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Abstract. For most high level languages, two procedures are equivalent
if they transform a pair of isomorphic stores to isomorphic stores. How-
ever, tools for modular checking of such equivalence impose a stronger
check where isomorphism is strengthened to equality of stores. This re-
sults in the inability to prove many interesting program pairs with re-
cursion and dynamic memory allocation.

In this work, we present RIE, a methodology to modularly establish
equivalence of procedures in the presence of memory allocation, cyclic
data structures and recursion. Our technique addresses the need for find-
ing witnesses to isomorphism with angelic allocation, supports reasoning
about equivalent procedures calls when the stores are only locally iso-
morphic, and reasoning about changes in the order of procedure calls.
We have implemented RIE by encoding it in the Boogie program verifier.
We describe the encoding and prove its soundness.

Keywords: Program Equivalence, Program Verification, Version-aware
Verification

1 Introduction

Program maintenance dominates the program lifecycle. A study of application
bugs that took more than one attempt to fix [35] found that 22%-33% of fixes
required a supplementary fix, and found a diverse range of errors including in-
complete refactorings. A study of refactorings [8] found that across 12,922 refac-
torings from three software projects, 15% of refactorings induced a bug. Au-
tomatic program equivalence verification [21, 29, 36, 19] offers the potential to
reduce problems by allowing a programmer to automatically (without program-
mer annotations) verify that the new version is behaviourally equivalent to the
old.

The goal of these verification tools is to make the benefits of program equiva-
lence verification available to programmers who are not verification experts. An
automatic equivalence verification tool takes a pair of programs as input and then
outputs whether the programs are equivalent or not (or perhaps times-out). Pro-
gram equivalence is undecidable in the general case, however, some success has
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been achieved on programs with substantially similar structure. Since software is
frequently modified in small incremental steps, versions tend to be structurally
similar.

We know of two tools designed for fully-automatic program equivalence veri-
fication of programs with heaps: Symdiff [29] and RVT [21]. Symdiff [26, 29, 30,
22] is built on top of the Boogie [3] intermediate verification language which, in
turn, uses the Z3 [16] satisfiability modulo theories (SMT) solver to discharge
proof obligations. RVT uses a designed-for-purpose verification algorithm, which
passes program fragments to the CMBC [14] bounded model checker.

Symdiff relates heaps using equality (of arrays modelling the heaps), which we
will call e-equivalence, so programs that differ in the order or amount of dynamic
memory allocation or garbage cannot be verified as equivalent by Symdiff. RVT
does support differences in allocation, but assumes that all heap data structures
are tree-like.?

E-equivalence is too restrictive for programmers, who expect to be able to re-
place one procedure with another if the two have identical observable behaviour.
A more intuitive notion of procedure equivalence for programs with dynamic
memory allocation can be constructed using isomorphism between memory lo-
cations. Definitions of program equivalence based on a notion of isomorphism
have been used in several formal systems [11, 37]. Our definition of equivalence
is:

Two procedures are equivalent, if they terminate for the same set of
initial stores, and if both procedures run to completion from isomorphic
initial stores, they result in isomorphic final stores.

Our definition of equivalence matches intuition: it allows for differences in the
order or amount of memory allocation and garbage and is not restricted to tree-
like structures. Achieving automatic and modular verification presents several
challenges:

Challenge 1 What kind of input do we need to give to an SMT solver so that it
can even do the verification? We need to establish an isomorphism between
unbounded heaps of arbitrary shape, which is computationally infeasible in
general. Furthermore, a direct axiomatisation of isomorphism involves exis-
tentially quantifying the mapping between memory locations that charac-
terises the isomorphism. SMT based verification systems are not very good
at producing witnesses to such existentials and so a direct axiomatisation of
isomorphism is ineffective.

Sometimes calls to equivalent procedures occur from stores that are not fully
isomorphic, rather the stores are isomorphic in the footprint of the called pro-
cedures. This leads to the next two challenges:

Challenge 2 How can our tool determine when stores correspond in the foot-
print of a called procedure?

3 For details, see Definition 2 (and the paragraph following) on page 5 of the 2009
paper by Godlin and Strichman [21].
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Challenge 3 What should we do about equivalent calls from non-isomorphic
stores since they do not necessarily result in isomorphic stores?

Challenge 4 How do we decide which calls are equivalent when there may be
many possible candidates? Equivalent calls may occur in different orders
in each procedure, and moreover the procedure calls which correspond may
differ from execution to execution depending on the initial state (i.e. program
inputs).

1.1 Example

Consider the pair of equivalent procedures in Fig. 1 that differ in the order of
memory allocation.

1 lcopy(t,r) modifies {r} { 14 rcopy(t,r) modifies {r} {
2 if (t #null A r#null) { 15 if (t #null A r#null) {
3 rl := new; 16 rl := new;
A rr := new; 17 rr := new;
n := new; 18
6 19 __rcopy(t.r, rr);
7 lcopy(t.1l, rl); _ _ _ __ :;_.aﬂ;i’,:, rcopy(t.1l, rl);
8 lcopy(t.r, rr); - -~ 21
) 22 n = new;
10 n.l :=rl.v; 23 n.l:=rl.v;
11 n.r :=rr.v; 24 n.r :=rr.v;
12 r.v :=n; 25 r.v :=nmn;
13 >} 26 } }

Fig. 1. Both procedures copy a binary tree.

Both procedures are intended to copy the passed structure t. The procedures are
equivalent on any input, whether the input is tree shaped or not. Our method-
ology RIE (Replace Isomorphism with Equality) and tool APE (Automatic
Program Equivalence tool) can verify that. The procedures differ in two ways:
Firstly, the allocation of the copied node has been moved from before the recur-
sive calls on line 5 to after the recursive calls on line 22. Secondly, the order of
the recursive calls on lines 7 and 8 has been reversed on lines 19 and 20. The
procedures are written in a simple language we call £, formalised in Section 3.
The procedures are equivalent. An intuition as to why is: when t or r are
null both procedures leave the heap unchanged. Otherwise, both procedures
recursively copy all the nodes to the left, and all the nodes to the right, and
return a newly allocated root node via the parameter r. The only pre-existing
object modified by the procedures is the one pointed to by r. It is possible that
r aliases a node reachable from t, but even so only the v field of r is written
to, and only after the nodes have been copied. The objects allocated to rl and
rr do not alias anything, so the recursive calls cannot modify the tree, and
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hence swapping the order of the recursive calls does not affect the result. The
postcondition modifies {r} asserts that no existing object, other than r, is
modified. For this example, our tool APE requires this framing assertion. Our
approach can take advantage of any contracts that are available.

The procedures are not e-equivalent (so would fail to match in Symdiff)
when the stores are related with equality. With non-deterministic allocation a
procedure is not even equivalent to itself! It is straightforward to resolve with a
deterministic allocator, e.g. one that starts at 0 and allocates the next address.
Under this deterministic approach [29] a procedure is e-equivalent with itself,
but lcopy and rcopy are still not e-equivalent as the allocations on Line 5 and
Line 22 are allocated different addresses.

The example illustrates the challenges in the following ways. Challenge 1:
equivalence requires that the final stores are isomorphic, but the recursive calls
are unbounded so a tool has to check isomorphism of a graph of arbitrary shape
and unbounded size. Challenge 2: the stores are not equivalent prior to the
recursive calls. For instance, in 1copy three allocations (Lines 3 to 5) have oc-
curred before the recursive calls, but in rcopy only two allocations have occurred
(Lines 16 and 17). Challenge 3: the stores after the related calls on Line 7 and
Line 20 are not generally isomorphic, since the store after Line 20 contains the
effects of two recursive calls but the store after Line 7 contains the effect of only
one recursive call. Challenge 4: we do not know in advance which recursive call
in 1copy (Lines 7 and 8) corresponds to which recursive call in rcopy (Lines 19
and 20).

1.2 Contributions

We propose a sound methodology, RIE, for establishing isomorphic procedure
equivalence which is effective in an SMT solver. RIE enables our tool APE
to tackle challenge 1 by automatically establishing isomorphism using under-
approximation and heap equality! RIE works by proving equivalence under the
angelic allocation assumption; the memory locations are, as far as possible, as-
sumed to be allocated in such a way as to make isomorphic heaps also equal.

We describe a simple language £ for which isomorphism implies equivalence
of observable behaviours, and give a formal definition of what it means for £ to
be closed under isomorphism.

RIE also simplifies challenges two, three and four. RIE allows us to use equal-
ity in place of isomorphism, so challenge 2 is addressed by extending the notion
of heap equality to support partial heap equality, which we then apply to an over-
approximation of the footprint of the procedures. Furthermore RIE rescues us
from the need to produce a witness (from challenge 1) to the correspondence
between procedure behaviour, instead we address challenge 3 by equating the
write effects of equivalent procedures (soundly ignoring unobservable behavioural
differences). We combine our technique with mutual summaries to address chal-
lenge 4.

In Section 2 we describe how RIE can be implemented to verify program
equivalence. In Section 3 we formalise equivalence and isomorphism and outline



Verification of Equivalence with Memory Allocation 5

RIE’s soundness proof. In Section 4 we discuss the effectiveness and limitations
of RIE. Finally in Section 5 we discuss some related work and conclude.

2 Encoding in a Verifier

Our tool APE takes as input an L program and produces as output ‘success’,
‘failure’, or times out. It does this by translating the input program into Boogie
code, which is fed into the Z3 SMT solver. The source code is available at https:
//github.com/lexicalscope/ape.

In this section we illustrate RIE by showing how APE encodes the example
from Section 1.1 and how that encoding helps overcome the challenges detailed in
the introduction. In particular, we show how verification under the assumption
of “angelic allocation” proceeds. Previous work typically takes the approach of
abstracting or overapproximating programs with dynamic allocation [41, 27, 11,
44], storeless semantics [13] go as far as abstracting away the observable store
entirely. We make the surprising observation that under-approximating memory
allocation is also a useful approach, and our formal system proves it sound. RIE
establishes procedure equivalence by checking equivalence for only one pair of
execution traces for each initial store. Specifically:

All pairs of executions from isomorphic initial stores result in isomorphic
final stores if at least one pair of executions from each initial store results
in equal final stores.

In particular, it is not necessary to consider all pairs of isomorphic initial stores.
We prove this in Section 3.

RIE combines our ideas about establishing isomorphism using SMT technol-
ogy with the prior work on product programs and mutual summaries to produce
an automatic program equivalence tool that can verify our example. Standard
single program verification tools can be applied to the problem of procedure
equivalence using product programs [7, 42, 21, 29, 5], which encode the bodies of
a pair of procedures into a single procedure such that verifying a safety property
of the product procedure is equivalent to verifying a relational property of the
procedure pair [5]. Furthermore, a technique called mutual summaries [22] can
be applied to induce an SMT solver to search for interesting relations between
procedure calls.

2.1 Angelic Allocation

APE checks equivalence for one pair of executions for each initial store. It does
so by searching amongst the possible pairs of executions for a pair that result in
equal stores (modulo garbage). Of interest, then, are pairs of executions where
particular allocation sites (new) in each procedure are allocated the same ad-
dresses. In Fig. 1 there are three allocation sites in each procedure. This gives
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procedure lcopy_rcopy (..., h:Heap, t,r:Ref) {

// make twelve copies of the initial heap, h

h_a0,h_al,h_b0O,h_bl,h_cO,h_cl1,h_dO0O,h_dl,h_eO,h_el,h_fO,h_£f1
:=h,h,h,h,h,h,h,h,h,h,h,h;

// inline each procedure once with variables renamed with the given suffiz
inline lcopy with variable suffix _a0 and heap h_a0

inline rcopy with variable suffix _al and heap h_al

assume rl_a0 =rl_al Arr_a0 =rr_al An_a0=n_al;

// and again for correspondence b

inline lcopy with var suffix _bO and heap h_bO
inline rcopy with var suffix _bl and heap h_bil
assume rl_bO0 =rl_bl Arr_b0O=n_blAn_b0=rr_bl;

// and so on for c,d,e,f

assert equal#heaps(...,h_a0O,h_al)
V equal#heaps(...,h_bO,h_bl)
V ... /*x and so on for c,d,e,f */ }

Fig. 2. A product procedure encoding of equivalence verification under angelic memory
allocation for procedures lcopy and rcopy.

six possible correspondences between allocation sites (the variables on the left
of the equality are from lcopy, and the variables on the right are from rcopy):

a) rl=rl,rr=rr,n=n b) rl=rl,rr=nn=rr
¢) rl=rr,rr=rl,n=n d) rl=rr,rr=nn=rl
e) rl=nrr=rl,n=rr f) rl=nrr=rryn=rl

We do not know in advance which correspondence will be useful for verifica-
tion. In our example, it happens that correspondence (a) is the useful one. Pairs
of (terminating) executions from the same initial store that have allocations in
this correspondence will result in equal final stores. Hence, no direct checks for
isomorphism are required. We will detail how procedure calls are handled shortly.

We induce the solver to search for the useful correspondence by constructing
a pair of executions for each correspondence and using a disjunction to assert
that at least one of them results in equivalent final stores. The Boogie-like pseudo
code in Fig. 2 shows how APE encodes 1copy and rcopy into a single (Symdiff-
style) product procedure. The inline commands (e.g. line 33) are not actual
Boogie syntax but should be taken to mean that the statements from the body
of the relevant procedure are copied into the product procedure at that point.
When the procedures are inlined, they are rewritten to work on their own private
copy of the heap with fresh variable names. After each inlined pair a different

4 Tt is interesting to note that in this example the variable names suggest which corre-
spondence is important, perhaps indicating that there may be useful heuristics that
could improve performance — such as trying correspondence (a) first.
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function $Heap#ReachableEqual($h_1, $h_2:Heap, $roots:Roots) : bool {
$Heap#ReachableEqual > ($h_1, $h_2, $roots) A
$Heap#ReachableEqual > ($h_2, $h_1, $roots) 1}

function $Heap#ReachableEqual’>($h_1, $h_2:Heap, $roots:Roots) : bool {
(V$a:Ref :: {...} (V<alpha> $f:Field alpha ::
$Reachable ($h_1, $roots, $a)=—$Read($h_1, $a, $f) =3Read($h_2, $a, $£)))}

function $Reachable($h:Heap, $roots:Roots, $a:Ref) : bool {
(d$r:Ref :: {...} $Root($roots, $r) A $Reach($h, $r, $a)) }

Fig. 3. Extensional equality of the reachable heap region. Written in Boogie.

correspondence between allocation sites is assumed (lines 35 and 40). Finally a
disjunction is asserted to challenge the verifier to prove that the final heaps are
equal for at least one of the inlined pairs (line 44).

Thus, RIE allows us to establish isomorphism using only heap equality!

2.2 Heap Equality

Here we described how APE establishes heap equality, and discuss why our ap-
proach is powerful. Tools can relate programs in an intensional or extensional
way [10]. Intensionally equal heaps are defined in the same way, whereas ex-
tensionally equal heaps have the same observable properties. For example, the
heaps® hy = ho[(5,£) — 7][(5,g) — 8] and hy = ho[(5,g) — 8][(5,£) — 7] are not
intensionally equal, but they are extensionally equal. Extensional relationships
provide a powerful means to reason about reordering of store updates.

APE uses the extensional axiomatisation of heap equality shown in Fig. 3.
The axiomatisation allows procedures to create different garbage by only requir-
ing equality of the reachable heap. The parameter $roots is a set of references,
and it overapproximates the references that are on the stack. The predicate
$Reachable is an axiomatisation of heap reachability (something is unreachable
when in a disjoint part of the heap) and is discussed in Section 4.3.

We define equality between heaps using a pair of implications that say that if
an object is reachable in either heap, its fields must be equal in both heaps. An
alternative, and perhaps more obvious, definition would be that the reachable
sets are equal, and that each object in the reachable set has equal fields in both
the heaps. The definitions are equivalent — since heaps that are equal in their
reachable parts have the same reachability relation. On several examples the
solver was unable to prove that the reachable sets are equal, but it is able to
prove our definition.

% ho[(5,£) = 7] is the heap made by copying ho and setting field £ of object 5 to 7.
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2.3 Procedure Call

Challenges two, three and four in the introduction relate to the need to reason
modularly about the behaviour of nested procedure calls, such as the recursive
calls in the example Fig. 1. In this section we describe how our encoding in Fig. 4
leverages RIE to address these challenges.

function $abs_lcopy($strat:int, $h_pre:Heap, t:Ref,r:Ref, $h_post:Heap):bool;
function $abs_rcopy($strat:int, $h_pre:Heap, t:Ref,r:Ref, $h_post:Heap):bool;

procedure lcopy($strat:int, $h_pre:Heap, t:Ref,r:Ref) returns ($h_post:Heap)
free ensures $abs_lcopy($strat, $h_pre, t, r, $h_post);

free ensures (V<alpha> $a:Ref,$f:Field alpha ::
$a # $Null A $Allocated ($h_pre,$a) A $Read ($h_pre,$a,$f) !=$Read ($h_post , $a, $f)
—>$ReachableFromParams ($h_pre, t, r, $a));
procedure rcopy($strat:int, $h_pre:Heap, t:Ref,r:Ref) returns ($h_post:Heap)
free ensures $abs_rcopy($strat, $h_pre, t, r, $h_post);

free ensures (V<alpha> $a:Ref,$f:Field alpha ::
$a # $Null A $Allocated ($h_pre,$a) A $Read ($h_pre,$a,$f) !=$Read ($h_post,$a, $f)
—> $ReachableFromParams ($h_pre, t, r, $a));

axiom (V$strat:int,$h_pre_O,$h_post_O0,$h_pre_1,$h_post_1:Heap,
t_0,r_0,t_1,r_1:Ref
{$abs_lcopy($strat,$h_pre_0, t_0, r_0, $h_post_0),
$abs_rcopy($strat ,$h_pre_1, t_1, r_1, $h_post_1)}
$abs_lcopy ($strat,$h_pre_0, t_O, 0, $h_post_0) A
$abs_rcopy ($strat ,$h_pre_1, t_1, 1, $h_post_1)
A $Heap#EqualFromParams ($h_pre_0, t_0, r_0, $h_pre_1, t_1, r_1)
—>$SameDiff ($h_pre_0, $h_post_0, $h_pre_1, $h_post_1));
function $SameDiff ($h_pre_0, $h_post_0, $h_pre_1, $h_post_1:Heap) : bool {
(V<alpha> $a:Ref ,$f:Field alpha
($Read ($h_pre_O0, $a, $f) # $Read($h_post_0, $a, $f)
—>$Read ($h_post_0, $a, $f)==$Read($h_post_1, $a, $f)) A
($Read ($h_pre_1, $a, $f) # $Read($h_post_1, $a, $f)
—>$Read ($h_post_0, $a, $f)==$Read($h_post_0, $a, $£f))) }

r_
r_

Fig. 4. Mutual summary of the 1copy and rcopy procedures. Written in Boogie.

Equivalent procedure calls do not always occur from isomorphic stores
(challenge 2). This is overcome by considering only the region of the heap
reachable from the procedure parameters when trying to establish equivalence
of procedure calls. This corresponds to the predicate $Heap#EqualFromParams
on line 79, detailed in Section 3.6.

Equivalent procedure calls do not necessarily result in isomorphic stores
(challenge 3). This is overcome through our choice of procedure summary
(line 80) and a frame axiom. The write effects of a pair of equivalent proce-
dure calls are related by the predicate $SameDiff (line 81). The frame axiom
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appears as a free postcondition® of every procedure (lines 63 and 69). Both are
described below.

Equivalent procedure calls are summarised by the predicate $SameDiff that
relates the pre and post stores of both calls. $SameDiff approximates the actual
behaviour of the procedures a surprising way, although equivalent procedures
can vary in the amount and shape of garbage, $SameDiff states that equivalent
procedure calls will always have equal effects, we justify this in Section 3.

The framing axioms (lines 63 and 69) restrict the write effects of the proce-
dures to the part of the heap that was reachable from the procedure parameters.
The axiom follows from the semantics of L. It is not known in advance which
procedure calls might be equivalent (challenge 4). This is overcome by how
the summary of the behaviour of equivalent procedures is encoded. Specifically,
the encoding of mutual summaries presented by Hawblitzel et al. [22] is used to
induce the SMT solver to search for related pairs of procedure calls. We detailed
this encoding below.

Fig. 4 shows how APE encodes the mutual summary for the procedures
lcopy and rcopy. The encoding consists of several parts. Encountered calls to
the procedures are abstracted by a pair of uninterpreted predicates (lines 57
and 58) which we call abstraction predicates. The predicates are uninterpreted
so we precisely control their instantiation. They are given as free postconditions
of the procedures 1copy (line 61) and rcopy (line 67). Encountering calls to these
procedures causes the abstraction predicates to be instantiated in the solver’s
E-graph. We set triggers (lines 75 and 76) so that the solver will instantiate the
mutual summary axiom’s quantifiers (line 74) for each pair of instantiations of
the abstraction predicates. Non-vacuous instantiations of the axiom occur when
the solver is able to establish that the heaps reachable from the call parameters
are equal, and hence the antecedent is satisfied.

During a Simplify [17] style SMT solver proof search the quantifiers that
appear in an axiom are instantiated with ground terms from the solver’s E-
graph that match triggers associated with the quantifier. In-turn, the axiom is
applied to those instantiations to introduce new terms into the E-graph and so
on. Thus, APE controls the proof search by a combination of the logical meaning
of the axioms and the quantifier triggers.

The synthetic parameter $strat of lcopy (line 60) and rcopy (line 66) is
introduced to prevent the proof search from trying to establish equivalence be-
tween procedure calls occurring under different allocation correspondences. For
example, in Fig. 2, the inlining of lcopy on line 33 and line 39 will contain
recursive calls to 1copy and rcopy respectively — but it is not useful to find
relations between these calls as they pertain to different allocations correspon-
dences. Specifically, the disjunction on line 44 asserts nothing about the rela-
tionship between those heaps. The parameter $strat represents the allocation
correspondence in effect for that call, and the mutual summary trigger (lines 75
and 76 of Fig. 4) restricts instantiation of the quantifiers to calls which occurred
under the same allocation correspondence.

S A free postcondition may be assumed after a call, but is not checked.
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We have completed our illustration of how the RIE methodology is imple-
mented in a modular program equivalence tool. Discussion about the effective-
ness and limitations of our approach is in Section 4.

3 Soundness of RIE

We now give a model of RIE and summarise a proof of its soundness. The
semantics of £ come in two flavours: the V semantics is the ordinary semantics
of L. The A semantics models our Boogie encoding, which includes the various
approximations detailed in Section 2. We establish soundness of RIE by showing
that equivalence under A implies equivalence under V.

We expect a mapping between procedures names, £, which pairs procedures
that are suspected to be equivalent. RIE takes the program and £ as input and
tries to prove that indeed all pairs in £ are equivalent.

We start with an overview of the semantics of £, then define isomorphism
and procedure equivalence. Then we detail how the various approximations are

modelled in the A semantics. Finally we give RIE’s soundness theorem”.

3.1 Semantics of £

L is a simple imperative language. Fig. 5 describes the standard aspects of
L, while Fig. 6 describes the non-standard aspects. The following points are
interesting about our semantics:

— We distinguish between execution under V and A with a subscript, writing
~, where £ € {V, A}.

— We split procedure call into two: a “call” rule and a “body” rule, similar to
Godlin and Strichman [21], to treat procedure call concretely in V but ab-
stractly in A. The latter is a first ingredient in reflecting mutual summaries.

— Execution of pairs of procedures is included in the operational semantics,
modelled by the rules COMV and COMA:

tri,tra
01,81 || 02, 82 ~vpns 03 | 04
meaning statement s; executed on store oy results in store o3 producing trace
try, and similarly for statement s5. These rules reflect product programs [29,
5, 1].

— We require the program adhere to a specification given by Con8.

— The semantics are instrumented to produce a trace of the states reached
during execution which we use to distinguish particular executions.

— although our semantics is a big step semantics, we keep the whole calling con-
text as part of the runtime configuration to allow us to give useful meaning
to isomorphism of stores.

" Full details of the proof can be found in the first author’s PhD thesis [45].
8 We expect single program contracts to have been verified; programs with no contracts
are also acceptable.
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Sa € AtomicStmt := x := e | © := new() | assume b | assert b | call p(z,...,x) |
ef:=e

s € Stmt =S¢ | i£(D){sa} | 855

e € ScalarEzpr :=mnull |z |e.f|b

b € BoolEzpr =x=y|!b|b A b|true| false

def

Sets a € Addr, x € Lid, f € Fid, p € Pid, v € Val = Addr U {true, false}.
Set Addr has one reserved element null.

def

h € Heap = (Addr x Fid) — Val where Vh, f: h(null, f) = null.

¢ € StackF = Lid — Val

é € Stack & StackF*

o € Store & Stack x Heap, where o(z) means ¢(x) when o = (-, h)
tr € Trace L (Stmt x Store x Store)*

mhkframe(o,x1 ... xn) = (0% - 11 > o(21), ..., Tn — o(z0)], ")

B : Pid — Stmt looks up procedure bodies from procedure names.

o™ L poand 0% 5. ¢ and 0PP ' (4, h) and 0*® & $ when o = (¢ - ¢, h)

STORE
o,e1.f i =ex — (gStaCk70heap[([[el]]a,f) = [e2]o])

a ¢ dom(h) {fi,...,fn}=Fid a#null

= = NEW
(¢ ¢, h),x :=mnew() = (¢ ¢[z — a],h[(a, f1) — null,..., (a, fr) — null)))
01,80
oFb ASSERTT ! > — ATOM
o,assert b — o 01,8 30102 oy
oEb ASSUME (e b) ASSERTF
o,assume b — o o,assert b — error
ASSIGN o1 FEb 01, Sa Ht[ o2
C— stack heap CONDT
o,z :=e = (%%z — [e]s], o) 1,12 (b) {50} 1 02
—(cEb 01,51 Tl gy 02,52 T2 o
( . Z CONDF pot e T e 7 TRANS
o,if(b){sa} ~¢ Osakoo 5 01,5813 82 ~>T12 g4
—(c Eb) oEb ~(o Fb)
[null], = null [z]e = o(x) o Elb [b]o = true [b]o = false
o(z) =0o(y) o(z) = true ocFEb oFEb
Al = (e, ))  oFe=y =F TEb A b

Fig. 5. Grammar and Operations of £
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(01,03) € Con(p) o1,B(p) ~% o3

BOD

tr-(ret Pop
o1,body p 8 (ret,03,03P°F) 3PP

mkframe(o1,T1 ... 2Tyn),body p ~{ o3

CALLV

(o1,call p(x1...xn) H](fall P(21.:2n),01,08) &,

dom(hz2) 2 dom(h1)
((mkframe(o1,@1 ... xn), h1)($1 - ¢, h2)) € Con(p)

- - - = CALLA
(le’ hl), call p(x1 . -Tn) N_)‘(Acall p(w1...wn),(¢1,h1),(d1,h2)) (¢17 h2)
01,81 HUI o2 g2, 82 N—)Uz 04
COMV
(01,51) || (02, 82) =072 (03, 04)
I(t?ﬁ,t’r‘z) M(t?”1,t’l“2) 01,81 ‘\'—)Z'l o2 02,82 ‘\'—)ZQ 04
COMA

try,tra

(o1,81) || (02, 82) ~24 (03,04)

Fig. 6. Procedure call and composition rules of £

— We assume loops have been encoded as recursive procedures.

We only discuss some of the rules of the operational semantics. NEW allocates
a new object.” The address of the object must be fresh, and the object has
all fields set to null. ASSIGN updates a stack variable x with the result of
evaluating an expression e in the store o.

BOD executes the body of a procedure p by looking up and executing p’s
statements. Our assumption that procedure contracts have already been verified,
is modelled by the requirement (o1, 03) € Con(p). Note that BOD pops the top
of the final stack, while CALLA and CALLV push new frames (using the function
mkframe).

CALLA models abstraction of procedure calls. The behaviour of the ab-
stracted call is restricted by the procedure’s contract Con(p), and the call may
not free any allocated address (All that RIE actually requires is that the lan-
guage not have concrete addresses so any language with garbage collection which
does not support pointer arithmetic can be handled.)

Angelic allocation in the rule COMA is modelled by the predicate over trace
pairs Z. The behaviour of called procedures in the A semantics is modelled by
the predicate over trace pairs M. We define Z and M, as the paper progresses.

9 In a concrete implementation we do not require that there is no garbage collection,
just that the programmer cannot manipulate addresses.
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3.2 Isomorphism

Stores are isomorphic if they differ only in the actual values of heap addresses
or in garbage. An isomorphism is characterised by a bijection between values, 7.
Definition 1 says that o is isomorphic to oy with relation 7 iff the stacks of oy
and o5 are the same height; for each corresponding stack frame the same variables
are defined; and 7 is an injection. Where 7 is the uniquely defined relation
that maps the stack variables of o1 to o3, commutes with field dereference, and
preserves the meaning of null, true, and false.

Definition 1 (Isomorphism).

def
01 Ry Oy <

— o1 = |o2| A Vi <|o1|:dom(o1]i]) = dom(o2]i])
— 7 is an injection®, written in(m)

Where 7 is the smallest relation that satisfies:

7w =my, U {o1[i](z) — o2[i](z) |z € dom(o1[i]) A i< |o1|}U
{o1(a, f) = oa(n(a), ) |a € dom(m)}

And 7, = [null — null, true — true,false — false]

In our notation: The number of stack frames in store o is |o|. The value of
variable z in the i'* stack frame is o[i](z). The domain of the mapping 7 is
dom(m), and dom(cli]) is the set of variables defined in the i*" stack frame.

We also require that any contracts in the program are not sensitive to address
values or garbage. We write 0;._; to mean oy,...,0;.

Definition 2 (Contracts in £). The contracts Con : Pid — P(Store x Store),
are sets of pairs of Store representing the set of acceptable pre and post stores
of each procedure. We require that:

VDp,01..4,T1,2:01 Ry 02 A 03 R, 04 A (01,03) € Con(p) A in(m Ums)
= (09,04) € Con(p)

Lemma 1 (Isomorphism is an equivalence relation). The relation = is an
equivalence relation (reflexive, symmetric, transitive)

The crucial property of =~ is that it is closed under execution. Namely, ex-
ecuting a statement from isomorphic stores results in isomorphic executions.
Executions are isomorphic iff the elements of their traces are pairwise isomor-
phic (written ¢rq = trq), and have isomorphic write effects.

Lemma 2 (£ closed under isomorphism).
For every execution o1,s ~%1 03, store oo, and injection w1 if 01 ~r, 02 then

0 in(r) <5 V(a,b), (¢c,d) €m:(a=c < b=d)
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— there exists an execution og,s ~5?2 04

tro

—if L=V, every execution gg, s ~>Y tr

04 18 isomorphic to 01,8~y 03

Executions 01,5~ 03 and 02,5~ 4 are isomorphic iff Imy 2 :
01 gy, 03 A try &trg A in(m Uma) A effect(o1,03) /o, effect(oz,04)
Where trace isomorphism is:

try & try <L try /o try

try Rg try <L Tncltry| = |tral =n A Iy mop

(Vi <nitri[ildy Ry, trafills) A
(Vi < mitry[ilds Ry, trafills) A
(Vi,j <2n:in(mrUm Um;))

And where effect(cy,03) L 3heap \ oqeap

Proof. By induction on the derivation of o1, s~ o3. Most cases are straight-

forward since no instruction is sensitive to the actual value of addresses. Note
that every instruction makes the set of reachable addresses smaller, apart from
new which expands it by exactly one fresh address — this corresponds to the
fact that addresses are never synthesised and garbage is never resurrected. 0O

A way to think of closure under isomorphism is that £ is not sensitive to the
actual values of addresses nor garbage. Many industrial languages (such as C,
Java, Python, C*, etc) contain features that are sensitive to the actual values of
heap addresses or order of allocation. Such sensitivity is typically not central to
the language and it is often not necessary to use such features.

3.3 Regional Isomorphism

As discussed in Section 2, APE works by establishing isomorphisms between
the heap regions reachable from procedure parameters (Line 79 of Fig. 4), so
we introduce a notion of isomorphism between heap regions. The heap regions
reachable from two sequences of parameter names W and X are isomorphic iff
the sequences have the same length, and the relation (7) constructed by following
all paths from the parameters is an injection:

Definition 3 (Regional Isomorphism).

def,
X gy &L

[W|=|X| AW C dom(o1*®) A X C dom(c3*P) A in(m)

01

Where 7 is the smallest relation which satisfies:

m =1y U{o1(Wli]) = oa(X[i]) [ < [X[} U{o1(a, f) = oa(7(a), f) [a € dom(m)}
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3.4 Procedure Equivalence

Procedures are equivalent if executing their bodies from isomorphic stores results
in isomorphic stores. Executing body p means looking up and executing the
statements that form the body of procedure p. Note that rule BOD pops the top
stack frame before completing, so stores 03,04 in Definition 4 are as observed
by a caller. This means that equivalence relates to the observable behaviour
of the procedure body, and that differences in local variables, etc, are ignored.
The same definition of procedure equivalence applies to both the A and the V
semantics.

Definition 4 (Procedure equivalence).

def
PLAP —

Vo1..4:01 = oy A 01,body p, || 02,body py ~> 03 || 04 => 03 = 04

3.5 Angelic Allocation

We describe how angelic allocation is modelled by the predicate Z in the A
semantics rule COMA. The predicate selects the pairs of execution traces that
exhibit desirable allocation patterns.

Predicate Z (Definition 6) retains only traces with heap regions that are
equal at particular isomorphic points (Definition 5) in the traces. In APE, these
points correspond to procedure entry, equivalent procedure calls and allocation
sites. APE only verifies procedures from equal (rather than isomorphic) initial
stores, discards execution pairs which don’t have interesting correspondences
between allocations, and assumes procedures have equal effects. Because we are
only trying to prove soundness of RIE, it is not necessary to fully specify how
APE chooses which stores to equate. Rather, we prove that any assumption of
store equality that the tool makes is sound, subject to the caveats in Definition 5.

Definition 5 (Isomorphic Points).
Any tool using RIE must define a function

pts : (Trace x Trace) — P(N x N x Lid* x Lid™)

with the following properties:

1. The same set of points is produced for isomorphic traces:
Virga:try & trg A tro = try = pts(tr,tra) = pts(trs, tra)
2. The traces are isomorphic at each of the points:
(i, 5, W, X) € pts(try, tra) : 3my s tri[i] AN tro[j]

8. If the initial stores of try,try are isomorphic, then the isomorphism is injec-
tive with all the other isomorphisms. Otherwise the isomorphisms are empty.
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— in(w U I (try, tra))
— P fst(try) = fst(tra) = I (try,try) =0

Where
I (try,tra) = U {n | 3(i, 4, X,Y) € pts(try, tra) A trifi] 85V tra[j]}
Definition 6 (Angelic Allocation).
Z(try,tra) N I (try,try) Cid

Definition 5 requires that the points are selected symmetrically for isomor-
phic traces. This symmetry is critical for the soundness of RIE, which must verify
at least one pair of execution traces for each initial state. Furthermore, the def-
inition requires that the union of the isomorphisms between the selected heap
regions is an injection. This corresponds to the fact that RIE is implemented by
equating allocation sites, and will be discussed further in later sections, partic-
ularly Section 4.

3.6 Mutual Summaries of Equivalent Procedures

APE uses mutual summaries, lines 73 and 80 in Fig. 4, to allow the verifier to
use facts about the behaviour of equivalent procedure calls in its proofs. It is
needed in order for procedure equivalence to be a transitive relation.

APE’s use of mutual summaries is modelled by the rule CALLA, which over-
approximates the behaviour of concrete procedure call. And the predicate M in
the rule COMA, which restricts the traces to those where the procedure pairs in
& behave equivalently.

The antecedent o %;{Tfl"'“}’{yl“'y"} o9 expresses that the regions reach-
able from the parameters are isomorphic (as needed for challenge 2), while the
conclusion effect(o1,03) =y, effect(oa,04) expresses that the procedures have
isomorphic write effects (as needed for challenge 3). In our example, the encod-
ing of the antecedent is $Heap#EqualFromParams on line 79 of Fig. 4, while the
encoding of the conclusion is $SameDiff on line 80 of Fig. 4.

Definition 7 (Mutual Summaries of Equivalent Procedures).

M(t’l"l,t’l“g) é V7T1,0'1__4, (pl,pg) cé€:
(call py(z1...2y),01,03) €tr1 A
(call py(y1-.-Yn),02,04) € tra A

o1 %i:fl-”xn}’{ylw-yn} o9

= Jme:in(m Ums) A effect(o1,03) ~=r, effect(oz,04)
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3.7 Soundness of RIE

We now give the theorem which guarantees soundness of RIE, and describe some
keys points in its proof. Theorem 1 states that if all pairs in £ are mutually
terminating and equivalent under the A semantics, then they are also equivalent
under the V semantics. Mutual termination (mt) means that both procedures

terminate for the same set of initial stores!!.

Theorem 1 (RIE is sound).

IfV(p3, py) € E:miv(ps, py) N p3 & py
Then ¥(py,py) € E:py & py

Where mtr(ps, py) s oy 3101 gy =

(Ul,body Py x> 03 = do4:092,body p, 04) A
(Jl,body Py 2> 03 = Jo4:02,body pg 04)

Proof. The proof proceeds by showing that for any pair of executions (try,trs)
from isomorphic initial stores in the V semantics there exist an isomorphic exe-
cution (trs with trq & trs) such that that Z and M hold for (try,trs) and thus
the trs and tro executions compose by || in the A semantics. Then by the as-
sumptions and transitivity of ~ we know that ¢r1,trs end in isomorphic stores.
The proof goes by an inner induction nested within an outer induction. We now
write the proof in some more detail:

Assume V(p3,py) € €:mty(P3,Ps) A P A Py

To show:

V(p1,py) € E,01..4,tr12:

t’!‘l,t’!‘g

01~ 03 A 01,b0dy py || 02,b0dy py v 03 || 04 = 03 R 0y

First part: From Definition 5 we see that there is a my = IT(try,tra) (1).
By Lemma 3 (below) there exists a third execution og,body p; ~* o5 such
that ¢r; is isomorphic to trg with me, i.e. trq =, trs, which means by Lemma 1
(symmetry) we get trs Rt (2). Take any point (i,j, X,Y) € pts(try,tra).

To show: tr3[i] %z’y tralj]. By (1) exists my such that tri[i] &XY try[j] and

74 C 7o (4). By (2) there exists 3 such that tr3[i] a2, tri[i] and 73 C 7, ' (3).
Hence, by Lemma 1 (transitivity), we have that tr3[i] &Y tra[j], we know 3

composed with m, is large enough because X is a subset of the stack variables

11 We could produce a total definition of procedure equivalence by including a notion of
mutual termination [22, 18] in Definition 4. However, APE does not yet reason about
the termination behaviour of the procedures. A total notion of procedure equivalence
is important, particularly where a transitive procedure equivalence relation is needed.
Since our tool takes the same basic approach as Symdiff, it should be straightforward
to incorporate existing mutual termination checking techniques [20, 22, 18].
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defined in tr1[é], and dom(ws) includes the values of all stack variables. By (3),
(4), we know that 73 composed with 74 is a subset of the identity relation.
So tr3fi] & tra[j]. Because tr; ~ trs we have by definition pts(try,try) =
pts(trs,tra). Then we get V(i,5, X,Y) € pts(trs,try):tr[i] %fé’y tra[j]. And
thus we have II(trs,tre) C id, which in turn gives us Z(trs, tra) (5).

Second part: We now proceed by induction on the size of the derivation of
02,body p,; T3 gy,

It remains to show that, tro is also a trace under A and that there is an A

trace trs isomorphic to trs such that M(trs,tre) holds. Note that it is trivial
to prove that apart from || all the rules of A semantics overapproximate the 1V
semantics (11). By (11) and induction on the derivation of og,body py ~¥2 oy
we get 02, body py ~42 0y.
Base case: there are no procedure calls in 01,body p; ~¥* 03. By Lemma 2
then o2, body p; ~¥# 05 also has no procedure calls. By (11) and induction on the
derivation of o2, body p; ~¥% o5 we get 02, body p; ~4*? 05. Since there are no
procedure calls, trivially M(tr3,tre) and og,body p; || 2, body py ~4%1"2 o5 ||
04. From the antecedent we know that Ist(trs) = Ist(tre), and since try = trs
then by transitivity of ~ we have Ist(tr1) = Ist(tr9). And since Ist(tr1) = o5 and
Ist(tra) = o4 base case is done.

Inductive step: there are procedure calls in o, body p; ~¥? o3.

To show: there exists an execution og, body p; ~4* o7 such that M(trs, trs)
and trs ~;q trs (6). Proceed by an inner induction over the derivation of
02, body p; ~¥3 05. Most cases are trivial. The interesting cases are CALLV
where the called procedure is in £, and the inductive case TRANS.

Inner case CALLV where the called procedure is in £. By case there
is 0g,call py(x1...2,) >y 05 and (ps,py) € &. Rule CALLV can
only be applied if a shallower tree is derivable for the body of the
called procedure. Therefore we apply the outer induction hypothesis,
the antecedent mty(ps,p,), and Lemma 3, to deduce that there ex-
ists o7 such that o9,call py(z1...2,) ~¥% o7 and o5 =44 o7. From

CALLA we see that o9,call pg(zi...25) w»ﬁfall P3(P10-@n),02,07) o (in-
tuition: we swap the behaviour of p; for the behaviour of p,). Take
trs = (call py(z1...24),02,07) and we have trz =4 trs. To show:
M(trs,try). Take arbitrary (call p,(y1...Yn),0s,010) € tra such that
o2 %i"gl"'x"}’{yl"'y"} og. To show: Jmg:in(ms Umg) A effect(o2,05) ~ng
effect(os,010). This follows straightforwardly from Lemma 2 and the fact
that the same procedure p, was executed to obtain o5 as to obtain oyy.
Inner case done.

Inner case TRANS By case there is o9, 51; 59 ~

o5 and hence exists
09,1179 such that oa,s1 ~U7 09,50 1 5. The proof goes as expected,
by applying the inner induction hypothesis twice with one slight complex-
ity. The first application constructs another execution of s; with the desired
properties; but that execution’s final store is not og! Rather it is some other

store (say o11) that is isomorphic to o9. Before we apply the inner induction
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hypothesis a second time, we use Lemma 3 to construct an execution isomor-
phic to og, s9 " o5 but with initial store o;;. M holds for the resultant
traces by the same argument as the CALLV case. Inner case done.
Hence M(trs,try). From (5) and (6) we also have Z(trs,trs). So we get
that o2, body p; || 02,body py ~4>"2 07 || 04 is an execution under the
A semantics. Finally, from the antecedent we know that Ist(trs) & Ist(try),
and since tr; = trz = trs and tro = try then by transitivity of ~ we have
Ist(tr1) = lst(tra). And since Ist(tr1) = o3 and Ist(try) = 04 we are done.

O

The soundness proof of Theorem 1 relies on constructing alternative execu-
tions that are isomorphic using the identity bijection, Lemma 3 states that all
such alternative executions are derivable in L.

Lemma 3 (Sufficent non-determinism). Given statement s, stores oy, 3,
mapping w1, and alternative allocation strategy mo, such that:

— o1 and oy are isomorphic with mapping m1: 01 Xn, T2
— s can ezecute to completion from oy1: 01,5 ~41 03
— m and m map common addresses in the same way in(m Ums)

— V(al,ag) € 1o :(a1 c O.lheap << ag € O_Qheap)

Then there exists an isomorphic execution oa,s ~-42 o4 such that:
tr1 /g, tra A V(al,ag) € o :(a1 S O_Sheap << ag € 0_4heap)

Proof. By induction on the derivation of o1, s~ o3 the alternative execution
is constructed. In particular note that because mo does not map between allo-
cated and unallocated addresses, the appropriate alternative address is always
unallocated when an allocation statement is reached. And that, since in(m U ma)
then all addresses that were already allocated at the start of the execution do
not need to be allocated alternatives. The proof goes through for both V and
A. O

4 Discussion

The number of correspondences between allocations (Section 2) is factorial in
the maximum number of allocation sites in either procedure. Hence RIE is only
practical for relatively small numbers of allocation sites. However, this is not
as restrictive as it may seem because our approach is modular. In practice,
when loops are encoded as procedure calls, then many interesting procedures
contain only small numbers of allocations. In some cases it is also possible to
split a procedure into chunks or abstract common parts. It is also likely that the
applicability of this technique can be significantly extended by using additional
static analysis to eliminate some of the permutations in advance. For example,
the types of the objects being allocated could be used to eliminate permutations
that aligned objects of different types.
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Framing of procedure calls is important in verifying equivalence for many
examples. APE has a fairly naive approach to framing and disjointness of heap
regions, which restricts the class of examples it can currently deal with. However,
our techniques, and choice of Dafny [32] style heap encoding, should be amenable
to a more powerful framing methodology. Improving APE’s framing support is
likely to significantly improve its completeness.

We considered many alternative approaches to establishing isomorphism. The
natural approach using existentials does not work very well. We investigated
several approaches using universal quantification. We tried defining heaps to be
isomorphic if all pairs of paths that lead to related addresses in one heap also
lead to related addresses in the other. We tried several approaches for limiting
which, and what depth of paths should be considered by the solver. But the un-
derlying doubly exponential complexity of comparing all pairs of paths impedes
the applicability of that approach. The requirement that disjoint heap effects
of procedure calls commute was an important design force: many alternative
approaches required extensive additional axioms to handle the various cases,
whereas our current approach of enumerating allocators seems to handle many
cases naturally.

4.1 Examples

There are a collection of programs available from https://github.com/
lexicalscope/ape#fautomatic-procedure-equivalence-tool that show the
capabilities of APE. Several of them have been listed in Fig. 7 with timings
performed on an Intel Core i5-3210M@2.5GHz processor with 8GB memory.

Description Allocations|Timing
Empty program 0 1.5s
Making the same procedures calls 0 1.5s
Change amount of garbage allocated 1 1.5s
Allocations moved past calls 1 1.5s
Change order of allocation 2 1.5s
Isomorphism of heap reachable from call parameters 2 1.8s
Recursive calls reordered 2 8s
Copying a cyclic data structure 2 4s
Inserting a row into a table 2 31s
Copying a list 2 7s
Copying a tree with calls same order 3 84s
Copying a tree with calls reordered 3 130s

Fig. 7. Examples with the maximum number of allocations per procedure and timings

We surmise that the amount of time APE takes to verify an example is related
to the number of allocations, the number of paths through the procedure, the
number of procedure calls, the complexity of any framing reachability that needs
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to be solved, and the order that Z3 happens to apply the axioms (i.e. how far
into the search space the solution lies — for example, reordering procedure calls
usually slows the verification down).

RIE’s approach of using equality to establish isomorphism does prevent APE
from establishing isomorphism in some cases where it would be helpful to do so.
The example in Fig. 8 is from a refactoring of some code which manipulates a
doubly linked list. Both procedures add an element to a list, but first remove it
if it is already present. The left procedure has a redundant check that the item
is in the list, in the right procedure this redundancy is removed.

The isomorphism between lines 88 and 105 relates the addresses in rf0 and
rf. The isomorphism between lines 91 and 105 relates the addresses in rf1
and rf. If we were to assume equality for both of these isomorphisms then we
would have rf = rf0 = rf1. However, rf0 is allocated by the new statement
on line 87 whereas rf1 is allocated by the subsequent new statement on line 90.
The semantics of new require that each allocation gives an address which was
not previously allocated — i.e. that rf0 # rf1.

RIE, therefore, restricts the selected points in Definition 6 to prevent contra-
dictory isomorphisms being selected. Due to this restriction a verifier using RIE
alone may fail to produce a proof for some procedures that are in fact equiva-
lent according to our definitions. Any tool using RIE in practice may choose to
equate one pair of calls to £ind, but it must find some other way to deal with
the other pair of calls (such as manually adding an additional specification of
find).

new rf0O; 104 new rf;
; find(1,x,rf0); _ _ _ _ _ _ _ _ _ _ _ ____ 105 find(1,x,rf);
if (1rf0.v.sentinel) { - T106
new rfl; /,/’/ 107
find(1l,x,rf1); -~ 108
node := rfl.v; 109 node :=rf.v;
if (!'node.sentinel) { 110 if ('node.sentinel){
node.prev.next := node.next; 111 node.prev.next := node.next;
node.next.prev := node.prev; 112 node.next.prev := node.prev;
¥ 113 }
add(1l,x); 114 add(1l,x);
} else { 115
add (1,x); 116
} 117
118
find(l,x,r) modifies {r} ... 119 find(l,x,r) modifies {r} ...
;3 add(l,x) ... 120 add (1,x)

Fig. 8. A difficult example where two stores in one execution are isomorphic with the
same store in the other execution.
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4.2 Definitions of Isomorphism and Procedure Equivalence

Our definition of procedure equivalence is useful because it is a contextual equiv-
alence [34] for £. This means that given equivalent procedures p,,p, and a pro-
gram that calls p;, one can always change the program to call p, instead without
affecting the observable behaviour of the program. Of particular interest to pro-
grammers is Corollary 1: the relation & preserves the meaning of all assertions.

Corollary 1 (Isomorphism is assertion preserving).
VO‘l,O'Q,b:0’1%0‘2 — (0‘1’:() <~ UQ'Zb)
Proof. Follows from Lemma 2 a

Interestingly, it is possible to define isomorphism almost equivalently as the
least-fixed-point interpretation of the relation:

12 def
01 R 0y <

~/!
o1 =09 =0y V (38a703,4 103 R 04 N 03,8401 N 04,8 vﬁag)

where oy is the empty store. That is, it could be defined as a smallest relation
closed under the atomic operations of the semantics. However, even though the
semantics is naturally closed under &/, the definition is not as helpful when trying
to decide if a particular pair of stores are isomorphic. Regardless, a definition in
this least-fixed-point style would allow us to construct a notion of isomorphism
even for a semantics where we did not know an appropriate direct definition.
Perhaps it is interesting to consider what assertion language would be preserved
for any particular semantics given such a definition.

4.3 Reachability

Establishing reachability enables APE to prove interesting examples, but is an-
cillary to the focus of this paper RIE and angelic allocation. Still, our definition
of equivalence allows differences in garbage (which is unreachable memory), and
APE use reachability to reason about read and write effect framing as described
in Section 2.3 — so an useful axiomatisation of reachability is needed.

Fig. 9 shows our Boogie encoding of reachability. We give several axioms
for the predicate $Reach, which the tool instantiates in different circumstances
controlled by various triggers (controlled programatically, users cannot write
them). Rather than precisely deciding the reachability set, often it is necessary
to prove disjointness of certain heap regions. For example, garbage objects are
disjoint from the reachable region, and a property of a region is preserved over a
procedure call if the region is disjoint from the call effects. Our choice of axioms
enable the tool to establish a lack of reachability by showing either that there
are no outgoing (line 130) or no incoming (line 127) edges to a particular heap
region. Although the axioms line 127 and line 130 are logically equivalent, we
use triggers to unroll them in different situations.
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// Reachability is uninterpreted but aziomatised

2 function $Reach($h:Heap, $a:Ref, $b:Ref) : bool;

axiom (V$h:Heap, $a:Ref :: $Reach($h, $a, $a));

5 axiom (V$h:Heap, $a,$b:Ref :: {...}

$Reach ($h, $a, $b) A $NoInboundEdges ($h,$b)—=—$a=$b);

7 axiom (V$h:Heap, $a,$b:Ref :: {...} $Reach($h,$a,$b)—

$a=9$b VvV

(d$c:Ref ,$f:Field Ref :: $Reach($h, $a, $c) A $Edge($h, $c, $f, $b)));
axiom (V$h:Heap, $a,$b:Ref :: {...} $Reach($h,$a,$pb)—

$a=3%b VvV

(d$c:Ref ,$f:Field Ref :: $Edge($h, $a, $f, $c) A $Reach($h, $c, $b)));

function $NoInboundEdges ($h:Heap, $a:Ref) : bool
{ (V$b:Ref, $f:Field Ref :: !$Edge($h,$b,$f,$a)) }

Fig. 9. The partial axiomatisation of reachability used by APE, written in Boogie. The
triggers are elided {...}. The function $Read(h,a,f) is the value of field £ of object a
in heap h, the predicate $Allocated($h,$a) holds if object $a is allocated in heap $h.
The predicate $Edge ($h, $a, $f, $c) holds if the field $f of object $a has the value
$c in heap $h.

5 Related Work and Conclusions

The study of program equivalence arguably pre-dates the study of functional
correctness. In his 1969 paper [23], Hoare identified that “Many [previous| ax-
iomatic treatments of computer programming [47, 24, 2] tackle the problem of
proving the equivalence, rather than the correctness, of algorithms”. To date,
practical approaches to program equivalence rely on structural similarity of the
programs. Many works focus on methods to account for some structural differ-
ences. The importance of program structure in proving program equivalence was
observed by Dijkstra in 1972 [15], where he also observes that programmers are
often called upon to modify existing programs. Key developments in program
equivalence have come from research into non-interference in secure information
flow and compiler translation validation. Non-interference is the property that
the values of secret inputs do not influence public outputs. Translation validation
provides assurances that the program output by a compiler is correct with respect
to the input program. Translation validation concerns itself with correctness of
particular compiler runs, and does prove the compiler implementation correct.
Non-interference can be formalised in terms of program equivalence [25], or more
generally as a safety property over pairs of program traces |7, 42]. Methods for
reducing safety properties over trace pairs to safety properties over single traces
have been explored [33, 9] and generalised, particularly via product programs [6,
4] and similar [48, 38, 43]. Product programs combine a pair of programs into
one, such that useful invariants can be formulated at interesting points in the
product, and can generalise to relations between programs [5]. Compiler transla-
tion validation [28, 38, 43, 31, 48] is inherently a program equivalence question.
Many techniques have been applied, several variations of product programs [48],
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constructing bisimulations between control flow graphs [28], iteratively applying
equality axioms [38], or normalising [43] graph representations of the programs.
Relational Hoare Logic [10, 11, 46, 12, 5] (RHL) was proposed by Benton, in
2004 [10], in the course of proving the correctness of various compiler optimisa-
tions. The Hoare triple { P}S{Q} is extended to a Hoare quadruple by inclusion
of two statements, rather than one, {P}Cy ~ C3{Q}. The pre and post condi-
tions are lifted to relations over stores. RHL has been extended by various rules
to account for differences in structure between the programs [10, 5]. Barthe,
Crespo, and Kunz [5] pointed out that RHL is closely related to the idea of
product programs. Several formal works tackle the problem of proving program
equivalence in the presence of dynamic memory allocation. Pitts uses a simula-
tion between memory locations when defining a semantic approach to program
equivalence [37], the memory model is flat not a heap. Benton et al. uses iso-
morphism between heap regions when proposing an RHL that supports dynamic
allocation [11]. Yang constructs a relational separation logic with support for dy-
namic allocation [46]. Sumner and Zhang propose a different approach, canonical
memory addresses are constructed based on program control flow and syntactic
elements. Banerjee, A. Schmidt, and Nikouei [1] propose a logic for weaving pro-
grams with structural differences so that relational properties of programs can
be expressed. They extend this with a region logic to support reasoning about
encapsulation in dynamically allocating programs; catering for equivalence be-
tween programs which vary the representation of objects.

5.1 Fully Automatic Equivalence Verification Tools

To our knowledge there are four other tools with the objective of fully auto-
mated verification of procedure equivalence for imperative programs: Symd-
iff [29], RVT [21], SCORE [36], and Réve [19]. Symdiff [29] uses program ver-
ification to prove or provide counter examples of equivalence. It uses mutual
summaries, and can infer intermediate summaries to establish equivalence. Con-
ditional equivalence [22] can show partial equivalence over a subset of proce-
dure inputs and construct summaries of interprocedural behavioural differences.
Symdiff is built on Boogie [3]. Symdiff has no built-in support for procedures
that differ in memory allocation. RVT [21] proves equivalence of some C pro-
grams. RVT generates loop and recursion free program fragments, which are
verified by the CMBC [14] bounded model checker. Loops are encoded as recur-
sive functions. Recursive calls are replaced by uninterpreted functions. Recently
support for unbalanced recursive functions has been added [39]. RVT is extended
to dynamic data structures involving pointers by generating (symbolic) bounded
tree-like data structures as inputs for procedures. These initial tree-like struc-
tures are isomorphic up to some bound. RVT then verifies (up to the same
bound) that those data structures remain isomorphic, at procedure calls and
procedure return. The bound is determined by a syntactic overapproximation
of the maximum depth of modification. No rigorous proof is presented for this
extension to pointers. Réve [19] and SCORE [36] support numerical programs



REFERENCES 25

without heaps. Réve uses Horn constraints to verify equivalence of determinis-
tic imperative programs with unbounded integer variables. Réve infers inductive
coupling predicates and as such can deal with loops and recursion where, for
example, the number and meaning of procedure parameters has changed. The
authors of Réve propose in the future to extend their tool with an RVT-like
approach to the heap. SCORE uses abstract interpretation over an interleav-
ing of the programs. A good interleaving is found by searching. SCORE deals
with numerical programs. For non-equivalent programs SCORE can compute an
overapproximation of the semantic difference. The precision of this overapprox-
imation is related to the size of the syntactic difference.

5.2 Conclusion

We defined procedure equivalence, and a sound methodology RIE, for automat-
ically proving equivalence of programs which vary in dynamic memory alloca-
tion. We described our RIE encoding APE for equivalence verification (available
at https://github.com/lexicalscope/ape). Our approach is fully automatic,
and applicable to programs which manipulate heap data structures of any shape.
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