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ABSTRACT

Software applications often use classification models to trig-
ger specialized experiences for users. Search engines, for
example, use query classifiers to trigger specialized “instant
answer” experiences where information satisfying the user
query is shown directly on the result page, and email ap-
plications use classification models to automatically move
messages to a spam folder. When such applications have ac-
ceptable default (i.e., non-specialized) behavior, users are of-
ten more sensitive to failures in model precision than failures
in model recall. In this paper, we consider model-selection
algorithms for these precision-constrained scenarios. We de-
velop adaptive model-selection algorithms to identify, using
as few samples as possible, the best classifier from among
a set of (precision) qualifying classifiers. We provide statis-
tical correctness and sample complexity guarantees for our
algorithms. We show with an empirical validation that our
algorithms work well in practice.

Keywords

guaranteed precision; efficient evaluation; model selection

1. INTRODUCTION

Classification models are often subject to precision con-
straints in applications where they are used to trigger spe-
cialized user experiences. Search engines, for example, use
query classifiers to trigger specialized “instant answer” expe-
riences where information satisfying the user query is shown
directly on the result page. These systems arbitrate among
a large and ever-increasing number of specialized responses
including: showing a stock quote after classifying the query
as a stock symbol; returning a definition after classifying the
query as having glossary intent; or displaying a map after
classifying the query as having local intent. In all cases, the
system has the option to suppress all specialized experiences
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and instead use the default behavior of providing only the
“ten blue links” in the search results. When a reasonable de-
fault behavior is available, classifier precision is usually more
important to users than classifier recall; in a study of search
engine switching behavior, [7] demonstrated that dissatisfac-
tion with the search results presented (DSAT Rate) is 3.25x
more likely than coverage (failure to provide desired results)
to cause users to switch search engines. Beyond instant an-
swers in search engines, intelligent assistants (e.g., Google
Now, Facebook’s M, Apple’s Siri, or Microsoft’s Cortana)
represent another class of specialized triggers that various
applications can use to enhance user experience.

In principle we could choose classification models for the
above applications by optimizing user utility under assump-
tions about the relative cost of false positives and false nega-
tives. In practice, however, companies often wish to protect
perceived brand quality and may take the more conservative
approach of setting a strict constraint on model precision —
then work to maximize recall subject to that precision con-
straint. In this paper, we assume that we have a set of can-
didate classification models and a precision constraint, and
we develop adaptive model-selection algorithms that will se-
lect a high-recall model that satisfies that constraint using
minimal labeling effort.

Model selection is a fundamental problem in machine learn-
ing that arises both when choosing thresholds for a single
classifier and when choosing among alternative classifiers.
Applications often require selection algorithms that balance
between two or more competing dimensions of quality. Ex-
amples include: (1) choosing treatment dosage in clinical
trials, where there is a trade-off between the drug benefit
and the drug toxicity; (2) spam filtering, where there is a
trade-off between having good-email in the spam folder and
bad-email in the inbox; and (3) record matching, where there
is a tradeoff between incorrectly matching records and the
failure to match near-duplicate records.

In the information retrieval community, researchers typ-
ically frame such tradeoffs in terms of precision versus re-
call. Unfortunately, when the fraction of positive examples
is small, accurately estimating recall requires a large num-
ber of samples. Due to these challenges, we focus instead
on the tradeoff between precision and the alternative reach
quality criterion, which is the number of true positives in a
test set that are predicted positive by the classifier. Reach
is sometimes called cardinality in the information retrieval
community [10] and is a natural measure of the efficacy of a
classifier on a test set. For example, in the case of a particu-
lar instant answer query classifier, it is the number of queries
for which the instant answer experience correctly triggers.



In academic settings, the tradeoff between precision and
recall is often measured using a single combination criterion
such as an F,-measure. As discussed above, however, model-
selection algorithms are often required to limit the potential
damage incurred by using the classifier (e.g., probability of
dying in a clinical trial or probability of good-email in the
spam folder for an email application), and in many cases
a minimum threshold on the precision of the classifier is
appropriate.

In this paper, we develop adaptive model-selection algo-
rithms for identifying high-reach classifiers that have accept-
able precision. We provide sample-complexity guarantees
for our algorithms and statistical guarantees for the selected
classifiers. We compare our algorithms on a set of web-page
classification tasks and demonstrate our algorithms can sig-
nificantly reduce the number of required samples.

2. PROBLEM SETTING

As mentioned above, for many classification settings, pos-
itive examples are rare and estimating recall with statistical
certainty can be costly. Naively, selecting the best model
from a set of models is a costly process where each good
model must be certified and the winner chosen from among
the good candidates. Our primary insight is to recast this
common challenge as a problem of choosing from among
all models the good ones (those matching a precision con-
dition) and maximizing reach from among these good clas-
sifiers. Note that maximizing reach is equivalent to maxi-
mizing recall but it does not require that we estimate the
denominator of recall which is constant across all classifiers.
Since we do not need to estimate the number of positives in
all data but only in those predicted to be positive by any one
of the classifiers, this reduces the statistical power needed.
Additionally, we can adapt bandit approaches to combine
the steps of precision-qualification together with estimation
of reach. Finally, we generalize our approach to allow a
user-specified slack in the precision condition, tightness of
the maximization of reach, or statistical confidence desired.

More formally, we assume a setting where a “user” wants a
system that can select the best classifier from a set of m can-
didate classifiers hi, ..., hn,. In practical settings, the user
is typically an engineer with domain expertise and experi-
ence applying machine learning software packages to learn
models, but who may not have deep experience in learn-
ing theory or the design of new machine learning methods.
The user is thus assumed to have domain knowledge as to
what level of precision is acceptable in the target domain.
In some cases, the user may want to find an approximate
best answer — this can be especially valuable early in the
stages of interactive model development when the goal is to
quickly choose among promising candidate models or fea-
ture sets for further exploration; in this setting labels are
often sparse and the user would like to spend as little time
as possible providing additional labels for evaluation.

We assume the availability of a large unlabeled test cor-
pus. We can ask human oracles for the true label of any
test item, but we want to do so sparingly since each incurs
labeling cost. Imagine we apply each classifier h; separately
to the test corpus for ¢ = 1...m. If we knew the true labels
of each test item, we would be able to partition the corpus
into (1) n1; true positive items with true label + and pre-
dicted label +; (2) no; false negative items with true label +
and predicted label -; (3) ng; false positive items with true

label - and predicted label +; (4) n4; true negative items
with true label - and predicted label -. The recall of h; is
nl?fnzi and the precision of h; is nh"fnsl

Based on domain knowledge, the user specifies a desired
precision threshold, PT. We say a classifier is a good clas-
sifier if it has precision at least PT. In the approximate
selection case, the user may have a tolerance for precision
dropping slightly below this threshold. The user can desig-
nate this tolerance using a slack variable for the precision
threshold, v where 0 < v < PT, and we call a classifier
acceptable if it has a precision of at least PT — ~.

Among precision-acceptable classifiers, we want to select
the one with the largest recall. One practical difficulty in
practice is to estimate the denominator n1; + n2;, which can
require excessive labeling. As described briefly above, note
that the sum ni; + ng; is the total number of true positive
items in the test corpus and the sum is constant across all
choices of . Thus the numerator n1; provides the same recall
ranking among the classifiers with respect to the test corpus.
Therefore, we can state our goal equivalently as maximizing
ni1; subject to the precision acceptability constraint. We
define ni; as the reach of classifier h;.

For convenience, the trivial acceptable classifier, a, is the
classifier with acceptable precision that classifies every ex-
ample as not in the class. This classifier is trivially accept-
able because we define its precision to be 1 and its reach to
be 0. We assume that in addition to the models provided by
the user, the method can also produce the trivially accept-
able classifier as an answer. We call a classifier optimal if it
is the maximizer of reach among all good classifiers. Let R*
denote the reach of the optimal classifier; note that this is
always defined because the trivial acceptable classifier is a
candidate model. Similar to precision, we assume the user
may be willing to tolerate a small percentage decrease in
reach relative to the optimal classifier such that the reach
of the selected model is at least (1 — ¢)R*. The user may
specify this tolerance as a slack variable € where 0 < € < 1.

Finally, we assume that the user specifies a desired con-
fidence 1 — ¢ in the result where 6 € (0,1) is another user-
specified parameter. We take as the user’s end goal to select
with probability 1 —§ an acceptable classifier whose reach is
at least (1 —€)R".

More formally, let p; and R; denote the precision and
reach of classifier i, respectively. Then given a set of models
M of size m, and user-specified parameters of PT', v, €, and
J, the method returns a classifier ¢ € M U {a} such that the
following two conditions hold with probability 1 — ¢:

pe > PT—n (1)
R. > (1—¢ R (2)

max
c’eMu{a} s.t. ps>PT

We call a model that meets these two constraints a (v, €)
approximately optimal classifier. We next demonstrate how
the solution to this problem can be cast as a novel multi-
armed bandit problem before turning to the description of
several algorithms to solve the problem.

3. PROBLEM APPROACH

Let the predicted positive set PP; = {x : hi(z) = 1} be
the subset of the test corpus on which h; predicts positive. If
we have enough human oracle resources to label U;g(m) PP
then we can achieve our goal exactly. In practice we will use
adaptive sampling. For any classifier h;, if we draw ¢, items



, uniformly with replacement from its predicted
positive region PP; and ask the oracle for labels y1,...,ys,,
we define an estimator for the precision as

o = om0 = ﬂt(iy" —Y 3)

This is a pure exploration multi-armed bandit problem, where
each classifier is a bandit arm. We want to identify all arms
whose precision is better than PT'; furthermore, we want to
identify the top arm in terms of its reach n; among those
surviving arms. An interesting feature is that PP; and PP;
may overlap. The act of pulling an arm may also pull some
other arms — the arms are coupled. In more basic terms, this
means that for a carefully designed procedure a true label
that was obtained from a sampled predicted positive for one
classifier can also be used to evaluate another classifier that
predicts it to be positive. In particular we take advantage of
this in our pooled-sampling-shared-label sampling approach
(Algorithm 2) by uniformly sampling over the union of all
of the predicted positives for all classifiers we are still evalu-
ating. Since all predicted positives were available to sample
with uniform probability, estimates for reach and precision
(which depend on predicted positives only) can be updated
for all the classifiers whose predicted positive sets were in the
union used for sampling without resorting to more sophisti-
cated reweighting using importance weights. We note that
this coupling which exploits the shared relationship between
arms is also a novel contribution to the bandit literature.

Obviously E[p;,] = nhﬁ“ﬁ - and Hoeffding’s inequality
holds for a fixed i and a fixed ;. However, we need an
anytime bound that holds simultaneously for all possible ¢;
and for all classifiers 7. In other words, we want a function
U(t,0) such that given 6 > 0,

T1y...,Tt;

P (\ﬁ € [m], Vi, |pr, — — | < U(ti,5)> >1-46. (4)

n1; + N3i
Note that the above precision statement is equivalently a
statement on the reach nq:

P(VZ < [m],Vti, |ﬁtl|PP1| - n1¢| S |PPZ‘U(251,6)) Z 1-6. (5)

Because these bounds are true for all time, we can define
a stricter confidence bound at time ¢; as the intersection of
individual intervals up to this time:
ti .
LCBiy, = méx pi ; — U(y,0) (6)
123

UCBiy, = I]n:"lllﬁi,j-i-U(jﬁ)- (7)

Then, with large probability
pi € [LCB;,,UCB;4,] for all t,. (8)

There are several choices of U(t,d). The simplest one
is perhaps confidence-splitting among a finite T (e.g. T =
| Uicim) PP:i]) and m arms. That is, start with a cap T" on
the number of test items the oracle is willing to label. One
choice is T' = | U;e[m) PPi|. We request a stricter confidence
% for each fixed ¢ and for each arm, so that the total failure
probability is bounded by §. In particular, with Hoeffding’s
bound we may define

Ult,8) = M. 9)
2t

With these bounds on precision and reach, we propose in
the next section a novel algorithm to find the best classifier.

4. ALGORITHMS

Our goal is to choose an acceptable classifier that is guar-
anteed to have reach nearly as good or better than any good
classifier, without needing to label too many samples. Al-
gorithm 1 is a schematic algorithm for selecting precision-
qualified high-reach models. It is schematic because we con-
sider alternative implementations for the routine Sample-
AndUpdateStatistics. We say that an implementation of
the SampleAndUpdateStatistics algorithm is statistically
valid if it chooses at most one predicted positive example
associated with one of the classifiers, obtains the label for
this example from an oracle and performs statically valid
updates of counts and bounds.

Data: The m classifiers have predicted positive sets
PP+,..., PP, confidence 0, precision threshold
PT, precision slack -, slack ¢, oracle budget T’
Result: The index of a classifier or « if no qualifying
or acceptable classifier is found.
A={1...m}; // Active set
PG ={1...m}; // Possibly Good set

RQ =0 // Reach Qualified set

hh=...=hm=81=...=8, =5=0; // counts

LCBy =...=LCB,, =0; // Lower Confidence Bound
//  on precision

UCB, =...= UCB,, =1; // Upper Confidence Bound

//  on precision

while PG # 0 and RQ =0 do
S+ +;
if S > T return «;
SampleAndUpdateStatistics(A4, h,s, UCB, LCB,);
PA= {i: UCB; > PT — ~}; // update Possibly

// Acceptable set
PG= {i: UCB; > PT}; // update Possibly

//  Good set

KA= {i: LCB; > PT —~}; // update Known

// Acceptable set
KG={i: LCB; > PT};//update Known Good set

// Find Upper Bound on Good classifiers
// Reach (UBGR)
fori=1...mdo
if |[PG| =0V (i € PG A|PG| =1) then
UBGR; = —o0;
else UBGR; = max;cpae\i(UCB;|PP;|);
end
RQ = {i € KA: LCB;|PP;| > (1 — ¢)UBGR;};
// Find greatest Lower Bound on Good
// classifiers Reach (LBGR)
if |[KG| =0 then LBGR = —ox0;
else LBGR = maXieKG(LCBi|PPiD§
// Find Reach Disqualified classifiers
RD = {i: max((1 — €) UCB;|PP;|, LCB;|PP;|) <
LBGR};
A= PG\ RD; // update active set
end
if |RQ| > 1 then return best classifier in RQ);
elseif | KA| > 0 then return best classifier in KA4;
else return « signifying the trivial acceptable classifier
(PPo=0);
Algorithm 1: Precision-qualified Reach Classifier Selec-
tion Algorithm




TueoreEM 1 (CORRECTNESS CLAIM). If Algorithm 1 us-
ing a statistically valid SampleAndUpdateStatistics algo-
rithm selects a classifier then the selected classifier is ac-
ceptable and has greater than 1 — € fraction of the reach of
any good classifier with probability at least 1 — 4.

Proof sketch: The final selection criterion (the conditional
after the while loop) guarantees that the algorithm will only
return a known acceptable classifier (i.e., a classifier in the
known acceptable set KA or the trivially acceptable classi-
fier). This follows from the fact that the reach qualified set is
a subset of KA (i.e., RQ C KA). The while loop will termi-
nate only when there is a reach qualified classifier (|RQ| > 0)
or there are no possibly good classifiers (|PG| = 0). In ei-
ther case the reach criterion is satisfied (vacuously in the
case that |[PG| = 0). From the correctness of the anytime
bounds used for determining these sets we obtain the prob-
ability guarantee. [
Theorem 1 provides a correctness guarantee for Algorithm 1

for any statistically valid implementation of SampleAndUpdate-—

Statistics(-). Ideally we would like to provide guarantees
that the algorithm will terminate by selecting a classifier af-
ter obtaining a reasonable number of labels from the oracle.
Such a result depends upon the specific details of the imple-
mentation of SampleAndUpdateStatistics(-). The next re-
sults provide sample complexity bounds for two different im-
plementations of SampleAndUpdateStatistics(-). The two
algorithms that we consider are Algorithm 2 (the pooled-
-sampling-shared-label algorithm) and the round-robin
algorithm. In the round-robin algorithm, we iteratively
choose a classifier ¢ from among the currently active clas-
sifiers, randomly sample a predicted positive from PP, ob-
tain the oracle label for the sampled example, and, finally,
update the counts and bounds for classifier ¢. Note that
the round-robin algorithm uses the same formula for UCB
and LCB as the pooled-sampling-shared-label algorithm.

The round-robin algorithm differs from the pooled-sampling-

-shared-label algorithm in both the approach to sampling
examples and their use. In particular for round robin the
sampled examples are exclusively used to update the per-
formance estimates for a single classifier. It is useful for the
proofs below to note that the precision bounds we use are
uniform bounds, that is, the difference between the upper
and lower confidence bounds does not depend on the actual
precision but rather depends only on the total number of
samples used to compute the estimated precision except in
the case that the bounds are truncated by the natural upper
and lower bounds on precision.

THEOREM 2  (SAMPLE COMPLEXITY FOR round-robin).
For T sufficiently large, Algorithm 1 using the round-robin
algorithm selects a classifier using fewer than mx max(n.,n~)
calls to the label oracle.

Proof sketch: Define n, = n- (5,7, PT,~v,m) to be the
number of samples required for the difference between the
upper and lower bounds for precision to be less than « (e.g.,
~ > UCB; — LCB;). Because we are using uniform bounds,
the same number of samples is required for each classifier and
does not depend on the sampled labels. After labeling n.
samples for a classifier, we will either know that the classifier
is in KA or is not in PG. If the classifier is not in PG then
the classifier will be removed from the active set of classifiers.

The definition of RD also ensures that one only throws out
classifiers that are dominated in terms of their reach. Note

that we define the set RD with respect to KG to ensure that
we do not eliminate a good classifier based on a witness that
is later thrown out due to its upper bound precision falling
below PT. This is critical to ensure that the algorithm will,
with high probability, return a classifier in the event that
there is a good classifier.

Finally, we define ne = ne(6, T, PT,~y, m, €) to be the num-
ber of samples required for the difference between the upper
and lower bound for precision to be smaller than e(PT" — +)
(e.g., e(PT —v) > UCB; — LCB;).

Assume that each active classifier has max(n., nc) labeled
samples. If there are no active classifiers then the algorithm
will terminate as PG = (). Otherwise, let s be the classifier
with the highest upper bound reach of any active classifiers.
From the fact that we have drawn at least n., samples we
know that UCBs > PT —~. It follows from this and the fact
that we have drawn at least n. samples that LCBs|PPs| >
(1—¢€)UCB,|PP,|. From the fact that s was chosen to have
the maximal upper bound reach of all active classifiers, it
follows that for each active classifiers c it is the case that
(1 — €)UCB4|PPs| > (1 — €)UCB.|PP.|. It follows that s
must be in RQ and, in this case, the algorithm terminates.

O

Data: The set of active classifiers A that have
predicted positive sets PP1,..., PP, the
current vector of counts for classifiers t, s, the
current vector of upper and lower bounds for
precision UCB, LCB, and ¢ that governs the
statistical guarantee provided by the bounds.

Result: An updated set of counts and updated upper

and lower precision bounds for classifiers.

x ~unif(UscaPP;); y = oracle(z);

for each i € A such that x € PP; do

S + +;
hi =hi +1(y == 1);
Di = hi/si;

_ [log(2mT/$) .
Ui = £ 2s, ’

LCBZ = maX(LCBi,f)i — Uz),

UCB; = min( UCB“ﬁZ + Ui);
end
Algorithm 2: The pooled-sampling-shared-label al-
gorithm which is one potential implementation of a
SampleAndUpdateStatistics(-) algorithm using pooled
sampling and a shared-label update. The algorithm sam-
ples from the set of predicted positives for active classi-
fiers and updates the counts for all classifiers containing
the sampled example.

THEOREM 3

-shared-label algorithm selects a classifier using, in expec-
tation, fewer than m x max(n.,n.) calls to the label oracle.

Proof sketch: In expectation, pooled-sampling will sam-
ple a predicted positive from the classifier with the largest
predicted positive set with probability at least 1/m. Similar
to the analysis above, after m X max(n-,n¢) samples, the
classifier with the largest predicted positive set will either
fail to be in PG or be in the set KA. In this case, however,
it is harder to guarantee that this classifier is in RQ due to
the potential for imbalanced sampling. To remedy this we
require n. rather than n. labels.

(SAMPLE COMPLEXITY pooled—sampling-shared-label).
For T sufficiently large, Algorithm 1 using the pooled-sampling-



Consider the case in which we compare a classifier [p with
high predicted positives and low precision and a classifier
hp with low predicted positives and high precision. In this
case, we can have LCBpy|PPhy| < (1 — €)UCB,| PPip| and
LCB,|PPyy| < (1 — €)UCBhyp|PPhp| which means that if
both of these classifiers are active (in A) then neither of them
can be in RQ. The reason that this can happen is that when
|PPpy| < |PPyp| we are likely to draw many more samples
from lp than from hp and this imbalance means that while
the reach bounds for lp are reasonably tight those for hp are
not. Let’s consider a specific example of this type in which
hp has perfect precision with test set reach of 10 and Ip
has predicted positive set of size 10Y and precision 10°7Y
for y > x. These two models have identical reach. Unfortu-
nately, as y grows the variance in our reach estimate grows
and it become harder and harder for either to become a
member of RQ). We have a bound on the precision. In par-
ticular, we know that 10°~Y > PT — ~. One simple way to
obtain a bound for shared sampling is to use the ratio of the
sized of predicted positive sets. In particular, let classifier
amax be the acceptable classifier with the largest predicted
positive set and let classifier amin be the acceptable classi-
fier (possibly a good classifier) with the smallest predicted

PP
[PPamax] then, after we
‘Ppamin [ ’

sample mn. samples using our pooled-sampling we will, in
expectation, label n. predicted positives from classifier amin.
In this case, if we choose the active classifier with maximal
upper bound reach it will be in R(Q).

In order to return a classifier with high probability, our
results require that T is sufficiently large. We note that
the value of T required is a function of PT,¢,y, m, and §. If
desired, one can compute the minimum value of T by solving
a fixed-point equation. [J

Note that Theorem 2 shows the number of samples needed
for round robin is linear in the number of classifiers. For
Theorem 3 we show a similar statement for pooled sampling
with shared labels although the bound is somewhat looser.
Despite this, in the empirical analysis in Section 5, we will
see that the performance in practice of pooled sampling with
shared labels is often much better than round robin.

positive set. If we define n. to be n.

S. EXPERIMENTS

To study the empirical performance of our algorithm we
evaluate several variants of the algorithm that give rise to
natural baselines in the setting of model selection for topical
text classifiers for web pages. Since our algorithms apply to
any classification setting, we chose to focus on topic classifi-
cation since it is both well studied and it allows us to select
a publicly available dataset for reproducibility.

5.1 Data

To evaluate the model selection properties of the algo-
rithms, we use all 15 topical top-level categories of the Open
Directory Project (ODP) web hierarchy.! We selected ODP
as a representative set of topical classification tasks whose
top-level categories vary in both frequency of positives (from
1.8% for Home to 15.5% for Arts) as well as classification
performance — two varying qualities that might be expected
to impact model selection. For each of these topics we in-
dependently trained a bag-of-words binary logistic regres-
sion model on the content crawled from URLs in the hi-

Lwww.dmoz.org

erarchy. Any URL belonging to the topic or to a descen-
dant of the topic is considered a positive example for that
topic while any URL which does not belong to the topic
or its descendants is considered a negative. One typical
model selection problem is choosing what threshold should
be used when deploying a classifier for a particular perfor-
mance constraint. We use this as the setting for our clas-
sifiers and implicitly generate thresholds by considering a
set of 9 classifiers for each topic. Although we note that
our algorithm applies to other more general model selec-
tion problems this helps us ensure that we have classifiers
at a variety of precision and reach levels while at the same
time studying a common application setting for model selec-
tion. The 9 classifiers for a particular topic are generated by
ranking the entire test set by the prediction of the classifier
and then predicting the top n to be positive. The minimal
value of n considered was n = 50 and n was doubled there-
after. That is, the 9 classifiers for a topic would predict
the top n = {50,100, 200, 400, 800, 1600, 3200, 6400, 12800}
were positive.? For each topic, the algorithms select which
threshold would yield the best reach subject to the precision
constraints.

5.2 Algorithms

We investigated several variants of our algorithm that cor-
respond to natural baselines and help illustrate the key as-
pects of our algorithm. We vary the choice of the Sample-
AndUpdateStatistics algorithm between a round-robin algo-
rithm and the pooled-sampling-shared-label algorithm (Al-
gorithm 2). This enables us to determined the impact on
reduced labeling cost obtained through the pooled sampling.

We also vary the choice between using model elimination
and no model elimination. Model elimination means that
models are eliminated after each sample if possible because
either their precision is outside of constraints or their reach
is below another precision-qualified candidate. No model
elimination means that the set of active classifiers A is al-
ways equal to {1...m}. This helps us determine to what
extent reduction in labeling cost is due to identifying models
to eliminate early.

We also consider using early stopping or not. Early stop-
ping stops sampling labels as soon as a candidate that can
be guaranteed to meet all constraints is found whereas no
early stopping always exhausts the full budget. This variant
enables us to more directly measure how quickly we can de-
termine when to stop in comparison to the same (or a similar
algorithm) using bounds based on the same total budget.

Finally, we consider how costly it is to require statistical
guarantees, and we employ a guessing variant that selects
the current maximizer of reach with acceptable precision
even if a statistical guarantee cannot be given for it. While
in general most production systems would desire a statistical
guarantee, this enables understanding how often a heuristic
is right that spends a given budget and then guesses if sta-
tistical significance has not been reached.

We now give a full description for each algorithm as well
as an abbreviation to refer to it in brief. Our primary “full”
algorithm is variant 7 below. Given these design choices we
then have the following algorithms:

2Note that once a model is selected the prediction threshold
value for a particular classifier can be generated by taking
the average score of the n and n + 1 example for the value
of n for that classifier.



. RR-NES-NME-NG: Round Robin, No Early Stopping,
No Model Elimination, No Guesses

Round robin is the most basic and straightforward
baseline to consider when sampling. The algorithm
rotates through the classifiers and independently sam-
ples a predicted positive for the current classifier and
updates the performance estimates for that classifier.
The algorithm continues until the labeling budget is
exhausted and then selects a model if one can be se-
lected while providing statistical guarantee or other-
wise outputs . This baseline indicates what the straight-
forward approach can do while maintaining a statisti-
cal guarantee.

. RR-NES-NME-G: Round Robin, No Early Stopping,
No Model Elimination, allow Guesses

This approach is like the previous, but a model that
is identified as the likely maximizer of reach with ac-
ceptable precision can be selected even if a statistical
guarantee cannot be made. It represents the setting
where a fixed budget will be spent on labeling and
then a choice would be made based on available data.

. RR-ES-NME-NG: Round Robin, Early Stopping, No
Model Elimination, No Guesses

Like approach 1, this approach applies independent
sampling but adds the ability to stop early if a model is
found for which precision and reach can be statistically
guaranteed before the labeling budget is exhausted.

. RR-ES-NME-G: Round Robin, Early Stopping, No Model

Elimination, allow Guesses

Like the previous approach (3) but the best guess can
be made for a model if the labeling budget is exhausted
and no statistical guarantee can be made.

. RR-ES-ME-NG: Round Robin, Early Stopping, Model
Elimination, No Guesses

Like approach 3, this approach applies independent
sampling and early stopping but also adds the abil-
ity to eliminate models whose precision is bound to
be outside of acceptable or whose reach is known to
be outside of the reach bounds relative to a classifier
whose precision is now bound to be acceptable. This
approach is meant to be the most competitive baseline
with our full model (described below).

. RR-ES-ME-G: Round Robin, Early Stopping, Model
Elimination, allow Guesses

Like the previous approach (5) but the best guess can
be made for a model if the labeling budget is exhausted
and no statistical guarantee can be made.

. PSSL-ES-ME-NG: Pooled Sample with Shared Label,
Early Stopping, Model Elimination, No Guesses
This is essentially our “full” algorithm. It always pro-
vides a statistical guarantee if a model is selected and
indicates the lack of a guarantee by returning .

. PSSL-ES-ME-G: Pooled Sample with Shared Label,
Early Stopping, Model Elimination, Allow Guesses
This is the version of our “full” algorithm that may not
always provide a statistical guarantee if the budget is
exhausted before a model is selected.

5.3 Experimental Methodology

To simulate a realistic setting we set the precision and
reach constraints to what we felt to be similar to operational
settings based on experience. We set the precision thresh-
old, PT = 0.90 to indicate the model must meet a high
precision threshold. We set the precision slack to v = 0.1.
Taking the precision slack of 0.1 together with the precision
threshold, this would be representative of scenarios where
the desired classifier has precision 0.80 or better. For the
confidence, 1 — §, we vary § € {0.05,0.1,0.2,0.95} where
lower values of ¢ indicates higher confidence is desired. We
focus on § = 0.05 since this value is often used for statistical
significance. For the reach slack we set ¢ = 0.1 since we
assume a setting where an approximate maximizer suffices.®
We then set the upper budget on labeling to T" = 5000 to
indicate a scenario where the user is willing to expend label-
ing budget for the right answer but still prefers to minimize
total labeling budget. Finally, to account for randomness in
the sampling, we re-run each procedure with different seeds
to produce 250 different runs and report the averages and
percentages over these runs.

5.4 Performance Measures

In terms of performance we focus on label efficiency and
how often the algorithm produces an “acceptable answer”. A
selected model is an acceptable answer if its true precision
and reach when evaluated over the full test corpus meets the
requested constraints. If the selection algorithm produces
the answer « (the trivially acceptable classifier), this is only
considered acceptable when there is no classifier that meets
the requested precision constraint.

5.5 Results & Discussion

Figure 1 presents the labeling cost of each method on the
y-axis as a function of the confidence (1 — &) on the z-axis.*
At all levels of confidence, pooled sampling with shared la-
bels (PSSL) requires less than half as many labels as the
other approaches — often it requires less than 20% of the
naive round robin approach. Furthermore, as expected it
requires a decreasing amount of labels as the requested con-
fidence in the guarantee decreases (i.e., moving toward the
right on the z-axis). In contrast, the other methods either
nearly or completely exhaust the full labeling budget in the
majority of topics and settings.

Labeling budget does not express the full story, however,
because we also wish to know that the algorithms select an
acceptable answer when they terminate. The percentage of
times an acceptable answer is selected out of all 250 random
restarts is shown in Figure 2. We see that PSSL always
produces acceptable answers with guarantees. We see that
the round robin methods can usually but not always guess
an acceptable answer but vary rarely produce a statistical
guarantee. While it may seem encouraging that they guess
an acceptable answer, the reader should keep in mind that
they typically have used 2x-5x more labels as well!

3Space prevents us from presenting results varying the slack
variables as well although we have conducted these experi-
ments and found our method performs well across a variety
of settings.

4Only the “no guesses” variants are displayed for Figure 1
since for these graphs performance between the “guess” and
“no guesses” variants are the same.



[RR-NES-NME-NG mmmm  RR-ES-NME-NG RR-ES-ME-NG EmEE PSS|-ES-ME-NG S |
Business

Adult Arts
0.05 0.1 0.2 0.95 0.05 0.1 0.2 0.95
5 5

Computers Games Health

5000

4000

3000

2000

1000

0.05 0.1
[

5000

4000

3000

2000

1000

0.05 0.1 0.2 0.95
3

Home Kids and Teens News

5000

4000

3000

2000

1000

0.05 0.1 0.2 0.95 0.05 0.1 0.2 0.95
5 3 5

Recreation Reference Science

5000

4000

3000

2000

1000

0.05 0.1 0.2 0.95
[ 3 5

Shopping Society Sports

0.05 0.1 0.2 0.95
[

5000
4000
3000
z
2000
1000
0
0.05 0.1 0.2 0.95 0.05 0.1 0.2 0.95
3 5

Figure 1: Number of labels needed on average vs § (= 1 - confidence) over 250 repetitions in ODP top-level
classes. As ¢ increases (and the confidence requested decreases) our method requires few labels.
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6. RELATED WORK

There is a body of work on adaptively evaluating the per-
formance of classifiers. For instance, Bennett & Carvalho
[3] use adaptive importance sampling to reduce the number
of samples required to estimate the precision of classifiers.
Similarly, Sawade et al. [9] use an active evaluation approach
for estimating the F,-measure (an unthresholded tradeoff
between precision and recall) of a given model.

From the perspective of model selection, there is wide
agreement that, for many use scenarios, the selection cri-
teria for classifiers requires a tradeoff. This can be seen
in the use of receiver-operator-characteristic (ROC) curves
and precision-recall curves. We focus on the precision-recall
tradeoff because this tradeoff has advantages for skewed data
[5]. As we argue, reach may often be more suitable than re-
call (see [10] for additional supporting arguments).

Similar to our paper, Arasu et al. [1] consider optimiz-
ing reach subject to a precision constraint for the problem
of record matching. Their algorithm, unlike ours, makes a
monotonicity assumption on the precision and recall of the
classifier over its parameter space. Furthermore, it can re-
quire a large number of samples [2] and does not provide
statistical guarantees. Bellare et al. [2] use a black-box
approach leveraging existing active learning algorithms to
choose models on the basis of recall given a precision con-
straint for the problem of entity matching. Because they
use a black-box approach, the guarantees provided are not
as strong as those that we present in this paper and apply
to recall rather than reach.

More broadly, there is a large body of work on adap-
tive design and adaptive estimation. This includes work on
Bayesian clinical trials [4], adaptive dose-finding designs [8],
and active learning. In several respects, our work is similar
in spirit to and draws inspiration from the work of Even-Dar
et al. [6] who provide bounds on the sample complexity of
finding e-optimal solutions (solutions that are within € of the
best arm). The parameter € can be thought of as a “slack
value” that enables the authors to provide sample complex-
ity bounds that do not depend upon the statistical proper-
ties of the arms of the bandit. Thus, the required number
of samples only depends upon the desired guarantees and
the choice of slack variable. In several of our algorithms, we
leverage a similar approach, but we use a relative rather than
additive error (for reach in our case) that makes more sense
for our application. In addition, we add a second “slack
variable” to handle our precision threshold. This enables
us to obtain sample guarantee for several of our algorithms
that, analogous to [6], do not depend upon the statistical
properties of the classifiers provided.

7. CONCLUSION

In this work, we described how the problem of selecting a
high recall classifier subject to precision constraints can be
reduced to the problem of selecting a high reach classifier
with the same precision constraints. The switch from max-
imizing recall to reach is a subtly important one that relies
on the observation that the denominator of recall is constant
across all models being evaluated and that it is this denomi-
nator which greatly increases the cost of accurately estimat-
ing recall. We then develop several algorithms for efficiently
(in terms of label cost) selecting a high reach classifier that
has acceptable precision. Our framework is flexible and en-

ables the user to specify both hard bounds and slack on the
precision and reach conditions. Furthermore, we provide
statistical guarantees for the selected classifier and sample
complexity guarantees for our algorithms. Empirical com-
parison of our algorithm to other approaches demonstrate
that our algorithms can significantly reduce the number of
samples required to select classifiers while providing guar-
antees on the selected model’s classification performance.

References

[1] A. Arasu, M. Gétz, and R. Kaushik. On active learning
of record matching packages. In Proceedings of the 2010
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’10, pages 783-794, New York,
NY, USA, 2010. ACM.

[2] K. Bellare, S. Iyengar, A. Parameswaran, and V. Ras-
togi. Active sampling for entity matching with guar-
antees. ACM Trans. Knowl. Discov. Data, 7(3):12:1-
12:24, Sept. 2013.

[3] P. N. Bennett and V. R. Carvalho. Online stratified
sampling: evaluating classifiers at web-scale. In In
CIKM, pages 1581-1584, 2010.

[4] B. P. Carlin, J. B. Kadane, and A. E. Gelfand. Ap-
proaches for optimal sequential decision analysis in clin-
ical trials. Biometrics, 54(3):964-975, 1998.

[5] J. Davis and M. Goadrich. The relationship between
precision-recall and ROC curves. In Proceedings of the
23rd International Conference on Machine Learning,
ICML ’06, pages 233-240, New York, NY, USA, 2006.
ACM.

[6] E. Even-Dar, S. Mannor, and Y. Mansour. Pac bounds
for multi-armed bandit and markov decision processes.
In Proceedings of the 15th Annual Conference on Com-
putational Learning Theory, COLT 02, pages 255—270,
London, UK, UK, 2002. Springer-Verlag.

[7] Q. Guo, R. W. White, Y. Zhang, B. Anderson, and
S. Dumais. Why searchers switch: Understanding and
predicting engine switching rationales. In Proceedings of
the 34th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval
(SIGIR 2011), pages 334-344, 2011.

[8] A. Hirakawa, N. A. Wages, H. Sato, and S. Matsui.
A comparative study of adaptive dose-finding designs
for phase I oncology trials of combination therapies.
Statistics in Medicine, 34:3194-3213, 2015.

[9] C. Sawade, N. Landwehr, and T. Scheffer. Active es-
timation of f-measures. In J. D. Lafferty, C. K. L
Williams, J. Shawe-Taylor, R. S. Zemel, and A. Cu-
lotta, editors, Advances in Neural Information Process-
ing Systems 23, pages 2083-2091. Curran Associates,
Inc., 2010.

[10] J. Zobel, A. Moffat, and L. A. Park. Against recall: Is it
persistence, cardinality, density, coverage, or totality?
SIGIR Forum, 43(1):3-8, June 2009.



