NView: A Visual Framework for Network Tool Integration *

David G. Thaler and Chinya V. Ravishankar
Electrical Engineering and Computer Science Department
The University of Michigan, Ann Arbor, Michigan 48109-2122

thalerd@eecs.umich.edu

Abstract

Monitoring and managing distributed applications and
networks present a number of problems. Tracking down the
source of connection problems over a large area, such as the
Internet, can be time-consuming and confusing, as one must
deal with many small utilities. In this paper, we present
NView, a framework program for intlegrating network tools
into a uniform visual interface with a minimum of effort.
We also discuss an erample implementation which has been
applied to the Inlernet’s Multicast Backbone. This easily cus-
tomized tool allows various “what if” questions to be asked,
and results to be displayed in different ways. NView can be
used both off-line as a design tool, and on-line as a network
monitoring tool.

1 Introduction

While hardware capabilities are improving rapidly in the
computing and networking domains, our abilities to manage
and control large networks are still inadequate. Future net-
works must make efficient use of new technologies such as
multicasting, and support high bandwidth applications such
as voice and video transmission.

Currently, network management is difficult. Many tools
exist, but are typically used in an ad-hoc manner, with little
integration. New tools have been introduced for technolo-
gies such as multicasting. Since new capabilities are added
incrementally, new tools are usually designed by different
people at different times, resulting in a heterogeneous collec-
tion of utilities. The number of utilities needed to effectively
manage the networks of the future will likely continue to
increase. Protocols such as SNMP (Simple Network Man-
agement Protocol)[1, 2, 3], are designed to unify network
management, but total support for SNMP is still far off.

The continued evolution of applications such as Gopher,
the World Wide Web, and the MBone (Internet Multicast
Backbone) have created unanticipated loads which require
special management utilities. While SNMP helps manage
the networks themselves, it requires kernel support and is not
designed to manage distributed applications without kernel
modifications or support from a multiplexing protocol such

*This work was supported in part by National Science Foundation
Grant NCR-9417032.

0-7803-2492-7/95 $4.00 © 1995 IEEE

ravi@eecs.umich.edu

as SMUX[4] or DPI[5], which do not have widespread us-
age. Again, the result is a piecemeal conglomeration of non-
uniform utilities. A uniform interface is desirable to address
the problem of confusion. A software framework, similar to
a workbench or development suite, into which existing tools
may be integrated can provide a simple yet powerful visual
user interface for network debugging and monitoring.

We divide network management into two sub-problems:
managing the topology of the network itself (i.e. the network
layer and below), and managing distributed applications (i.e.
the transport layer and above). The first ensures the exis-
tence of communication links, while the second deals with
the actual use of links. For our purposes, we will refer to
these simply as the “network” layer of connections, and the
“application” layer of connections.

Our goal is to present a framework which helps to solve
both problems with an interactive, on-line tool. Off-line de-
bugging is not sufficient for general problems, since out-of-
date information is often useless. We also want an integrated
visual interface, rather than a simple text dump, to display
current information. The ability to comprehend the status
of the network easily is often a key to effective management.
We also require that response time be fast, that the user be
able to issue commands without waiting for unrelated ac-
tions to complete, and that the system avoid duplicate effort
wherever possible.

If these goals are met, it should be possible to prevent
many serious network failures, such as the one discussed in
section 5.1 causing the entire MBbone to go out of operation
for over 24 hours. It should also be possible to reduce the
amount of time needed to solve problems with existing tools.

The remainder of this paper will be organized as follows.
Section 2 discusses a number of existing tools, section 3 de-
scribes the overall structure of NView, section 4 covers some
features of NView, section 5 then presents an example appli-
cation of NView to the MBone, and section 6 covers conclu-
sions and the future.

2 Existing Tools

There are many existing tools to facilitate different aspects
of network management. Among the relevant ones are Unix
utilities, TCP/IP management protocols such as SNMP, and
other network managers. Such tools are individually useful,
but they must be used in conjunction with each other to

achieve optimum benefit.

Unix utilities such as ping and traceroute[6] are text-
based and deal only with the lower layers of the network.
They are relevant to our first problem of describing the net-
work topology and status. However, they provide no visual
interface, require the user to manually enter commands to
retrieve each piece of information, and allow no easy method
for accumulating data over time or integrating results with
other tools. Therefore, on a large scale, using small tools one
by one is not practical. Other utilities, such as graphed! ex-
ist for generating aesthetically pleasing renditions of graphs,
but are not designed for integration with network tools.

SNMP[1, 2, 3], a network management protocol in the
TCP/IP suite, provides methods for retrieving arbitrary in-
formation from hosts on an IP network. However, many
nodes on the Internet do not respond to SNMP queries, so
that any tool which requires SNMP conformance will be lim-
ited to the subset of the Internet which supports SNMP. This
is currently unacceptable, although it can be very advanta-
geous when nodes do support SNMP.

Lastly, a number of commercial network management
tools exist with which we may draw comparisons. We will
briefly look at two examples. IBM’s AIX NetView/6000[7]
does provide SNMP capability and on-line monitoring with
a visual interface. It employs a two-level structure, where
subtrees of nodes extend from a single, top-level “backbone”
of networks. It also allows custom features and applications
for performance monitoring. However, it requires SNMP ca-
pabilities on all nodes, runs only under AIX, and requires
manual placement of nodes on displays.

IBM’s INTREPID(8] also provides a visual framework,
but is intended for network topology design. It also utilizes a
two-level structure of nodes similar to that of NetView /6000.
INTREPID allows the entire network to be redesigned for
optimal topology and permits manual design modifications.
However, in the Internet, the presence of a single backbone
is not a safe assumption. Finally, INTREPID requires the
user to prepare an input file, and cannot discover initial in-
formation itself.

Table 1 summarizes the features available in other sys-
tems we have discussed and shows how NView compares with
them. These features will be discussed in more detail later.

3 Structure of NView

NView is a framework for combining network tools into
a single uniform interface which may be used for network
monitoring and debugging. Figure 1 shows the architectural
schematic of the framework.

The basic internal structure is that of a bus to facilitate
communication between modules. A driver module acts as
the parser and bus controller, while other modules provide
a display, database, and other commands and utilities. This

lAvailable as ftp://forwiss.uni-passau.de/pub/local /graphed/
graphed-4.0.8-alpha.tar.Z
2mrdebug is a tool specific to the MBone (see section 5.2)

284

NetView INTR-

Feature /6000 EPID mrdebug? NView

Graphical display

Net decomposition
Automatic layouts
Tcl/Tk standard
Design capabilities
Maintains database
On-line updates
Asynchronous traps
Unix commands
Works with SNMP
Works without SNMP
Portable among OS’s
Freely available - -

R
v o<

I
[Ba B4]

L
<

]]

L

Key: Y = Full Support, P = Partial Support, - = No Support

Table 1: Comparison of Features

o 0 700 == B
- o] |
| |
| |
|]
| R A

: | Display [! Database I ! P.“i"“'" I cos : IUnix utilites

| |
o a3

Figure 1: Internal Structure of NView

architecture allows the power and flexibility of interaction
and cooperation between modules.

Internally, NView uses Tcl to implement the core of its
communication between modules. This provides flexibility,
standardization, and the ability to easily communicate with
other Tcl-based utilities. Some commands are interpreted
directly by the driver module. Other commands are passed
to the appropriate module, which is free to issue additional
Tcl commands or C function calls to other modules.

The display module uses Tk to generate an X interface
when the DISPLAY environment variable is set, and Curses to
generate a visually compatible full-screen interface otherwise.

The database module maintains a database of the net-
work topology as currently known, and holds information
on each node such as hostname, IP addresses, current sta-
tus, and SNMP version. Other information on links such
as current status and link type is also maintained. Keeping
such information in the database between runs obviates the
need to repeatedly re-acquire common information such as
hostnames which may be time-consuming.

Tcl provides a language for communication between mod-
ules, but the NView driver extends this capability by adding
the concept of output processors, discussed in more detail in
Section 3.1.2. To this end, the driver maintains an inter-
nal socket regisiry, which maps sockets to output processor
routines. NView will accept input on any registered socket.

The NView driver also contains a mapping between com-
mand names and associated routines, as well as a mapping

between “hot keys” and command macros. This latter facil-
ity is provided by Tk for X windows, but a separate mapping
is required when running in Curses mode. Some examples of
mappings are shown in Figure 2.

Tcl also provides the ability to define variables and ex-
pand them in commands. NView exploits this feature to en-
able the user to quickly access common functions with a sin-
gle keystroke, while having maximum flexibility to also enter
full command strings, or even redefine the hot key bindings.

Curses:
map > nv_rotate 5
map f nv_exec finger @$hostname
map p nv_start ping_hdlr ping -n $ip 64 1

Tk:
bind .c <KeyPress-greater> {nv_rotate 5}
bind .c £ {nv_exec finger Q$hostname}
bind .c p {nv_start ping_hlr ping -n $ip 64 1}

Figure 2: Sample macros

Other built-in commands and external utilities provide
access to common features such as automatic graph layout,
node update, and network decomposition algorithms. These
will be covered in more detail in Section 4.

3.1 Tool Integration

There are three levels at which another tool can be in-
tegrated into NView: as a built-in command, using output
interpretation, and without output interpretation.

3.1.1 Level 1: Integration as a Built-In Command

In the first and strongest level, the utility is compiled di-
rectly into the framework itself, where it becomes a built-in
command. This type of integration works best with algo-
rithms which are used often, such as ping, and those which
manipulate large portions of the network database, such as
graph layout algorithms. An obvious additional requirement
is that the source for the utility be available, though it can
be written in either C or Tcl.

This level requires the most work of the three levels, since
it may require porting the utility for use with NView. How-
ever, once a standard interface is added, one simply adds
the command name and function to execute to the internal
command list in order to complete the integration.

3.1.2 Level 2: Integration Using Output Interpre-
tation

In the second, and medium level of integration, the utility
remains a separate process, so that source code for the utility
is not needed. However, an output processor must be com-
piled into NView, or written in Tcl. An output processor is

285

NView arguments
Tel Driver ﬂg:ﬁy
output
Output
Processor

Figure 3: Interaction With Other Utilities

a procedure which is able to interpret output from the utility
and use it to perform some meaningful function.

When the utility is invoked, the driver creates a new socket
to be used to collect output from the utility, associates the
socket with a specified output processor, and finally forks the
utility as a child. The output from the utility is redirected
to the aforementioned socket and led back to the driver (see
Figure 3). The driver collects output until the utility ter-
minates, at which time the associated socket is closed and
the collected output is passed to the output processor. The
output processor then has complete freedom to access the
display, topology database, and other utilities in order to
process output in a useful manner.

The advantage of this method over an agent acting as an
intermediary between the driver and the utility, is that input
parameters are decoupled from the output format. Using a
single module to provide bi-directional communication would
require a separate agent to deal with each utility and type of
output. On the other hand, an output processor only deals
with output, so general-purpose processors can be written
suitable for use with many different utilities. We will see one
example of this in Section 3.1.3 below.

Conversely, a single utility, such as netstat, may be able
to generate many different output tables. Typically, a sep-
arate output processor would be written to deal with each
type of output. When a new output format is added to the
utility, one need not change any existing output processors,
but may simply create another output processor to deal with
the new type of table.

Since Tcl handles variable expansion in arguments, there
is no need for input translation as long as everything can be
specified on the command line. NView does, however, allow
shell features such as pipes, wildcards, and input redirection.

For example, using this level of integration, one could
call traceroute to quickly generate output showing IP ad-
dresses only, and then fill in the hostnames from the network
database as they are displayed. This way, traceroute need
not spend time looking up hostnames, which can be slow. At
the same time, the output processor for traceroute could
also update the network database with the new information
about physical links.

The integration work required here consists mainly of
writing the output processor to process the output of the
utility. Once this is written, the programmer assigns

the processor a built-in name, and NView is recompiled.
Macros can then be added to start up the processor with
specified commands. For example, if traceroute’s out-
put processor is called “parse_route”, the user may de-
fine a macro to “nv_start parse_route traceroute -n -g
$fromip $toip” to initiate a traceroute to the destination
which crosses the currently selected application-level link and
have the output processed by the parse_route routine.

3.1.3 Level 3: Integration With No Output Inter-
pretation

In the third and loosest level of integration, the function of
the utility may be completely independent of NView. The
output of the utility has no impact on the NView database or
other NView modules. In this case, a default output proces-
sor is used which simply displays the output of the utility in a
separate window. For example, the user may wish to define a
macro to invoke finger to simply list users on the currently
selected host, such as “nv_exec finger @$hostname”.

No changes to NView are needed to integrate a utility at
this level. Integration may be done by defining a macro in
a startup file, or even during run-time, or by executing the
utility as a full command line inside NView.

4 Network Monitoring and Visualization
Features

There are many important considerations in effectively
visualizing and managing networks, including how to break
down the graph into logical sections, how to display informa-
tion, how to cover both applications as well as the underlying
network topology, and how to ensure information is recent.
Each of these will be covered in turn.

4.1 Network Decomposition and Representa-
tion

Various techniques exist for laying out graphs in an under-
standable manner, such as the Spring Embedder algorithm
described by Fruchterman and Reingold[9]. Typical goals
are to distribute vertices evenly around the graph, minimize
edge crossings, and make edge lengths uniform. In achieving
these goals, there is an obvious trade-off between aesthetics
and speed.

When the number of nodes in the graph becomes large, it
becomes computationally intractable to achieve an attractive
graph in an interactive application. Indeed, it may even be
impossible to draw every node in any sort of understandable
fashion. Also, by the time we could collect the necessary
information to cover all the nodes, the information obtained
may be far out of date.

Thus, it becomes necessary to reduce the number of nodes
to be displayed at a time. NView allows the user to select
from several methods of decomposing the network into a col-
lection of components. Other methods can be easily added as

286

the need arises. For instance, NView allows the user to logi-
cally partition the network for display based on the network’s
topology. We define a component to be a set of strongly con-
nected nodes with no cut edges. A cut edge is any edge which,
if removed, partitions the graph. We define a subtree to be
a set of connected nodes with no cycles. Typically, networks
are composed of both components and subtrees.

The sets of edges in components and subtrees are then
always disjoint, but a node may be part of both a component
as well as a subtree. Given a network with E edges, we
can easily break down the network into its components and
subtrees® in O(E) time. This is done by using a backtracking
algorithm to mark edges which are found to be part of cycles.
This decomposition makes the topology of the graph more
explicit.

Another method for logically breaking down a network
into understandable components is division by domain. For
instance, administrators over a network could display and
monitor all the nodes on their particular network. However,
this approach is not sufficient for monitoring applications
which span multiple domains. One could limit administra-
tive scope to a set of specific subnets or even selected coun-
tries, in some cases. In the general case, however, one may
have a set of distributed applications, such as the World
Wide Web, which spans many administrative boundaries.
Therefore, it is desirable to allow the user to choose the most
appropriate method of decomposing a complicated graph.

4.2 Logical Overlays

It is important in managing distributed applications to
understand the precise topology of application-layer connec-
tions and their relationships with the underlying physical
links. Too many high bandwidth streams across a single
physical link can cause a bottleneck. It is thus important to
be able to visualize the relationship between the two layers
of connections.

NView addresses this problem by providing the ability to
overlay a map of application-layer nodes and links over a map
of physical links and intermediate nodes which make up the
physical layer. In this manner, both bottlenecks as well as
unused links become visible. Since NView provides facilities
for displaying the topological effects of adding, deleting, or
modifying the characteristics of individual nodes and links,
the administrator can design a better topology before making
any actual changes to reconfigure networks.

Another benefit of logical overlays is the ability to see the
effects of physical-layer problems on the application-layer.
This makes it easy to identify critical points of failure, as
well as track down the cause of problems when traffic between
application processes is disrupted.

3For example, see figures 4 and 5, which will be discussed later in
section 5.3.

4.3 Display Criteria

Once we have determined the extent of the network to
display, we need to turn to the question of how best to dis-
play it. The particular information in which the user is in-
terested may have to be obtained via SNMP or some other
application-specific protocol. In a general tool, the user must
be able to request arbitrary information.

Administrators often want answers to a variety of ques-
tions. For example, one may wish to identify nodes which
support SNMP and have no hostname registered with DNS.
NView displays the graph in such a way that the answers
become obvious from looking at the display, and the rela-
tionships between the nodes or edges are readily apparent.

Once the information is obtained, the nodes and edges are
made to represent the information by symbol, size, or color.
Using multiple features, nodes and edges can visually reflect
multiple pieces of information at a time.

4.4 Timeliness

An important factor in the success of a monitoring and
debugging tool is the timeliness of information. Optimizing
for speed is thus important. For example, updates should be
asynchronous, so that processing can continue in the back-
ground. For effective network management, it is also useful
to allow events to set off alarms or trigger actions such as
alerting an operator, or taking corrective measures where
possible.

NView allows commands to be set to be executed period-
ically. An example is to update all nodes in the currently
displayed component at regular intervals. An event list is
kept containing the command to execute, period interval,
and next time of execution. As each event’s time arrives, the
command is executed and then rescheduled to occur after
the specified interval.

Alarms can be linked to specific pieces of information
about a node or link. An alarm consists of a trigger con-
dition, rearm condition, initial status, and a Tcl command.
An alarm’s status can either be active or inactive. When
active, the command will be executed whenever the trigger
condition becomes true, and the status will change to inac-
tive. The status will remain inactive until the rearm condi-
tion becomes true, whereupon the alarm will become active
again and ready to be triggered.

5 Case Study: The MBone

The MBone (Multicast Backbone)[10, 11] is a virtual net-
work running over the Internet, and is used to broadcast
multimedia traffic across the world. MBone nodes currently
use IP tunnels to relay information to sites, which then use
multicasting to deliver packets to users.

Since March 1992, the MBone has grown from an initial
40 subnets to approximately 1000 subnets. Given the current
explosion of MBone use and the need for management tools,

287

the MBone provides an ideal example of an application layer
to which NView can be put to immediate use.

In the MBone, a multicast routing daemon (mrouted) runs
on each host which is considered to be part of the MBone
itself. Each mrouted communicates with other mrouted’s
using stream connections, resulting in an application-layer
of connections sitting on top of a physical topology. Other
hosts can communicate over the MBone by communicating
via multicast with an mrouted on the same subnet. However,
these hosts can be thought of as clients, and will not be
considered part of the management model for purposes of
this discussion.

Monitoring and managing the MBone presents a number
of problems. The vast majority of nodes do not recognize
SNMP so a series of piecemeal utilities have sprung up to
deal with different problems. No automated scheme is avail-
able for finding the best topological change to accommodate
new nodes. Until now, this task was done manually by ad-
ministrators looking at hand-drawn network maps. It is also
difficult to track down the source of serious problems, such
as when half the network suddenly loses a signal.

5.1 Example Scenario: PIM routers

In late March 1994, it was discovered that the routing ta-
bles in the mrouted’s on the MBone were overflowing. While
only about 1000 subnets were actually on the MBone, the
mrouted’s were found to be holding up to 8000 subnets.

Soon, the problem was traced to Cisco’s beta-test PIM
(Protocol Independent Multicast) routers, a new product
combining unicast and multicast routers. These PIM routers
were mistakenly reporting all subnets as supporting multi-
cast, rather than only those on the MBone.

On April 7, Dino Farinacci at Cisco requested that all
beta-test sites temporarily disconnect from the MBone until
the problem was fixed. When this was done, it was found
that the problems continued. Apparently, there was at least
one more PIM router unaccounted for, and it became critical
to track it down.

At the time, the solution administrators chose was to shut
down the MBone for a day and partition it to see which areas
became stable and which continued to suffer problems. For
approximately the next 24 hours, this search continued and
the problem was narrowed down to somewhere in Europe.

To complete the description of how this problem was ulti-
mately solved, we will first need to review the MBone man-
agement tools that were in existence. We will resume this
account in Section 5.4.

5.2 MBone Tools

A number of relevant tools exist for the MBone in partic-
ular. Van Jacobson’s mrinfo can retrieve information such
as link types, distance metrics, TTL thresholds, and current
status from a specific mrouted node. However, the utility is
slow since it must look up the host name for each multicast
router mentioned.

Somewhat more efficient is map-mbone, Van Jacobson’s
improvement of Pavel Curtis’ original mapping program,
which generates a file describing nodes and links in the
MBone.

Atanu Ghosh’s mwatch tools maintain a centralized server
containing the current topology, which is updated about ev-
ery two minutes. The client program which queries the server
is a text-only utility, and is useful for keeping network traffic
down. Unfortunately, the times when the server is likely to
be most useful are when the network is partitioned. At such
times, the server may be unreachable or have incomplete in-
formation. A centralized server model is clearly inadequate.

An off-line debugging tool, mrdebug[12], by Deborah
Agarwal, uses an map-mbone-style file to allow the user to
model the effects of proposed topological changes on source
broadcast trees and source-to-destination paths. It has
proven useful in solving many MBone problems, but has the
limitations of being neither visual nor on-line.

5.3 MView: An Instantiation of NView

MView is an instantiation of NView for the MBone. It
automatically discovers all topology information without re-
lying on setup files or manual user configuration and saves in-
formation between sessions. It is completely autonomous and
can be run from anywhere on the Internet, even from hosts
not on the MBone. However, since MView uses map-mbone
to get information on a node, the kernel must support multi-
cast packets in order to use MView as an on-line monitoring
tool.

MView can break down the graph into components and
subtrees and identify the largest component as the default
backbone from which other subtrees and components extend.
The user may temporarily change link statistics and add new
nodes and links in order to see the effects on the topology of
the MBone and the paths which traffic will take.

Figure 4 shows an example of MView at startup time. The
main window displays the current component, while the win-
dow on the right displays information specific to the high-
lighted node, including distance from a specific source (if
any), mrouted version number, SNMP version number, sta-
tus, hostname, IP address, and the statistics and status of
all links defined. In this figure, nodes are being shown by
domain.

In the node window on the right, we see information
about the current status of the display and the node
mbone.merit.edu. In particular, we see that its current dis-
play coordinates are (186,293), its node number is 1, the
distance from the specified source is 32 (no source was spec-
ified), the current component number is 1, and there are 32
nodes displayed. The next line gives us the current node,
component, and subtree numbers for the selected node, the
mrouted version number (2.2 for mbone.merit.edu), and var-
lous status information. The current node is responding to
pings, has multicast ability, is running an mrouted, and does
not recognize SNMP.

Link statistics include metric, threshold, status and the

288

hostname of the other end. The user can display either in-
coming links or outgoing links. Other nodes can be displayed
by clicking on the node in the main window, or by clicking
on a link to follow in the window on the right. Various other
mechanisms exist to locate a specific node according to some
criteria.

For an example of link information, refer to the line en-
try for taipei.eecs.umich.edu in the figure. Here we see that
this link has metric 1, threshhold 1, is an IP tunnel, is cur-
rently down, and the link is contained in subtree 2 so is not
currently on the display, which is showing component 1.

Figure 4: Sample Component

Figure 5 shows a sample subtree. Connecting links are
being displayed whenever the link between two nodes is op-
erational. “Floating” nodes are those which have links to
the rest of the MBone configured, but whose tunnels are all
currently down. In this figure, nodes are being displayed by
mrouted major version number. Note that PIM routers will
have no mrouted version number.

Figure 5: Sample Subtree

MView allows displayed nodes to be decorated with at-
tributes such as version, SNMP version, name, or domain.
All links can be displayed, or one may view packet distribu-
tion by limiting the displayed links to those in a source tree,
or those along a source-destination path. Displayed links can
also be limited to those below a specified TTL threshold.

Nodes may be highlighted by such criteria as SNMP avail-

ability, whether mrouted’s are responding, age, whether they
are receiving, and the existence of links to another compo-
nent. Links can be highlighted according to various criteria,
including whether they connect to an unresponsive node,
and whether they are in a selected source tree or source-
destination path. For convenience, all temporary changes
made as part of “what if” experiments can also be high-
lighted.

The functionality of a number of utilities are already incor-
porated into MView, including ping, traceroute, snmpget,
nslookup, mrinfo, and mrdebug. Other cabilities are rela-
tively easy to add.

5.4 PIM Scenario Solutions

We now continue with the MBone catastrophe begun in
section 5.1 above. The MBone had been non-operational for
almost a day and work was progressing slowly at first. Fi-
nally, Van Jacobson pointed out that PIM routers would not
respond to mrinfo probes (since they do not run mrouted),
but would be reported as up by their neighbors.

Atanu Ghosh and Piete Brooks then used the mwatch
server in the U.K. to help identify a renegade PIM router
in Sweden. Administrators there were then contacted and
the router was disabled. The problems then resolved, the
“all clear” was given and the MBone resumed operation as
the various pieces were manually reconnected.

Were this same situation to occur again today, we expect
that any administrator could use MView to identify the prob-
lem in minutes, if not seconds. For instance, MView allows
the user to locate and highlight nodes which are reported
by neighbors to be up, but which do not respond to queries.
This would help identify PIM routers.

Similarly, arbitrary SNMP queries can be done to retrieve
information from nodes which recognize SNMP. Other types
of queries can easily be added as needs arise.

6 Conclusions

We have described NView, a visual framework for network
tool integration. We have also implemented MView, a pro-
totype of NView for use with the MBone. MView provides a
visual framework for managing and monitoring the MBone
and incorporates the functionality of many other useful tools.
It addresses both the problem of managing the connections
of the “application” layer, as well as displaying the links of
the “network” layer. Together, this provides a convenient
tool for both network debugging and design.

As SNMP becomes more prevalent, the importance of
SNMP compatibility will increase. A proposal is now un-
derway to support multicast information in SNMP for phys-
ical routers that can do multicasting][13], such as the PIM
routers. It is expected that our tool will become even more
powerful when that happens.

NView is also useful in a far broader context than our
example, the MBone. This power derives from the framework

289

it provides for incorporating new partitioning algorithms, its
methods for acquiring information, and the convenience of
invoking its commands.

References

(1] William Stallings. SNMP, SNMPv2, and CMIP: The
Practical Guide to Network-Management Standards.
Addison Wesley, 1993.

[2] Marshall T. Rose and K. McCloghrie. Concise MIB def-
initions, March 1991. RFC 1212.

[3] Keith McCloghrie and M. Rose. Management informa-
tion base for network management of TCP /IP-based In-
ternets: MIB-II, March 1991. RFC 1213.

Marshall T. Rose. SNMP MUX protocol and MIB, May
1991. RFC 1227.

B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, and
G. Waters. Simple network management protocol dis-
tributed protocol interface version 2.0, March 1994.
RFC 1592.

Douglas E. Comer. Internetworking With TCP/IP Vol-
ume I: Principles, Protocols, and Architecture. Prentice
Hall, 2nd edition, 1991.

J. H. Chou, C. R. Buckman, T. Hemp, A. Himwich, and
F. Niemi. AIX NetView/6000. IBM Systems Journal,
31(2):270-285, 1992.

[4]

[5]

(6]

[7]

[8] Robert S. Cahn, Pao-Chi Chang, Parviz Kermani, and
Aaron Kershenbaum. INTREPID: An integrated net-
work tool for routing, evaluation of performance, and

interactive design. IEEE Commaunications, July 1991.

Thomas M. J. Fruchterman and Edward M. Reingold.
Graph drawing by force-directed placement. Software:
Practice & Ezperience, 21:1129-1164, Nov 1991.

[10] Steve Casner. Frequently asked questions (FAQ) on the
multicast backbone (MBONE), May 1993. Available as

ftp://venera.isi.edu/mbone/faq.txt.

Michael R. Macedonia and Donald P. Brutzman.
Mbone provides audio and video across the Inter-
net. IEEE Computer, April 1994. Available as
ftp://taurus.cs.nps.navy.mil/pub/mbmg/mbone.ps.

D. A. Agarwal and Sally Floyd. A tool for debug-
ging Internet multicast routing. In Proceedings of the
22nd ACM Computer Science Conference, pages 22-29,
Phoenix, AZ, March 1994.

T. Pusateri. Managed objects for the IP multi-
cast forwarding table. Internet draft, March 1994.
Available as ftp://venera.isi.edu/internet-drafts/draft-
pusateri-ipmulti-mib-00.txt.

[11]

[12]

[13]

