IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Venus: Scalable Real-time Spatial Queries on
Microblogs with Adaptive Load Shedding

Amr Magdy*, Mohamed F. Mokbel*, Sameh Elnikety?, Suman Nath’ and Yuxiong He$
*Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455
$Microsoft Research, Redmond, WA 98052-6399

Abstract—Microblogging services have become among the most popular services on the web in the last few years. This led to
significant increase in data size, speed, and applications. This paper presents Venus; a system that supports real-time spatial queries
on microblogs. Venus supports its queries on a spatial boundary R and a temporal boundary 7', from which only the top-k microblogs
are returned in the query answer based on a spatio-temporal ranking function. Supporting such queries requires Venus to digest
hundreds of millions of real-time microblogs in main-memory with high rates, yet, it provides low query responses and efficient memory
utilization. To this end, Venus employs: (1) an efficient in-memory spatio-temporal index that digests high rates of incoming microblogs
in real time, (2) a scalable query processor that prune the search space, R and T, effectively to provide low query latency on millions of
items in real time, and (3) a group of memory optimization techniques that provide system administrators with different options to save
significant memory resources while keeping the query accuracy almost perfect. Venus memory optimization techniques make use of
the local arrival rates of microblogs to smartly shed microblogs that are old enough not to contribute to any query answer. In addition,
Venus can adaptively, in real time, adjust its load shedding based on both the spatial distribution and the parameters of incoming query
loads. All Venus components can accommodate different spatial and temporal ranking functions that are able to capture the importance
of each dimension differently depending on the applications requirements. Extensive experimental results based on real Twitter data
and actual locations of Bing search queries show that Venus supports high arrival rates of up to 64K microblogs/second and average
query latency of 4 msec.

Index Terms—Microblogs, Spatial, Location, Temporal, Performance, Efficiency, Scalability, Memory Optimization, Social.

O

1 INTRODUCTION their customers based on nearby events, or individuals wdmdt w
to know ongoing activities in a certain area. For exampl&pnil
2013, Los Angeles Times reported [4] how people rush to ®witt

The new wave of user-interactive microblogging services,, e for real-time breaking news about Boston Marathon explasion

tweets, comments on Facebook or news websites, or Fouesqu%h’Ch users may not know the appropriate keyword or hash tag
check-in’s, has become the clear frontrunner in the socedian to search for. Instead, they want to know the recently posted

race with the largest number of users ever and highest usg}Jgroblogs In a certalr_l_parncular area. Thusz our goal here i
activity in consistent rates. For example, Twitter has 2B8Hion not to replace_the trad|t|on_al keyword search n microbjdgst
active users who generate 500+ Million daily tweets [1],, [Z]ra_ther to provide another |mportan_t search optlon_for ized
while Facebook has 1.35+ Billion users who post 3.2+ Billioff"iCroPlogs. The answer of our spatio-temporal queries eafet
daily comments [3]. Motivated by the advances in wirelessi.co [© Other modules for further processing, which may includene
munication and the popularity of GPS-equipped mobile desjic 96tECtion. keyword search, entity resolution, sentimeratiysis,
microblogs service providers have enabled users to attaehion or V|sua.||zat|on.)

information with their posts. Thus, Facebook added theoogti " this paper, we preseknusa system for real-time support
of location check-ins andhear where users can state a nearb f.spatlo-temporallqger!es on microblogs. Due to large rensibf
location of their status messages, Twitter automaticaligtares Mcroblogs,venuslimits its query answer to onlj most relevant

the GPS coordinates from mobile devices, per user permi,ssifjmCrObIOgS so that it_ can be easily navigated by _human USETS.
and Foursquare features are all around the location infimma Microblog relevance is assessed based on a ranking funétion

and the whereabouts of its users. Consequently, a plethoraﬂB?t combines the time recency and the spatial proximityhe t

location information is currently available in microblogs querying_user. In additiorvenusexploits the fact that Fhe more
We exploit of the availability of location information in mi recent mu;roblogs data, the m_ore important for real_-tlmer[qas
croblogs to support spatio-temporal search queries whseesu to bound its search space to include only those microblogs th

are able to browse recent microblogs near their locationgah have arrived during the ladl' time units within a spatial query

time. Users of our proposed queries include news agencigs (erangeR. Thus, Venususers can post queries gat a set of top-k

CNN and Reuters) to have a first-hand knowledge on events'rfﬂevant microblogs, ranked by a spatio-temporal funcfothat

a certain area, advertising services to serve geo-targatedo are posted within a spatial range R in the last T time units
' To support its queried/enusfaces two main challenges: high

. The work of the first two authors is partially supported by the Nmtlo arfival rates Qf real'tim.e mic_rqblogs and the need for lovergu
Science Foundation, USA, under Grants 1S-0952977 and 11S-1218168 response while searching millions of data items. Both chghs

Social media websites have grabbed big attention in theléxstde
due to its growing popularity and unprecedentedly large base.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

call for relying on only main-memory indexing to digest andperformance of different system components, in terms ofinm
query real-time microblogs. Hencégnusemploys an in-memory time, storage overhead, and query accuracy, with the mast tw
partial pyramid index [5], equipped with efficient bulk im8en, recognized ranking functions in the literature that sgtisbst of

bulk deletion, speculative cell splitting, and lazy cell ngiag the practical applications requirements.

operations that make the index able to digest the high &rriva We evaluate the system experimentally using a real-time fee
rates of incoming microblogs. Incoming queries efficiemthploit of US tweets (via access to Twitter Firehose archive) andahct
the in-memory index through spatio-temporal pruning téghes locations of Bing web search queries. Our measurements show
that minimize the number of visited microblogs to returnfimal thatVenussupports arrival rates of up to 64K microblogs/second,
answer. average query latency of 4 msec, minimal memory footprams,

Venuscan employ different ranking functions to be able t@ very high query accuracy of 99%. The contributions of thjzgpra
serve requirements of different applications. Based on taicer are summarized as follows:
ranking function, the differeffenuscomponents are optimized for 1)
preset default values df, R, T', and«. Queries with less values
than the default can still be satisfied with the same perfanea 2)
Yet, queries with higher values may encounter higher cost as
they may need to visit a secondary storage. This goes alotig wi
the design choices of major web services, e.g., Bing and @oogl)
return, by default, the top-(k=10) most relevant search results,
while Twitter gives the most recekt(k=20) tweets to a user upon
logging on. If a user would like to get more thamesults, an extra
query response time will be paid.

As main-memory is a scarce resource, relying on main-
memory indexing requires efficient management of the avigla
memory resources. Although storing and indexing all incami)
microblogs from the last defaull’ time units ensures that all
incoming queries will be satisfied from in-memory contents,
which may require very large memory resources, which can be 6)
prohibitively expensive. Hence, we propose effective mgmo
optimization techniques: (1) We analytically developiragiex size
tuning technique that achieves significant memory savings (up to
50%) without sacrificing the query answer quality (more tBaféo)
accuracy). The main idea is to exploit the diversity of atfrrates
per regions. For example, city centers have higher arriatdsr
than suburban areas. Hence, the komicroblogs would have
arrived more recently in city centers than suburban areashéh
maintain only the items that may appear in user queries aletiede
items that are old enough to be dominated by others. (2) bt ti 2 RELATED WORK
memory configurations, we provide a parametrileatl shedding Due to its widespread use, recent research efforts haverexbl
technique that trades significant reduction in the memaooypiont various research directions related to microblogs. This gbeng
(up to 75% less storage) for a reasonable loss in query agcuréhe way of the system stack starting from logging [7] and nvaeh
(up to 8% accuracy loss). The idea is to expel from memorylearning techniques [8] to indexing [9], [10], [11], [12]design-
set of victim microblogs that are less likely to contributea ing a SQL-like query language interface [13]. In additioeveral
query answer. (3) Building on our parametrized load sheddirdforts have focused on analyzing microblog data, whicluithe
technique, we develop two parameter-fesfaptive load shedding semantic and sentiment analysis [14], [15], [16], decigiak-
techniques that give the option to automatically tune thedloing [17], news extraction [18], event and trend detectid][[20],
shedding in different spatial regions adaptively with theaming [21], [22], [23], understanding the characteristics of mdog
query loads. These techniques catch the spatial diswibati the posts and search queries [24], [25], microblogs ranking, [26],
incoming queries as well as the spatial access patterng sfdned and recommending users to follow or news to read [28], [29].
microblogs so that they bring the storage overhead to itsmmaih Meanwhile, recent work [18], [30] exploited microblogs temts
levels (up to 80% less storage) while allow to answer quevids to extract location information that is used to visualizemblog

We provide a crisp definition for spatio-temporal search
queries over microblogs (Section 3).

We propose efficient spatio-temporal indexing/expgllin
techniques that are capable of inserting/deleting mi-
croblogs with high rates (Section 4).

We introduce an efficient spatio-temporal query processo
that minimizes the number of visited microblogs to return
the final answer (Section 5).

4) We introduce anindex size tuningnodule that dynam-
ically adjusts the index contents to achieve significant
memory savings without sacrificing the query answer
quality (Section 6).

We introduce #ad sheddingechnique that trades signif-
icant reduction in memory footprint for a slight decrease
in query accuracy (Section 7).

We introduce twadaptive load sheddingechniques that
exploit the spatial distribution of incoming queries and
data to automatically tune the load shedding adaptively
(Section 8).

We provide experimental evidence, based on real system
prototype, microblogs, and queries, showing tetuss
scalable and accurate with minimal memory consumption
(Section 9).

almost perfect accuracy (more than 99% in all cases). posts on a map [31], [32] and model the relationship betwsen u
Venusis the successor oMercury [6], from which it is interests, locations, and topics [33].
distinguished by: (1) Optimizing its index, query procassnd With such rich work in microblogs, the existing work on

memory optimization techniques for different ranking ftioos, real-time indexing and querying of microblogs locationgl][3
that rank its topk answers, so that it is flexible to serve a widg¢35] mostly address variations of aggregate queries, feguent
variety of applications requirements. (2) Providing twogmaeter- keywords, that are posted on different regions. Howeverfaup
free adaptive load shedding techniques that exploit theisdpaour knowledge, there is no existing academic work that sttppo
distribution of incoming queries and data to automaticallige real-time indexing and querying to support non-aggregpégial
the load shedding adaptively so that they minimize the mgmogueries on individual microblogs locations; which is theima
footprint significantly without (almost) compromising thygiery focus of this paper. Also, although Twitter search allowsitthed
accuracy. (3) Providing experimental study that compates tspatial parameters in the query, they do not reveal the Idetai

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

In-memory Index i each microblog along with its extracted location to thedate

Gootaggind\Geotagged(Updato Insert module with the form: (ID, location, timestamp, contenthat
Modure Microb,ggs represents the microblog identifier, location, issuingetirand
Query
Module

textual contents. Location is either a preclagtude and longi-
Fig. 1. Venus system architecture.

Microblogs

Microblog
Stream

Trash tude coordinates (if known) or a Minimum Bounding Rectangle
(MBR). We extract the microblog locations through one or more
of the following: (1) Exact locationsif already associated with
the microblog, e.g., posted from a GPS-enabled deviceU§2y
locations extracted from the issuing user profile. (@pntent
locations by parsing the microblog contents to extract location

of how they are supporting their spatial search and hence éormation. If the microblog ends up to be associated withren
have no insights about their techniques. Generally, therhwst than one location, we output multiple versions of it as one pe
related topics to our work amicroblog search querieandspatio- €ach location. If no location information can be extractee,
temporal streams set the microblog MBR to the whole space. As we use existing
Microblog Search Queries. Real-time search on microblogssoftware packages and public datasets for geocoding aatidac
spans keyword search [9], [10], [11], [12] and location-eava extraction, this module will not be discussed further irs thaper.
search [6], [34], [35]. The difference of one technique othe Update module. The updatemodule ensures that all incoming
other is mainly in the query type, accuracy, ranking fungtiand qgueries can be answered accurately from indexed in-memory
memory management. Other thistrercury [6], the predecessor of contents with the minimum possible memory consumption. This
Venus the existing location-aware search on microblogs mostl§ done through two main tasks: (1) Inserting newly coming
address aggregate queries. None of these work have adtire§g€roblogs into the in-memory index structure. (2) Smacdéy
retrieving individual microblogs in real-time based onitHeca- ciding on the set of microblogs to expire from memory without
tion information. On the other hand, spatial keyword se#satell ~ sacrificing the query answer quality. Details of index ofieres
studied on web documents and web spatial objects [36], [38], and index size tuning are discussed in Sections 4, 6, 7, and 8.
[39], [40]. However, they use offline disk-based data parting Query module. Given a location search query, tqeerymodule
indexing, which cannot scale to support the dynamic natace aemploys spatio-temporal pruning techniques that redueatim-
arrival rates of microblogs [6], [9], [35], [41]. ber of visited microblogs to return the final answer. As tfuery
Spatio-temporal Streams. Microblogs can be considered asmodule just retrieves what is there in the index, it has matho
a spatio-temporal stream with very high arrival rates, whego in controlling its result accuracy, which is mainly detaned
there exist a lot of work for spatio-temporal queries ovetadaby the decisions taken at thgpdatemodule on what microblogs
streams [42], [43], [44], [45], [46]. However, the main facu to expire from the in-memory index. Details of thgerymodule
of such work is on continuous queries over moving objects. Rre described in Section 5.
such case, a query is registered first, then its answer is asedp
over timg from the in(_:oming data stream. Su_ch techn?ques e Supported Queries
not applicable to spatio-temporal search queries on micgsh
where we retrieve the answer from existing stored objecas th/enususers (or applications) issue queries on the forRettieve
have arrived prior to issuing the query. a set of recent microblogs near this locatiomternally, four pa-
Venusshares with microblogs keyword search its environmef@meters are added to this query: 1the number of microblogs
(i.e., queries look for existing data, in-memory indexingd the to be returned, (2) a rang& around the user location, where any
need for efficient utilization of the scarce memory resoyrget, Microblog located outsidé? is considered too far to be relevant,
it is different from keyword search in terms of the functittya (3) @ time spari’, where any microblog that is issued more than
it supports, i.e., spatio-temporal queries. In the meastvenus T time units ago is considered too old to be relevant, and (4) a
shares similar functionality with spatio-temporal queriwer data SPatio-temporal ranking functiofi,, that employs a parameter
streams, yet it is different in terms of the environment jports, t0 combine the temporal recency and spatial proximity ofheac
i.e., query answer is retrieved from existing data rathantiiom Microblog to the querying user. Then, the query answer ctnsis
new incoming data that arrives later. Finalienusshares with Of & microblogs posted withitk andT’, and top ranked according
both keyword search and spatio-temporal queries the need@d«- Formally, our query is defined as follows:

support incoming data with high arrival rates and the need Rgfinition: Givenk, R, T', and ,, a microblog spatio-temporal
support real-time search query results. search query from useu, located atu.loc, finds k£ microblogs

such that: (1) Thé microblogs are posted in the lagttime units,
(2) The (center) locations of themicroblogs are within range?

3 SYSTEM OVERVIEW .
)]) i) aroundu.loc, and (3) Thek microblogs are the top ranked ones
This section gives an overview ofenussystem architecture, according to the ranking functiof,.

supported queries, and ranking functions.

Answer

Our query definition is a natural extension to traditionaltsgd
range andk-nearest-neighbor queries, used extensively in spatial
3.1 System Architecture and spatio-temporal databases [47], [48]. A range quens faid
Figure 1 givesv/enussystem architecture with three main moduleggems within certain spatial and temporal boundaries. Wité
around an in-memory index, namelgeotagging update and large number of microblogs that can make it to the result, it
guerymodules, described briefly below: becomes natural to limit the result size#pand hence a ranking
Geotagging module This module receives the incoming stream ofunction F,, is provided. Similarly, ak-nearest-neighbor query
microblogs, extracts the location of each microblog, amd/éods finds theclosestk items to the user location. As the relevance

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

normalization ensures that both spatial and temporal dsines
have the same effect on the final relevance score. In thisrpape

Intermediate iz - Leaf Cells we employ the most two recognized scoring functions in the
Cells ¥ literature: the linear function (see [6]) and the exporaitinction

[dlime apZ (see [11]) to show the adaptivity of differeMenuscomponents

% =7 with the different functions. However, other scoring fuoos,

n?icrg:t?lgg that satisfy the above conditions, can be adapted usinglexhe

same procedure that are explained in each component trootigh
the paper. The scores are defined by the following equations:

list

The linear scoring functions
TemporalScore(Dy(M.time, NOW)) =

{ DeMtime. NOW) D, (M.time, NOW) < T
Fig. 2. Main memory pyramid index structure in Venus. N/A D,(M.time, NOW) > T
of a microblog is determined by both its time and location, w&patialScore(Ds(M.loc,u.loc)) =
change the terntlosestto be most relevanthence we define a D.(M.loc,u.loc)
ranking functionF,, to score each microblog within our spatial { —=F Ds(Mloc,uloc) <R
and temporal boundaries. N/A Ds(M.loc,u.loc) > R
Upon initialization, a system administrator sets defaaltes Both functions are bounded in the rangel].
for parametersk, R, T, and «. Users may still change the . . .
The exponential scoring functions
values of the default parameters, yet a query may have worse
performance if the new parameters present larger searate spAemporalScore(Dy(M.time, NOW)) =
than the default ones. Setting default parameter valuedopted { Di(M.time NOW)

by major services, like Bing and Twitter, which return the-fop e” r Dy(M.time, NOW) <T,w >0
most related search results for a preset valuk.dflowever, user N/A Dy(M.time, NOW) > T

can get more results upon request. Our system also can antapt f

dynamically changing the preset values in the middle ofapens SpatialScore(Ds(M.loc,u.loc)) =

as elaborated in Section 6. {

Dg(M.loc,u.loc)
ewX =R

Dg(M.loc,u.loc) < R,w >0
3.3 Ranking Function N/A Dy(M-toc, wloc) > B

Given a usern, located atu.loc, a microblog)/, issued at ime Both functions must have the same valueuoto be bounded in
M time and associated with locatidif.loc, and a parametér < the same rangf, e®].

a < 1, Venusemploys the following ranking functiof, (u, M)

that combines generic spatial and temporal scores in a vesigh

summation to give the relevance scoref to u, where lower 4 SPATIO-TEMPORAL INDEXING

scores are favored: We have two main objectives to satisfy Wfenusindexing. First,

Fu(u, M) = o x SpatialScore(Dy(M.loc, u.loc))+ the employed index has to digest high arrival rates of inogmi

. microblogs. Second, the employed index should expel (gelet
(1-a) xTemporalScore(Dy(M.time, NOW)) microblogs from its contents with similar rates as the airiate.

D, and D; are the spatial and temporal distances, respectiveRhis will ensure that the index size is fixed in a steady state,
In Venus we use Euclidean distance and absolute timestamgrsd hence all available memory is fully utilized. The need to
difference, though, any othenonotonicdistance functions can support high arrival rates immediately favors space-fianing
be used without changing the presented techniques. Thestargndex structures (e.g., quad-tree [49] and pyramid [5])r aleta-
possible value takes place whéfh is posted exactl{" time units partitioning index structures (e.g., R-tree). This is beeathse
ago and on the boundary of regidh «=1 indicates that the user shape of data-partitioning index structures is highlyc#d by the
cares only about the spatial proximity of microblogs, iguery rate and order of incoming data, which may trigger a largelem
result includes thé closest microblogs issued in the Ia8ttime of cell splitting and merging with a sub performance comgdce
units. a=0 gives thek most recent microblogs within rang®. space-partitioning index structures that are more regilie the
A compromise between the two extreme values gives a weightrate and order of insertions and deletions.
importance for the spatial proximity over the temporal rene To this end,Venusemploys a partial pyramid structure [5]
TemporalScoreand SpatialScorecan be any functions that (Figure 2) that consists df levels. For a given levd), the whole
are: (1) monotonic, (2) have an inverse function with respespace is partitioned intd’ equal area grid cells. At the root, one
to the spatial and temporal distance, and (3) normalizedhén tgrid cell represents the entire geographic area, leveltitipas the
same range of values where smaller values indicate moneargle space into four equi-area cells, and so forth. Dark cellsguife 2
microblogs. The inverse function is used in pruning seapats present leaf cells, which could lie in any pyramid levelhligray
and optimizing memory footprint as we discuss in the follogvi cells indicate non-leaf cells that are already decompasedfour
sections. The normalization within the same range is notra cahildren, while white cells are not actually maintainedd guast
rectness condition. However, as the scoring functionsroete presented for illustration. The main reason to use a pyratate
the decay pattern of the microblog relevance over time aadesp structure is to handle the skewed spatial distribution afrobilogs

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

efficiently, so that dense areas are split into deeper levble The parametet is a tuning parameter that trades-off insertion
sparse areas span only few levels. To elaborate, in a pyraroicerhead with the time that an incoming microblog becomes
index, a large leaf cell represents large space, when thsitdensearchable. A microblog is searchable (i.e., can appeas@ach
is low. When the density is high, the depth increases so thatesult), only if it is inserted in the pyramid structure. $we larger
cell covers a much smaller area. If we use a simple spatid| grthe value oft the more efficient is the insertion, yet, an incoming
for example, it is not clear what should be the grid size, dandrmicroblog may be held in the buffer for a while before being
will never be right, too small for some regions and too large f searchable. A typical value dfis a couple of seconds, which
others. Each maintained pyramid céll has a list of microblog is enough to have few thousands microblogs insigle Since
M _List that have arrived within the cell boundary in the 185t the average arrival rate in Twitter is 5.5K+ microblogs/(set,
time units, ordered by their timestamps. A microblog wittdtion settingt = 2 means that each two seconds, we will insert 11,000
coordinates is stored in the leaf cell containing its lamatiwhile microblogs in the pyramid structure, instead of insertimgnt one
a microblog with MBR is stored in the lowest level enclosing,ce by one as they arrive. Yet, a microblog may stay for up to two
which could be non-leaf. The pyramid index is spatio-terapor seconds after its arrival to be searchable, which is a redsen
where the whole space $patiallyindexed (partitioned) into cells, time.
and within each cell, microblogs atemporallyindexed (sorted) Bulk insertion significantly reduces insertion time as iaste
based on timestamp. of traversing the pyramid for each single microblog, we grou
Though it is most suitable t&enus existing pyramid index thousands of microblogs into MBRs and use them as our traggrsin
structures [5] are not equipped to accommodate the needs dioit. Also, instead of inserting each single microblog is it
high-arrival insertion/deletion rates of microblogs. Topport destination cell, we insert a batch of microblogs by attagha
high-rate insertions, we furnish the pyramid structure byutkk buffer list to the head of the microblog list.
insertion module that efficiently digests incoming microblogs . .
with their high arrival rates (Section 4.1) andspeculative cell 4.2 Speculative Cell Splitting
splitting module that avoids skewed cell splitting (Section 4.2). Teach pyramid index cell has a maximum capacity; set as axinde
support high-rate deletions, we providbuk deletiormodule that parameter. If a leaf cell’ has exceeded its capacity, a traditional
efficiently expels from the pyramid structure a set of midogls cell splitting module would split” into four equi-area quadrants
that will not contribute to any query answer (Section 4.3) an and distributeC’ contents to the new quadrants according to their
lazy cell mergingmodule that decides on when to merge a set dgcations. Unfortunately, such traditional splitting pealure may
cells together to minimize the system overhead (Section 4.4 not be suitable to microblogs. The main reason is that miogbl
locations are highly skewed, where several microblogs naase h
the same exact location, e.g., microblogs tagged with a hot-
spot location like a stadium. Hence, when a cell splits, @ll i
Inserting a microblogh/ (with a point location) in the pyramid contents may end up going to the same quadrant and another
structure can be done traditionally [5] by traversing theapyid split is triggered. The split may continue forever unlesshva
from the root to find the leaf cell that include¥ location. If limit on the maximum pyramid height, allowing cells with higr
M has an MBR location instead of a point location, we deapacity at the lowest level. This gives a very poor insartiod
the same except that we may end up insertigin a non-leaf retrieval performance due to highly skewed pyramid bragetith
node. Unfortunately, such insertion procedure is not apple to overloaded cells at the lowest level.
microblogs due to its high arrival rates. While insertingirgte To avoid long skewed tree branches, we empl@peaculative
item, new arriving items may get lost as the rate of arrivalildo cell splitting module, where a cell’ is split into four quadrants
be higher than the time to insert a single microblog. This @sakonly if two conditions are satisfied: (1)' exceeds its maximum
it almost infeasible to insert incoming microblogs, as thegyve, capacity, and (2) if split, microblogs i@ will span at least two
one by one. To overcome this issue, we empldyukk insertion quadrants. While it is easy to check the first condition, &hveg
module as described below. the second condition is more expensive. To this end, we @iaint
The main idea is to buffer incoming microblogs in a memin each cell a set of split bit$SplitBit9 as a four-bits variable; one
ory buffer B, while maintaining a minimum bounding rectanglebit per cell quarter (initialized to zero). We use t8plitBitsas a
By pr that encloses the locations of all microblogsBn Then, proxy for non-expensive checking on the second condition.
the bulk insertion module is triggered everyime units to insert After each bulk insertion operation in a céll, we first check
all microblogs of B in the pyramid index. This is done byif C is over capacity. If this is the case, we check for the second
traversing the pyramid structure from the root to the loveeditC' condition, where there could be only two cases 8&plitBits
that enclose®3 ;. If C'is a leaf node, we append the contentfl) Case 1: The fouBplitBitsare zeros. In this case, we know that
of B to the top of the list of microblogs ifC' (C.M_List). C has just exceeded its capacity during this insertion ojmerat
This still ensures that\/_List is sorted by timestamp as theSo, for each microblog i@, we check which quadrant it belongs
oldest microblog inB is more recent than the most recent entryo, and set its corresponding bit BplitBitsto one. Once we set
in M_List. On the other hand, i” is a non-leaf node, we: two different bits, we stop scanning the microblogs andt spé
(a) extract fromB those microblogs that are presented by MBRsell as we now know that the cell contents will span more than
and cannot be enclosed by any ©fs children, (b) append the one quadrant. If we end up scanning all microblogsCinwith
extracted MBRs to the list of microblogs i’ (C.M_List), only one set bit, we decide not to splitas we are sure that a split
(c) distribute the rest of microblogs i, based on their locations, will end up having all entries in one quadrant. (2) Case 2: One
to four quadrant buffers that correspond &3s children, and of the SplitBitsis one. In this case, we know that was already
(d) execute bulk insertion recursively for each child cdll@ over capacity before this insertion operation, yeétwas not split
using its corresponding buffer. as all its microblogs belong to the same quadrant (the onésas

4.1 Bulk Insertion

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

bit set inSplitBitg. So, we only need to scan the new microblogmergeC' with its siblings into one cell. However, with the high
that will be inserted inC' and set their correspondir§gplitBits arrival rates of microblogs, we may end up in spending motief
Then, as in Case 1, we split only if two different bits are set. insertion and deletion overhead in splitting and mergingapyd
In both cases, when splitting, we reset itsSplitBits create four cells, as the children of a newly split cell may soon mergeraga
new cells with zeroSplitBits and distribute microblogs id' to after deleting few items. To avoid such overhead, we employ a
their corresponding quadrants. This shows that we woulémevazy mergingstrategy, where we merge four sibling cells into their
face a case where two (or more) of t8plitBitsare zeros, as once parent only if three out of the four quadrant siblings are gmp
two bits are set, we immediately split the cell, and reselbigdl. The idea is that once a cell becomes empty, we check its
Using SplitBits significantly reduces insertion and query prosiblings. If two of them are also empty, we move the conteffits o
cessing time as: (a) we avoid dangling skewed tree branehes, the third sibling to its parent, mark the parent as a leaf nadd
(b) we avoid frequent expensive checking for whether ceiteots removeC and its siblings from the pyramid index. This is lazy
belong to the same quadrant or not, as the check is now danerging, where in many cases it may happen that four siblings
infrequently on a set of bits. In the meantime, maintainihg t include few items that can all fit into their parent. Howewee
integrity of SplitBitscomes with very little overhead. First, whenavoid merging in this case to provide more stability for oighiy
cell is under capacity, we do not read or set the valug@itBits dynamic index. Hence, once a céllis created, it is guaranteed
Second, deleting entries from the cell has no effect o8#Bits to survive for at leasf’ time units before it can be merged again.
unless it becomes empty, where we reset all bits. This is becaus&’ will not be empty, i.e., eligible for merging,
4.3 Bulk Deletion unless there are no insertions@hwithin 7" time units. Although

As we have finite memoryenusneeds to delete older microblogsthe lazy merging causes underutilized cells, this has atséifiect

. - . . . on storage and query processing, compared to saving redunda
to give room for newly incoming ones. Deleting an itévh from . . R .
. : » split/merge operations (which is measured practically ed®b%
the pyramid structure can be done in a traditional way [5] b t the whole splitimerge operations) that leads to a sigarific
traversing the pyramid from its root till cell’ that encloses P ge op

M, and then removingl/ from C’s list. Unfortunately, such reduction in index update overhead.
traditional deletion procedure cannot scale up ¥enusneeds. 5 QuERY PROCESSING

Since we need to keep index contents to only objects frometste |
T time units, we may need to keep pointers to all microblogd, al
chase them one by one as they become out of the temporal windf
T, which is a prohibitively expensive operation. To overcdins
issue, we employ aulk deletionmodule where all deletions are
done in bulk. We exploit two strategies for bulk deletionmdy,
piggybackingandperiodic bulk deletions, described below.

I:|'his section discusses the query processing module, wieich r
Q,lyes a query from user with spatial and temporal boundaries,
andT, and returns the tog-microblogs according to a spatio-
temporal ranking functionF,, that weights the importance of
spatial proximity and time recency of each microbloguoA
simple approach is to exploit the pyramid index structure to

Piggybacking Bulk Deletion. The idea is to piggyback the compute the ranking score for all microblogs withid and T’ .
deletion operation on insertion. Once a microblog is ireskiin and return only the tof-ones. Unfortunately, such approach is

a cellC, we check ifC' has any items older thdfi time units in pr.oh.ibitively expensive due to the large qumber (.)f micraslo
its microblog list (M _List). As M _List is ordered by timestamp, within 2 andT" Instead,\/t_an_us_uses the ranking fur_lc_tlon to prune
we use binary search to find its most recent itéMmthat is older the search space and minimize the number_ 9f .V'S'Fed micgsblo
thanT. If M exists, we trimM_List by removing everything through a twq—phase_q_u_ery processor. Tihgialization phase_
from it starting fromM/ . Piggybacking deletion on insertion saveésec'[IOn 5.2) finds an initial set df microblogs that form a basis

significant time as we share the pyramid traversal and ceéssc c_)f ;he _flnalhanfsv_vgrl. g h@r;”'_“ggpha;‘}(se"t'ﬂ” 5:3) hkeep.s. cl)n
with the insertion operation. tightening the initial boundarie® and 7’ to enhance the initia

Periodic Bulk Deletion. With piggybacking bulk deletion, a cell result and reach to the final answer.

C may still have some useless microblogs that have not been

deleted, yet, due to lack of recent insertion<inTo avoid such 5.1 Query Data Structure

cases, we trigger a light-weight periodic bulk deletionq@s The query processor employs two main data structures; &itgrio
everyT” time units (we usé” = 0.57). In this process, we go queue of cells and a sorted list of microblogs:

through each cell’, and only check for the first (i.e., most recentpriority queue of cells H: A priority queue of all index cells that
itemM € CM_LYSt If M has arrived more thali’ time units over|ap with query Spatia| boundany_ An entry in H has the
ago, we wipeC'. M_List. If M has arrived within the lasf' time form (C, index BestScorg whereC is a pointer to the celindex
units, we do nothing and skif. It may be the case that still has s the position of the first non-visited microblog { (initialized
some expired items, yet we intentionally overlook them ieorto ¢ one), andBestScorés the best (i.e., lowest) possible score, with
make the deletion I|ght'We|ght Such items will be deletétes respect to uset, that any non-visited micr0b|og i may have.

in the next insertion or in the next periodic cleanup. Cells are inserted i/ ordered byBestScorecomputed as:
Deleted microblogs are moved from our in-memory index

structure to another index structure, stored in a lowemg®tier. BestScore(u,C) = a x SpatialScore(Ds(u.loc,C))
Deleted microblogs will be retrieved only if an issued queas +(1 — «) x TemporalScore(C.M _List[index].time, NOW)
a time boundary larger thahf, which is an uncommon case, a

most of our incoming gueries use the defalilvalue. %NhereDs(u.loc, () is the minimum distance betweenand C'

) and C.M _List[index] is the most recent non-visited microblog
4.4 Lazy Cell Merging in C.

After deletion, if the total size of’ and its siblings is less than theSorted list of microblogs AnswerSetA sorted list of k& mi-
maximum cell capacity, a traditional cell merging algamitivould croblogs of the formNIID, Scorg, as the microblog id and score,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

sorted on score. Upon completion of query processhmgwerSet Algorithm 1 Query Processor

contains the final answer.

1: Function Query Processor (u, k, T, R,)

2: H + ¢; AnswerSet < ¢; MIN < oo, R + R, T' < T
3: for eachleaf cellC' overlaps withR do

5.2 The Initialization Phase 4:

The initialization phase gets an initial set é&f microblogs that 5.

BestScore < «a SpatialScore(Ds(u.loc, C))
TemporalScore(D(C.M_List[1].time, NOW))
Insert C, 1, BestScorginto H

+ (1)

form the basis of pruning in the next phase. One approach is te end for

get the most recent microblogs from the pyramid cell’ that
includes the user location. Yet, this is inefficient as: (1)may
contain less thak microblogs withinT’, and (2) other microblogs
outsideC' may provide tighter bounds for the initialitems, which

boundaryR in constructing the initial set ok microblogs. We

initialize the heapH by one entry for each cell’ within R. 14
Entries are ordered based on best scores computed as @icuss

in Section 5.1. Then, we take the top entry’s céllin H as

our strongest candidate to contribute to the initial fofist. We g
removeC' from H and check on its microblogs one by one ing-
their temporal order. For each microbldd, we compare its score 20:
against the best score of the current top ¢&llin H. If M has 21
a smaller (better) score, we inséif in our initial top% list, and 22
check on the next microblog ifi. Otherwise, (a) we conclude that 23f

the next entry’s cellC” in H has a stronger chance to contribute,¢

to top+#, so we repeat the same procedure@®r and (b) if M is 5.
still within the temporal boundary’, we insert a new entry o’ 27:

7: TopH «+ Get (and remove) first entry iff

8: while TopH is not NULL andTopH.score < MIN do
9:
10:

. 11:
leads to faster pruning later. 12:

Main Idea. The main idea is to consider all cells within the spatial 3:

Score«— TopH.score M <+ TopH.C.M List{ TopH.indek
NextScore— score of current top entry i
while Score< NextScoreand M is not NULL do
if M.loc inside R’ then
Score <+ «a SpatialScore(Ds(u.loc, M.loc)) + (1-)
TemporalScore(D(M.time, NOW))
if Score< MIN then
Insert (M ,Scorg in AnswerSet
if |AnswerSet| > k then
Trim AnswerSet size tok
MIN «+ AnswerSet[k].score;
R’ + Min(R/, PruneRatios x R')
T’ < Min(T’, PruneRatio; x T")
end if
end if
end if
M < Next microblog inTopH.C.M _List
if M.time outsideT” then M < NULL
end while
if M # NULL then Insert (C, index(M), BestScorgin H

into H with a new best score. We continue doing so till we colle28: TopH < Get (and remove) first entry iff
k items in the topk list. 29: end while

Algorithm. Algorithm 1 starts by populating the hedp with an 39 Return AnswerSet

entry for each cellC' that overlaps with the query bounda#fy.

Each entry has its cell pointer, the index of the first noritets
microblog as one, and the best score that any entfy aan have
(Lines 2 to 6). Then, we remove the top enfryp H from H, and

keep on retrieving microblogs from the c8llopH.C' and insert In order for M to make it to AnswerSetwe should have:

them into our initial answer set till any of these three stn . L
Y P O‘W < MIN, i.e., M has to be within distance

conditions take place: (1) We collektitems, where we conclude

IN ; ;
the initialization phase at Line 16, (2) The next microblog Gh “o ftfrom the user. We call the valu%’a— the spatial pruning

is either outsidel” or does not exist. where we s&f to NULL ratio, for short PruneRatios. Hence, we tighten our spatial

(Line 25) and retrieve a new top entiyopH from H (Line 28), goungary t.o]: - Min(R, Pv;}w;\thatio?] XbR)' (2) 'I'%rlnporall |
or (3) The next microblog/ in C'is within T', yet it has a higher oundary tighteningassume tha as the best possible spatia

score than the current top entry Hi. So, we insert a new entry of SCOre: i-.Ds(u-loc, M.loc) = 0. In order for)M to make it to

NOW —M.time
C with a new score and current index &f in H, and retrieve a AnswerSetwe should have(l — a) < MIN,

. . . IN . .
new top entryT'opH from H (Lines 27 to 28). The conditions at €~ / has to be issued within the las{=C-7" time units.
We call the value2IC the temporal pruning ratio, for short

Lines 8 and 14 are always true in this phasé&/@N is set tooco. !
PruneRatio,. Hence, we tighten our temporal boundary to
T = Min(T, PruneRatio, x T). Following the same steps,

5.3 The Pruning Phase

. o we can derive the value®runeRatios and PruneRatiog
TEe prum(r;g p:ase tqkes thé\nswerSelfr?]mh t;‘f? |n||t|al|zat|on for the exponential scoring functions to b&runeRatios =
phase and enhances its contents to reac .t ekfinal 1 J\IIN—(l—a)) and PruneRatio, = x Zn(M{N*‘“).
Main Idea. The pruning phase keeps on tightening the ongma[A” w @

! o Igorithm. Line 16 in Algorithm 1 is the entry poin? for the
search boundarie£ and 7' to new boundaries/" < R and . hingphase, where we already havenicroblogs inAnswerSet
T’ < T, till all microblogs within the tightened boundaries ansv

h) | de the tiah . e first setMIN to the kth score inAnswerSetThen, we check
ex auste(_j. Microb 09s out3|d¢t e tig tened_ boundarega_mrly if we can apply spatial and/or temporal pruning based on the
pruned without looking at their scores. The idea is to mainsa

L) values of MIN and ov as described above. Pruning and bound
threshoIdMIN as the minimum acceptable score for a mlcroblogghtemng are continuously applied with every time we fi
to be included imMnswerSetwhich corresponds to the currekth

. ; 3 . _microblog M with a lower score thaMIN, where we insertf\/
score mAnswerSetAssume the Ilnegr scoring functions (as iNto AnswerSeand updateMIN (Lines 14 to 22). The algorithm
Section 3.3), for a micrablog/ to t?e included imMAnswerSetM en continues exactly as in tirgtialization phase by checking if
has 1o have a lower score thitiN, i.e..: there are more entries in the current cell or we need to gehano
entry from the heap. The algorithm concludes and returnfiriaé
answer list if any of two conditions takes place (Line 8): Kiap

This formula is used for spatial and temporal boundary tight
ening as follows: (1)Spatial boundary tighteningAssume that
M has the best possible temporal score, iMtime = NOW

Dg(u.loc, M.loc) NOW — M .time
L S

< MIN

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

H is empty, which means that we have exhausted all microblogs T, is decreased. In this case, microblogs that were posted
in the boundaries, or (b) The best score of top entry/ak larger in the time interval between the old and new valuesipfare
thanMIN, which means all microblogs i cannot make it to the immediately deleted. (b) The value ®f is increased. In this case,
final answer. we have a temporal gap between the new and old valuds.,of
where there are no microblogs there. However, with the réte o
6 INDEX SIZE TUNING updates ot_Z“c, s_uch gap will be filled up soon, and he_nce_would
))) . have very little impact on query answer. On the other sidietide
Our discussion so far assumed that all microblogs postetién t,,,4ule deletes microblogs from each c8llbased on the value
last T time units are stored in the in-memory pyramid structurey T., rather than based on one global vallidor all cells.
Hence, a query with any temporal boundatyT guarantees 0 |,qey Maintenance.When a cellC' splits into four quadrant cells,
find its answer entirely in memory. In this section, we intro the value of). in each new child cell’; is set based on the ratio

the index size tuningnodule that takes advantage of the naturg microblogs from cellC' that goes to cell’;. As Venusemploys
. . . (
skewness of data arrival rates over different pyramid ctlls lazy merging policy, i.e., four cells are merged into a pacell

achieve its storage savings$0% less storage) withput sac.rifi.cingc only if three of them are empty, the value &f at the parent
the answer quality (accuracy99%). Ourindex size tNings o s set to the arrival rate of its only non-empty child.
motivated by two main observations: (1) The tepmicroblogs Query Processor.The query processor module is left intact as

in areas with high microblog arrival rates can be obtainednfr it retrieves its answer from the in-memory data regardidégh®
a much shorter time than areas of low arrival rates, e'g’kmptemporal domain of the contents

microblogs in downtown Chicago may be obtained from the last It also worth mentioning that optimizing the index for prese

30 minutes, while it may nee_d couple of hours to get them indaefaul'[parameters values does not lirknusfrom adapting
subur_b area. (2 plays a major role on how far we_need to gci:hanges to these values in the middle of operations. In case a
back in time to ook for microblogs. m. = 1, top mlcr_ob_logs system administrator change the default values in the midél

are the glo;est ones to the user I_ocatlons, regardiessipfithe operations, the index contents will be adapted for the nduega
arrival within T'. If o« = 0, top-k microblogs are the most recent ihe following data insertion cycles (based on the new I

ones posted withiik, so0, we look back only for the time needed Qalues ofT.). So, all what is needed is to plan changing the values

|ssuel;:] mlcroﬁlogs.;htir\,}or ea;]chhceﬂ]‘, we flnd'the mlnlmém ahead if the new queries require more data to fulfill theimaars,
search time horizoff, < T such that an incoming query i.e., if they lead into increasing, values.

finds its answer in memory. Assume the microblog arrival fate
a cellC is \. and we use the linear scoring functions. THénjs 7 LOAD SHEDDING

given by the following equation:)))]
Even with theindex size tuningmodule, there could be cases

where there is no enough memory to hold all microblogs from
the lastT, time units in each cell, e.g., very scarce memory or

For linear scoring functions

) «a k time intervals with very high arrival rates. Also, some apgtions
T.=Min |T, T+ @ - . . '

1—a Min (Area(R) 1) %\ are willing to trade slight decrease in query accuracy withrge

Area(C)” ¢ saving in memory consumption. In such casésnustriggers a

The detailed derivation foff}, value can be revised in either [6]load sheddingmodule that smartly selects and expires a set of
or Appendix A. Following the same steps, we can deflivaising microblogs from memory such that the effect on query acgurac
the exponential scoring function to be given by: is minimal. The main idea of théoad sheddingmodule is to
use less conservative analysis than that ofitfteex size tuning

For exponential scoring functions . . .
P g module that. In particular, Equations 1 and 2 consider thg ve

T o ks conservative case thaverystored microblogl/ may have a query
T. = Min (T, —In| (e¥ — 1)+ o Min(Greact) =1)“CT]) that comes exactly at/.loc, i.e., Ds(M.loc, u.loc) = 0. Theload
w o l-a sheddingnodule relaxes this assumption and assumes that queries

.) . . .) are postedd R miles away fromM, i.e., Dy (M.loc, u.loc) = R,
We_ discuss next the impact of tr_medex size tuningnodule where0 < 3 < 1. Using this relaxed assumption, we can revise
on variousVenuscomponents. Equations 1 and 2 means that {Re value of time horizon per cell to be:

order for a microblogV/ in cell C' to make it to the toge answer,)))
M has to arrive within the lasT.. time units, wherel, < 7, Forlinear scoring functions
and so any older microblog can be safely shed without affgcti

the query accuracy. Therefore, we save memory space bygtori) a(l—B) k
fewer microblogs. We next discuss the impact of employirg th Te,s = Min | T, - o T+ Min (Area@® 1Y 5
T. values orVenuscomponents. o (A7‘w(0)’) X Ae

Index Structure. Each pyramid cellC' will keep track of two For exponential scoring functions 3)
additional variables: (1)\.; the arrival rate of microblogs i, - i

which is continuously updated on arrival of new microblog Y @ w_ jwp Min(Greetl et
and (2) T,; the temporal boundary in cell’ computed from e = Min (T’ Eln[l — a(e —et) He Garsates) }>
Equations 1 or 2, and updated with every update of 4
Index Operations. Insertion in the pyramid index will have the We use the tern¥, 3 instead of7, to indicate the search time
following two changes: (1) For all visited cells in the insen horizon for each cellC' when theload sheddingmodule is
process, we update the values)ofandT, (2) If T; is updated employed. The detailed derivation @f. 3 can be revised either
with a new value, we will have one of two cases: (a) The value [6] or Appendix B.1. Per Equations 3 and 4I, g gives a

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

tighter temporal coverage for each cell’Bsg < T,. 5 acts as that procesne or moremicroblog(s) fromC.M _List. Then,

a tuning parameter that trades-off significant savings ofagte whenevetC'. T, g value is updated, on insertions@ the value of
with slight loss of accuracy. As Appendix B.2 shows, a storageis estimated by = 1 — g Qe . Consequently, cells that did not
saving of(3 results in accuracy loss maximum/@t. For example, receive any queries, i.eC. Qc = 0 are assigned@ value of1 and

if 5 = 0.3, a 30% saving of storage is traded with maximunthen a large amount of data is shed. On the other hand, catls th
of 2.7% of accuracy loss. However, the experimental evnat receive a big percentage of queries are assigned a gmallue

shows even much better performance. and hence shed much less data. B@#3;,; and C.Q). are reset
every T time units, measured from the system start timestamp,
8 ADAPTIVE LOAD SHEDDING so that/3 values are estimated only based on the recent queries

As we show in Section 7, load shedding\enususes a global to adapt with the dynamic changes in query loads over time. By
parameters that represents the minimum spatial distance, asd&finition,0 < C.Q. < Q1otai, for all C, thenf value is bounded
ratio from R, between queries locations and microblogs locationis the rangg0, 1].
Choosing the right value faof is challenging as it should change Impact on Venus components 5-LS implementation impacts
across space and time: Microblogs queries change dyndyicahdex contents and query processing. For the index, eathCcel
over time [24] and a single value limits the cost-benefit ¢rad maintains an additional integér.QQ., which ends up with a little
off of load shedding. More importantly, the spatial distition of impact on the overall index storage (less than 0.5MB extrichvh
both microblogs data and queries changes substantialhgsice- does not exceeti™*% of the overall storage) compared to the big
gions [6], and therefore using a global parameter may pdoebt storage saving that comes from shedding more microblogsn®u
sparse regions for which few queries are issued and aggessi the query processing);,.,; is maintained for the whole index and
treat dense regions where most queries are issued. C.Q. is maintained for each cell. Although being concurrently
In this section, we introduce two methods;load shedding accessed from multiple query threads, the concurrent tiperan
and~-load shedding, which tune the load shedding process. Bdihth of them is only a single atomic increment which causéte |
methods extend theé3-parameterized load shedding module iverhead in query latency as our experiments show in Se@tion
three aspects: (a) they tune the load shedding automstisall i
that it is not needed to preset a fixed value fbby the system 8.2 ~-Load Shedding
administrator, (b) they keep one load shedding parameteevaln -Load Shedding methody{LS for short), we go one step
per each spatial index cell, instead of using one globalevédn beyond using only the query spatial distribution (ag3iS) and
all regions, to adapt with the localized distributions ofaming use the access pattern of microblogs data inside the gdl5
data and queries , and (c) they update the load shedding gamamincreases the importance measure of a ¢elas long asone
values dynamically over time to reflect the changes in bota dzor more of its microblogs is processed by the query regardless
and queries. In the rest of this section, we develop the twihods of the actual number of processed microblogs frof/ _List.

and discuss their impact on the system components. On the contrary;y-LS considers which microblogs are actually
) processed from the cell so that each cell stores only theulusef
8.1 f-Load Shedding data. To illustrate, we recall one dflercury [6] findings that

In 5-Load Shedding £-LS for short), each index cell stores athe analytical values off. and 7. 3 do not comply with the
parameter to use in determining its temporal horizdf. s theoretical expectations. Specificallj, achieves< 100% query
(Equations 3 and 4)3 has exactly the same meaning as describedcuracy while it is expected to provide accurate resulivify 3
in Section 7, however, it is distinct per index cell instead aachieves query accuracy much higher than the theoreticaldo
being a global parameter for the whole index. In additiBa, ((1 — 33) x 100)%. This means that each cell stores either
LS automatically tunesd values based on the incoming queryess or more data than it is needed. Motivated by this finding,
loads. Then, each cell' uses its own auto-tuned value to keep LS aims to adjust cell storage so that only microblogs that ar
only microblogs from the lasf;, g time units and shed older sufficient to answer all incoming queries accurately aressto
microblogs. In the rest of the section we describe the auioma Main idea. The main idea is to estimate for each d€lithe
tuning of 5 along with 3-LS impact onVenuscomponents. minimum search time horizofh, , < 7T such thatC' keeps only
Main idea. The main idea is to distinguish the spatial regionthe useful data to answer incoming queries from main-memory
based on the percentage of queries they receive. Regions twttents. UnlikeT,, that is calculated analytically based only
receive a big percentage of the incoming queries are carsideon the default query parameters as discussed in Sectidn 6,
important spatial regions and so a small portion of data edshis calculated adaptively with the incoming query load. As
i.e., small3 value is assigned, to reduce the likelihood to misand 1. s are shown to be close to the optimal time horizon, to
answer microblogs for a lot of queries. On the contrarysciiat calculatel. ., we make use df. andT. g equations. Particularly,
receive small percentage of queries are considered lesstiamp, we replace the parametgt in T 3 (Equation 3) with another
so that shedding more data will not significantly affect thiery parametery. Unlike 3, v can take any value rather than being
accuracy, and so a large value is assigned. Thus, we use onlypounded in the rangf, 1]. Thus,y is a tuning parameter where
the spatial distribution of incoming queries to estimatefivalue, its values have three possible casesy(g [0, 1]: in this casey
per cell, that is bounded in the ranffe 1]. has the same effect @5 (see Section 7) and controls the amount
Implementation. For each index celC’, we keep the per- of shed data through controlling the value’sf, < T, < T.
centage of queries that proceSsmicroblogs out of all queries (2) v > 1: in this case, the valug; g at 3 = 1 is too large for
that are posted to the index. Specifically, for the whole sndee the incoming queries to this cell, then the tefin—) gives a
keep a single long integep;...; that counts the total number of negative value and decreases the cell temporal coveradgeetb s
posted queries to the index so far. In addition, for each €Cell the useless data that increases the storage overhead wbie d
we maintain an intege€'.Q. that counts the number of queriesnot contribute to the query answers. (3) < 0: in this case,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

the valueT, 3 at 3 = 0, i.e. T, is too small to answer all the g0
incoming queries to this cell, then the teffh—) gives a value g 80
larger thanl and increases the cell temporal coverage to ansvgergg
all the incoming queries accurately. Although Case 3 wouddile3 s
to a slight increase in the storage overhead for some pagamgt 20
setup, e.g., atv = 0, it would consequently fill the gap betweerg 10¥
the theoretical assumptions @f. value and the practical data %0 02 o4 06 o8 1
distribution which lead to loss in query accuracy, as shown i “

Mercury [6] experiments. (a) Storage Overhead (b) Query Accuracy

Implementation. To implement~-LS, Venusmaintains ay

value in each index cell, that is changing adaptively wite th

Query Accuracy (%)

Fig. 3. Effect of a on storage vs. accuracy

. . 7 100
incoming queries. To this end; value is calculated as follows.g 2 o
For an incoming query, we measure the time horiZgn, that § §
spans all the processed microblogs, i.e., the useful daté;.i f’% 3 %
Obviously, T, , equals the difference betweeNOW and the g S
oldest processed microblog. Based on the measured vallie,of § ;g %
we calculate a value using the following equations: 12 95
For linear scoring functions T T

(a) Storage Overhead (b) Query Accuracy
k 1— o Fig. 4. Effect of T' on storage vs. accuracy
=1— (T~ — 5) _)
v T Min (ﬁreagg; ’ 1) x\,) of ®) end up with maximum of 1MB extra storage on the average which
rea

is much less than storage saving of the shed microblogs and
presents a negligible percentage of*% out of the overall storage
1 wh consumption.C.y is incrementally maintained when incoming
« i
l (., (o))

For exponential scoring functions

1

v =—In
w

Grea(ey)AeT _ M queries access some microblogs fré\/_List. For each query,
a new- value is calculated as described above and its estimated

(6) valueC.v is updated accordingly. Althougfi.~ is concurrently
Equations 5 and 6 are derived from Equations 3 and 4 by regjaciaccessed from multiple query threads, only a single coratirr
/8 with v and separating in the left hand side. If thén parameter gperation is needed to set the new value which is a little el
has a negative value, the negative sign is omitted and rtietip compared to the expensive computation-of/alues. Section 9
by the final result. Using a series of values, from subsequentshows the query latency overheachef.S compared to its storage
queries, one estimated value 9fis calculated for each cell. saving and accuracy enhancement.

Then, the estimated value is used in Equations 3 and 4, replacing |n both 5-LS and~-LS, the search time horizon is calculated
f3, to calculate the actual cell temporal coverdge, . based on Equations 3 and 4. To prevent the cancellation of the
To estimatey value per cell, we use a sample of the incomingnajor term whena: = 0, which totally discards the automatic

queries to the cell. This sample is chosen randomly and indgning of the adaptive load shedding module, we replaci
pendently per cell. For each query in the sampley @alue is the numerator of these equations (ay+ ¢) so that the values of
calculated, during the query processing, as describedeali®en, 3 and + work for adjusting the amount of load shedding. We
the estimatedy is calculated by one of two methodmin or sete = 0.0001. In Section 9, our experiments show that this
averagewhere the minimum or the average value, respectiveljeuristic increases the query accuracypat 0, from ~ 95%,

so far is used. In both cases, value is reset everyl' time as inMercury[6], to over99% in Venus

units, measured from the system start timestamp, so that it i

estimated only based on the recent queries to adapt with he EXPERIMENTAL EVALUATION

dynamic changes in query loads over time. The query sampleTisis section provides experimental evaluationvehusbased on
chosen randomly per cell for two reasons: (a)-As calculated an actual system implementation. As a successdietury [6],
during the query processing, then using all the incomingigee and with lack of other direct competitors (see Section\@nus
may be overwhelming to the query latency with a heavy quegvaluation shows the effectiveness of its new components co
load in real time, so only a sample of queries are being usedpgared toMercury components. This includes: (1) The adaptive
reduce this overhead. (b) The query sample is chosen ragdotalad shedding module, with its two variatiofsLS andv-LS, as
and independently for each cell to eliminate any bias forrgage described in Section 8. (2) The flexible tép-anking that employs
subset of the queries. As calculating value in each cell is both linear and exponential ranking functions. The expeniiae
independent from all other cells contents, choosing a miffe study in this section evaluates the effect of the differemking
query sample for each cell is valid and leads to highly rédiabfunctions on both effectiveness of spatio-temporal prgnin
load shedding as almost all incoming queries have a chanceqteery processing and index storage overhead and its effect o
contribute to tuning the load shedding in some cells. guery accuracy.

Impact on Venus components 7-LS implementation mainly All experiments are based on a real prototypevehusand
impacts the query processing and slightly impacts indexerts. using a real-time feed of US tweets (via access to Twittegteise
For each index cell”, a single estimated valug.~ is maintained archive) and actual locations of web search queries from .Bing
incrementally. In addition, an additional integer is mained per We have stored real 340+ million tweets and one million Bing
cell in caseC'.~y is estimated using the incremental average. Bosearch queries in files. Then, we have read and timestamped

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

Linear Scoring Exponential Scoring
i Dgs(M.loc,u.loc) « Ds(M.loc,u.loc)
Spatial Score Zelooouno0) oW =
Temporal Score Dy(M.time,NOW) gwx DtULtne NOW)
Spatial Pruning Boundary Min (R, MIN R Min (R, L x in(MN—0-2))p
[e3 w [e3
Temporal Pruning Boundary Min (T, MINT Min (T, 2 x In(MIN=a)p
l1-—a w l—a
Area (1D
Index Size Tuning TimeX.) Min (T, 2T + W Min [T, Zin[r2 (v — 1) + ef\/f'in(m‘l)x)\uT]
/ 1”(4Area(c) ’1) XAc
wk
T ArealR) Vy o
i i ; a(l-pB) k . T Min(4Ee8 1)A.T
Load Shedding Timel(, 5) | Min <T, Q=B 4 Mm(gzzzgg‘;’l)xh> Min | T, Tinfro(ew — ew8) 4 ¢ " (areatcr 1)]>
wk
Areal(R) Ny wTe
i i k 11—« 1 1—a Min rea X T _ c,y
Adaptivey-Load Shedding) 1- <TC,W - W) La Lin (ew + 1= (e (i) e))

TABLE 1
Summary of different system components equations using linear and exponential scoring.

Index Scalability: Mercury shows thatMT digests 32K mi-
croblog/sec whileMST and MLS digest 64K in~ 0.5 sec. This
shows an efficient digestion for arrival rates an order of mitage
higher than Twitter rate. Also, it shows more digestion abagity
for indexes that store less data.

Memory Optimization : Mercuryshows thaMST can achieve
storage savings of 90-25% far < 0.5. This corresponds to query

Query Latency (ms)

R (miles) accuracy of 95-99+%, where the lowest accuracy, i.e, 95%, is
(a) k vs. Query Latency (b) R vs. Query Latency achieved atv = 0 due to the cancellation of the major termdh
Fig. 5. Effect of adaptive load shedding on query latency and so the index barely stores ofdynicroblogs in each regioR.

AlthoughMST is theoretically expected to achieve 100% accuracy
them to simulate an incoming stream of real microblogs ar@@nsistently, the small accuracy loss comes from the gapeest
queries. Unless mentioned otherwise, the default valué & the theoretical assumption of uniformly distributed midoms
100, microblog arrival rate\ is 1000 microblogs/second, range locations within the cell and the actual distribution whishnot
is 30 miles,T" is 6 hours,« is 0.2, is 0.3,w is 1, cell capacity strictly uniform. On the other handLSis shown to achieve 60-
is 150 microblogs, the spatial and temporal scoring fumstiare 90% storage saving with 99-73% corresponding query acyuaiac
linear, andy-LS usesmin estimation. The default values of cella = 0.2. The lowest achieved accuracy is 52%at 1 anda =
capacity,o,, and 3 are selected experimentally and show to worK.9 which is much higher than the theoretical bound.
best for query performance and result significance, respégt Query Evaluation: Mercury shows that its spatial and tem-
while default) is the effective rate of US geotagged tweets. Agoral pruning are both very effective and significantly doate
microblogs are so timely that Twitter gives only the mostergc the naive approaches. Also, the temporal pruning is moez&it
tweets (i.e.,.«=0), we seta to 0.2 as the temporal dimension isthan spatial pruning even for large valuescf(up to 0.8). The
more important than spatial dimension. All results areeméd average query latency, when using both spatial and temporal
in the steady state, i.e., after running the system for atl@a pruning, for most parameters setup is 4 msec.
time units. We use an Intel Core i7 machine with CPU 3.40GHZ
and 64GB RAM. Our measures of performance include insertigy, Adaptive Load Shedding
time, storage overhead, query accuracy, and query lat€nsry
accuracy is calculated as the percentage of correct magshh
the obtained answer compared to the true answer. True ans
is calculated when all microblogs of the ldét time units are
stored in the index. The rest of this section recapercury
results [6] (Section 9.1) and evaluates the adaptive loaddihg
(Section 9.2) and top-ranking (Section 9.3).

In this section, we evaluate the effectiveness@aiusadaptive load
midding module. We compare the two variation¥afiusindex
with adaptive load shedding employed: (@)LS (Section 8.1),
denoted a¥LS+3, and (b)y-LS (Section 8.2), denoted &4 S+,
with three alternatives d¥lercury[6] index (as in Section 9.1).

9.2.1 Effect on Querying and Storage

Figure 3 shows the effect dofenusadaptive load shedding on
9.1 Mercury Results Recap both storage overhead and query accuracy with varyingror
In this section, we recaMercury [6] results, the predecessor ofa wide range of varyingy, Figure 3 shows the superiority of
Venus as a context for evaluating the new component¥dénus VLS4 andVLS+y, for « > 0, in saving a significant amount of
Mercury has evaluated three alternatives of its index: (a) storirggorage (up to 80%) while keeping almost perfect accuracyrém
all microblogs of lastl” time units (denoted aMT), (b) using than 99%). This is applicable even for large valuesxofup to
the index size tuningnodule (Section 6), denoted 8ST, and 0.9) which is a significant enhancement olgrcury alternatives
(c) usingMercury load sheddingnodule (Section 7), denoted as(MST and MLS). With increasinga, MST and MLS keep more
MLS. data as the spatial dimension is getting increasing weiglthé

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

relevance score and hence older data are kept to accourgifay b efficient it digests more data. It worth mentioning that tHeient
spatially close to incoming queries. However \dsS3 andVLS- bulk insertion techniques used iMenus significantly increase
~ take the query spatial distribution into account and marthe digestion rates four times for all alternatives. Detailednivers
actual useful data localized per region instead of usingohall and evaluation are presented in Appendix C.4.

parameter, they can smartly figure out almost all data tleahat

contriputing to query answers and hence shed up to SQ% wiithepig Top-k Ranking

affecting the query accuraciIST and MLS cannot sustain such
large savings forv > 0.4.

On the contrary to largex values, fora = 0, VLS$ and
VLS+< come with a bit extra storage overhedd,%, and 17%,
respectively, compared tbl % in bothMSTandMLS to increase ; . : - .
the accuracy from- 95% to more thar§9%. This is a result of the €MPoral pruning during the query processing. In this sectve
heuristic discussed in Section 8.2 which prevents cartailaf study the effect of employing the linear and exponentiatfioms

VLS4 andVLS-+y effect and hence they can automatically discovépef'neq in Section 3.3), namely-Lin and F-Exp 'respect!vely,
which data are useful for the incoming queries to keep thems T aqd their curves are dgnoted throughout the section by ffires
specific point, atv = 0, shows tha¥/LS4 andVLS+ are adaptive "N and-Exp respectively.
so that they keep more data when needed as well as sheddinsq i i
useless data if exists. 9.3'1 Ranking Effect on Index Size and Query Accuracy

Figure 4 shows the effect of Varyir@' on Storage and ac- Table 1 summarizes the equations of different System COEmSn
curacy. For small values df, VLS+ encounters slightly more using both linear and exponential scoring. Mathematicatig
storage overhead thaviLS However, with increasing’, VLS+ valuesT. and T s of F-Lin (Equations 1 and 3) give tighter
storage overhead becomes comparablilit® while consistently temporal coverage thafExp (Equations 2 and 4). Consequently,
maintains more than 99% accuradfL. S+ dominates all other Figures 7-9 show thaf-Exp encounters more storage overhead
alternative for all values of with almost perfect accuracy. than F-Lin for varying 7', o and §. In Figure 7(a), F-Exp

As VLS4 andVLS+ come with an overhead during the querygncounters larger storage overhead for smaller valuds while
processing, Figure 5 shows the query latency with varying approachF-Lin storage with increasing’. However, for all7’
and R. Both figures show higher query latency for bathS43 values,F-Exp achieves perfect accuracy that is almost 100% for
and VLS<y over MST and MLS It is also noticeable tha¥LS-y bothMSTandMLS The same observations hold for varyingnd
encounters higher latency thafLS{3 due to the computational 3 in Figures 8 and 9, respectively. F6t a and 3, the increase in
cost of calculatingy. However, the latency increase is acceptable-Expstorage overhead between 7-15% more thdrin.
and does not exceed 3 ms for large valuesRof 256 miles, Two interesting points to discuss arecat- 0 and at3 = 1 in
where many index cells are involved fhand~y computations. For Figures 8 and 9, respectively. At these points, bbthand 7. s
average values of and R' the increase in the order of 1 ms 0n’i|m03t vanish and the index barely stores Only the most tecen
the average. In nutsheWLS andVLS+y incur 12-14% increase k microblogs in each region, which makes the query accuracy
in query latency to save up to 80% of storage, for wide ranges @ F-Lin drops significantly, as shown in Figures 8(b) and 9(b),
parameters values, without compromising the accuracy. 9the especially a3 = 1 for large values ofv where the spatial score is
95, and 99 percentiles of query latencies for all altereatiare more important than the temporal score and so old microblogs
under 15, 30, and 50 ms, respectively. More detailed arsafgsi matter. However, in all these casels;Exp accuracy remains
query latency percentiles can be revised in Appendix C. almost perfect. This shows th&tExp accuracy improvement is

For VLS+y, the presented results shomin estimation method, Nnot a result for only storing more data in the index. Instehé,
which is more conservative thaaveragemethod and leads to €xponential scoring quickly demotes further microblogsgither
higher storage overhead. Generally, for all parameteresadver- space, time or both, and hence less microblogs are needex to g
agemethod behave pretty similar tnin method and thus the samethe accurate answer. This is shown clearly while analyzpagis-
analysis of results would be applicable. For space lintitetj temporal pruning in Section 9.3.2.
results foraverageestimation method are moved to Appendix C.1. Finally, it worth mentioning that employingLS+3 andVLS-y

with F-Expgives pretty similar numbers to those in Section 9.2 in

9.2.2 Effect on Index Maintenance both storage overhead and query accuracy. For space loniat
With a significant amount of data shed from the index, S We moved these results to Appendix C.2.
andVLS+ significantly improve the index maintenance overhead.
Figure 6 shows index insertion time with varying tweet ativ 9-3.2 Ranking Effect on Spatio-temporal Query Pruning
rate, k, o, and R. For all the parameter valuegL.S# andVLS- Figure 10 compares the performance\@nusquery processor
~ show lower insertion time due to the lighter index content&mploying either only spatial pruning, denoted RRR temporal
As Figure 6(a) showsyLS+ is able to digest 64K microblog in pruning, denoted aBT, or spatio-temporal pruning, denoted as
~ 400 ms whileVLS{3 does in less than a quarter of a second. Fét, for both F-Lin and F-Exp. In Figure 10(a), query latency of
different values of tweet arrival raté, and R, VLS+y insertion all alternatives of-Exp are bounded betwednT-Lin and P-Lin,
time is slightly better tharMLS while VLS is significantly except for large values aR (> 64) where P-Exp has a lower
better than both of them. However, for a wide rangexofalues, latency tharP-Lin. This behavior can be interpreted by discussing
both VLS and VLS< work significantly better tharMLS as two contradicting factors: (1) The computation cost, andt(2)
Figure 6(c) shows. This shows the superioritMifS3 andVLS- pruning effectiveness of each ranking function. First, ¢het of
~v and that the decrease in insertion time is proportional witomputing exponential score ByExp is higher than the linear
the storage savings, so the lighter the index contents thee mecore byF-Lin due to the higher mathematical complexity. As

In this section, we study the effect of employing differeswking
functions onvVenuscomponents. Specifically, the ranking function
is affecting: (1) Index size tuning, as the valués and 7. g
depend on the employed ranking function, and (2) the spatio-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

[$))
o
o

w
o

13

7 @ 28 7
MST —%—
£ 400 Ex MLS —o— £2
20

£ 300 £ 20 VLS-p —%— £
= = 16 VLS-y —|&— 15
S 200 S S 10
£ £ 12 5 €
g 100 3 8@ = § 3 5B
= = = £ Y

0 B———- 4 0

02505 1 2 4 8 16 32 64 10 50 100 0 02 04 06 08 1 025 1 4 16 64 256

Arrival Rate (K/sec) k o R (miles)
(a) Varying arrival rate (b) Varying k (c) Varyinga (d) Varying R

Fig. 6. Index insertion time.

MT @
MST-Lin ¢
MLS-Lin &
MST-Exp

MLS-Exp

Storage Overhead (%)

= S

R <

= 8
500} 3 g
402 < o
30 E %
20 g MLS-Exp —B— g
10 e} P 2

0
3 6 9 12 3 6 9 12
T (hn) T (hn)

(a) Storage Overhead (b) Query Accuracy

Fig. 7. Ranking effect on storage vs. accuracy varying T'

g 9
S <
[} 3
S g
S > MLS-Exp —H—
[% MLS-Exp —B— 3
0 02 04 06 08 1 0 02 04 06 08 1
a a

(a) Storage Overhead (b) Query Accuracy

Fig. 8. Ranking effect on storage vs. accuracy varying «

MLS-Lin-00.4 —%—
MLS-Lin-0a0.9 —&—
MLS-Exp-00.4 —H—
MLS-Exp-00.9 —¥—

Query Accuracy (%)

MLS-Exp-00.9 ¥
0 02 04

06 08 1 0 02 04 06

B
(b) Query Accuracy

0.8 1

(a) Storage Overhead

Fig. 9. Ranking effect on storage vs. accuracy varying 8

R (miles) o]

(a) R vs. Query Latency (b) « vs. Query Latency

Fig. 10. Ranking effect on query pruning

10 CONCLUSION

this operation repeats for every single microblog, its ésstot
negligible. Secondi-Expis much more powerful in pruning the

We have presentééenus a system for real-time support of spatio-
temporal queries on microblogs, where users request a saterit

search space. For the same increase in either spatial ooltarnpk microblogs near their locationsenusworks under a challeng-

distance, the exponential score is demoted rapidly and ttheis

ing environment, where microblogs arrive with very highiat

search can quit much earlier than the linear score. ConstgueratesVenusemploys efficient in-memory indexing to support up to

in Figure 10(a), forR values< 64, the expensive computation

64K microblogs/second and spatio-temporal pruning tephes to

cost of F-Exp makes all its alternatives have higher latency thaf©vide real-time query response of 4 msec. In additiorectiife

P-Lin while its pruning power make them better than bBfiiLin
and PR-Lin For larger values ofR (> 64), when many cells
are involved in the query, the pruning power BfExp makes
more difference and giveB-Exp a latency of 11 ms forR =
256 compared to 16 ms foP-Lin. Consistently, botlPR-Exp [1]
andPT-Exphave query latency as low &sLin which shows two
conclusions: (a) Pruning a single dimension using the exptal [2]
score gives the same latency as pruning both dimensiong then [3)
linear score. (b) Unliké=-Lin, all F-Exp alternatives have query
latency within a small margin which shows that pruning githd4]
spatial or temporal dimension has the same effectivenest)eo
contrary toF-Lin in which the temporal pruning is much more
effective than the spatial pruning (see [6] or Appendix Ci5fdd
analysis).

(5]

(6]
Figure 10(b) shows the query latency varyimgin this figure,

the computation cost df-Exp dominates the pruning power (asm

default R value is30 miles) and so all alternatives &Exp have

slightly higher latency tha®-Lin but still lower thanPR-Linand

PT-Lin. The figure also shows the effectiveness of both spatial af#

temporal pruning using-Exp.

load shedding modules are employed to smartly shed thesssele
data while providing almost perfect query accuracy.

REFERENCES

“Twitter Statistics,” http://expandedramblings.comdex.php/march-
2013-by-the-numbers-a-few-amazing-twitter-stats/, 2013.

“Twitter Data Grants, 2014," https://blog.twitter.cod@14/introducing-
twitter-data-grants.
“Facebook Statistics,”
advertising, 2012.
“After Boston Explosions, People Rush to Twitter for Breakin
News,” http://www.latimes.com/business/technologyitn-
after-boston-explosions-people-rush-to-twitter-for-breaking-news
20130415,0,3729783.story, 2013.

W. G. Aref and H. Samet, “Efficient Processing of Window Querie
the Pyramid Data Structure,” IRODS 1990.

A. Magdy, M. F. Mokbel, S. Elnikety, S. Nath, and Y. He, “Memy: A
Memory-Constrained Spatio-temporal Real-time Search on Micrslilog
in ICDE, 2014, pp. 172-183.

G. Lee, J. Lin, C. Liu, A. Lorek, and D. V. Ryaboy, “The Unifiédgging
Infrastructure for Data Analytics at Twitter?VLDB, vol. 5, no. 12, pp.
1771-1780, 2012.

J. Lin and A. Kolcz, “Large-scale machine learning at twitten
SIGMOD, 2012.

https://www.facebook.com/iness/power-of-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

El
[10]

[11]
[12]

(23]

[14]
(15]
[16]
[17]
(18]
(19]
(20]
[21]
(22]
(23]
(24]
(25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]
(36]
[37]

(38]

(39]

[40]

[41]

14

M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and Jn,Li [42] S.J. Kazemitabar, U. Demiryurek, M. H. Ali, A. Akdogan, a@d Sha-

“Earlybird: Real-Time Search at Twitter,” ifCDE, 2012.

C. Chen, F. Li, B. C. Ooi, and S. Wu, “TI: An Efficient Indexing
Mechanism for Real-Time Search on Tweets,"SIGMOD 2011, pp.
649-660.

L. Wu, W. Lin, X. Xiao, and Y. Xu, “LSIl: An Indexing Structure for
Exact Real-Time Search on Microblogs,”i@DE, 2013.

J. Yao, B. Cui, Z. Xue, and Q. Liu, “Provenance-based Indg8opport
in Micro-blog Platforms,” inlICDE, 2012.

A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger, S. Madderd
R. C. Miller, “Tweets as Data: Demonstration of TweeQL andtlnio,”
in SIGMOD, 2011.

A. Bermingham and A. F. Smeaton, “Classifying SentimentMi
croblogs: Is Brevity an Advantage?” DIKM, 2010.

E. Meij, W. Weerkamp, and M. de Rijke, “Adding semanticsiizroblog
posts,” inWSDM 2012.

G. Mishne and J. Lin, “Twanchor Text: A Preliminary Studytbé Value
of Tweets as Anchor Text,” iBIGIR 2012.

C. C. Cao, J. She, Y. Tong, and L. Chen, “Whom to Ask? Jurg&in
for Decision Making Tasks on Micro-blog Service®VLDB, 2012.

J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Liebermaad
J. Sperling, “TwitterStand: News in Tweets,” @IS, 2009.

H. Abdelhag, C. Sengstock, and M. Gertz, “EvenTweet: @mnliocalized
Event Detection from Twitter,” i/LDB, 2013.

R. Li, K. H. Lei, R. Khadiwala, and K. C.-C. Chang, “TEDAS: Awitter-
based Event Detection and Analysis System|GDE, 2012.

M. Mathioudakis and N. Koudas, “TwitterMonitor: Trend Deti®n over
the Twitter Stream,” irSIGMOD, 2010.

T. Sakaki, M. Okazaki, and Y. Matsuo, “Earthquake shaketdr users:
Real-time event detection by social sensors NiVW 2010.

V. K. Singh, M. Gao, and R. Jain, “Situation Detection &whtrol using
Spatio-temporal Analysis of Microblogs,” WWW 2010.

J. Lin and G. Mishne, “A Study of "Churn” in Tweets and Reafr€
Search Queries,” iIlCWSM 2012.

D. Ramage, S. T. Dumais, and D. J. Liebling, “Charactegaiticroblogs
with Topic Models,” inICWSM 2010, pp. 130-137.

A. Dong, R. Zhang, P. Kolari, J. Bai, F. Diaz, Y. Chang, Z.enl, and
H. Zha, “Time is of the essence: Improving recency ranking usanier
data,” inWWW 2010.

I. Uysal and W. B. Croft, “User Oriented Tweet Ranking: A Hiltey
Approach to Microblogs,” irCIKM, 2011.

J. Hannon, M. Bennett, and B. Smyth, “Recommending éwittsers to
follow using content and collaborative filtering approaches,RecSys
2010.

O. Phelan, K. McCarthy, and B. Smyth, “Using twitter to recaend
real-time topical news,” ilRecSys2009.

K. Watanabe, M. Ochi, M. Okabe, and R. Onai, “Jasmine: AalRe
time Local-event Detection System based on Geolocation Infioma
Propagated to Microblogs,” i€IKM, 2011.

A. Marcus, M. S. Bernstein, O. Badar, D. R. Karger, S. Maddem
R. C. Miller, “Twitinfo: Aggregating and Visualizing Microblgs for
Event Exploration,” inCHI, 2011.

——, “Processing and Visualizing the Data in Twee&GMOD Record
vol. 40, no. 4, 2012.

L. Hong, A. Ahmed, S. Gurumurthy, A. J. Smola, and K. Tsiguisklis,
“Discovering Geographical Topics In The Twitter Stream,” WAWW
2012.

C. Budak, T. Georgiou, D. Agrawal, and A. E. Abbadi, “Geope:

Online Detection of Geo-Correlated Information Trends in Social Ne

works,” in VLDB, 2014.

A. Skovsgaard, D. Sidlauskas, and C. S. Jensen, “Scalapl&k Spatio-
temporal Term Querying,” ilCDE, 2014, pp. 148—159.

Y.-Y. Chen, T. Suel, and A. Markowetz, “Efficient Query Progieg in
Geographic Web Search Engines,"SitGMOD, 2006.

G. Cong, C. S. Jensen, and D. Wu, “Efficient Retrieval oftp-k Most
Relevant Spatial Web Object$?VLDB, vol. 2, no. 1, 2009.

Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. L. Lee, and X. Wang
“IR-Tree: An Efficient Index for Geographic Document SearcFKDE,
vol. 23, no. 4, 2011.

D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen, “Joint Top-K Sgat
Keyword Query ProcessingTKDE, vol. 24, no. 10, 2012.

D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsgeeva,

“Keyword Search in Spatial Databases: Towards Searching by -Doct

ment,” in ICDE, 2009.
L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial Keywouer®
Processing: An Experimental Evaluation,”\#L.DB, 2013.

(43]
[44]

[45]

[46]

[47]

(48]

[49]

(o DS
e

habi, “Geospatial Stream Query Processing using Microsoft SQueBe
Streamlinsight,PVLDB, vol. 3, no. 2, 2010.

W. Liu, Y. Zheng, S. Chawla, J. Yuan, and X. Xing, “Discovey Spatio-
temporal Causal Interactions in Traffic Data StreamsKDD, 2011.

E. Meskovic, Z. Galic, and M. Baranovic, “Managing Movi@pjects in
Spatio-temporal Data Streams,”MDM, 2011.

M. F. Mokbel and W. G. Aref, “SOLE: Scalable On-Line Executiof
Continuous Queries on Spatio-temporal Data StreaMisDB Journal
vol. 17, no. 5, 2008.

D. Zhang, D. Gunopulos, V. J. Tsotras, and B. Seeger, “Teaipnd
Spatio-temporal Aggregations over Data Streams using Muliipiee
Granularities,Information Systemsol. 28, no. 1-2, 2003.

M. Koubarakis, T. Sellis, A. U. Frank, S. Grumbach, R. H. @tin
C. S. Jensen, and N. LorentzoSpatio-Temporal Databases: The
CHOROCHRONOS Approach Springer, 2003.

S. Shekhar and S. Chawl&patial Databases: A Tour Prentice Hall,
2003.

R. A. Finkel and J. L. Bentley, “Quad Trees: A Data Structure fo
Retrieval on Composite KeysACTA vol. 4, no. 1, 1974.

Amr Magdy is a Ph.D. candidate at the De-
partment of Computer Science and Engineer-
ing, University of Minnesota - Twin Cities. He
received his M.Sc. at the same department in
2013. His research interests include big data
management, social data management, and
spatial data management. His current research
focus is managing microblogs data. His research
work has been incubated by Bing GeoSpatial
team and has been selected among best papers
in ICDE 2014. He has been selected a finalist for

o 3

Microsoft Research PhD Fellowship 2014-2016.

Mohamed F. Mokbel (Ph.D., Purdue University,
USA, MS, B.Sc., Alexandria University, Egypt)
is an associate professor at University of Min-
nesota. His current research interests focus on
providing database and platform support for
spatio-temporal data, location-based services
2.0, personalization, and recommender sys-
tems. His research work has been recognized
by four best paper awards at IEEE MASS 2008,
IEEE MDM 2009, SSTD 2011, and ACM Mo-
biGIS Workshop 2012, and by the NSF CAREER

award 2010. Mohamed is/was general co-chair of SSTD 2011, program
co-chair of ACM SIGSPAITAL GIS 2008-2010, and MDM 2014, 2011.
He has served in the editorial board of ACM Transactions on Spatial Al-
gorithms and Systems, |IEEE Data Engineering Bulletin, Distributed and
Parallel Databases Journal, and Journal of Spatial Information Science.
Mohamed has held various visiting positions at Microsoft Research,
USA, Hong Kong Polytechnic University, and Umm Al-Qura University,
Saudi Arabia. Mohamed is an ACM Senior and IEEE Senior member
and a founding member of ACM SIGSPATIAL. He is currently serving
as an elected chair of ACM SIGSPATIAL. For more information, please
visit: www.cs.umn.edu/~mokbel

Sameh Elnikety is a researcher at Microsoft Re-
search in Redmond, Washington. He received
his Ph.D. from the Swiss Federal Institute of
Technology (EPFL) in Lausanne, Switzerland,
and M.S. from Rice University in Houston, Texas.
His research interests include distributed server
systems, and database systems. Samehs work
on database replication received the best paper
award at Eurosys 2007.

Suman Nath is a senior researcher at Mi-
crosoft Research in Redmond, Washington. He
received his M.S. and Ph.D. from Carnegie Mel-
lon University (CMU). His research interests
include sensor/time-series data management,
data privacy and security, and flash memory. His
research work has been recognized by best pa-
per awards at BaseNets Workshop 2004, NSDI
2006, ICDE 2008, SSTD 2011, Grace Hopper
2012, and MobiSys 2012.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

Yuxiong He is a researcher at Microsoft Re-
search in Redmond, Washington. She received
her Ph.D. in Computer Science from Singapore-
MIT Alliance in 2008. Her research interests in-
clude resource management, algorithms, mod-
eling and performance evaluation of parallel
and distributed systems. Her research work has
been selected among best papers in ICDE 2014.

15

APPENDIX A
INDEX SIZE TUNING TIME HORIZON

This appendix aims to find the valdE. for each cellC' such
that only those microblogs that have arrivedGhin the lastT,
time units are kept in memory as discussed in Section 6. Rer th
following Lemma, T, is computed based on the default values of
k, R, T, anda, and uses the microblog arrival rate for each cell

C assuming we are using the linear scoring functions. We assum
that the locations of incoming microblogs are uniform witkeach
cell boundary, yet they are diverse across various cellgéeach
cell C has its own microblog arrival ratg.

Lemma 1. Given query parameterg, R, T, and o, and the
average arrival rate of microblogs in cell’, \., the spatio-
temporal query answer from cell' can be retrieved from those
microblogs that have arrived in the la%t time units, where:

k
T, = Min | T, 2T +

Lo Min (Gt <A

Proof: The proof is composed of three steps: First, we compute

the value of\r as the expected arrival rate of microblogs to query
area R, among the microblogs in cell’ with arrival rate \..
This depends on the ratio of the two aréasa(R) andArea().
If Area(R) < Area(C), then A\ = %Ac, otherwise, all
microblogs fromC' will contribute to R, henceAr = A.. This
can be put formally as:

. ([Area(R)

Ar = Min <A7“ea(C)’1> X Ae

Second, we compute the shortest tiffie to form a set ofk
microblogs as an initial answer. This corresponds to the tione
get the firstk microblogs that arrive within cell’’ and areaR.
Since)p is the rate of microblog arrival ik, i.e., we receive one
microblog eachﬁ time units, then we ne€dl, = ﬁ time units
to receive the firsk microblogs.

Finally, we compute the maximum time intervd]. that a
microblog M within cell C' and areak can make it to the list of
top-k microblogs according to our ranking functién In order for
M to make it to the topk list, M has to have a better (i.e., lower)
score than the microblod/;. that has théekth (i.e., worst) score
of the initial top+#, i.e., F'(M) < F(Mj}). To be conservative in
our analysis, we assume that: (&) has the best possible spatial
score: zero, i.eM has the same location as the user location. In
this caseF() will rely only on its temporal score, i.eF' (M)

= (1 —a)Zs, whereT, = NOW — M.time indicates the search
time honzonT that we are looking for, and (b)/; has the worst
possible spatial and temporal scores among the initiaines.
While the worst spatial score would be one, i&f}, lies on the
boundary ofR, the worst temporal score would take placé/;
arrives T}, time units ago So, the score @ff;, can be set as:
F(Mp)=a+(1- a) . Accordingly, to satisfy the condition
that (M) < F(My), the following should hold:

(lfa)%<a+(1fa))\j:T)

This means that in order fab/ to make it to the answer list,
T, should satisfy:

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

k
T -
+ n
By substituting the value 0%, and boundind,. by the value
of T', as we cannot go further back in time thanthe maximum

value ofT,. would be:

(07

T. <

11—«

k

Area(R)
Area(C)?

T.= Min | T, T +

l1—«

Mm(1) X Ao

In case of exponential ranking function that is presented
Section 3.3, the equation @t. is given as follows:
wk

Area(R) |
Arca(C)’

(ew . 1) + eZVIin()X/\CT]

T.= Min (T, zln[
w 11—«

This equation can be derived using exactly the same st?@e

as in the case of linear ranking function. The proof is given
following.

Proof: The proof is composed of exactly the same three steps as

the previous one. The first and second steps are indeperfdést o
ranking function and gives:
1) X A

Area(R)

Ap = Min (2160t
R mn <Area(0)7

_k
Y

Then, we compute the maximum time interval that a
microblog M within cell C' and areaR can make it to the list

T,

16

APPENDIX B
LOAD SHEDDING TIME HORIZON AND ACCURACY
Loss

This appendix aims to find the valug. 5z for each cellC', such
that only those microblogs that have arrivedinin the lastl s
time units are kept in memory, and analyze the accuracy fas&o
load shedding module as discussed in Section 7. We firstederiv
the value off, g in B.1 then we analyze the accuracy loss in B.2.

B.1 Storage Saving

Building on the derivation ofl}, in Appendix A, and assuming
we use the linear scoring functions, we will relax the very
fronservative assumption of having a query location examtly
the location a microblogV/, and hence Equation 7 will be re-
formulated as:

T
af+(1-a) 7;’8

<a+(1-a) (11)

ArT
n, in order for a microblog/ to make it to the answer list,
¢,3 should satisfy:

Lk
AR
By substituting the value oA, and boundingl; s by the
value ofT’, the maximum value of . 3 would be:

a(l-B)
T. —T
e < 11—«

1-— k
TC’B = Min T7 a(l - ﬁ)T + . Area(R)
@ Min (Area(C’)’ 1) X Ae
12)

Following the same steps, we can deriegs for the exponen-
tial scoring functions to be:

of top-k microblogs according to the exponential ranking function

F'. In order for M to make it to the topk list, M has to have a
better (i.e., lower) score than the microbldd. that has the:th
(i-e., worst) score of the initial top; i.e., F(M) < F'(M}). To be

whk
Arca(R)
Area(C)’

«@ J\/Iin(

(ew _ ewﬁ) Te I)ACT}

w 11—«

T
T.3 = Min (T, —In|
(13)

conservative in our analysis, we assume that:(@has the best g , Accuracy Loss
possible spatial score: zero, i.84 has the same location as the

user location. In this caséy (M) will rely only on its temporal
Te .

score, i.e.F'(M) = (1—«a)e”* 7 whereT, = NOW — M .time

indicates the search time horizdi that we are looking for, and

(b) M}, has the worst possible spatial and temporal scores amo
the initial £ ones. While the worst spatial score would be one, i.€.

Mj, lies on the boundary oR, the worst temporal score would
take place ifM} arrivesT} time units ago.kSo, the score of;,
can be set asF'(My) = a + (1 — a)e” ™ =T, Accordingly, to
satisfy the condition thaf' (M) < F(M}), the following should
hold:

wx#

—a)ewx% <a+(1-a

(1 (9)

By separating the two sides and substituting the valuggf

and boundindl,. by the value ofl’, as we cannot go further back

in time thanT’, the maximum value of . would be:

wk

T. = Min (T, Zln[@ (e —1)+ eMi"(ﬁZIZZEg; ’I)MCT])
w 11—«

(10)

[|

Given the less conservative assumption in Equation 11, tisere
a chance to miss microblogs that could have made it to the final
result. In particular, there is an ared, in the spatio-temporal
shace that is not covered . 3. A microblog M in areaA,
a(%isfies two conditions: (1) The spatial scoreléfis less tharg,
ahd (2) The temporal distance 81 is betweerll g andT,. We
measure the accuracy loss in terms of the ratio of the aresredv
by A, to the whole spatio-temporal area coveredgndT, i.e.,

R x T. This is measured by multiplying the ratios of the’s
temporal and spatial dimensiong,,;;, and R4+, t0 the whole
space. The temporal ratiB.,:;, can be measured as:

S

Tratio = Tc — Tc,ﬁ — (ﬁT—’— ﬁ) - (%T—F ﬁ)
T, (55T)
This leads to : Trati :ﬂxi <g
M ratio ﬁTJ’_ ﬁ —

This means that the temporal ratio is boundedsby

For the spatial ratio, consider thdt, and R are represented
by circular areas around the querying user location withusad
Radius@,) and Radius{). Since a microblogh at distance

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 17

Radius{,) has spatial score gf while a microblog at distance g0
Radius(R) has spatial score of 1, thétadius@,) = § Radius). o e &

80 VLS-y-Min £
Hence, the ratio of the spatial dimension is: 70 VLSyAvg K

VLS-y-Avg —%—

Area(A;) wRadius(A;)? B?Radius(R)*
Area(R) mRadius(R)?2 Radius(R)2
Hence, the accuracy loss can be formulated as:

Query Accuracy (%)

=
o

Storage Overhead (%)
S
o

Rratio =

0 02 04 06 08 1

a a
AccuracyLoss;; = Tousio X Rratio < 53 (14) (a) Storage Overhead (b) Query Accuracy
- ratio ratio =
This shows a cubic accuracy loss in termsdfe.qg., if 3 = Fig. 11. Effect of o on storage vs. accuracy - average estimation.
0.3, we have maximum of 2.7% loss in accuracy for 30% storage so ViSs 100
saving. T svdin —— g
For the exponential scoring function, the aréain the spatio- § 5 v g 99 VISP —g—
temporal space would be an area bounded by two exponentZfoC E My -
curves and hence its area can be calculated using integmatio $ 5 z %
der the bounded area. However, roughly, expelling expdelgnt 3 13 S o
scored microblogs would lead to much less accuracy loss as a s 6 9 12 3 6 9 12
slight increase in either spatial or temporal distancesldviead T T {0
to exponential decay in the relevance score. The experahent (a) Storage Overhead (b) Query Accuracy
evaluation clearly verifies this observation. Fig. 12. Effect of T on storage vs. accuracy - average estimation.
APPENDIX C
ADDITIONAL EXPERIMENTAL RESULTS C.2 Top-k Ranking Additional Experiments

In this appendix, we provide additional experimental ressthat Thjs section presents the effect of employing exponergiaking

do not fit in the main paper contents due to space limitations. function combined withVenusadaptivey-load shedding (with
C.1 Adaptive Load Shedding Additional Experiments min estimation method) and adaptiyeload shedding, denoted
In this section, we present the results \&nusadaptivey-load asVLS# andVLS+, respectively. This represents an extension
shedding witraverageestimation method (denoted WtS+-Avg) for the results presented in Section 9.3 evaluating theceté
compared to adaptive-load shedding (denoted a4.S3) and €mploying exponential ranking function on different compots
adaptivey-load shedding withmin estimation method (denoted asCf the system.

VLS=+-Min) that are presented in Section 9.2.1. Generallys-y- As mentioned in Section 9.3.1, employind.S3 and VLS-
Avgbehavior is similar ta/LS<-Min with minor differences in ac- ¥ With both linear and exponential ranking functions givetgyre
tual numbers of storage overhead and query accuracy. ®artic Similar performance. This is clearly shown in Figures 13 &Ad
Figure 11 shows the effect dfenusadaptive load shedding on Figure 13 shows/LS+ and VLS< with employing both linear
both storage overhead and query accuracy with vargingor o @nd exponential ranking function (denoted with sulfix andExp,
ranges fron®) to 0.9, Figure 11(a) shows that alenusalternatives "espectively) with different values of. The figure shows the same
of adaptive load shedding techniques are able to save 59-g8formance for both ranking functions in both storage beed

of storage overhead, which is a significant improvementlevhi(in Figure 13(a)) and query accuracy (in Figure 13(b)) fdiedent
keeping almost perfect query accuracy as shown in Figure)11(

In this range ofa, VLS<-Avg consistently behaves at least as
good asVLS<-Min and at most as good a4 S{. For storage < '%

VLS-y-Lin —6—
VLS-BExp —g—
VLS-y-Exp —5—

T 9 VLS-B-Lin >¢

oyerhead, Figure 11(a) shows thﬂLS:y-Avg encounter slightly g & V\[g%_/’ELx'g < “

higher storage overhead th&h S and slightly lower tharVLS- £ 60 VLSvExp & | VLS-B-Lin —x—
3

~-Min for all values ofa. This is mainly becaus&LS<y-Min
is more conservative in estimating the value of load shegdin -
parametery and hence stores more microblogs and then encountér 5 T
higher storage overhead. For query accuracy, Figure 1hws 0 02 04 06 08 1 0 02 04 06 08 1
that performance of all alternatives for ail changes in a very

narrow range that is very close the perfect accuracy. Ye6-

~-Avg and VLS<-Min give similar accuracy forx ranges from Fig. 13. Effect of o on storage vs. accuracy - exponential ranking.
0 to 0.4 while VLS+<-Avg and VLS{ give similar accuracy for

Query Accuracy (%)

torage
n
o

(a) Storage Overhead (b) Query Accuracy

a>04. 70l VESELin —— T
. . < VLS-y-Lin —&— *

Figure 12 shows the effect of varying on storage and 7§ 60 %t%i%iEiS —7— > .
accuracy. For small values @f, Figure 12(a) shows thaflLS- Eig 3 \\//LLSs'EiHﬂ ——
~v-Avg encounter storage similar ¥LS+ which is 10% less than %30 < VVLL%’EEiﬁ ——
VLS+-Min. With enlargingT (at 7 =12 hours) VLS<-Avgand § fg E
VLS+-Min behave the same with 40% storage overhead (which o

. . 3 6 9 12 3 6 9 12
means 60% storage saving). Figure 12(b) shows that for alésa T (hr) T (hr)

of T', all alternatives still come with> 99% query accuracy even (a) Storage Overhead
for small T" values (at'=3 hours). The accuracy increases with
increasingI” value to reach almost 100% at=12 hours. Fig. 14. Effect of T' on storage vs. accuracy - exponential ranking.

(b) Query Accuracy

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 18

values ofa. This basically all the analysis and conclusions drawinsertion overhead), the insertion timeMST-TBP-DDdecreases

in Section 9.2 forVLSy and VLS« with linear ranking apply for o ranges from 0-0.2 and then it saturates do> 0.2. The

for the exponential ranking as well. This performance snty reason of that behavior is that for small valuesxgfmany recent

applies also for different values @f that are shown in Figure 14. microblogs are deleted and hence a lot of deletion opesatoa

performed on the most recent partition that is accesseidl 8Y-

TBP-DD. However, with increasing, more recent microblogs are

In this section, we show the effect of applying temporalipart- kept and hence almost no deletions performed on insertidratn

ing to our index. Specifically, the idea is to partition indom deletions are deferred to the periodic cleanup, which redbe

data based on their timestamprirpartitions, where each partition insertion overhead. This comes with a cost in storage oeerhe

indexes data ofli time units. Each temporal partition employs as shown in Figure 15(c). The figure shows that storage osdrhe

spatial index just like the one described throughout theepdp- of MST-TBP-PDis almost equals the storage overheadsT,

coming data are continuously digested in the partitionithdgxes with a non-noticeable increase due to the overhead of nhiltip

the most recent data. Ever%i time units, the currently active indexes storage. Howeve¥/ST-TBP-DDcomes with significant

partition is concluded and a new empty partition is intraghlic storage overhead increase that ranges from 10-50%, deyaeouli

to digest the new data. A partition is completely wiped frdre t value ofc. This shows a significant overhead increase that is saved

memory when its most recent microblogfistime units old. through employing one index as MST. Analyzing both insertion
With the described temporal partitioning to our index, ouoverhead (whertMST-TBP-PDs dominant) and storage overhead

insertion techniques remain the same and would be applied(ithere MST-TBP-DDgives significant higher values) shows that

currently active partition that digest incoming data. Heare our MSTis a smart compromise that achieve good performance in both

deletion technique would need a small adaptation. Speltyficar insertion overhead and storage overhead. However, Figa(a) 1

deletion depends on removing useless microblogs from ainertshows an advantage faiST-TBP-PDand MST-TBP-DD over

index cell while visiting this cell to insert new data. Thelokss MST which is a lower average query latency. This is mainly

of removed microblogs is varying from cell to another basad aaused by searching a lighter index segments and hencesproce

the density of microblogs in the spatial locality of the cdlb less data to retrieve the final answer. Table 2 shows the 9@y@b

apply this technique to the temporally partitioned inder, meed 99 percentiles of query latency of the three alternatives.cdah

to perform two steps. First, we apply this deletion critédehe see that alMST-TBP-PDandMST-TBP-DDpercentiles are under

active partition on inserting new data. Second, checkingeeo 30 ms while allMST percentiles are under 50 ms.

sponding cells in older partitions to check existence ofrobitogs

to remove. As the second step is expected to put a significant

C.3 Time-based Partitioning

Query Latency (ms)
90% | 95% | 99%

overhead, we experiment in this section two alternativdse T MST 5 50 | 34
first alternative represents the temporally partitionedieinwith a=0 [MST-TBP-PD | 22 | 29 | 11
the deletion process employs the two previous steps, wehisll MST-TBP-DD | 23 | 35 | 153
proactive deletioras it proactively deletes any microblog that can MST 123 | 288 | 408
) . a=0.2 [MST-TBP-PD | 33 | 42 | 10
be kicked out. The second alternative represents the teiypor MST-TBP-DD | 3.3 | 43 | 115
partitioned index with the deletion process employs ongyfilst NMST 128 258 354
step to get rid of useless microblogs only in the active parntiand a=04 [MST-TBP-PD | 53 [7.1 | 186
defer deleting older microblogs to the periodic cleanupcpss MSTJSE'DD i’94 ;-329 4113
that wipe out a complete partition evefytime units, we call this W MSTTEPPD | 57 1ao | 296
deferred deletionWe next experiment the temporally partitioned MSTTBPDD |10 | 145 | 293
index (settingn=4) with both proactive and deferred deletion TABLE 2
comparing it to our current technique that use only one apati Query Latency Percentiles varying o

index (i.e., settingn =1). Throughout this section, our spatial

index is denoted aMIST, while the temporally partitioned index

with proactive deletion and deferred deletion are denosddSiT- Figure 16 shows the effect of changikgon both indexes

TBP-PDandMST-TBP-DD respectively. in terms of insertion time, storage overhead, and quenndgte
Figure 15 shows the effect of changingon both indexes Figure 16(a) shows insertion time with different valuestofThe

in terms of insertion time, storage overhead, and quenndgte figure again shows a significant insertion overhead&T-TBP-

Figure 15(a) shows insertion time with different valuesxofThe PD confirming the previous findings. This overhead is also con-

figure shows a significant insertion overheadWt8T-TBP-PCthat sistent and dominant for all values bf This insertion overhead

leads to an order of magnitude higher insertion time due ¢o tbomes with a storage saving as it proactively removes alesse

expensive piggybacked deletion that accesses multipkxexdto microblogs. Figure 16(b) shows that storage overheadI8f-

get rid of the useless microblogs. This overhead is congistgh TBP-PDis almost equals the storage overheadA&T. However,

all values ofa and dominates botMST andMST-TBP-DD Fig- the efficient insertion ofMST-TBP-DDcomes with significant

ure 15(b) omits the dominating insertion timeM&T-TBP-PDand storage overhead increase that is 100% for all valuek. dthis

shows onlyMST and MST-TBP-DD For all values ofoe > 0.2, confirms thatMST is a smart compromise that achieve good

insertion overhead d/IST-TBP-DDis less tharMST because the performance in both insertion overhead and storage ovérhea

insertion is performed in an index that carries only one twguar Figure 16(c), yet, shows tha?IST-TBP-PDand MST-TBP-DD

of data and hence it becomes more efficient, due to less numbave lower average query latency thd8T, for searching a lighter

of index levels to be navigated. In addition, whMST insertion index segments. Table 3 shows the 90, 95, and 99 percentiles o

time is increasing with increasing (as the index accumulatesquery latency of the three alternatives. The table showszahat

more microblogs and hence encounter more levels and highé8T-TBP-PDand MST-TBP-DDpercentiles are around 10 ms

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 19

450 30

= > L VST &
g 400 2 = MST-TBP-PD
% 350 % 25 B MST-TBP-DD &
300 o
£ MST £ 20 < z,
= 250 MST-TBP-PD = S
[= [o MST ©
200 MST-TBP-DD MST 2 — S
S 150 s MSTTER DD 5 © MST-TBP-DD
T 100] o
Q @ 10]
250l 2 1S
0= = ? 5) ©
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
a a a a
(a) Insertion Time (b) Insertion Time omitting proactive (c) Storage Overhead (d) Query Latency
deletion

Fig. 15. Effect of « on temporally partitioned index.

1000 120
‘2 g 100 MT-B —%— g0y 2 2 100 MT-B
E 800 E MST-B —e— E100F VB 5 T £ MST-B —6—
2 0 80 MT. —= e g0 (MSTB © MSTI & o MT-| ——
£ 600 L, F 60 MSTI —8— 1 £ g }ME—EB‘E—H] £ eolhg MoH o oed
$ 200 3 20 3 207 3 20
< £ g =, £ D
025051 2 4 8 16 32 64 10 50 100 0 02 04 06 08 1 025 1 4 16 64 256
Arrival Rate (K/sec) k a R (miles)
(a) Varying arrival rate (b) Varying k (c) Varyinga (d) Varying R
Fig. 17. Real-time Insertion Scalability.
, 70 30 o) 35 Yy
. NoPruning —5— — — o — v
@ 120 | “initPhase —g— 260 puneR —o— Zos | el 9 230 InitPhase —g—
< 100 ||°;uneFTz —— < 50 PruneT —>— < 50 | Mercury —e— =25 PruneR —o—
€ 80 Merouy —e— Q40 Mercury —— g 50 PruneT —>¢—
) ury o 9 15 g Y Mercury —@—
3 60 S0 5 T 15 S
2 40 220 s 2° 210
G 20 G 10 g5 b 5 50
0 0 0 0
10 50 100 025 1 4 16 64 256 3 6 9 12 0 0.2 0.4 0.6 0.8 1
K R (miles) T (hn) a
(a) Varyingk (b) Varying R (c) VaryingT (d) Varying o
Fig. 18. Average query latency.
. Query Latency (ms)
G0 1000 & & 90% | 95% | 99%
£ 300 3w MST 45 | 120 192
2 MST —6— 2 80 MST —6— k=10 MST-TBP-PD | 1.3 1.8 6
E 250 1 MST-TBP-PD —— < MST-TBP-PD —w—
'; 200 MgT.TBp.DD —g— g 70 MgT—TBP—DD —a— MST-TBP-DD | 1.2 1.7 6.1
& 150 o 60 MST 7.7 20.2 | 30.5
g o g 504 k=50 [MST-TBP-PD | 25 | 34 | 95
£ % a8 g8 £ 4 % MST-TBP-DD | 2.6 | 3.6 | 84
10 50 100 10 50 100 MST 105] 253 | 3/.8
k k k=100 | MST-TBP-PD | 35 | 45 | 11
(a) Insertion Time (b) Storage Overhead MST-TBP-DD | 3.6 [44 [114
TABLE 3
2 52) Query Latency Percentiles varying k
E 45
> 4 MST —eo—|
2 35 MST-TBP-PD —<—|
2 3 MST-TBP-DD —&—
4 25
> 1§v
9] -
3 oa microblogs individually in the index (denoted with suffix for
“10 50 100 bothMT andMST indexing alternatives that stores all microblogs
k for the whole lastl" time units and employercury index size
(c) Query Latency tuning module, respectively.
Fig. 16. Effect of k on temporally partitioned index. Figure 17(a) shows insertion time for all alternatives with

varying tweet arrival rate per second. The bulk insertiorhtec

) _ - niques,MT-B and MST-B show a significant performance boost
C.4 Real-time Insertion Scalability which is four times faster insertion compared to insertimg o

In this section, we show the scalability of index inserti@ch- tweet at a time througMT-I and MST-L Specifically,MT-B can
nigues that are proposed and applied in bbtbarcury [6] and digest up to 32,000 tweet/second WhNET-I cannot sustain for
Venus We show that by showing the performance of applying,000 tweet/second and can only handle few hundreds leas tha
our bulk insertion techniques, along with lazy split/mecgi¢eria, this number. SimilarlyMST-Bcan digest 64,000 tweet/second in
versus employing a non-bulk insertion technique that issema half second whileMST-I can sustain up to few hundreds less
microblogs one by one in the index. Figure 17 shows the iiegert than 16,000 tweet/second. This shows clearly the effantise
time of our bulk insertion (denoted with suff) versus inserting of Mercury bulk insertion techniques that reduce the amortized

while all MST percentiles are under 40 ms for differénvalues.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 20

insertion time per microblog and so can sustain for muchdrighAPPENDIX D
than arrival rates. CONCURRENCY CONTROL

Figures 17(b), 17(c), and 17(d) show the insertion time witfihe system is adopting Single-Writer-Multiple-Reader aonc
varying k, a and R, respectively. In all these figures, and forency model, where always a single thread is modifying tiesn
different parameters valued)T-B and MST-B show a superior yhile multiple threads can query simultaneously. In thiseix,
performance over anT-I and MST-I with three times faster \e elaborate on the multi-thread contentiorvenusfor different
insertion time in most of the case. This supports the findoigs jndex operations.

Figure 17(a) and takes it a step further to show tatcury can Insertion and deletion. While in the middle of insertion and
handles much larger amount of microblogs per second whatey|etion operations, new queries may arrivevanus Similarly,
the system parameters setting. This shows robustnege@ury \while a query is processed, new microblogs may be inserted or
and its successafenusfor different query workloads. deleted. For such concurrent actioh&gnusopt not to support
transactions, but its concurrent update/insert/deleteratipns
preserve the integrity of the index. No update is lost. Havev
C.5 Query Evaluation a query concurrent with multiple insert operations may read
some of the new microblogs and miss some of them. After the
In this section, we recall the analysisMErcuryquery processing update operations complete, any new query observes ttieatef
techniques from [6], where we contradercury query processing completely. The rational here is that there is nothing muclose
with spatio-temporal pruning against: (BoPruning where all from these concurrent operations, where the worst scenaritd
microblogs within R andT' are processed, (WpitPhase where be that some microblogs may not make it promptly to the query
only theinitialization phase oMercuryis employed, (cPruneR answer. So, the side effect is that it may take few (millijsets for
where only spatial pruning is employed, and RfuneT, where a microblog)/ to be available for search. For deletion operations,
only temporal pruning is employed. Figure 18(a) gives theatf it may end up that an incoming query considers microblogs tha
of varying k& from 10 to 100 on the query latency. It is cleashould be deleted during the process. The worst case is that a
that variants ofMercury give order of magnitude performancemicroblog appears in the result while it is deleted. This i du
over NoPruning which shows the effectiveness of the employetp a very minor milliseconds time margin, which makes it very
strategies. With this, we are not showing any further result unlikely that a deleted microblog would score high enough to
NoPruningas it is clearly non-competitive. AlstnitPhasegives make it worthy reporting in the query answer. In general, the
much worse performance thaercury, which shows the strong effect of having such concurrent operations is minimal aoesd
effect of thepruning phase. Finally, it is important to note thatnot warrant employing any special concurrency control heig,
with k = 100, Mercurygives a query latency of only 3 msec. locking.

Figures 18(b) and 18(c) give the effect of varyidg and Split'Fing and merging. As des_cri_bed in the paper, the query
T, respectively, on the query latency fdtercury, PruneR and Processing module employs a priority queue data structlire
PruneT Both figures show thatlercury takes advantage of both €Ndueue and dequeue pyramid cells in order. Insertion datate
spatial and temporal pruning to get to its query latency of JfP™ €nqueued cells it do not pose any problems here as
to 4 msec for 12 hours and 64 miles ranges. Increadig discussed above. However, splitting and merging in thedls ca

and T increases the query latency of all alternatives, howeveP@y cause severe problems. For example, if a Cels merged

Mercury still performs much better when using its two pruninq"\nile in H, we will not be able to locate it when getting it out

techniques. Itis also clear thatuneTachieves better performance ™M - To avoid such casesenusprevents any cell from being

thanPruneR i.e., temporal pruning is more effective than spatiaiP/it or merged ifitis in the priority queue structure of anyrent
pruning, which is a direct result of the default valuensf0.2 that 9uery This is done through a simple pin counting technidnae t
favors the temporal dimension. is incremented and decremented with every enqueue and uteque

Fi 18(d) ai the effect of ina f 0to1 operation fromf . The side effect here is that cells may not be split
igure 18(d) gives the effec ot varying from © 10 1 on merged immediately once they are due. However, this does n
the query latency, whetgercury consistently has a query IatencyCause problems as cells do not stay long in any priority qab

under 4 msec, whilénitPhasehas an unacceptable performancgt ucture

that varies from 15 to 35 msec. This shows the strong effect o
the pruning phase inMercury. Meanwhile, with increasingy,

the temporal boundary dPruneRincreases and hence it visits
more microblogs inside each cell. For low valuesco{< 0.5),

the number of additional microblogs visited due to incregghe
temporal boundary is more than the number of microblogs that
are pruned based on spatial pruning. This increases thalbver
latency ofPruneR Whena > 0.5, the number of microblogs that
PruneRprunes based on the spatial pruning becomes larger than
the additional visited microblogs due to enlarging the terap
horizon. HencePruneRlatency becomes quickly better and beats
PruneT at « > 0.8. This means that for all values of <

0.8, temporal pruning is still more effective than spatialrpng.
PruneT has a stable performance with respect to varyingn

all casesMercury takes advantage of both spatial and temporal
pruning to achieve its overall performance of around 4 msec.

