
Phil. Trans. R. Soc. A (2012) 370, 3543–3569
doi:10.1098/rsta.2011.0334

REVIEW

Symbolic functions from neural computation
BY PAUL SMOLENSKY*

Cognitive Science Department, Johns Hopkins University, 237 Krieger Hall,
3400 North Charles Street, Baltimore, MD 21218, USA

Is thought computation over ideas? Turing, and many cognitive scientists since, have
assumed so, and formulated computational systems in which meaningful concepts
are encoded by symbols which are the objects of computation. Cognition has been
carved into parts, each a function defined over such symbols. This paper reports on
a research program aimed at computing these symbolic functions without computing
over the symbols. Symbols are encoded as patterns of numerical activation over multiple
abstract neurons, each neuron simultaneously contributing to the encoding of multiple
symbols. Computation is carried out over the numerical activation values of such
neurons, which individually have no conceptual meaning. This is massively parallel
numerical computation operating within a continuous computational medium. The
paper presents an axiomatic framework for such a computational account of cognition,
including a number of formal results. Within the framework, a class of recursive
symbolic functions can be computed. Formal languages defined by symbolic rewrite rules
can also be specified, the subsymbolic computations producing symbolic outputs that
simultaneously display central properties of both facets of human language: universal
symbolic grammatical competence and statistical, imperfect performance.

Keywords: cognitive science; neural networks; connectionism; linguistics; language;
optimality theory

1. Introduction

The classical theory of computation initiated by Turing [1] has provided the
foundation for mainstream theories of cognition and intelligence since the
inception of cognitive science and artificial intelligence in the 1950s [2]. This
paper presents another type of computation that has developed more recently
within cognitive science, driven primarily by two goals: improved formal
characterization of human mental processing—including mental grammars—
and improved reduction to neural computation. These newer methods develop
a distinction, absent in earlier computational theory, between three levels
*smolensky@jhu.edu

Electronic supplementary material is available at http://dx.doi.org/10.1098/rsta.2011.0334 or via
http://rsta.royalsocietypublishing.org.

One contribution of 18 to a Theme Issue ‘The foundations of computation, physics and mentality:
the Turing legacy’.

This journal is © 2012 The Royal Society3543

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

mailto:smolensky@jhu.edu
http://dx.doi.org/10.1098/rsta.2011.0334
http://rsta.royalsocietypublishing.org
http://rsta.royalsocietypublishing.org/

3544 P. Smolensky

of description, which I will here call symbolic, vectorial and neural. These
distinguish the formal characterization of the mind, using recursive functions
over discrete symbols, from the characterization of the brain, using continuous,
parallel, numerical computation. The vectorial level provides an interlingua. The
descriptions at all three levels characterize a single computer, the mind/brain [3].

A key departure from earlier theory (including Turing’s work on network
machines [4]) is that machine computations operate only at a level lower
than that of meaning. A conceptually meaningful entity is realized as an
activation pattern—an activation vector—over many abstract neurons, each
neuron simultaneously participating in the realization of multiple meaningful
entities. Knowledge is realized in connections between elements (neurons)
that are individually meaningless but collectively meaningful. The objects of
computational manipulation are not meaningful (the neural-level description),
and the meaningful elements are not objects of computational manipulation
(the symbolic-level description) [5–7]. Nonetheless, we will see that the proposed
vectorial computation provides the technical bridge for computing meaningful
recursive symbolic functions using subsymbolic, neural computation.

2. Overview

The theory of human cognition owes much of its progress to the principle
(formalized in §3) that cognition within some domain (e.g. arithmetic) consists in
a system of functions that take inputs, and produce outputs, which are structures
built of symbols that typically refer to elements in the domain (e.g. numbers).1
This raises two basic questions—and a meta-question: How should these functions
be specified by cognitive scientists? How are they computed within the brain? How
are these two questions connected? The answers developed here are roughly these.

How should cognitive functions be specified? In §6, we adopt the conventional
assumption that cognitive functions can usefully be specified via recursive
equations; but in §7, we conclude that—at least in one key domain, the theory of
human language—an alternative, specification by constraints on (input, output)
pairs, has important advantages.

How are cognitive functions computed? In §6, we challenge the assumption
that cognitive functions specified via recursive equations should be computed
in the conventional manner, by sequentially computing the primitive functions
in terms of which those equations are ultimately defined. Instead, we show how
cognitively relevant functions in a certain class can be computed in one, massively
parallel step, in which neural activations encoding the input symbol structure are
transformed by a simple linear transformation to output activations that encode
the output symbol structure specified by the target function. In this approach,
symbolic functions are computed, but not by symbolic computation: there is
no algorithm over symbols that describes the internal processes by which input
becomes output. There is a formal specification of the process, however, using
the primitives of neural computation. If this account of cognition is on the right
track, then the kinds of symbol-manipulating algorithms sought by traditional
artificial intelligence and cognitive theories do not exist, despite the existence of
symbolic descriptions of cognitive functions.
1In accepting this principle, we differ from most research programmes on neural network (or
‘connectionist’) theories of cognition, which deny the validity of our symbolic level [8].

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

Review. Computing symbolic functions 3545

How are these questions connected? If symbolic cognitive functions are
computed by neural, not symbolic, computation, then natural descriptions of the
functions computed by neural networks provide a promising candidate framework
for specifying cognitive functions. This leads, in §7, to the description of these
functions in terms of optimization over constraints, at all three levels.

Addressing these questions in §§6 and 7 requires laying considerable
groundwork, the foundation of which is a mapping from a space of symbol
structures to a vector space. This embedding is presented in §4, and the relation
between the similarity of symbol structures and the similarity of their embeddings
in the vector space is then analysed in §5.

The paper provides a concise synopsis of the formal core of The harmonic
mind [9], in which many of the results presented here are derived. Integrated into
this synopsis are new results (§§5 and 7) and current research (§8). The paper
initiates a research programme developing axiomatic theory in cognitive science,
motivated by the need for more precise characterizations of the central notions
of cognitive theory, which are highly abstract and therefore in need of formal
support to escape crippling vagueness.

(a) Summary of results

In this paper, we take up the following topics: the decomposition of cognition
into component functions (§3); the representation of the inputs and outputs of
these cognitive functions (§4); the similarity structure of these representations
(§5); a recursive-function-theoretic approach to specifying cognitive functions,
and neural computation of those functions (§6); a formal-language-theoretic
approach to specifying cognitive functions, and neural computation of those
functions (§7); and the challenge of producing symbolically interpretable outputs
from neural computation (§8).

Each of these topics (except the last) is treated at three levels of description,
in separate subsections: (a) the abstract symbolic level; (c) the neural level; and,
mediating between them, (b) the vectorial level.2

The main results, simplified, are approximately these (numbers identify the
corresponding theorems):

Theorem 4.8. The fundamental symbolic data structure we assume, binary
trees, can be embedded in an infinite-dimensional vector space in such a way that
the basic data construction and data access operations are linear transformations.

Theorem 5.7. Dissimilarity between two symbolic representations—as
measured by differences in their constituents and the structural relations between
their constituents—is given by the distance in the vector space between the two
vectors ‘embedding’ those representations.

Theorem 6.5. Each function in the class defined as the closure under
composition of the basic binary tree and symbol-mapping operations can be
computed by a linear transformation over the vectors embedding the function’s
input and output.

2A notational challenge arises because most elements of the theory need three symbols, one for
each level. The choice here is to use essentially the same symbol for all three, but to distinguish
them by font and/or style (italics, bold, etc.).

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

3546 P. Smolensky

Theorem 6.6. The infinite matrices implementing these linear transformations
have a particularly simple form, the tensor product of the infinite identity matrix
and a finite matrix that specifies the particular recursive function.

Theorem 7.2. A formal language—defined standardly by sequentially applied
symbol-rewriting rules—can be specified as the structures that optimize (maximize)
a numerical measure of symbolic well-formedness called (symbolic) Harmony.

Theorem 7.5. A natural language specified in a new grammatical framework
called Optimality Theory can also be characterized as the optima of symbolic
Harmony.

Theorem 7.7. The symbolic Harmony of a structure can be computed as the
value, for the vector that embeds that structure, of a quadratic form called (neural)
markedness Harmony.

Theorem 7.11. In evaluating errors, the dissimilarity between an output
symbolic structure and an input symbolic structure considered as the desired output
can be computed as the value, at the vectors embedding the input and output
structures, of a bilinear form called neural faithfulness Harmony.

Theorem 7.12. The local optima of total network Harmony—the sum
of markedness and faithfulness network Harmony—can be computed by a
deterministic neural network.

Theorem 7.13. The global optima of total network Harmony can be computed
by a stochastic neural network.

Theorem 8.1. The requirement that the output of a neural computation be
a vector that is the embedding of a symbol structure can be met via a network
dynamics that creates an attractor at each such vector.

To obtain (or merely state) these results as theorems, a certain degree of
formalization is necessary.

Through the course of the paper, it may prove useful to refer back to the
following synopsis, in which organization of results is orthogonal to that of the
paper: it gives the total picture at each level separately. It also identifies all the
principal elements of the theory, providing an informal glossary of their notation.

At this point, the reader may skip directly to §3 without loss of continuity.

(b) Synopsis by level

At the most abstract level, the different types of information encoded mentally
(and their mutual relations) are located within a cognitive macro-architecture
graph A (§3a); these mental representations are characterized as systems S of
structures built of symbols filling specified structural roles (§4a); dissimilarity
metrics, motivated by empirical patterns of cognitive performance, are defined
with respect to (w.r.t.) a set of abstract relations {Ri} = R among constituents
of mental representations (§5a); the symbolic functions computed over S within
A are characterized, including a set P of recursive functions (§6a) and the set
of formal languages LG generated through sequential derivation by rewrite-rule
grammars G; these languages and dissimilarity metrics are cast in the form of
numerical Harmony functions HG (theorem 7.2) and HR (definition 5.4), the
correct mental representations being those that maximize Harmony; Harmony

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

Review. Computing symbolic functions 3547

functions HG can be used to characterize the grammars of natural languages,
including Optimality-Theoretic grammars G within a system O in terms of which
the typology of possible human languages can be formally calculated (§7a).

At a level intermediate between the symbolic and the neural, linear and quasi-
linear classes of dynamical systems in vector spaces are defined (§3b); a model
of the symbol system of mental states S is specified abstractly by a realization
mapping J of symbol structures into a vector space S (§4b); symbolic structural-
relation dissimilarity HR is realized as vector distance within S (§5b); recursive
functions g ∈ P and Harmony functions HG are reduced to linear transformations
on S, Wg (§6b) and WG (theorem 7.7).

At the neural level, S is modelled with Rn , the states of a neural network
N , by positing a distinguished neural basis (§3c) in terms of which: mental
representations s and the realization mapping J are explicitly specified
numerically (§4c); Euclidean distance is explicitly computable, and HR is reduced
to neural faithfulness Harmony HF (theorem 7.11); the linear transformations
Wg and WG are instantiated as numerical matrices Wg (§6c) and WG (§7c);
HG is reduced to neural markedness Harmony HM (definition 7.6); deterministic
spreading activation can be used to compute local maxima of the network
Harmony HN = HF + HM (theorem 7.12); and stochastic spreading activation
dynamics Dopt within a diffusion network N T can be used to compute global
maxima of network Harmony (theorem 7.13); but a (deterministic) quantization
dynamics Dquant is needed to output an activation pattern s that is interpretable
as a discrete symbolic state s, with s = J(s) (theorem 8.1); a total dynamics
combining Dopt and Dquant yields the l-diffusion dynamics Dl (definition 8.2) of
a network N that computes symbolic mental representations, enabling models
simultaneously capturing central features of both the idealized computational
capacity of human linguistic competence and the errorful real-time computation
of human linguistic performance.

3. Cognitive macro-architecture

At a coarse level of description, a cognitive architecture is an interconnected
collection of components, operating in parallel, each of which processes
information of a certain type (e.g. for language, these types include orthographic,
phonological, syntactic and semantic information: see ©1 in figure 1). Knowledge
of the structure of a type of information is contained within the corresponding
component, and knowledge of the relations between the types is contained in the
links connecting components. A component computes a function: the input comes
along inward-directed links from neighbouring components, and the output is, in
turn, processed by knowledge in the outward-directed links to generate input
to other components. The flowcharts (‘box and arrow’ diagrams) conventionally
used to depict such an architecture instantiate a kind of graph structure.

(a) Symbolic graph structure

Definition 3.1. A cognitive macro-architecture A is a directed graph together
with:

a. For each node (‘cognitive component’ or ‘module’) Mg in A,

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

3548 P. Smolensky

= {RA, RL}
RA(ia) = {A,C,S,B}

RL (ia) = {(1,C), (2,A),
 (3,B), (4,S)}
RL (sa) = {(1,C), (2,A),
 (3,B)}

representational
 format 7

filler-role decomposition of g 5

symbolic dissimilarity as vectorial distance 9
representational faithfulness of sa to ia

= –½ distance (sa, ia)2

= –½ length (ia– sa)2

vectorial dynamics 2

dsg/dt = f g [ig(t)] –sg(t);

Y: tensor product (vectorial) realization of 6

role vectors: R = {r0,r1}; filler vectors: F = {fæ,fk, ...}

representations in neural coordinates 3

at equilibrium: sg
m = f (igm)

= [internal input]µ + [external input]µ

[ig(t)]m = [W
g]mvs

g (t) + [ig(t)]m

v [W
g]mvs

g
v

[Wg]mv

Wg

dsg
m/dt = f g([i g(t)]µ) –sg

m(t)

ig
m

f g igmsg
m

sg

Wg

sg

Ig

I g
ga

 g = Ig
ia

ia – sa

CABS

CAB sa

W g

ig

sg

mêg
êg

v v0

v0

phonology

v1

v1

ig

ig
l

sg
m

sg
l

sg
v ig

v

ig
µ

ιg

equilibrium:

neural dynamics 4 ne
ur

al
 le

ve
l

relative to the neural basis {..., êg
m, ... , êg

v, ...}:
sg = (..., 1.3, ..., –0.5, ...)
v0

 = (..., 0.6, ..., 0.3, ...) = fk r0
v1

 = (..., 0.7, ..., –0.8, ...)
fk

 = (1, –0.3, 2, ..., 0.6, ...), r0 = (1, –1)
fk

 r0 = (1, –0.3, 2, ..., 0.6, ...; –1, 0.3, –2, ...,–0.6, ...)T

sg = Y (sg); Y([k [æ b]]) = v0 +v1
v0 = fk r0; v1 = (fæ r0 + fb r1) r1 = fæ r01+ fb r11

ig(t) = Wgsg(t) + ig(t)

roles

fillers

architecture 1

external input
: states (mental

phonology

orthography

CAB

CABS

sg

s
ig

= [[]]

bindings b:
{ /r01, /r01, /r11}

sy
m

bo
lic

 le
ve

l
ve

ct
or

ia
l l

ev
el

representational
faithfulness 8

RA
I(ia,sa) = 1 [S deleted]

RA
O(ia,sa) = 0 [inserted]

RL
I(ia,sa) = 1

RL
O(ia,sa) = 0

ga

iga=tga(sa)

sa

ia

ab

r01

r0

r11

r1

re

iga = Tgasa

S

RA(sa) = {A,C,B}

representations)

semantics

a

aa

a

g

g

g

g

g

g

g

g

g

g

v v

Figure 1. A schematic of the proposed theory for neural computation of symbolic
cognitive functions.

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

Review. Computing symbolic functions 3549

(i) a set Sg, the ‘state space’ of Mg; an sg ∈ Sg is called a ‘mental
representation’;

(ii) a set Ig, the ‘input space’ of Mg;

(iii) a function sg : 2Ig → Ig for aggregating ‘partial inputs’ to Mg

(see b(ii)).
b. For each edge (‘connection’ or ‘pathway’) Cga, from Ma to Mg, in A,

(i) a transformation tga: Sa → Ig (the ‘inter-component transformation’);
(ii) iga ≡ tga(sa) ∈ Ig is called the ‘partial input’ from Ma to Mg when

Ma is in state sa ∈ Sa.
c. ig ≡ sg({iga | edge Cga is in A}) ∈ Ig is the ‘external input’ to Mg.

Henceforth, we assume given some specific architecture A in which, for all Mg ∈ A,
the spaces Ig and Sg, while conceptually distinct, are formally identical; Ig

functions as a ‘target’ towards which the components external to Mg drive its
state sg. Knowledge within Mg will generally partially resist this pressure.

(b) Vectorial model

The vectorial level models each Sg = Ig as a vector space Sg = I g (figure 1 ©2).
The vector space Sg constitutes an abstract information-encoding medium—a
space of cognitive states, of mental representations—that resides in continuous
mathematics, rather than the discrete mathematics of symbolic encodings. We
study two example types of vectorial models here.

In quasi-linear models, the transformations between components are linear,
combining by addition; a potentially nonlinear function f and a linear trans-
formation of Sg to itself determines how the state of Sg at one time, and the
external input to Sg from other components at that time, move the state forward.

Example 3.2. In a quasi-linear dynamics D [10] for the architecture A, for all
cognitive components Mg and Ma:

a. the operation tga on the link to Mg from Ma is a linear transformation
Tga: Sa → I g, iga = Tgasa;

b. sg is summation: the external input to Mg, ig, is the sum of the partial
inputs iga from neighbouring components Ma : ig = ∑

a iga;
c. a linear transformation Wg: Sg → Sg (the ‘intra-component input

transformation’) and a function f g: Sg → Sg (the ‘activation function’)
define Dg, the internal dynamics of Mg, by

dsg/dt = f g[ig(t)] − sg(t), ig(t) ≡ Wgsg(t) + ig(t).

Wgsg is the internally generated input to Mg; it combines linearly with
the external input ig.

Note that, at equilibrium, we must have sg(t) = f g[ig(t)]; f g gives the equilibrium
relation between input ig and activation sg.

A simpler type of model we will use (ultimately, as exemplified in
figure 2) is as follows.

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

3550 P. Smolensky

Example 3.3. A linear associator [11] is a simple sub-architecture consisting
of two components, Ma and Mg, with a single (uni-directional) pathway, from
Ma to Mg, in which

a. the operation tga is a linear transformation Tga : Sa → I g, producing
external input ig = Tgasa and

b. the state sg equals the external input ig : sg = Tgasa.

Both types of model are spelled out more explicitly and intuitively at the neural
level.

(c) Neural computation: cognitive micro-architecture

The neural level (figure 1 ©3) invokes a coordinate system (with axes defined
by a ‘neural basis’ {êg

m}nm=1 [12]) for Sg in which the list of coordinates for any
vector sg ∈ Sg, (sg

1 , sg
2 , . . . , sg

n), is the list of activation values of an enumerated set
of n ‘abstract neurons’ in a network N g; in this model of the vectorial theory,
the mental state sg is realized by an ‘activation pattern’ described by a vector in
Rn . We assume given a neural basis for every Sg.

Generally, neural computation is a type of analogue computation: a dynamical
system in Rn , fundamentally continuous in time, defined by differential equations
Dg that describe how the n neurons function as parallel processors (how they
‘spread activation’; figure 1 ©4) [13]. A particular computation is specified by
values for the parameters in Dg; these parameter values are interpreted in parallel
by the machine that evolves in accordance with Dg. In simpler cases, similar to the
linear associator (example 3.3), there may be no dynamics, just static relations
between component states.

Definition 3.4. Given a quasi-linear dynamics Dg for Sg, we define the
following, relative to the neural basis.

a. The inter-component linear transformation Tga is realized as the matrix
Tga, the element [Tga]mn being the ‘connection strength’ or ‘weight’, of a
‘connection’ from neuron n in N a to neuron m in N g. (This applies to a
linear associator as well.)

b. The linear intra-component input transformation Wg is realized as the
weight matrix Wg, the element [Wg]mn being the weight of a connection
from neuron n in N g to neuron m in N g.

c. The total input to the neurons in N g is ig ≡ Wgsg + ig, where ig is the
external input from other components, while Wgsg (the matrix–vector
product of Wg and sg) is the input generated internally within N g. At
neuron m of N g, the total input is [ig]m = ∑

n[Wg]mn[sg]n + [ig]m, i.e. the
weighted sum of the activation values of m’s neighbours n within N g plus
the external input to m.

Definition 3.5. To the requirements defining a quasi-linear dynamics at the
vectorial level (example 3.2) we now add:

a. the locality requirement f g: ig = (i1, i2, . . ., in) �→ (f g(i1), f g(i2), . . . , f g(in))
for some f g: R → R called the ‘neuron activation function’; and

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

Review. Computing symbolic functions 3551

b. the monotonicity requirement that the activation function f g be non-
decreasing.
If, in addition, f g is the identity function, f g(i) = i, then the dynamics Dg

is linear.

Owing to locality, the differential equation for neuron m depends only on the
activation levels of units connected to m, the weights on connections to neuron m
and the external input to unit m:

dsg
m/dt = f g([ig(t)]m) − sg

m(t); [ig(t)]m =
∑

n

[Wg]mnsg
n (t) + [ig(t)]m.

Monotonicity implies that, at equilibrium, the higher the input igm to neuron m,
the greater its activation value sg

m = f (igm).
Henceforth, we focus primarily on a single component Mg, and generally drop g

from the notation.

4. Symbolic functions

A component M of an architecture A computes a function, producing a mental
representation as output.

(a) Mental representations as symbol structures

At the most abstract level, mental representations in S are symbol structures
[14] (figure 1 ©5); e.g. in an orthographic component, a string of mental letters
such as CABS; in a phonological component, a string of mental phonemes such
as kæbz (or less simplistically, the binary tree [k [æ [b z]]]); in a syntactic
component, a phrase-structure tree such as [S [NP Frodo] [VP [V lives]]] (simplifying
greatly). The key idea now is to regard a symbol structure as a set of internal
roles, each filled by a constituent symbol structure (see ©5).

Definition 4.1. A filler-role decomposition S = (S, F , R, b) consists of three
sets, the ‘structures’ S, the ‘fillers’ F and the ‘roles’ R, and a one-to-one
function b: S → 2F×R; the N pairs constituting b(s), written as {fk/rk}Nk=1, are
the ‘filler/role bindings’, or ‘constituents’, of s ∈ S [15].

A symbolic data structure that is widely applicable for mental representations
is the binary tree; the artificial-intelligence language Lisp deploys it exclusively
[16]. Two filler-role decompositions are as follows [17].

Example 4.2. The following defines the canonical filler-role decomposition of
binary trees, Tt. Let the structure set St be the set of binary trees labelled with
‘atomic symbols’ in the set A ≡ {æ, b, k}, e.g. scab ≡ [k [æ b]] ∈ St. Define the role
set Rt ≡ {rx | x ∈ {0, 1}∗}; we think of, e.g., r01 as the binary-tree position ‘left child
[0] of the right child [1] of the root’, and analogously for any string x of 0s and 1s.
In scab, the position r01 is labelled with the symbol æ. Let the filler set be Ft ≡ A.
Then, æ/r01 is a filler-role binding of scab; the bindings function bt pairs roles with
their labels: bt(scab) = {æ/r01, k/r0, b/r11}. The root position is r3, where 3 is the
empty string; for any atomic symbol X ∈ A, bt(X) = {X/r3}.
Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

3552 P. Smolensky

Example 4.3. Continuing the example of St, binary trees labelled with A, we
can also define the recursive filler-role decomposition Tr = (St, Fr, Rr, br). The
roles are simply Rr ≡ {r3, r0, r1}, whereas the fillers are Fr ≡ St. Now, for scab
above, br(scab) = {k/r0, [æ b]/r1}. Here, the filler of r1, f1 ≡ [æ b], is a non-atomic
element of Fr = St, and itself has bindings br(f1) = {æ/r0, b/r1}; the atomic filler
k has binding set br(k) = {k/r3}, as in bt. As in Lisp, we denote by cons the
binary-tree constructor function: scab = cons(k, [æ b]) = cons(k, cons(æ, b));
thus br(cons(s0, s1)) = {s0/r0, s1/r1} for all s0, s1 ∈ St. The access function that
extracts the left (right) child of a tree will be denoted ex0 (ex1): St → Fr ∪ {Ø}
(both return a special ‘null filler’ Ø when applied to an atom); thus, for non-
atomic s ∈ St, br(s) = {ex0(s)/r0, ex1(s)/r1}. ex3(s) is the symbol bound to the
root of the tree s (or Ø if there is no such symbol).

Henceforth, unless stated otherwise, we assume that S is a given set of binary
trees under the canonical filler-role decomposition Tt. We also assume throughout
that, in general, the sets F and R are denumerable (not necessarily finite);
henceforth, let {f̂ j} and {r̂ k} be given enumerations of them.

(b) Symbol structures as vectors

The vectorial level of description springs from the following fundamental
definition [15]: it asserts that the vector realizing (or modelling, or instantiating,
or embedding) a symbol structure is the sum of vectors that realize each
constituent filler-role binding of the structure, and that the vector realizing a
filler-role binding is the tensor (generalized outer) product of vectors that realize
the filler and the role.

Definition 4.4. A tensor-product realization (S, F , R, jF , jR) consists of
a filler-role decomposition S = (S, F , R, b), two real vector spaces F and R—
the ‘filler vector space’ and the ‘role vector space’, with dimensions dim(F) and
dim(R), respectively—and two ‘realization’ functions jF : F → F and jR: R → R.
Here, we require that each of the ranges of jF and jR be linearly independent sets.

The associated realization mapping J: S → S ≡ F ⊗ R is defined by

J(s) ≡
N∑

k=1

fk ⊗ rk , where b(s) = {fk/rk}Nk=1 and fk ≡ jF (fk), rk ≡ jR(rk).

The vector space S , containing the range of J, is the tensor product of spaces
F and R: S ≡ F ⊗ R. [Given respective bases {f̂j} and {r̂k} for F and R, {f̂j ⊗ r̂k}
is a basis for S , and the mapping (f, r) �→ f ⊗ r from F × R to S is bilinear: linear
in each of f and r independently; dim(S) = dim(F)dim(R).]

Corresponding to our given enumerations {f̂ j} and {r̂ k} of F and R, we have
their vectorial realizations {f̂ j ≡ jF (f̂ j)} ⊂ F and {r̂k ≡ jR(r̂ k)} ⊂ R.

Given a vector v ∈ S realizing some symbol structure in S, we can determine
that structure from v.

Proposition 4.5. The linear independence of the ranges of jF and jR entails
that jF and jR are invertible. Furthermore, J is invertible: given v = J(s), s can
be recovered as the unique element of S with bindings {fk/r̂ k}, where fk ≡ jF

−1(fk),
and {fk} is the unique sequence in F such that v = ∑

k fk ⊗ r̂k [15].

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

Review. Computing symbolic functions 3553

Within the continuous space of vectorial mental representations S , distance
can be used to model cognitive dissimilarity, once S is endowed with a metric
structure.

Definition 4.6. A metric vectorial realization is a tensor-product realization
in which each vector space V ∈ {F , R} has an inner product; the inner product
of two vectors u, v ∈ V is written as u · v [(u, v) �→ u · v is bilinear, symmetric
and positive-definite: u �= 0 ⇒ u · u > 0]. The length of u is ‖u‖ ≡ (u · u)1/2; u is
normalized iff ‖u‖ = 1. The distance between u and v is ‖u − v‖. u and v are
orthogonal iff u · v = 0. Inner products on F , R induce an inner product on F ⊗ R
satisfying (f1 ⊗ r1) · (f2 ⊗ r2) = (f1 · f2)(r1 · r2).

Returning to the case of binary trees, we can now relate the two decompositions
in example 4.2 and example 4.3:

Definition 4.7. A recursive realization of binary trees is a metric vectorial
realization of Tt, built from a vector space R(1), in which:

a. jR(r0) ≡ r0 ∈ R(1), jR(r1) ≡ r1 ∈ R(1);
b. rx0 = rx ⊗ r0 and rx1 = rx ⊗ r1 for all x ∈ {0, 1}∗ (where x0 is the

concatenation of string x and 0);
c. the roles for tree positions at depth d lie in the vector space R(d) ≡ R(1) ⊗

R(1) ⊗ · · · ⊗ R(1) (d factors); letting R(0) ≡ R, the total role space R is the
direct sum of all the vector spaces R(d):

d. R ≡ R(0) ⊕ R(1) ⊕ R(2) ⊕ R(3) ⊕ · · · [an r ∈ R can be represented as r =
(r(0), r(1), . . .), each r(d) ∈ R(d)].3

Theorem 4.8. There are four linear transformations on S = F ⊗ R (namely
Wcons0, Wcons1, Wex0, Wex1) such that if s = cons(p, q), and we define s ≡ J(s),
p ≡ J(p), q ≡ J(q), then [19]:

s = Wcons0p + Wcons1q; p = Wex0 s; q = Wex1s; s = p ⊗ r0 + q ⊗ r1.

This recursive realization of the canonical filler-role decomposition of
definition 4.2 makes it possible to write s either in the form corresponding to
the canonical decomposition, s = ∑

x fx ⊗ rx , where fx is the realization of the
atomic symbol at tree position x , or as s = p ⊗ r0 + q ⊗ r1, just as it would be
expressed using the recursive decomposition Tr, r0 and r1 realizing its two roles
(left/right child), and p (q) realizing the entire left (right) sub-tree. In this sense,
definition 4.7b renders the canonical representation recursive.

Later, the linear transformations of theorem 2.8 will enable computation of an
interesting class of functions.

Henceforth, we assume given metric vectorial realizations JS and JI of S and
I which are defined over the same filler and role vector spaces F and R, and
which obey the following input scaling condition.

Condition 4.9. For all f ∈ F , jI
F (f) = jS

F (f); there exists a function r: R → R
such that for all r ∈ R, jI

R(r) = r(r)jS
R(r).

3Physicists will recognize this construction of an infinite-dimensional Hilbert space as isomorphic
to Fock space, where R(d) corresponds to the subspace of d particles, and f ⊗ r corresponds to the
tensor product binding, for example, of the spin of an electron (f) to its orbital (r) in an atom [18].

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

3554 P. Smolensky

Section 5b uses r to control the length of each input i in computing its distance
to a state s.

(c) Symbolic structures as neural activation patterns

Each vector space Sg has a given neural basis; the coordinates of s = JS (s)
w.r.t. this basis are the neural activation values realizing state s ∈ S (§3c).
If the individual vectors {f̂j} and {r̂k} realizing the individual symbolic fillers
and roles each lie along a neural basis vector, then the presence of a given
symbolic constituent corresponds to the activation of a single neuron: this is ‘local
representation’. We will assume the general case, distributed representation, in
which an individual constituent is realized by a vector that is a linear combination
of multiple neural basis vectors: the presence of that constituent is encoded by an
activation pattern distributed over multiple neurons, and each neuron participates
in the encoding of multiple constituent s. (Distributed representations: allow
many more representations per n neurons; allow encoding of similarity among
constituents; are what results from neural network learning; and are ubiquitous
in the brain [20–22].) The [4 × 9]th activation value in the tensor-product
realization of a symbol structure is the product [4th activation in the realization
of constituent k’s filler] × [9th activation in the realization of constituent k’s role],
summed over all the constituents k.

Definition 4.10. A ‘neural basis’ {f4}, {r9} for the spaces F , R of a metric
vectorial realization is a distinguished orthonormal basis. The neural coordinates,
or activation pattern, realizing a symbol structure s ∈ S is the point s ∈ Rnm with
elements s49 such that s = ∑

49 s49f4 ⊗ r9.

Proposition 4.11. For each binding of s, b(s) = {fk/rk}, let [fk]4 be the 4th
neural coordinate of fk ≡ jF (fk) (i.e. fk = ∑

4[fk]4f4) and similarly let [rk]9 be the
9th neural coordinate of rk ≡ jR(rk). Then s49 = ∑

k [fk]4[rk]9 [15].

5. Dissimilarity as representational distance: relational faithfulness

The total input i ∈ I to a component M is the target towards which the state of
M is driven under the combined influence of those components that send partial
input to M. As we see in §7, all else equal, the greater the distance d(s, i) of a state
s ∈ S to the total input i—i.e. the more dissimilar or ‘unfaithful’ s is to i—the less
likely M is to be in state s. Experimental data provide evidence for uncovering
the (component-specific) dissimilarity metric d in S; cognitive scientists formulate
hypotheses concerning d in terms of the format of representations in S: the
format determines the dimensions of unfaithfulness relevant for d. We propose to
formalize the problematic notion of representational format by making explicit
those relations between constituents that are understood to be defined in that
format (figure 1 ©7).

(a) Representational format as relational faithfulness

Definition 5.1. A representational format F is a filler-role decomposition in
which the roles are a set of relations R = {Ri}. Each Ri has an ‘arity’ ni , and
a collection of ‘argument domains’ Ai1, . . ., Aini . Then for any particular symbol

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

Review. Computing symbolic functions 3555

structure s ∈ S, Ri(s) ⊂ Ai1 × · · · × Aini is the set of elements which in s stand
in the relation R. The filler/role bindings are defined as b(s) = ⋃

i{(a1, . . ., ani)/
Ri | (a1, . . ., ani) ∈ Ri(s)}.

Example 5.2. Let Ss ⊂ A∗ be the set of strings of symbols from the alphabet A
such that no symbol appears more than once in any string. For any s ∈ Ss, define
the arity-1 relation RA(s) ≡ {X ∈ s} ⊂ A ≡ AA1, i.e. RA(s) is the set of symbols
that occur (once) in the string s. Define the arity-2 relation RL(s) ≡ {(l , X) | X is
the symbol of s in position l (relative to the left edge)} ⊂ N × A ≡ AL1 × AL2; e.g.
RL(CAB) = {(2, A), (1, C), (3, B)}. Rs ≡ {RA, RL} is a representational format for Ss,
yielding a bindings function bs; e.g. bs(BA) = {A/RA, B/RA, (1, B)/RL, (2, A)/RL}.

The distance d(i, s) is measured in terms of the degree of unfaithfulness of s
to i w.r.t. R (figure 1 ©8).

Definition 5.3. Given a representational format F including some relation R,
the relational faithfulness constraints for R are the following functions I × S → N
(|X | denotes the number of members of set X):

a. CI
R(i, s) ≡ |R(i)\R(s)| ≡ |{a ∈ R(i) s.t. a /∈ R(s)}|,

b. CO
R(i, s) ≡ |R(s)\R(i)| ≡ |{a ∈ R(s) s.t. a /∈ R(i)}|.

CI
R(i, s) is the number of elements for which R is true of the input i ∈ I but not

of the output s ∈ S; CO
R(i, s) is the reverse. So for the string example Ss earlier

mentioned, for R = RA, CI
R(i, s) is the number of symbols that have been deleted,

and CO
R(i, s) is the number of symbols that have been inserted (irrespective of

position in the string, which RA ignores). So, for example, CI
RA

(CAB, AB) = 1. For
R = RL, CI

R(i, s) is the number of symbols in the input that are not in the same
position (relative to the left edge) in the output; e.g. CI

RL
(CAB, AB) = 3, although

CI
RL

(CAB, CA) = 1.

It is relations such as these that are implicit in arguments (e.g. [23]) that the
mental representation for letter strings uses a format in which position is reckoned
from the right as well as the left edge (i.e. that, in addition to RL, the mental
format involves an analogous relation RR in which positions are counted from
the right edge). Under neurological damage, a patient spelling a list of words
may erroneously intrude letters from previous words into a given word, more
likely errors being those more faithful to the previous-word target. Because these
errors tend to preserve the position of letters relative to right as well as left word
edges, the relevant faithfulness constraints must penalize discrepancies w.r.t. RR
as well as RL.

An overall measure of the discrepancy between an input (target) i and an
output s—which plays the role here of a distance metric d(i, s)—is given by
a weighted sum of the relational faithfulness constraints for R (definition 5.3).
Faithfulness is one facet of well-formedness assessed by a measure called
‘Harmony’.

Definition 5.4. A pair of positive weights (wI
R, wO

R) defines an R-faithfulness
Harmony function HR:

HR(i, s) = −wI
RCI

R(i, s) − wO
R CO

R(i, s).

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

3556 P. Smolensky

The total relational-faithfulness Harmony of format F with relation set R is
HR(i, s) ≡ ∑

R∈R HR(i, s).
The faithfulness Harmony HR is increasingly negative as i and s become

more disparate along the dimensions encoded in the relations {Ri} = R; the
maximum faithfulness Harmony value is 0, attained when ∀R ∈ R, R(s) = R(i)
(e.g. when s = i).

(b) Relational unfaithfulness as vector distance

Given a representational format F with relation set R, the dissimilarity or
relational-faithfulness Harmony between an input i and a state s, HR(i, s), is
directly related to the distance, in the metric vector space S , between their
vectorial realizations i and s: HR is the negative of the distance squared (see ©9).
This result assumes the following type of tensor-product realization of the
representations in S.

The tensor-product realization of a representational format F including an
arity-n relation R involves a mapping jF from a filler set F = A1 × · · · × An
to a vector space F . Treating such a filler—an element such as (a, b, c) ∈
A1 × A2 × A3—as a structure in its own right, and then recursively applying
tensor-product realization to F (using contextual roles [15]) leads to the following
type of mapping jF : (a, b, c) �→ a ⊗ b ⊗ c.

Definition 5.5. Given a representational format F (assuming all the notation
of definition 5.1), a role realization mapping jR: {Ri} → R, and a set of filler
realization mappings jFim : Aim → Fim , the induced tensor-product realization is
defined by

J(s) ≡
∑

i

∑
{jFi1(a1) ⊗ · · · ⊗ jFini

(ani) ⊗ jR(Ri) | (a1, . . . , ani) ∈ Ri(s)}.

Definition 5.6. A tensor-product realization is called orthogonal iff the ranges
of jF and jR are each orthogonal sets: ∀f , f ′ ∈ F , f �= f ′ ⇒ jF (f) · jF (f ′) = 0, and
similarly for jR. The realization is orthonormal iff, in addition, ∀f ∈ F , ∀r ∈ R,
‖jF (f)‖ = ‖jR(r)‖ = 1.

Note that orthogonal realizations are in general distributed: they need not be
local (§4c). The result is as follows.

Theorem 5.7. Let JS be a tensor-product realization of a representational
format F induced by orthonormal filler and role realizations jS

F , jS
R. Assume

given faithfulness weights wI
R, wO

R for each R ∈ R; these define the faithfulness
Harmony function HR (definition 5.4). For each R, replace the unit-length role
vector jS

R(R) ≡ r̂S
R by the rescaled vector rR ≡ (2wO

R)1/2r̂S
R. For the scaling of JI

(condition 4.9), jI
R(R) = r(R)jS

R(R) define

r(R) ≡ 1
2(w

O
R + wI

R)/wO
R .

Given any i ∈ I , s ∈ S, let i ≡ JI (i) and s ≡ JS (s). Then, up to a constant term
depending on i, the total relational-faithfulness Harmony of s to i decreases as the

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

Review. Computing symbolic functions 3557

square of the distance between s and i:

HR(i, s) = − 1
2‖i − s‖2 + k(i),

where k(i) ≡ 1
4

∑
R∈R kR(i); kR(i) ≡ nI

R(wI
R − wO

R)2/wO
R ; and nI

R ≡ |R(i)|.
Note that the complexities arise only when there is an asymmetry wI

R �= wO
R ;

otherwise, r(R) = 1, kR(i) = 0. (For a proof, see the electronic supplementary
material.)

(c) Relational faithfulness as network weights

We will see in theorem 7.11 how relational faithfulness Harmony HR is
naturally realized at the network level.

6. Recursive functions as linear transformations

Having considered the representational states of the components of the cognitive
architecture A, we turn to the functions computed over these representations.

(a) Primitives’-closure functions

Mental processes compute recursive functions; for concreteness (without
compromising generality), we take the inputs and outputs of these functions
to be binary trees. We now see that an interesting class of such recursive
functions, denoted here P, can be computed at the neural level in an extremely
simple architecture: the linear associator (example 3.3). P is the closure under
composition of the primitive tree-manipulating functions defined in §4a (figure 2
gives an example). It is convenient to work directly with the filler-role bindings of
binary trees, assuming the canonical filler/role decomposition Tt (example 4.2).

Definition 6.1. A pseudo-tree t is a set of binary-tree filler/role bindings with
at most one filler bound to each role; Ø is the null pseudo-tree with no bindings;
T is the set of pseudo-trees. The unification t � t′ of two pseudo-trees is the union
of their bindings, provided this yields a pseudo-tree (at most one filler bound to
each role); otherwise, t � t′ ≡ Ø. Any t ∈ T can be represented as

⊔
k{Ak/rk} for

some sequence {Ak} ⊂ A, the alphabet of filler symbols, and {rk} ∈ R.
A function g: T → T is first order iff g(Ø) = Ø and g(

⊔
k{Ak/rk}) =⊔

k{g(Ak/rk)}.
First-order functions process each binding separately, with no interactions

among bindings.

Proposition 6.2. The primitive binary-tree functions ex0, ex1, ex3, cons0,
cons1 (example 4.3) are first order [19, p. 320].

As for manipulation of fillers, the basis of the set of recursive functions we
consider are those in B.

Definition 6.3. B is the set of functions h: T → T satisfying the following
conditions:

a. h is first order;
b. for all t ∈ T , h(t) = cons(h(ex0(t)), h(ex1(t))) � h(ex3(t))/r3;

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

3558 P. Smolensky

c. there is a partial function gA : A → A such that ∀X ∈ A, h(X/r3) =
gA(X)/r3; if X is not in the domain of the partial function gA, then
h(X/r3) = Ø.

A function h ∈ B is indeed very simple: it simply replaces every filler X in the
domain of gA by the filler gA(X), and deletes all other fillers. Finally, we join
the filler-manipulating functions in B with role manipulation in the form of the
closure, under composition, of the primitive binary-tree functions.

Definition 6.4. The class of PC functions (primitives’-closure) P has the
following recursive definition:

a. base case: h ∈ B ⇒ h ∈ P
b. recursion

(i) if h ∈ B and g ∈ P, then h ◦ g ≡ h(g) ∈ P
(ii) if g ∈ P, then ex0 ◦ g ∈ P and ex1 ◦ g ∈ P
(iii) if g, g ′ ∈ P, then t → cons(g(t), g ′(t)) ∈ P

c. no other functions are in P.

While further development of the theory to address a larger class of
recursive functions is in progress, the class P already includes many of the
functions hypothesized to be computed in cognition, for example, recursive
functions like that which maps a syntactic representation such as [[Few [world
leaders]] [[are admired] [by [George Bush]]]] to a semantic representation
like admire(George Bush, few world leaders): see the caption of figure 2
for the definition of this function g.

(b) Primitives’-closure functions as linear transformations

Because the primitive binary-tree functions can be realized as linear
transformations (theorem 4.8), and because the set of linear transformations is
closed under composition and addition, we get straightforwardly the following
result.

Theorem 6.5. Any PC function g ∈ P is realized by a linear transformation Wg
on S; that is,

∀t, t′ ∈ T , g: t �→ t′ iff WgJ(t) = J(t′).

(c) Primitives’-closure functions as neural networks

It follows immediately that a PC function can be computed by a simple type
of network, a linear associator (example 3.3); the weight matrix turns out to have
a form that enables finite specification of an infinite matrix.

Theorem 6.6. For any g ∈ P, the linear transformation Wg is realized by a
linear associator with weight matrix

Wg = I ⊗ Wg ,

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

Review. Computing symbolic functions 3559

output

agent

B

D C F by

E Gpatient
Aux

agent

F

G B

D C
patient

E

input

W

Figure 2. Applying the technique of theorem 6.5, this linear associator network computes
the function

g(s) = cons(ex1(ex0(ex1(s))), cons(ex1(ex1(ex1(s))), ex0(s)))
with the corresponding weight matrix

Wg = Wcons0[Wex1Wex0Wex1] + Wcons1[Wcons0(Wex1Wex1Wex1) + Wcons1(Wex0)].
Disc area displays magnitude of activations and weights; black/white denote positive/negative.
The unbounded competence of the network results from the unbounded weight matrix Wg , which
is finitely specified as the tensor product of a finite matrix Wg and the unbounded identity matrix
I (§6c). (Reprinted with permission from [9].)

where I is the identity matrix on (infinite-dimensional) R (definition 4.7) and Wg
is a finite matrix.

The map g �→ Wg is compositional: it can be defined constructively [19, p. 324]
(see figure 2 for an example).

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

3560 P. Smolensky

language

generates s}

maxs {HG(s)}
HG = arg-

= {s | s is

optimal
under }

theoretic
(ranked

constraints,
parallel)

optimality-

grammar

in Chomsky
hierarchy
(rewrite-

rules,
serial)

H

H (s)

ds /dt
~W

theorem 7.13

stochastic
 dynamics;
globally
optimize H

deterministic
 dynamics;
locally
optimize H

activationweights

vectorialsymbolic

harmonyharmony

neural

theorem 3.2
ds /dt
~W

H (s)

HG(s)
weighted

 constraints

HG(s) =

H (s);

H (s) =

s·Ws
+ ...

H (s) W

s =Y (s)

Figure 3. A roadmap showing the chain of inference in §7.

7. Grammar as optimality

Having seen that a significant class of recursive functions can be computed
in one massively parallel step (fully specified at the neural level in terms of
multiplication and addition operations), in order to analyse linguistic cognition,
we turn from recursive function theory to another general approach for specifying
functions over symbols: formal language theory. This approach conceives of
the function to be computed as a kind of language, and deploys rewrite-rule
grammars, interpreted sequentially. These grammars can be classified in various
ways, e.g. the Chomsky hierarchy, with its corresponding hierarchy of formal
sequential automata, culminating in Turing machines. It turns out that a different
approach to specifying languages, more directly reducible to neural computation,
deploys Harmony. In §5, we encountered one facet of Harmony, faithfulness;
specifying languages introduces the other facet, markedness. Markedness reduces
the Harmony of symbol structures that violate grammatical constraints, and may
reward structures that meet grammatical desiderata. The structures of the formal
language are those with maximal Harmony.

Because of the extended chain of inference in this section, a roadmap is
provided in figure 3.

To see the basic intuition, consider a context-free rewrite-rule grammar G in
Chomsky normal form; a legal derivation D produced by such a grammar can
be represented as a binary tree tD. For example, use of the rule A → B C in a
derivation D contributes to tD a local tree [A B C]: a pair of sister nodes labelled
B and C immediately dominated by a mother node labelled A. We can take the
language generated by G, LG, to be the set of all binary trees representing legal
derivations. To evaluate whether a given tree t ∈ LG, we must check that every
local tree [X Y Z] in t is sanctioned by a rule X → Y Z in G. We can do this
numerically, computing a Harmony value H (t) for t, as follows. We assess a
markedness Harmony penalty of −3 (lower H (t) by 3) for every symbol in t. Then
for every rule X → Y Z in G, we add +2 to H (t) for every pair in t consisting
of a mother node labelled X with a left (right) child node labelled Y (Z); we
conceptually split this into a reward of +1 for each node in the pair. Now, consider
a node x labelled by some symbol V: x will lower H (t) by 3. Then if x is dominated
by a legal parent node for V, x increases H (t) by 1; if x has two legal daughter

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

Review. Computing symbolic functions 3561

nodes for V, x increases H (t) by 1 for each. Thus if x is fully sanctioned by
the grammar (both above and below), it will contribute 0 to H (t); if it is not
legal, its penalty −3 will not be fully offset and its net contribution to H (t) will
be negative. The result is that if t is legal, H (t) = 0, otherwise, H (t) < 0. The
maximal Harmony trees are those with H = 0: exactly the trees of LG.4

(a) Rewrite-rule and Optimality-Theoretic grammars as Harmonic grammars

Definition 7.1. A Harmonic grammar over S [24] is a function HG : S → R;
HG(s) is the ‘(markedness) Harmony’ of s ∈ S. The language specified by HG,
LHG ⊂ S, is

LHG ≡ argmaxs∈SHG(s) ≡ {s ∈ S | �s′ ∈ S s.t. HG(s′) > HG(s)}.
An s ∈ LHG has maximum Harmony, and is said to be optimal.

A Harmonic grammar HG is second-order iff there exists a function Hb :
B × B → R (where B ≡ F × R) such that if b(s) = {fk/rk} ≡ {bk}, then HG(s) =∑

j
∑

k Hb(bj , bk) (HG depends only on pairs of constituents).

Theorem 7.2. Given a formal language LG generated by a grammar G in the
Chomsky hierarchy, there is a second-order Harmonic grammar HG that specifies
the same language: LG = LHG.

As sketched intuitively earlier, HG can be constructed compositionally from the
rewrite rules of G [25, p. 399]. This shows that formal languages can be specified;
we consider later how languages can be computed.

We turn now to the grammars relevant to cognition, those of human natural
languages. It turns out that for generative linguistics—the formal theory of
human language—analysing the set of grammatical expressions as a set of optimal
structures is quite fruitful, thanks primarily to Optimality Theory [26,27].

Definition 7.3. An Optimality-Theoretic system O = (I , S, Gen, Con)
consists of the following:

a. a set I of symbol structures called ‘inputs’ (e.g. for syntax, a meaning to
be expressed);

b. a set S of symbol structures called ‘outputs’ (e.g. for syntax, a parse tree
of a sentence);

c. a function Gen: I → 2S ; Gen(i) is the set of ‘candidate outputs’ for i ∈ I
(e.g. all possible parses);

d. a finite set Con of functions C: I × S → N ∪ {0} called ‘constraints’; C(i, s)
is the number of ‘violations of C by (i, s)’, and if C(i, s1) < C(i, s2) we say
C ‘prefers s1 to s2 given i’
(i) Con includes faithfulness constraints; each such constraint CF

evaluates a dimension of structure, being violated by each deviation
of s from i w.r.t. that dimension

(ii) Con includes markedness constraints; each such constraint CM
evaluates, independently of i, the inherent well-formedness of s with
respect to some structural dimension.

4This glosses over details of the full analysis, which requires special treatment of the tree root and
the start symbol, as well as terminal nodes, and conversion of G to ‘Harmonic normal form’, which
enables a second-order Harmony function (definition 7.1) [24].

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

3562 P. Smolensky

An O-grammar G is a total order � on Con: a ‘constraint ranking’. An input–
output pair (i, s), s ∈ Gen(i), is optimal w.r.t. the O-grammar G = � iff the
following holds:

�o′ ∈ Gen(i) s.t. (i, o′) is preferred to (i, o) by the �-maximal constraint that
prefers one of them
The language LG specified by an O-grammar G is the set of all G-optimal input–
output pairs.
The typology specified by O is the set of all languages specified by some
O-grammar.

The empirical hypothesis is that the space of possible human grammars is
an O-typology for some O called ‘universal grammar’—all languages possess
the same grammatical constraints or preferences: differences arise only in how
conflicts among those preferences are resolved; i.e. differences are limited to how
the grammar of each language ranks the universal constraints.

Example 7.4. The Italian counterpart of English it rains is piove. An
Optimality-Theoretic analysis goes as follows [28]. Our meaning is i0 =
[rain(tense = present)]; we assume here a faithfulness constraint CF that requires
the verb form to be piove in Italian, or rains in English. This constraint outranks
all others, ensuring that only an expression with the correct verb can be optimal.
A markedness constraint CM1 requires that every sentence have a subject; the
Italian candidate output sentence piove (or English rains) violates CM1; esso
piove (or it rains) satisfies CM1. Another markedness constraint CM2 requires
that every word in an expression contribute to the meaning: esso piove (or it
rains) violates CM2 (the subject is meaningless) while piove (or rains) satisfies
CM2. In the Italian grammar, CM2 � CM1: avoiding meaningless words is more
important than providing a subject; so (i0, piove) is optimal, hence grammatical.
In English, the ranking is reversed, so (i0, it rains) is optimal.

Despite being violated in these optimal expressions, CM1 is active in Italian and
CM2 is active in English: in English, CM2 can only be violated when overruled
by a higher-ranked constraint such as CM1. For example (i0, it rains it) is not
grammatical—it has lower Harmony than (i0, it rains)—because of the second
violation of CM2 incurred by the meaningless object it: its presence (unlike the
subject it) is not required to satisfy any higher-ranked constraint. The difference
between English and Italian is not that the former prefers and the latter disprefers
meaningless items: all languages (according to Optimality Theory) have the same
grammatical preferences—differences arise only in how to resolve conflicts among
those preferences, i.e. in the ranking of constraints.

Optimality Theory arguably provides the first general formal theory of
linguistic typology. This has enabled formal analysis of typologies, as well as
individual languages, at all linguistic levels: phonology, syntax, semantics and
pragmatics [29–32] (see also the archive http://roa.rutgers.edu/). The empirical
successes of Optimality Theory are cases when what is universally shared by
human languages are preferences that outputs of the grammar should respect,
as opposed to processes that generate those outputs. Rewrite rules characterize
grammatical knowledge as procedures, while Optimality Theory characterizes
grammatical knowledge as preferences: this is the force of the idea, ‘grammars as
optimization’.

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://roa.rutgers.edu/
http://rsta.royalsocietypublishing.org/

Review. Computing symbolic functions 3563

Given the potential value of Optimality Theory for understanding linguistic
cognition, we turn to how neural computation might be used to compute
languages specified by Optimality-Theoretic grammars, rather than languages
specified by serial rewrite rules or functions specified by recursive equations.

For reduction of an O-grammar G to the neural level, we translate G into a
Harmonic grammar HG.

Theorem 7.5. Let G =� be an O-grammar s.t. every constraint Ck ∈ Con is
bounded above: ∃M ∈ N s.t. ∀Ck ∈ Con, ∀i ∈ I , ∀s ∈ Gen(i), Ck(i, s) < M. Then,
there is a Harmonic grammar HG over I × S that specifies the same language:
LG = LHG

. HG = − ∑
k wkCk for a set of weights {wk} with wk > wj ⇔ Ck � Cj . (In

this context, (i, s∗) is optimal for an HG iff s∗ ∈ argmaxs{HG(i, s) | s ∈ Gen(i)}.)
[26, §10.2.2; 33; 34, p. 463].

The basic idea of the construction is that if Con ≡ {Ck}Nk=0 is ordered by �
so that Ck+1 � Ck , then the constraint weights can be wk ≡ Mk (M − 1 being
the largest possible number of violations of any constraint). The Harmony cost
incurred by a single violation of Ck (wk = Mk) exceeds the total maximal cost that
can be incurred by violations of all lower-ranked constraints (

∑
j<k wj [M − 1] =

∑k−1
j=0 Mj+1 − ∑k−1

j=0 Mj = Mk − 1). This means that HG(i, o) > HG(i, o′) if and
only if the highest-ranking constraint that has a preference between (i, o) and (i,
o′) prefers the former: optimality under G and under HG are equivalent.

(b) Harmonic grammars as linear input transformations

The motivation for the following definition is given shortly (theorem 7.12).

Definition 7.6. With respect to a linear intra-component input transformation
W: S → S on the vector space S realizing S, the markedness Harmony of a vector
s ∈ S is

HM,W(s) ≡ 1
2s · Ws.

A linear intra-component input transformation WG : S → S realizes a Harmonic
grammar HG iff

∀s ∈ S, HG(s) = HM,WG(s), where s ≡ J(s).

Theorem 7.7. A second-order Harmonic grammar HG can be realized by a linear
input transformation WG.

Because a formal language LG specified by a rewrite-rule grammar G can also be
specified by a corresponding second-order Harmonic grammar HG (theorem 7.2),
we immediately get the following corollary.

Corollary 7.8. Given a rewrite-rule grammar G, there is a linear input
transformation WG that realizes the Harmonic grammar counterpart of G, HG [19,
p. 333].

Moving from rewrite-rule grammars to Optimality-Theoretic grammars
realized in Harmonic grammars requires not only markedness Harmony but also
faithfulness Harmony, introduced next.

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

3564 P. Smolensky

(c) Harmony optimization as neural computation

Given a Harmonic grammar HG realized as a linear intra-component input
transformation WG on S (definition 7.6), and a neural realization of S in a network
N, the elements of WG w.r.t. the neural basis constitute the internal weight matrix
of N. The utility of this is that N can perform Harmony optimization, computing
maximum Harmony representations (theorem 7.12): these should be the optimal
states constituting the language LHG. (In order to achieve this, two obstacles will
need to be overcome.)

Definition 7.9. Given a quasi-linear network N (example 3.2, definition 3.4)
with weight matrix W, external input i and unit activation function f , the
network Harmony HN : I × S → R is the sum of markedness Harmony HM,W
(definition 7.6) and faithfulness Harmony HF:

HN (i, s) = HM,w(s) + HF(i, s); HM,w(s) = 1
2s · Ws, HF(i, s) ≡ s · i + H1(s),

where the unit Harmony H1 is

H1(s) ≡
∑

m

h([s]m), h(a) ≡ −
∫ a

0
f −1 (x) dx .

Example 7.10. Let N be linear (definition 3.5), i.e. have units with activation
function f (z) = z . Then, the unit Harmony is

H1(s) =
∑

m

h([s]m),

where

h(a) ≡ −
∫ a

0
f −1(x) dx = −

∫ a

0
x dx = − 1

2a
2

⇒ H1(s) =
∑

m

[− 1
2([s]m)2] = − 1

2‖s‖2.

What is the relation between the neural-level faithfulness Harmony HF of the
network N and the symbolic-level relational faithfulness HR that evaluates the
dissimilarity of symbol structures (definition 5.4)?

Theorem 7.11. Let JS be a tensor-product realization in a vector space S of a
representational format F satisfying the conditions of theorem 5.7. Suppose given,
for each R ∈ R, a pair of weights (wI

R, wO
R) that define the R-faithfulness Harmony

function HR, and hence the total relational faithfulness HR (definition 5.4). Let
S be realized in a linear network N , and let i ∈ I , s ∈ S; write i ≡ JI (i) ∈ I ,
s ≡ JS (s) ∈ S. Then:

HR(i, s) = HF(i, s) − k′(i),

where
k′(i) ≡

∑

R

wI
RnI

R (nI
R ≡ |R(i)|).

(For a proof, see the electronic supplementary material.) Thus, the relational
Harmony between the symbol structures (i, s) can be computed as the network
faithfulness Harmony between the vectors (i, s) realizing (i, s), up to a constant

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

Review. Computing symbolic functions 3565

depending on i; this constant has no effect on determining the optimal
representation s for a given input i. By theorem 7.7, the well-formedness of a
symbolic state s as assessed by a Harmonic grammar HG, HG(s), can be computed
as the network markedness Harmony. The network Harmony HN combines both
these evaluations. The computational utility of HN derives from theorem 7.12.

Theorem 7.12. Given a network N with quasi-linear dynamics (example 3.2)
and external input i, suppose the weight matrix is symmetric (∀m, n, Wmn = Wnm)
and scaled so that network Harmony HN is bounded above.5 Then, as activation
spreads, the Harmony of the network state s, HN (s), is non-decreasing, and s
converges to a local maximum of HN (a state s such that HN (s) ≥ HN (s + 3), for
all small 3 [35–37]).

We are now close to showing that neural computation can compute the
grammatical expressions of a symbolic rewrite-rule grammar G or an Optimality-
Theoretic grammar G: these expressions are the maxima of a symbolic second-
order Harmonic grammar HG = HG (theorem 7.2) or HG = HG (theorem 7.5), and
HG can be realized in network weights WG as the Harmony HN of a network N
(theorem 7.7), and spreading activation in N can compute the maxima of HN
(theorem 7.12). But two obstacles remain.

The first is that the network computes local Harmony maxima, but the
Harmonic grammar demands global maxima (indeed, the Harmonic grammar
recognizes no such notion as ‘local maximum’). The quasi-linear dynamics drives
the network state constantly uphill in Harmony, so the network ends up at the
peak of whatever Harmony mountain it happens to start on: the peak is higher
than all neighbouring points, but need not be the highest peak of the mountain
range, which is what the Harmonic grammar requires us to find. To compute
the global Harmony maximum, the network needs some probability of moving
downhill, providing a chance to pass through valleys in order to arrive at the
highest mountain. Global optimization requires some randomness in activation
spreading [38–40].

Theorem 7.13. The neural network N T with dynamics DT
opt defined by the

stochastic differential equation6

dsm = (vHN /vsm) dt + (2T)1/2dB, B a Wiener process,

HN : S → R a Harmony function

(or the corresponding stochastic difference equation

Dsm = (vHN /vsm)Dt + (2TDt)1/2B B a random variable with standard

normal distribution N (0, 1))

5In order that HN have a maximum, as s gets large, it is necessary that the H1 term get small
faster than the HM ,W gets large (if it does). For the linear case, of interest here, H1 goes to −∞
quadratically; HM,W might go to +∞ quadratically. But if we scale W appropriately, by multiplying
it by a sufficiently small constant, we can ensure that H1 dominates, so that HN has a maximum.
Rescaling W does not affect the location of the maxima of HM,W. We can ensure that the vectors
realizing all symbol structures have the same length, so adding H1 does not affect the relative
Harmonies of the symbolic states.
6The derivative vHN /vsm is simply [Ws + i − f −1(s)]m which is just [Ws + i − s]m in the linear case.

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

3566 P. Smolensky

converges to the distribution pT (s) ∝ eHN (s)/T [41,42]. Thus, as T → 0, pT (s) → 0
except for globally optimal s.

In N T , the computational temperature T is a function of computational time t:
the initial temperature T (0) is high, and T (t) decreases to 0 during the course of
computation. In principle, if this is carried out sufficiently slowly, the network’s
probability of being in state s at time t will remain approximately proportional
to eH (s)/T (t) [43]; then at time t, the probability of a non-globally optimal state
s′, with Harmony H ′, relative to the probability of the globally optimal state s∗,
with Harmony Hmax, is, as t → ∞ hence T (t) → 0,

pt(s′)/pt(s∗) = eH ′/T (t)/eHmax/T (t) = e−[Hmax−H ′]/T (t) → 0,

because Hmax − H ′ > 0. Thus the probability of any non-globally optimal state s′
goes to zero as t → ∞.

8. Discreteness

The stochastic neural network N T (theorem 7.13) computes, in the limit, a
state s ∈ S with globally maximal Harmony. The Harmonic grammar HG requires
a symbolically interpretable state s with globally maximal Harmony: a state s
realizing a symbol structure s that maximizes HG(s) over the set of all symbol
structures S. Because HM realizes HG (definition 7.6), we know that HM(s) =
HG(s) for every s = J(s) that realizes a symbol structure s ∈ S; these s comprise
a discrete subset S of the continuous vector space S . Our second obstacle is
that the global maximum of HN in S is generally not in S: conflicts between
the constraints encoded in H entail that optima constitute compromises that
interpolate between the alternative discrete states favoured by the conflicting
constraints. Harmony optimization at the neural level does not yield realizations
of symbolic states. To achieve that, in addition to the optimization dynamics
Dopt, another dynamics is required: quantization.

Theorem 8.1. There is a deterministic dynamics Dquant on S, ds/dt = Q(s(t)),
which has an attractor at every vector s ∈ S, i.e. at every vector s = J(s) that
realizes a symbol structure s ∈ S [44, §2.6].

Definition 8.2. Given a Harmony function H , a l-diffusion network N is defined
by the dynamics

Dl(t) ≡ l(t)DT (t)
opt + (1 − l(t))Dquant

i.e. ds = [lVH (s) + (1 − l)Q(s)] dt + l(2T)1/2 dB,

where l and T are functions of computational time t such that l(t) and T (t)
decrease to 0 as t → ∞.

The l-diffusion dynamics Dl (definition 8.2) linearly combines the Harmony-
optimization dynamics DT

opt (theorem 7.13), which ignores discreteness, and
the quantization dynamics Dquant (theorem 8.1), which ignores Harmony [45].
Although formal results have not yet been achieved, in a range of (simple)
applications to modelling human language processing, l-diffusion networks have

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

Review. Computing symbolic functions 3567

proved capable of reliably computing the vectorial realizations of globally optimal
symbolic states, when the speed at which T (t) and l(t) go to zero is sufficiently
slow. When too fast, errors are made; the outputs are symbolic states, but not
necessarily globally optimal ones. In fact, in a number of cases, the probability of
outputting a symbolic state s is approximately proportional to eHN (s)/T (for some
T): the relative Harmonies of error states s govern their relative probabilities. In
these applications, the distribution of errors captures the key properties of human
performance. For example, because faithfulness Harmony formalizes relational
similarity of an error to a correct response (theorem 7.11), the probability of an
error type decreases appropriately as the similarity between the error and the
correct response decreases; and because markedness and faithfulness Harmony
together formalize grammatical knowledge (theorems 7.5 and 7.7), the probability
of ungrammatical errors is appropriately small.

9. Conclusion

A detailed summary was provided in §2b; only a few concluding remarks are
given here.

This work seeks not to go beyond classical computability, but rather to
explore what restrictions may be placed on cognitive functions assuming that
they are computed in accord with a certain conception of neural computation.
In this conception, cognition can be characterized by functions over meaningful
symbols, but not as computation over such symbols. Vector spaces (of neural
network states) are seen to provide a powerful representational medium for the
computation of symbolic cognitive functions, even restricting to linear processing.
In such vector spaces, a cognitively significant class of recursive functions can
be computed in a single massively parallel step. A natural characterization of
the functions computed by certain neural networks is through optimization,
and as a result neural computation has led to powerful insights into one
of the deepest realms of symbolic cognitive science, the theory of universal
grammar. Formal languages can be specified in such neural computational
terms, as well as natural languages; and while effective computability has not
been proved, simulations suggest that these models simultaneously capture
central features of both the idealized computational capacity of human
linguistic competence and the errorful real-time computation of human
linguistic performance.

I warmly thank my collaborators Alan Prince, Géraldine Legendre, Matthew Goldrick, Donald
Mathis, Bruce Tesar, John Hale and Yoshiro Miyata in this work; special thanks to Don and
Matt for comments on an earlier draft of this paper (I am solely responsible for any errors, of
course). For helpful discussion of the work I thank Colin Wilson, James McClelland, Robert Frank,
Robert Cummins and most of all the late David E. Rumelhart. I gratefully acknowledge partial
financial support for this work from the National Science Foundation, Johns Hopkins University,
les Chaires internationales de recherche Blaise Pascal, la Laboratoire de Sciences Cognitives et
Psycholinguistique/CNRS and the Robert J. Glushko and Pamela Samuelson Foundation. Any
opinions, findings and conclusions or recommendations expressed in this material are those of
the author and do not necessarily reflect the views of the National Science Foundation or other
sponsors.

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/

3568 P. Smolensky

References

1 Turing, A. M. 1936 On computable numbers, with an application to the Entscheidungsproblem.
Proc. Lond. Math. Soc. 42, 230–265.

2 Pylyshyn, Z. W. 1984 Computation and cognition: toward a foundation for cognitive science.
Cambridge, MA: MIT Press.

3 Smolensky, P. 1988 On the proper treatment of connectionism. Behav. Brain Sci. 11, 1–74.
(doi:10.1017/S0140525X00052432)

4 Copeland, B. J. & Proudfoot, D. 1996 On Alan Turing’s anticipation of connectionism. Synthese
108, 361–377.

5 Hofstadter, D. R. 1985 Waking up from the Boolean dream, or, subcognition as computation.
In Metamagical themas, pp. 631–665. New York, NY: Basic Books.

6 Cummins, R. & Schwarz, G. 1991 Connectionism, computation, and cognition. In
Connectionism and the philosophy of mind (eds T. E. Horgan & J. Tienson), pp. 60–73.
Dordrecht, The Netherlands: Kluwer.

7 Smolensky, P. 2006 Computational levels and integrated connectionist/symbolic explanation.
In The harmonic mind: from neural computation to optimality-theoretic grammar, vol. 2,
pp. 503–592. Cambridge, MA: MIT Press.

8 McClelland, J. L. 2010 Letting structure emerge: connectionist and dynamical systems
approaches to cognition. Trends Cogn. Sci. 14, 348–356. (doi:10.1016/j.tics.2010.06.002)

9 Smolensky, P. & Legendre, G. 2006 The harmonic mind: from neural computation to
optimality-theoretic grammar, vol. 1: Cognitive architecture, vol. 2: Linguistic and philosophical
implications. Cambridge, MA: MIT Press.

10 Grossberg, S. 1982 Studies of mind and brain: neural principles of learning, perception,
development, cognition, and motor control. Boston, MA: Reidel.

11 Kohonen, T. 1977 Associative memory: a system-theoretical approach. New York, NY: Springer.
12 Smolensky, P. 1986 Neural and conceptual interpretations of parallel distributed processing

models. In Parallel distributed processing: explorations in the microstructure of cognition, vol. 2
(eds J. L. McClelland, D. E. Rumelhart & the PDP Research Group), pp. 390–431. Cambridge,
MA: MIT Press.

13 Smolensky, P. 1996 Dynamical perspectives on neural networks. In Mathematical perspectives
on neural networks (eds P. Smolensky, M. C. Mozer & D. E. Rumelhart), pp. 245–270. Mahwah,
NJ: Erlbaum Associates.

14 Fodor, J. A. 1975 The language of thought. Cambridge, MA: Harvard University Press.
15 Smolensky, P. 1990 Tensor product variable binding and the representation of symbolic

structures in connectionist networks. Artif. Intell. 46, 159–216.
16 Abelson, H., Sussman, G. J. & Sussman, J. 1985 Structure and interpretation of computer

programs. Cambridge, MA: MIT Press.
17 Smolensky, P. 2006 Formalizing the principles I: representation and processing in the

mind/brain. In The harmonic mind: from neural computation to optimality-theoretic grammar,
vol. 1, pp. 147–205. Cambridge, MA: MIT Press.

18 Messiah, A. 1961 Quantum mechanics. Amsterdam, The Netherlands: Elsevier Science.
19 Smolensky, P. 2006 Tensor product representations: formal foundations. In The harmonic mind:

from neural computation to optimality-theoretic grammar, vol. 1, pp. 271–344. Cambridge, MA:
MIT Press.

20 Hinton, G. E., McClelland, J. L. & Rumelhart, D. E. 1986 Distributed representation. In
Parallel distributed processing: explorations in the microstructure of cognition, vol. 1 (eds
D. E. Rumelhart, J. L. McClelland & the PDP Research Group), pp. 77–109. Cambridge,
MA: MIT Press.

21 Churchland, P. S. & Sejnowski, T. J. 1992 The computational brain. Cambridge, MA: MIT
Press.

22 Abbott, L. & Sejnowski, T. J. (eds) 1999 Neural codes and distributed representations.
Cambridge, MA: MIT Press.

23 Fischer-Baum, S. 2010 Position representation: general principles or domain-specificity?
Doctoral dissertation. Johns Hopkins University, Baltimore, MD.

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://dx.doi.org/doi:10.1017/S0140525X00052432
http://dx.doi.org/doi:10.1016/j.tics.2010.06.002
http://rsta.royalsocietypublishing.org/

Review. Computing symbolic functions 3569

24 Legendre, G., Miyata, Y. & Smolensky, P. 1990 Harmonic grammar—a formal multi-level
connectionist theory of linguistic well-formedness: theoretical foundations. In Proc. Cognitive
Science Society, pp. 388–395. Cambridge, MA: Erlbaum.

25 Hale, J. & Smolensky, P. 2006 Harmonic grammars and harmonic parsers for formal languages.
In The harmonic mind: from neural computation to optimality-theoretic grammar, vol. 1,
pp. 393–415. Cambridge, MA: MIT Press.

26 Prince, A. & Smolensky, P. 1993/2004 Optimality theory: constraint interaction in generative
grammar. Technical Report, Rutgers University and University of Colorado at Boulder, 1993.
ROA 537, 2002. Revised version published by Blackwell, 2004.

27 Prince, A. & Smolensky, P. 1997 Optimality: from neural networks to universal grammar.
Science 275, 1604–1610.

28 Grimshaw, J. & Samek-Lodovici, V. 1998 Optimal subjects and subject universals. In Is the
best good enough? Optimality and competition in syntax (eds P. Barbosa, D. Fox, P. Hagstrom,
M. McGinnis & D. Pesetsky), pp. 193–219. Cambridge, MA: MIT Press.

29 Kager, R. 1999 Optimality theory. Cambridge, UK: Cambridge University Press.
30 McCarthy, J. J. (ed.) 2004 Optimality theory in phonology: a reader. Malden, MA: Blackwell.
31 Legendre, G., Grimshaw, J. & Vikner, S. (eds) 2001 Optimality-theoretic syntax. Cambridge,

MA: MIT Press.
32 Blutner, R., De Hoop, H. & Hendriks, P. 2006 Optimal communication. Stanford, CA: CSLI

Publications.
33 Prince, A. 2002 Anything goes. In A new century of phonology and phonological theory (eds T.

Honma, M. Okazaki, T. Tabata & S. Tanaka), pp. 66–90. Tokyo, Japan: Kaitakusha.
34 Soderstrom, M., Mathis, D. W. & Smolensky, P. 2006 Abstract genomic encoding of universal

grammar in optimality theory. In The harmonic mind: from neural computation to optimality-
theoretic grammar, vol. 2, pp. 403–471. Cambridge, MA: MIT Press.

35 Cohen, M. A. & Grossberg, S. 1983 Absolute stability of global pattern formation and parallel
memory storage by competitive neural networks. IEEE Trans. Syst. Man Cybern. 13, 815–825.

36 Hopfield, J. J. 1984 Neurons with graded response have collective computational properties like
those of two-state neurons. Proc. Natl Acad. Sci. USA 81, 3088–3092.

37 Golden, R. M. 1986 The ‘brain-state-in-a-box’ neural model is a gradient descent algorithm.
Math. Psychol. 30–31, 73–80. (doi:10.1016/0022-2496(86)90043-X)

38 Kirkpatrick, S., Gelatt Jr, C. D. & Vecchi, M. P. 1983 Optimization by simulated annealing.
Science 220, 671–680. (doi:10.1126/science.220.4598.671)

39 Ackley, D. H., Hinton, G. E. & Sejnowski, T. J. 1985 A learning algorithm for Boltzmann
machines. Cogn. Sci. 9, 147–169.

40 Smolensky, P. 1986 Information processing in dynamical systems: foundations of harmony
theory. In Parallel distributed processing: explorations in the microstructure of cognition, vol. 1
(eds D. E. Rumelhart, J. L. McClelland & the PDP Research Group), pp. 194–281. Cambridge,
MA: MIT Press.

41 Movellan, J. R. 1998 A learning theorem for networks at detailed stochastic equilibrium. Neural
Comput. 10, 1157–1178.

42 Movellan, J. R. & McClelland, J. L. 1993 Learning continuous probability distributions with
symmetric diffusion networks. Cogn. Sci. 17, 463–496.

43 Geman, S. & Geman, D. 1984 Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721–741.

44 Baird, B. & Eeckman, F. 1993 A normal form projection algorithm for associative memory.
In Associative neural memories (ed. M. H. Hassoun), pp. 135–166. New York, NY: Oxford
University Press.

45 Smolensky, P., Goldrick, M. & Mathis, D. W. In press. Optimization and quantization in
gradient symbol systems: a framework for integrating the continuous and the discrete in
cognition. Cogn. Sci.

Phil. Trans. R. Soc. A (2012)

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://dx.doi.org/doi:10.1016/0022-2496(86)90043-X
http://dx.doi.org/doi:10.1126/science.220.4598.671
http://rsta.royalsocietypublishing.org/

doi: 10.1098/rsta.2011.0334
, 3543-3569370 2012 Phil. Trans. R. Soc. A

Paul Smolensky

Symbolic functions from neural computation

Supplementary data

rsta.2011.0334.DC1.html
http://rsta.royalsocietypublishing.org/content/suppl/2012/06/12/

 "Data Supplement"

References

related-urls
http://rsta.royalsocietypublishing.org/content/370/1971/3543.full.html#

 Article cited in:

l.html#ref-list-1
http://rsta.royalsocietypublishing.org/content/370/1971/3543.ful

 This article cites 15 articles, 4 of which can be accessed free

Subject collections

 (21 articles)theory of computing �
 (65 articles)computer modelling and simulation �

 (5 articles)artificial intelligence �

collections
Articles on similar topics can be found in the following

Email alerting service herein the box at the top right-hand corner of the article or click
Receive free email alerts when new articles cite this article - sign up

 http://rsta.royalsocietypublishing.org/subscriptions
 go to: Phil. Trans. R. Soc. ATo subscribe to

 on July 5, 2012rsta.royalsocietypublishing.orgDownloaded from

http://rsta.royalsocietypublishing.org/content/suppl/2012/06/12/rsta.2011.0334.DC1.html
http://rsta.royalsocietypublishing.org/content/370/1971/3543.full.html#ref-list-1
http://rsta.royalsocietypublishing.org/content/370/1971/3543.full.html#related-urls
http://rsta.royalsocietypublishing.org/cgi/collection/artificial_intelligence
http://rsta.royalsocietypublishing.org/cgi/collection/computer_modelling_and_simulation
http://rsta.royalsocietypublishing.org/cgi/collection/theory_of_computing
http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;370/1971/3543&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/370/1971/3543.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

	Symbolic functions from neural computation
	Introduction
	Overview
	Summary of results
	Synopsis by level

	Cognitive macro-architecture
	Symbolic graph structure
	Vectorial model
	Neural computation: cognitive micro-architecture

	Symbolic functions
	Mental representations as symbol structures
	Symbol structures as vectors
	Symbolic structures as neural activation patterns

	Dissimilarity as representational distance: relational faithfulness
	Representational format as relational faithfulness
	Relational unfaithfulness as vector distance
	Relational faithfulness as network weights

	Recursive functions as linear transformations
	Primitives'-closure functions
	Primitives'-closure functions as linear transformations
	Primitives'-closure functions as neural networks

	Grammar as optimality
	Rewrite-rule and Optimality-Theoretic grammars as Harmonic grammars
	Harmonic grammars as linear input transformations
	Harmony optimization as neural computation

	Discreteness
	Conclusion
	References

