
A Web-based Text Corpora Development System

Dan Bohuş, Marian Boldea

“Politehnica” University of Timişoara
Vasile Pârvan 2, 1900 Timişoara, Romaniafbd1206, boldeag@cs.utt.ro

Abstract
One of the most important starting points for any NLP endeavor is the construction of text corpora of appropriate size andquality. This
paper presents a web-based text corpora development systemwhich focuses both on the size and the quality of these corpora. The
quantitative problem is solved by using the Internet as a practically limitless source of texts. To ensure a certain quality, we enrich the
text with relevant information, to be fit for further use, by treating in an integrated manner the problems of morpho-syntactic annotation,
lexical ambiguity resolution, and diacritic characters restoration. Although at this moment it is targeted at texts inRomanian, the system
can be adapted to other languages, provided that some appropriate auxiliary resources are available.

1. System Overview

This paper presents a web-based text corpora develop-
ment system which focuses on both their size and quality,
built by adapting several existing tools to the necessitiesof
the intended task and the peculiarities of the Romanian lan-
guage, and by creating a couple of new ones.

The structure of the system is illustrated in Figure 1. It
is composed of four main modules, each of them acting se-
quentially and performing some basic operation on the in-
put text: acquisition, segmentation, dictionary lookup, and
part-of-speech disambiguation. For an easier control, the
modules are encapsulated by a graphical user interface built
as a Tcl/Tk wrapper.

Since we use the Internet as a source of raw texts,
the acquisition module performs text acquisition from both
HTML and plain text files. A dedicated scripting language
was developed to solve the problem of extracting the useful
text from HTML files.

Next, the segmentation module translates the text into
a stream of tokens, thus forming the Annotated Text Cor-
pus. This module was built using the flex lexical analyzers
generator (FSF-GNU, 2000a) , and support for dynamically
extending the set of segmentation rules is included via the
wrapper interface.

After segmentation, the dictionary lookup module iden-
tifies the dictionary words from which every word token
could have been obtained, each of them with its corre-
sponding lemma and morpho-syntactic description. A fi-
nite state automata software package (Daciuk, 1998) was
used to compile the large scale morpho-syntactic dictionary
(MSD) as a transducer, reducing the lookup time.

Furthermore, we use a probabilistic part-of-speech tag-
ger to disambiguate between the different variants obtained
for some word tokens from the dictionary lookup. For this
purpose we adapted the ISSCO TATOO tagger (Robert,
1998) to the Romanian language.

The files in both the Plain Text Corpus and the An-
notated Text Corpus are saved in SGML format, with ap-
propriate annotations for each identified token. Attributes
regarding each file (e.g. collection date, source, manual
intervention flags) are also saved for corpus management
purposes.

Plain
Text

Corpus

HTML to Text
scripts

Segmentation
Module

Segmentation
rules

Stochastic
Model

Training
Module

Acquisition
Module

Lookup
Dictionary

Corpus

Annotated
Text

TATOO TAGGER

T
ex

t A
cq

ui
si

tio
n

an
d

S
eg

m
en

ta
tio

n
T

ex
t P

ro
ce

ss
in

g

MS dictionary
(compiled)

POS
Disambiguator

Internet

Figure 1: System overview

To make the system accessible even to non-specialists,
and to facilitate manual interventions and corrections in the
corpora, a graphical user interface was built using Tcl/Tk.
The interface provides flexible access to all modules, en-
compassing them into a Corpora Development Workbench.

In the following sections of this paper we will present
in detail each of these modules, then we will describe some
experiments and results using this system.

2. Text Acquisition and Segmentation

The first issue addressed is plain text acquisition: lately
the number of WWW sites that can be used as sources
of texts (e.g. newspapers and radio-TV broadcast stations
sites) has grown tremendously, so we took into account the
Internet as a source of raw texts.

We have identified over 20 such (Romanian)
newspaper-sites, a couple of magazine-sites, and a
couple of news-sites. Most of them maintain archives with
their past issues, thus providing a large quantity of text in
HTML format. Another advantage is the fact that these
texts are mostly free of grammatical errors. However, as
nothing is perfect, there is also a downside: most of them
lack the diacritic characters, and this is one of the main
problems addressed by our system.

2.1. Text Acquisition

The actual task of downloading information from
WWW sites was automated by means of standard UNIX
tools such as wget (FSF-GNU, 2000b) and cron.

The acquisition module acts upon the downloaded files,
gathering data from both plain text and HTML files. While
acquisition from text files is straightforward, extractingthe
useful text from HTML files raises some problems. Due
to the complex structure of the respective pages, a simple
HTML-to-text conversion is not sufficient in most cases, as
it would introduce a lot of undesirable text (links, advertise-
ments, email addresses, etc.).

To solve this problem of text collection from HTML
files, a dedicated scripting language and a simple interpreter
were developed. As the example in Figure 2 shows, such
an HTML-to-text (H2T in the sequel) conversion script is
composed of 3 sections:ON EXTRACT, SEQUENCEand
LAYOUT.

The mechanism is rather simple: the acquisition mod-
ule advances a pointer through the HTML file accord-
ing to instructions in theSEQUENCEsection. Two
types of instructions are allowed here: instructions for
advancing the pointer until a certain string or HTML
tag is encountered (SKIP TO <TAG|string>), and in-
structions for extracting text to a variable until a cer-
tain string or HTML tag (EXTRACT TO <variable>
UNTIL <TAG|string>).

The ON EXTRACTsection controls the behavior of
the acquisition module during the extraction phase. In-
structions for ignoring strings or HTML tags (IGNORE
<TAG|string>), and instructions for replacing them
with other strings (REPLACE <TAG|string> WITH
<string>) were designed. As the example shows, this
allows ignoring irrelevant text-formating tags and replac-
ing certain characters in the HTML file with their standard
SGML encoding.

Finally, the LAYOUTsection instructs the acquisition
module how to layout the extracted text in the output file.
The example illustrated in Figure 2 uses a single variable
(text) for text extraction, but the language allows for any
number of variables, and the text collected to these vari-
ables is output in the order specified by theTYPE instruc-
tions.

ON EXTRACT
IGNORE TAG /center
IGNORE TAG center
IGNORE TAG font
........
REPLACE TAG br WITH ‘\n‘
REPLACE TAG p WITH ‘\n‘
........
REPLACE ‘\xAA‘ WITH ‘Ş‘
REPLACE ‘\xBA‘ WITH ‘ş‘
........

END ON EXTRACT

SEQUENCE
SKIP TO TAG /table
SKIP TO TAG /center
SKIP TO TAG /font
SKIP TO TAG /div
SKIP TO TAG /div
SKIP TO TAG br
SKIP TO TAG br
EXTRACT TO text UNTIL TAG /td

END SEQUENCE

LAYOUT
TYPE text

END LAYOUT

Figure 2: HTML-to-text script

Although this approach is very simple, we found it to
be also very effective. The HTML files posted within the
same archive generally share the same page structure, and
the extraction language is expressive enough to cover the
small differences that might exist (for more details see the
Experiments section). Therefore, in many cases, writing
an extraction script per archive should be sufficient, and
support for easy development and testing of these scripts
is included in the graphical interface.

As output, the acquisition module generates Plain Text
Files (PTF in the sequel), thus forming a Plain Text Cor-
pus. Each file is in SGML format, and contains the ex-
tracted text, preceded by a header with various information
about the file itself: source, H2T script, acquisition date,
a manual intervention flag, link to its correspondent file in
the Annotated Text Corpus.

The correctness of the text extraction process can be
automatically verified simply by checking for empty PTF
files. As a secondary automatic check method, we perform
a heuristic search for HTML tags that might have slipped in
the extracted text. Finally, manual intervention can easily
be performed from the embedding Corpora Development
Workbench.

2.2. Text Segmentation

The next operation performed is text segmentation. The
segmentation module, built upon the flex lexical analyz-
ers generator (FSF-GNU, 2000a) translates the text into a

stream of lexical units (tokens).
A basic set of regular expressions were written to iden-

tify 8 types of segmentation units:WORD, PUNCTUATION,
ABBREV, ACRONYM, SPECIAL, TIME, NUMBERandEOS
(end-of-sentence marker). The graphical interface provides
support for refining these predefined rules, adding new
types of segmentation units, and for performing easy man-
ual interventions and corrections in the segmented files.

The segmentation module generates Annotated Text
Files (ATF in the sequel), thus forming the Annotated
Text Corpus. These files are also in SGML format and
their structure is somewhat similar to the PTF files. The
header contains general information about the file, and a
set of flags indicating whether the file has also been passed
through dictionary lookup and part-of-speech tagging. For
each identified token, attributes such as token type, value,
and a manual intervention flag are saved.

3. Text Processing
While using the Internet as a source of raw text helps

to solve the quantitative problem, it also introduces a new
one: the largest part of these electronic texts exhibits a trou-
blesome lack of diacritics.

Several solutions can be used for dealing with this prob-
lem (Tufiş and Chiţu, 1999; Scheytt et al., 1998). We com-
bined a couple of technologies to solve it: a compressed
representation of a large-scale morpho-syntactic dictionary
by means of finite state automata, and probabilistic part-of-
speech tagging.

3.1. Dictionary Lookup

The first step in diacritics restoration is looking up each
identified WORDtoken in a large scale morpho-syntactic
dictionary. This operation is performed by the dictionary
lookup module and results in a list of words from which
the current token could have been obtained (by stripping
off the diacritics), each word with its corresponding lemma
and morpho-syntactic description.

The dictionary used for Romanian was developed in the
MULTEXT-East project, together with similar resources
for other five Central and Eastern European languages
(Tufiş et al., 1998). It covers the full inflectional paradigms
of the words appearing in the Romanian parts of the
MULTEXT-East corpus, plus other common Romanian
words. Each entry consists of a word, its correspond-
ing lemma, and morpho-syntactic description (MSD), with
a total of about 420000 entries, 33000 lemmas, and 611
MSDs.

There has been shown (Mohri, 1996) that very good
compression ratios and lookup times can be obtained by
representing the dictionary using finite state automata. To
this end, we adapted the UTR package, written and made
freely available for research purposes by Jan Daciuk (1998)
atwww.pg.gda.pl/˜jandac/fsa.html .

The dictionary was brought to an appropriate form and
compiled as a transducer using the above-mentioned soft-
ware, thus reducing its size from 15 Mbytes to 849 Kbytes.
This representation of the lexicon allows a fast search of all
words that could have generated aWORDtoken, and also

provides the corresponding lemma and MSD of each word,
as outputs of the transducer.

The dictionary lookup module was written using the
functions in the UTR library. It takes as input an ATF file,
performs the lookup for eachWORDtoken, and annotates it
with the matching dictionary word(s), if any. The results
classify theWORDtokens in 3 categories: (a) not found in
the dictionary, (b) matching a single dictionary word, and
(c) matching multiple dictionary words (for quantitative re-
sults see the Experiments section).

The unknownWORDtokens represent a problem, as di-
acritics can be restored only manually in their case. For the
second category, the diacritics restoration problem is con-
sidered to be solved – each token is replaced with the corre-
sponding dictionary word, as this is probably the only one
that could have generated it. For tokens where multiple al-
ternatives exist, a decision as to which might be the correct
word is made using a probabilistic part-of-speech tagger.

3.2. Part-Of-Speech Tagging

The core task in part-of-speech tagging (or disambigua-
tion) is choosing the most likely tag for each word in a con-
text, given a set of possible tags (Armstrong et al., 1996). In
our system, part-of-speech tagging is used not only for lex-
ical ambiguity resolution, but also for diacritics restoration,
by identifying the dictionary word that could have gener-
ated a certainWORDtoken. This was realized by adapting
the ISSCO TATOO HMM-based tagger (Robert, 1998) to
the Romanian language.

As Romanian is a highly inflectional language, the
MULTEXT-East Romanian dictionary contains 611 differ-
ent morpho-syntactic categories. Because creating a lan-
guage model based on this large number of MSDs could
have overcome the capabilities of our computing resources,
we use a reduced tagset, as proposed by Tufiş in the tiered
tagging approach (Tufiş, 1999). By reducing the number of
tags to 92 (the reduced CTAG tagset), the size of the pre-
tagged corpus necessary for building an accurate language
model is also reduced. As the experiments will show, the
WORDtokens still ambiguous after tagging, partly due to
tagset reduction, represent less than 5%, and are more of-
ten than not the difficult cases in statistical disambiguation
(Tufiş and Mason, 1998), making worth the compromise.

Once the tagset established, the only other language-
dependent resource needed for building a model is a pre-
tagged training corpus. For this purpose, we used a tagged
version of Orwell’s famous novel “1984”, also developed
within the MULTEXT-East project. The text was brought
to an appropriate form, and the trainer module of TATOO
(based on the Baum-Welch reestimation algorithm) was
used to create a bigram language model over the CTAG
tagset.

The POS disambiguator module uses the TATOO tagger
as a child process to perform disambiguation, and works on
ATF files already passed through dictionary lookup. When
compiling the dictionary as a transducer, we actually re-
placed the MSDs with the corresponding CTAGs, since we
use this reduced tagset approach in disambiguation. There-
fore, in the lookup phase, allWORDtokens in an ATF file are
annotated with the dictionary words that could have gener-

ated them, together with their corresponding lemmas and
CTAGs.

Based on this information, the set of possible tags for
eachWORDtoken is constructed and passed to TATOO for
disambiguation: its output is then processed, and the most
likely tags string, together with the associated words, are
annotated as correct to the corresponding tokens.

In most cases, the disambiguation is complete and
uniquely identifies the dictionary word that generated a
WORDtoken, thus solving the diacritics restoration prob-
lem. For a small number of cases (see the Experiments sec-
tion), the disambiguation is not complete, partly due to the
reduced tagset we use: although the tagger decided upon a
CTAG as being the most likely one, there are more dictio-
nary words corresponding to that CTAG. Lexical ambigu-
ity resolution is not complete for these words (they are still
morpho-syntactically ambiguous), but the CTAG identifi-
cation can be in some cases enough to solve the diacritics
restoration problem. The remaining unsolved tokens are
corrected by manual intervention, which can be easily per-
formed from the Corpora Development Workbench.

4. The Corpora Development Workbench
The described modules are all accessible within a sin-

gle Corpora Development Workbench, which is a graph-
ical user interface created using Tcl/Tk. The main ratio-
nale behind it was to make the system accesible even to
non-specialists, and to offer an efficient way of performing
manual interventions and corrections in text corpora.

To create a friendly interface we used the Tix 4.1 widget
library over the extended Tcl (TclX) scripting language, in
conjunction with various shell scripts. The main window
provides easy access to all modules and processing steps:
text acquisition, segmentation, dictionary lookup, and POS
tagging/disambiguation.

The Workbench allows parallel work on multiple cor-
pora. For each corpus, a separate configuration is kept, in-
dicating the various resources used throughout the different
processing stages: the set of H2T scripts, the segmenta-
tion rules, the dictionary used for lookup, and the stochastic
model used for tagging.

The acquisition is launched by specifying a few param-
eters, such as source, type of text (plain text or HTML-
formatted), H2T script to use, and target location. The task
of writing HTML-to-text scripts is highly simplified by the
H2T scripts editor – a framed window that allows a simul-
taneous view of an HTML file, an acquisition script, and
the result of applying the script on the HTML file.

The Workbench includes support for refining and ex-
tending the existent segmentation rules. The manual seg-
mentation window, illustrated in Figure 3, provides an easy
way for performing manual corrections. Once the user has
selected a location to browse, the tokens in the file are dis-
played as a list, with their corresponding type and manual
intervention flag. By scrolling the contents of the file, the
user can easily spot possible mistakes of the segmenter, and
options such as inserting, removing, splitting, concatenat-
ing, and directly editing a token, are available.

The dictionary lookup process is also controlled from
the Workbench, dictionary management can be performed

Figure 3: Manual segmentation window

directly from the interface, and commands for automati-
cally creating lists with the unknown words from the ATF
files and adding them to the dictionary are included.

One of the primary goals in designing this integrated
graphical interface was to provide an efficient way of per-
forming manual interventions and corrections in the text
corpora, which otherwise can be a time-consuming, error-
prone operation.

Two issues had to be solved here: first, the user must
be able to easily spot and manually tag the words that are
still ambiguous after the automatic process; and secondly,
the user must be able to correct possible mistakes of the
tagger. To accommodate both these problems, we used an
approach similar to the Penn Treebank standard of ”slash
encoding”, together with highlighting certain categoriesof
tokens.

Figure 4 illustrates the manual intervention window.
Depending on the task at hand, the user can activate various
highlighting filters to spot the intended token categories.
When moving the mouse cursor over the text, the token un-
der the cursor is raised, and its attributes are displayed in
the Details area. A right-click on a token opens a context-
menu, from which the user can change the currently as-
signed CTAG and dictionary word to another variant found
in the look-up process, or to a manually specified word /
CTAG.

This way, the words that are still ambiguous after the
tagging process can be easily spotted and disambiguated,
and the same applies to the words for which diacritics
restoration did not succeed: by using different colors for
text and tags, even with slash encoding, the text stays read-
able, and the user can spot not only the words that are still
ambiguous, but also the possible mistakes of the automatic
diacritics restoration process.

The Corpora Development Workbench includes support
for various other corpora management functions. Each op-
eration performed on the data can be logged, and detailed
statistics can be performed throughout the different stages
of corpus acquisition and processing. All in all, it pro-
vides an efficient and user-friendly integrated environment
for text corpora development.

“Cronica Românã” “Dimineaţa” “22” TOTAL

HTML files 3,350 3,234 794 7,378
Total size of HTML files (kB) 40,338 38,843 8,688 87,869

ACQUISITION time (hh:mm:ss) 18:15 21:50 9:27 49:32
Number of H2T scripts used 2 1 1 4
Empty PTF files after first extraction 602 0 3 605
PTF files successfully extracted 3,350 3,234 791 7375
PTF corpus size (kB) 8,580 18,414 8,189 35,185

SEGMENTATION time (hh:mm:ss) 8:13 5:39 1:42 15:34
Total number of tokens 1,262,213 3,179,274 1,492,513 5,934,000
Total number ofWORDtokens 1,055,540 2,651,233 1,247,196 4,953,969
WORDtokens percentage 83.6 % 83.4 % 83.6 % 83.5 %

LOOKUP time (hh:mm:ss) 14:17 16:40 6:30 37:27
Unknown words 61,225 128,837 82,209 272,271
Unknown words percentage 5.8 % 4.9 % 6.6 % 5.5 %
Words with one dictionary form 441,946 1,123,510 510,366 2,075,822
Words with one dictionary form (%) 41.9 % 42.4 % 40.9 % 41.9 %
Words with multiple dictionary forms 552,369 1,398,886 654,621 2,605,876
Words with multiple dictionary forms (%) 52.3 % 52.7 % 52.5 % 52.6 %

TAGGING time (hh:mm:ss) 38:37:19 41:58:37 19:40:25 100:16:21
ATF corpus size (kB) 220,555 555,767 256,523 1,023,846
Remaining ambiguous words 47,357 117,868 53,926 219,151
Remaining ambiguous words (%) 4.5 % 4.4 % 4.3 % 4.4 %

Table 1: Sample corpora development statistics

5. Experiments
In this section we will detail some of our work in col-

lecting and developing text corpora from web-sites. The ex-
periments were performed on a Pentium II 333 MHz com-
puter with 64 MB of RAM, running Red Hat Linux 5.2.

Three web-sites were selected for these experi-
ments (Table 1): the first two, “Cronica Românã”
(domino.kappa.ro/e-media/cronica.nsf) and “Dimineaţa”
(domino.kappa.ro/e-media/dimineata.nsf), are daily
Romanian newspaper-sites, while the other, “22”
(www.dntb.ro/22/), is a weekly magazine-site, with
slightly longer articles on various subjects, and all post
archives with articles from past issues.

The first step was downloading the targeted archives:
after quickly studying the structure of each site, shell scripts
were written to download HTML files using wget (FSF-
GNU, 2000b). As Table 1 shows, this operation resulted in
7,378 files, with a total size of about 87 Mbytes.

The next step was writing H2T acquisition scripts for
these archives. For “Dimineaţa” and “22” a single one was
enough to extract the useful text from the HTML files: the
number of extraction errors for “22” (Table 1) was very
small compared to the total number of files, so we merely
discarded the resulting empty PTF files. By contrast, for
“Cronica Românã” the acquisition resulted in 602 empty
PTF files, and a second H2T script was written to cope with
structural differences between the corresponding HTML
files and the ones succesfully processed with the first. Text
acquisition using this second H2T script resulted in no fur-
ther errors.

Next, text segmentation and dictionary lookup were per-

formed, and the results on the three PTF corpora are pre-
sented in the 3rd and 4th sections of Table 1.

The fourth and final operation was part-of-speech tag-
ging. As the statistics illustrate, only about 4.4% of the
WORDtokens are still ambiguous after the tagging process,
and this relatively small number of words are to be disam-
biguated manually.

The time measurements show that text acquisition, seg-
mentation and dictionary lookup have a tens of minutes or-
der of magnitude, significantly faster than part-of-speech
tagging, which took tens of hours for the given size of the
processed corpora: leaving aside the manual work still nec-
essary to verify and correct these corpora, in less than a
week we obtained a quantity of texts large enough to e.g.
start building language models for large vocabulary contin-
uous speech recognition.

An anomaly can be noticed: while the number ofWORD
tokens in the “Dimineaţa” PTF corpus is about twice and a
half that in “Cronica Românã”, the tagging times are quite
close. This can be explained by the fact that new ambi-
guity classes were encountered and added to the model
while tagging the first corpus, thus increasing the tagging
time: the number of ambiguity classes was initially 92 (the
ones corresponding to CTAGs after training with Orwell’s
“1984”), and rose to 511 after tagging “Cronica Românã”.
By contrast, only 13 new ambiguity classes were encoun-
tered when tagging “Dimineaţa”.

Manual verification and correction of the corpora is
in progress, and evaluations concerning both diacritics
restoration and lexical ambiguity resolution performance
will be conducted upon its completion.

Figure 4: Manual intervention window (tagging/diacriticsrestoration)

6. Conclusion
In this paper we have presented our work so far on cre-

ating a web-based text corpora development system by in-
tegrating several existing tools with a couple of new ones,
together with the first experiments on using it.

The manual verification and correction of the resulting
corpora, necessary for a detailed performance evaluation,is
still under way, but a preliminary statistic analysis of sys-
tem’s behavior demonstrates its efficiency as a means to
quickly collect and process significantly large text corpora.

Although the system is targeted at Romanian, it can be
adapted to other languages, given a couple of appropriate
resources: a large-scale morpho-syntactic dictionary, and a
pre-tagged text corpus.

Besides improvements of various modules, future work
will concentrate on thorough performance evaluations.

7. References
Armstrong, S., G. Robert, and P. Bouillon, 1996. Building

a Language Model for POS Tagging (unpublished).
Daciuk, J., 1998.Incremental Construction of Finite-State

Automata and Transducers, and their Use in Natural
Language Processing. Ph.D. Thesis, Technical Univer-
sity of Gdańsk, Poland.

FSF-GNU, 2000a. http://www.gnu.org/software/flex/.
FSF-GNU, 2000b. http://www.gnu.org/software/wget/.
Mohri, M., 1996. On Some Applications of Finite-State

Automata Theory to Natural Language Processing.Nat-
ural Language Engineering, (2):1–20.

Robert, G., 1998. TATOO: ISSCO TAgger TOOl.
http://issco-www.unige.ch/staff/robert/tatoo/.

Scheytt, P., P. Geutner, and A. Waibel, 1998. Serbo-
Croatian LVCSR on the Dictation and Broadcast News
Domain. InProceedings ICASSP’98.

Tufiş, D., 1999. Tiered Tagging and Combined Language
Models Classifiers. In F. Jelinek and E. Nöth (eds.),Text,
Speech and Dialogue, volume 1692 ofLecture Notes in
Artificial Intelligence. Springer.

Tufiş, D. and A. Chiţu, 1999. Automatic Diacritics Inser-
tion in Romanian Texts. InProceedings International
Conference on Computational Lexicography - COM-
PLEX’99. Pecs, Hungary.

Tufiş, D., N. Ide, and T. Erjavec, 1998. Standardized
Specifications, Development and Assessment of Large
Morpho-Lexical Resources for Six Central and East-
ern European Languages. InProceedings First LREC.
Granada, Spain.

Tufiş, D. and O. Mason, 1998. Tagging Romanian Texts:
a Case Study for QTAG, a Language Independent Prob-
abilistic Tagger. InProceedings First LREC. Granada,
Spain.

