~k'flk)]®r, -.

Then, because the role vectors {r;} are linearly independent, this implies that
for all i,

E -_ o.
k

Now we rewrite this as a sum over all distinct filler vectors:

k: r} k)=f~

But since the filler vectors {fr } are linearly independent, this implies, for all i
and for all y,

a (k) = 0.
k : f}k~=f~

This means exactly that {a (k)} is an annihilator of the sequence of structures
k ~ s (k). Since by hypothesis such an annihilator does not exist, it must be that
the representations {W(S(k))} are linearly independent. []

It was remarked above that the strings {ax, bx, ay, by} possess an an-
nihilator with respect to the positional role decomposition. This means that the
tensor product representations of these strings are not linearly independent,
even under the preceding theorem's assumptions of linearly independent filler
and role vectors. They cannot therefore be accurately associated with arbitrary
patterns even using the Widrow-Hoff learning rule. On the other hand, it is
easy to see that the strings {ax, bx, ay} do not possess an annihilator; the
preceding theorem shows that their tensor product representations can there-
fore be accurately associated with arbitrary patterns.

3.9. Learning optimal role representations

The tensor product representation is constructed from connectionist repre-
sentations of fillers and roles. As indicated in Section 2.3.2.3, distributed

212 P. SMOLENSKY

representation of fillers have been used in many connectionist models for some
time; usually, these representations are built from an analysis of the fillers in
terms of features relevant for the task being performed. But what about
distributed representations of roles? This, a problem raised in [13], becomes a
major question in tensor product representation. For many applications, it is
easy to imagine task-appropriate features for roles that could serve well as the
basis for distributed role representations. For example, Fig. 3 shows a distrib-
uted representation of positional roles with the useful property that nearby
positions are represented by similar patterns. Algorithms such as back-propa-
gation [31] can also be used to learn role representations for a given task, using
a network such as that shown in Fig. 11 and backpropagating through the
multiplicative junctions.

It is also possible to analyze the question of distributed representations for
roles from a domain-independent perspective. One rather general sense in
which a set of role vectors might be considered "optimal" can be characterized
as those representations for which fillers can be unbound in a way that
minimizes the total error introduced by non-linearly independent role vectors.
In [39], I introduce this error measure, give algebraic and geometric characteri-
zations of optimal sets of role vectors, and show how a simple recurrent linear
network can perform gradient descent in the error measure to find the optimal
vectors. This learning algorithm is an example of a "recirculation algorithm"
[14] in which activity cycles in a loop, and the change in a weight wji from i to j
is proportional to the activity at i times the rate of change of activity at j. Space
does not allow presentation of this analysis here, and the reader is referred to
[39] for full detail.

4. Conclusion

The limitations of the results reported here are many. The theoretical analyses
of role decompositions, graceful saturation, connectionist representations of
symbolic operators and recursive structures, retrieval of tensor product repre-
sentations in connectionist memories, and optimal role vectors are just begin-
nings. An analysis is needed of the consequences of throwing away binding
units and other means of controlling the potentially prohibitive growth in their
number. A further analysis is needed of the possibility of having a value for
one variable serve as another variable, without an unbinding of the first
variable. The relations between tensor product binding units and connection
weights, briefly considered in Section 3.5, need to be pursued. Furthermore,
for reasons such as those discussed in [13], it will often happen that for storing
representations of structures in content-addressed memories, the tensor prod-
uct representation alone will be insufficient, and hidden units will need to be
added to capture higher-order conjunctions that distinguish different structures
from each other; the current framework needs to be extended to adequately

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 213

t reat such cases. Also, the analysis of recursive structures needs to be fur ther
deve loped to ensure that imbedded structures can be effectively processed.

The viability of the tensor p roduc t representa t ion has been conf i rmed in an
implemented connect ionis t model , the tensor p roduc t p roduc t ion system
(TPPS) [6, 7]. TPPS per forms a n u m b e r of fundamenta l aspects of symbolic
processing, such as condi t ion matching against symbolic structures, variable
binding on the condi t ion side and substi tut ion into the act ion side of produc-
tions, conflict resolut ion, and insert ion and delet ion of structures. TPPS can be
viewed as a re implementa t ion of Toure t zky and Hin ton ' s distr ibuted connec-
tionist p roduc t ion system (D C P S) [46], in tended to show that a tensor-product -
based system would be simpler f rom both mathemat ica l and implementa t ion
perspectives, and would also pe r fo rm well. s

In summary , the tensor p roduc t representa t ion enables truly distr ibuted
representa t ions of complex symbolic s tructures in connect ionis t systems, in a
natural way that general izes existing representa t ions and is simple enough to
permit analyses of a n u m b e r o f propert ies . Tensor p roduc t representa t ions are
de te rmined by a n u m b e r of pa ramete r s which can be product ively analyzed
separately: the role decompos i t ion of the structures being represented , the
me thod for connect ionis t representa t ion of conjunct ion , and the connect ionis t
representa t ions of fillers and roles being used. Such conceptual tools for
analyzing alternative connect ionis t representa t ions are necessary if we are to
deepen our unders tanding of the representa t ional c o m p o n e n t of connect ionis t
modeling. Most impor tant ly , the tensor p roduc t f r amework allows a crucial
aspect of symbolic computa t ion , the representa t ion and processing of struc-
tured data based on the binding of values to variables, to be incorpora ted into
the connect ionis t approach in a natural way that adds to the power of
connect ionis t computa t ion wi thout sacrificing its advantages.

ACKNOWLEDGEMENT

This paper attempts to formalize and analyze ideas on distributed representation that have been
articulated and exploited in various ways by a number of connectionist researchers. I have
benefitted in particular from many ideas of Geoff Hinton, both published and personally
communicated. The responsibility for the formulation pursued here is of course entirely my own.

This work has been supported by NSF grants IRI-8609599 and ECE-8617947 to the author, by a

= In this paper, "variable binding" refers to the creation of an object that links a variable to its
value; this can be applied to implicit bindings such as that between a letter and the position it
occupies in a string, or to explicit bindings such as that between a symbol denoting a variable in the
condition or action side of a production and a symbol denoting the value of that variable. In
implicit bindings, the "variable" (or "role") involved is not usually explicitly represented in a
symbolic system by a symbol, but rather is implicit in the datastructures used in the implementa-
tion. This needn't be the case, of course; instead of writing a list as (a b c), we could use a
frameqike structure such as list: el_l = a, el_2 = b, e/_3 = c; then the implicit binding of the filler a
to its role would become explicit. Explicit variable binding was the primary issue in DCPS and later
TPPS.

214 P. SMOLENSKY

grant to the author from the Sloan Foundation's computational neuroscience program, and by the
Optical Connectionist Machine Program of the NSF Engineering Research Center for Optoelec-
tronic Computing Systems at the University of Colorado at Boulder, supported in large part by
NSF grant CDR 8622236.

Many thanks to G6raldine Legendre for crucial support.

REFERENCES

1. J.A. Anderson and G.E. Hinton, Models of information processing in the brain, in: G.E.
Hinton and J.A. Anderson, eds., Parallel Models of Associative Memory (Erlbaum, Hillsdale,
NJ, 1981).

2. M. Derthick, A connectionist architecture for representing and reasoning about structured
knowledge, in: Proceedings Ninth Annual Conference of the Cognitive Science Society, Seattle,
WA (1987).

3. C.E Dolan, Tensor manipulation networks: Connectionist and symbolic approaches to com-
prehension, learning, and planning, AI Lab Tech. Rept., University of California, Los
Angeles, CA (1989).

4. C.P. Dolan and M.G. Dyer, Symbolic schemata, role binding, and the evolution of structure in
connectionist memories, in: Proceedings First International Conference on Neural Networks,
San Diego, CA (1987).

5. C.P. Dolan and M.G. Dyer, Parallel retrieval of conceptual knowledge, in: D. Touretzky,
G.E. Hinton and T.J. Sejnowski, eds., Proceedings Connectionist Models Summer School
(Morgan Kaufmann, Los Altos, CA, 1988).

6. C.E Dolan and P. Smolensky, Implementing a connectionist production system using tensor
products, in: D.Touretzky, G.E. Hinton and T.J. Sejnowski, eds., Proceedings Connectionist
Models Summer School (Morgan Kaufmann, Los Altos, CA, 1988).

7. C.P. Dolan and P. Smolensky, Tensor product production system: A modular architecture and
representation, Connection Sci. 1 (1989) 53-68.

8. M. Fanty, Context-free parsing in connectionist networks, Tech. Rept. 174, Department of
Computer Science, University of Rochester, Rochester, NY (1985).

9. J.A. Feldman, Four frames suffice: A provisional model of vision and space, Behav. Brain Sci.
8 (1985) 265-289.

10. J.A. Feldman, Neural representation of conceptual knowledge, Tech. Rept. 189, Department
of Computer Science, University of Rochester, Rochester, NY (1986).

11. J.A. Fodor and Z.W. Pylyshyn, Connectionism and cognitive architecture: A critical analysis,
Cognition 28 (1988) 3-71.

12. G.E. Hinton, A parallel computation that assigns canonical object-based frames of reference,
in: Proceedings IJCAI-81, Vancouver, BC (1981).

13. G.E. Hinton, Implementing semantic networks in parallel hardware, in: G.E. Hinton and J.A.
Anderson, eds., Parallel Models of Associative Memory (Erlbaum, Hillsdale, NJ, 1981).

14. G.E. Hinton and J.L. McClelland, Learning representations by recirculation, in: D.Z.
Anderson, ed., Neural Information Processing Systems (American Institute of Physics, New
York, 1988).

15. G.E. Hinton, J.L. McClelland and D.E. Rumelhart, Distributed representations, in: J.L.
McClelland, D.E. Rumelhart and the PDP Research Group, eds., Parallel Distributed
Processing: Explorations in the Microstructure of Cognition 2: Psychological and Biological
Models (MIT Press/Bradford Books, Cambridge, MA, 1986).

16. M.I. Jordan, An introduction to linear algebra in parallel distributed processing, in: D.E.
Rumelhart, J.L. McClelland and the PDP Research Group, eds., Parallel Distributed Process-
ing: Explorations in the Microstructure of Cognition 1: Foundations (MIT Press/Bradford
Books, Cambridge, MA, 1986).

DISTRIBUTED REPRESENTATION OF SYMBOLIC STRUCTURE 215

17. J. Lachter and T.G. Bever, The relation between linguistic structure and associative theories
of language learning: A constructive critique of some connectionist learning models, Cognition
28 (1988) 195-247.

18. Y. Le Cun, C.C. Galland and G.E. Hinton, GEMINI: Gradient estimation through matrix
inversion after noise injection, in: D.S. Touretzky, ed., Advances in Neural Information
Processing Systems 1 (Morgan Kaufmann, San Mateo, CA, 1989).

19. L.H. Loomis and S. Sternberg, Advanced Calculus (Addison-Wesley, Reading, MA, 1968)
305-320.

20. J.L. McClelland, The programmable blackboard model of reading, in: J.L. McCleiland, D.E.
Rumelhart and the PDP Research Group, eds., Parallel Distributed Processing: Explorations
in the Microstructure of Cognition 2: Psychological and Biological Models (MIT Press/
Bradford Books, Cambridge, MA, 1986).

21. J.L. McClelland and J.L. Elman, Interactive processes in speech perception: The TRACE
model, in: J.L. McClelland, D.E. Rumelhart and the PDP Research Group, eds., Parallel
Distributed Processing: Explorations in the Microstructure of Cognition 2: Psychological and
Biological Models (MIT Press/Bradford Books, Cambridge, MA, 1986).

22. J.L. McClelland and A.H. Kawamoto, Mechanisms of sentence processing: Assigning roles to
constituents, in: J.L. McClelland, D.E. Rumelhart and the PDP Research Group, eds.,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition 2: Psychologi-
cal and Biological Models (MIT Press/Bradford Books, Cambridge, MA, 1986).

23. J.L. McClelland and D.E. Rumeihart, An interactive activation model of context effects in
letter perception, Part 1: An account of the basic findings, Psychol. Rev. 88 (1981) 375-407.

24. J.L. McClelland, D.E. Rumelhart and the PDP Research Group, eds., Parallel Distributed
Processing: Explorations in the Microstructure of Cognition 2: Psychological and Biological
Models (MIT Press/Bradford Books, Cambridge, MA, 1986).

25. M.C. Mozer, The Perception of Multiple Objects: A Parallel, Distributed Processing Approach
(MIT Press/Bradford Books, Cambridge, MA, 1990).

26. E. Nelson, Tensor Analysis (Princeton University Press, Princeton, NJ, 1967).
27. S. Pinker and A. Prince, On language and connectionism: Analysis of a parallel distributed

processing model of language acquisition, Cognition 28 (1988) 73-193.
28. A. Prince and S. Pinker, Wickelphone ambiguity, Cognition 30 (1988) 189-190.
29. M.S. Riley and P. Smolensky, A parallel model of (sequential) problem solving, in: Proceed-

ings Sixth Annual Conference of the Cognitive Science Society, Boulder CO (1984).
30. D.E. Rumelhart, G.E. Hinton and J.L. McClelland, A general framework for parallel

distributed processing, in: D.E. Rumelhart, J.L. McClelland and the PDP Research Group,
eds., Parallel Distributed Processing: Explorations in the Microstructure of Cognition 1:
Foundations (MIT Press/Bradford Books, Cambridge, MA, 1986).

31. D.E. Rumelhart, G.E. Hinton and R.J. Williams, Learning internal representations by error
propagation, in: D.E. Rumelhart, J.L. McClelland and the PDP Research Group, eds.,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition 1: Foundations
(MIT Press/Bradford Books, Cambridge, MA, 1986).

32. D.E. Rumelhart and J.L. McClelland, An interactive activation model of context effects in
letter perception, Part 2: The contextual enhancement effect and some tests and extensions of
the model, Psychol. Rev. 89 (1982) 60-94.

33. D.E. Rumelhart and J.L. McClelland, On learning the past tenses of English verbs, in: J.L.
McCleUand, D.E. Rumelhart and the PDP Research Group, eds., Parallel Distributed
Processing: Explorations in the Microstructure of Cognition 2: Psychological and Biological
Models (MIT Press/Bradford Books, Cambridge, MA, 1986).

34. D.E. Rumelhart, J.L. McClelland and the PDP Research Group, eds., Parallel Distributed
Processing: Explorations in the Microstructure of Cognition 1: Foundations (MIT Press/
Bradford Books, Cambridge, MA, 1986).

216 p. SMOLENSKY

35. T.J. Sejnowski and C.R. Rosenberg, Parallel networks that learn to pronounce English text,
Complex Sysr 1 (1987) 145-168.

36. P. Smolensky, Information processing in dynamical systems: Foundations of harmony theory,
in: D.E. Rumelhart, J.L. McClelland, and the PDP Research Group, eds., Parallel Distributed
Processing: Explorations in the Microstructure of Cognition 1: Foundations (MIT Press/
Bradford Books, Cambridge, MA, 1986).

37. P. Smolensky, Neural and conceptual interpretations of parallel distributed processing models,
in: J.L. McCleiland, D.E. Rumelhart and the PDP Research Group, eds., Parallel Distributed
Processing: Explorations in the Microstructure of Cognition 2: Psychological and Biological
Models (MIT Press/Bradford Books, Cambridge, MA, 1986).

38. P. Smolensky, Connectionist AI, symbolic AI, and the brain, A1 Rev. 1 (1987) 95-109. Special
Issue on the Foundations of AI.

39. P. Smolensky, On variable binding and the representation of symbolic structures in connection-
ist systems, Tech. Rept. CU-CS-355-87, Department of Computer Science, University of
Colorado at Boulder, CO (1987).

40. P. Smolensky, The constituent structure of connectionist mental states: A reply to Fodor and
Pylyshyn, Southern J. Philos. 26, Supplement (1987) 137-163.

41. P. Smolensky, On the proper treatment of connectionism, Behav. Brain Sci. 11 (1988) 1-23.
42. P. Smolensky, Connectionism, constituency, and the language of thought, in: B. Loewer and

G. Rey, eds., Fodor and His Critics (Blackwell, Oxford, 1991).
43. P. Smolensky and M.C. Mozer, Lectures on Connectionist Cognitive Modeling (Erlbaum,

HiUsdale, N J, to appear).
44. D.S. Touretzky BoltzCONS: Reconciling connectionism with the recursive nature of stacks

and trees, in: Proceedings Eighth Annual Conference of the Cognitive Science Society,
Amherst, MA (1986).

45. D.S. Touretzky and S. Geva, A distributed connectionist representation for concept struc-
tures, in: Proceedings Ninth Annual Conference of the Cognitive Science Society, Seattle, WA
(1987).

46. D.S. Touretzky and G.E. Hinton, Symbols among the neurons: Details of a connectionist
inference architecture, in: Proceedings IJCAI-85, Los Angeles, CA (1985).

47. A.M. Treisman and H. Schmidt, Illusory conjunctions in the perception of objects, Cognitive
Psychol. 14 (1982) 107-141.

48. F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups (Scott, Foresman,
Glenview, IL, 1971) 54-62.

49. G. Widrow and M.E. Hoff, Adaptive switching circuits, in: Institute of Radio Engineers.
Western Electronic Show and Convention, Convention Record, Part 4 (1960) 96-104.

50. D. Willshaw, Holography, associative memory, and inductive generalization, in: G.E. Hinton
and J.A. Anderson, eds., Parallel Models of Associative Memory (Erlbaum, Hillsdale, N J,
1981).

