
Simple and Cheap

Theia: ˇ Networking for Ultra-Dense Data Centers

meg walraed-sullivan
Microsoft Research
Redmond, WA, USA

megwal@microsoft.com

Jitendra Padhye
Microsoft Research
Redmond, WA, USA

padhye@microsoft.com

David A. Maltz
Microsoft

Redmond, WA, USA
dmaltz@microsoft.com

ABSTRACT
Recent trends to pack data centers with more CPUs per rack
have led to a scenario in which each individual rack may
contain hundreds, or even thousands, of compute nodes us-
ing system-on-chip (SoC) architectures. At this increased
scale, traditional rack-level star topologies with a top-of-
rack (ToR) switch as the hub and servers as the leaves are
no longer feasible in terms of monetary cost, physical space,
and oversubscription. We propose Theia, an architecture to
connect hundreds of SoC nodes within a rack, using inex-
pensive, low-latency, hardware elements to group the rack’s
servers into subsets which we term SubRacks. We then re-
place the traditional per-rack ToR with a low-latency, pas-
sive, circuit-style patch panel that interconnects these Sub-
Racks. We explore alternatives for the rack-level topology
implemented by this patch panel, and we consider approaches
for interconnecting racks within a data center. Finally, we in-
vestigate options for routing over these new topologies. Our
proposal of Theia is unique in that it offers the flexibility of a
packet-switched networking over a fixed circuit topology.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—Network Commuications,
Network Topology; C.2.2 [Computer-Communication
Networks]: Network Protocols

General Terms
Design, Measurement, Performance

Keywords
Data center networks; Network topologies
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
Hotnets ’14, October 27–28, 2014, Los Angeles, CA, USA.
Copyright 2014 ACM 978-1-4503-3256-9/14/10 ...$15.00
http://dx.doi.org/10.1145/2670518.2673862.

1. THE PROBLEM
Building new data centers is expensive, so major cloud

service providers are trying to pack existing data centers
with more hardware[13]. One way to do this is to pack more
CPUs in a standard rack. We are experimenting with new
architectures in which a single rack can contain several hun-
dred or even a few thousand compute nodes that use system-
on-chip (SoC) [1, 16] architectures. Informally, such data
centers are called Ultra Dense data centers, or UDDCs.

The extreme scale of the UDDC architecture leads to sev-
eral challenges in the areas of system management, power
and cooling provisioning, failure recovery, tailoring appli-
cations for SoCs, and of course, networking. Since this is
HotNets, we will focus only on one key networking prob-
lem, the fact that standard ToR-based network architectures
do not work for UDDCs.

To understand why this is so, consider how data center
networks (DCNs) are architected today. In a typical DCN
architecture [3, 7, 9], servers within a rack are connected in
a star topology, with each server connected directly to a top-
of-rack (ToR) switch, and the ToR switches form the leaves
in a Clos-style topology. These architectures rely on high-
speed ToR switches with high port counts. Ports are needed
both to connect to the large number of servers in the rack,
and also to connect the rack to the rest of the data center at
an acceptable oversubscription ratio [9].

This ToR-based model of networking does not scale for
UDDCs. A densely-packed UDDC rack would require a
ToR with hundreds or even thousands of ports. Unfortu-
nately, the technology to build high-radix ToRs becomes less
feasible and more costly as link speeds increase. Building
a high speed ToR with even a few hundred ports is pro-
hibitively expensive. In fact, at 100G it may be infeasible
to scale past 32 ports.

To address this problem, we propose a networking ar-
chitecture called Theia to support UDDCs. Theia divides
racks into smaller components called SubRacks. We con-
nect servers within a SubRack using specialized hardware to
avoid introducing latency within the rack as well as to reduce
cost. We then interconnect SubRacks within a rack using a
passive optical patch panel with a fixed topology. The patch

1

panel introduces no latency and requires no power. Racks
within the data center are then connected to one another us-
ing “leftover” ports on SubRack switches and patch panels.

In this paper, we will describe the Theia architecture in
more detail. We stress two things. First, this is a prelimi-
nary design. We are currently building a UDDC prototype
to evaluate vendor hardware, and the Theia architecture will
continue to evolve as we progress. Second, we aim for a
design that is simple, practical and cheap. To this end, we
proudly, and extensively beg, borrow and steal from prior
work on data center networking. Our primary aim in writing
this paper is to highlight the problem, and start a conversa-
tion on new networking architectures for UDDCs.

2. PRINCIPLES AND ASSUMPTIONS
We begin our redesign of the data center network with

three key observations about SoC-based architectures:

Oversubscription is unavoidable. At the enormous scale
of this new architecture, some amount of oversubscription is
necessary. Therefore, rather than (fruitlessly) trying to avoid
oversubscription, we should instead take care to introduce it
in the appropriate places and amounts.

Passive components are necessary. Increasing the num-
ber of servers in the data center by an order of magnitude (or
more) leads to the need for an order of magnitude more net-
work ports (and likely network elements). In order to keep
cost and power requirements manageable, some of these com-
ponents will need to be passive.

Inter-rack communication is likely to be less frequent.
Applications have the opportunity to leverage the enormous
rack-locality enabled by such densely-packed racks. As such,
it is crucial that we design the network within the rack for
performance, at the cost of a narrower pipe between the rack
and the remainder of the data center.

Why current architectures do not scale: The sin-
gle ToR-per-rack model of networking becomes infeasible
when the rack contains hundreds or thousands of SoCs. Such
a ToR would need to have twice as many ports as there are
SoCs in the rack to not be over subscribed, in order to ac-
count for uplinks to the remainder of the data center. Re-
ducing the ToR’s port count would quickly lead to a non

trivial amount of oversubscription, and may not decrease
the size of the ToR sufficiently; in fact, even a ToR with
1,000 10G downlinks to SoCs and only a single 10G uplink
(therefore oversubscribed with a ratio of 1:1000) would be
prohibitively expensive to build and would consume a sig-
nificant portion of the physical space within the rack. At
higher link speeds, these gaps only increase1. Therefore, for
densely-packed racks of SoCs, it is clear that some sort of
in-rack aggregation is necessary.
A naïve solution: A naïve approach to redesigning the
network is to simply add more ToRs within the rack, as
shown in Figure 1. The effect of this is to logically push
the existing ToRs up a level in the hierarchy, creating a new
hierarchy with an additional level. However, adding multi-
ple standard ToR switches to the rack reduces the number
of servers the rack can hold (due to space and power limita-
tions), negating the rationale behind UDDCs. The additional
ToRs would also significantly increase cost and management
complexity. Since the naïve approach is not feasible, we de-
sign Theia, guided by the principles described above.

3. THE THEIA ARCHITECTURE
To add an additional level of aggregation to our data cen-

ter, we divide the rack into several constituent components,
each containing a subset of the rack’s servers, and we coin
these components SubRacks. A clean way to divide a rack
into SubRacks is to group SoCs within a single rack-unit into
a SubRack, leading to SubRacks of tens of SoCs. At this
point, our task is to determine how to interconnect servers
within a SubRack, SubRacks within a rack, and finally racks
within a data center. We address each of these in turn, keep-
ing the principles introduced above in mind.

3.1 Connecting Servers into SubRacks
As described earlier, using traditional ToR switches to

connect servers within a SubRack is not practical due to
space limitations and cost. Rather than try to devise a clever
algorithmic solution to this problem, we simply use better
hardware. Specifically, instead of ToR switches, we use an

1In case you are wondering whether these “tiny” SoCs need
and/or can fill 40 or 100G pipes, the answer is yes—by using
NICs that support hardware-based protocols like Infiniband.

ToR	

aggrega)on	

core	

(a) Traditional Architecture

ToR	

aggrega)on	

core	

servers	
 and	

more	
 ToRs	
 	

(b) Deeper Architecture

Figure 1: Naïve Approach: Add Another Level of Hierarchy

2

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Figure 2: Sample Circuit
Topologies

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ICS	

rack	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Figure 3: Tree of Circulant Graphs

Figure 4: Connecting to
Multiple Neighbors

in-chassis hardware switch-card (ICS) that interconnects
all of the SoCs within a single chassis (SubRack). ICSs con-
nect SoCs with copper rather than cables, sit within the same
chassis as the SoCs themselves, and can be deployed with a
variable number of downlinks to the SoCs and uplinks to the
remainder of the rack. We design Theia to have on the order
of ten or fewer uplinks per ICS (and the ICS’s correspond-
ing tens of servers) which yields a SubRack oversubscription
ratio similar to that at the ToR level in today’s data centers.

Note that at the ICS level, there is a fundamental tradeoff
between oversubscription and aggregation regardless of the
hardware used. If we reduce the oversubscription ratio at the
ICS level, we would simply push the problem of connecting
thousands of ports one level up in the hierarchy.

3.2 Connecting SubRacks into Racks
Our design of around ten uplinks per SubRack leaves us

with the task of interconnecting a few hundred ports per
rack. A traditional ToR is again impractical here, due to the
prohibitive cost, the several rack-units of physical space that
would be required, and the significant oversubscription that
would be necessary to make the port count manageable.

Thus, we simply connect SubRack ICSs in a fixed topol-
ogy using a passive optical patch panel. Since the patch
panel does not contain any active components, it is compact,
and draws no power. It is passive, and so does not add any
queuing delay. Finally, the patch panel also makes cabling
easier. Cabling in this case is reduced to simply a matter
of connecting each port on each ICS to one input port on
the patch panel, and the complexity of the topology imple-
mented by the patch panel is hidden from the operator.

In other words, this level of aggregation in Theia comes
at nearly no cost. The downside, of course, is in the loss
of flexibility; instead of a switched topology we use a fixed-
circuit topology. We discuss the implications of this in § 4.
We chose not to use optical switches like those used in He-
lios2 [8] and Mordia [18] to save cost, power and space.

The topology implemented by the patch panel to connect
SubRacks is an open problem. We have considered several
different options, including hypercubes [2, 6] and circulant
graphs [10], as shown in Figure 2. We use the circulant graph
in our initial Theia design for reasons that we discuss in § 4.

Note that this type of design may lead to scenarios in
which for at least some pairs of SubRacks SA and SB , traffic
2We note that Theia is a mother of Helios ...

cannot pass directly from servers in SA to SB , and instead
must pass through SubRack SC while en route. It is crucial,
therefore, that the design of the circuit minimizes both the
number of occurrences and lengths of these indirect paths.

3.3 Connecting Racks Across the Data Center
Finally, we consider the interconnection of racks within

the data center. As UDDC racks have significantly higher
server count than those in a traditional data center, we envi-
sion that more applications will be able to keep their com-
putations and storage accesses rack-local and thus we inten-
tionally design a narrower pipe from one rack to another.

We form the interconnect between racks by using parallel
connections from multiple points within each rack. That is,
we devote a subset of the links that would otherwise be used
to wire the internals of the patch panel instead to connect
an ICS in one rack to a corresponding ICS in a neighboring
rack.3 In this way, we form large, data center-level topolo-
gies in which the constituent nodes are racks of SubRacks,
and “links” between these nodes are groups of links from
sets of ICSs within a rack.

Figure 3 provides a visualization of this concept. The fig-
ure zooms in on a portion of a Clos-style topology, in which
individual nodes in the tree are circulant graphs of ICSs.
The links between these circulant graph nodes are formed
by groups of links between corresponding pairs of (shaded)
ICSs within neighboring racks. Therefore, each ICS is a sin-
gle node within a circulant graph, and each rack of eight
ICSs is a single node in the larger Clos topology. In gen-
eral, depending on the type of topology selected for the data
center, it will likely be the case that each rack has multiple
neighboring racks and varying subsets of ICSs may be used
to connect the rack to each of its neighbors, as in Figure 4.

The implications of this design are non trivial; not only do
we have a tradeoff between connectivity within the rack and
oversubscription to the rest of the data center, but we also
have an architecture in which traffic destined from a server in
rack RA to a server in rack RB may pass through rack RC’s
patch panel (and ICSs) in the process. That is, ICSs carry not
only traffic for their own racks, but also “through-traffic” as
it passes from one rack to another. This is analogous to the

3Note that this connection still happens via the patch panel
for cabling simplicity. We simply connect certain ports of a
rack’s patch panel to other rack’s patch panels rather than
to local ICSs.

3

discussion of through-traffic between SubRacks in § 3.2; we
examine this property more closely in § 4.

Note that we have uncovered the tradeoff alluded to by our
third principle (§ 1), in terms of the number of links used for
intra-rack connectivity versus those used for inter-rack con-
nectivity. We can make this trade based on expected work-
loads. For instance, for a highly rack-local workload, we
devote most of the links from the rack’s ICSs to the rack’s
patch panel; traffic leaving the rack is oversubscribed. On
the other hand, for an application with more all-to-all re-
quirements we use more links to connect each rack to other
racks, limiting oversubscription at the cost of a reduction in
intra-rack bandwidth. This tradeoff corresponds to a change
in the number of straight-line links in Figures 3 and 4.

3.4 Architecture Summary
Thus we propose a new architecture for UDDCs in which

densely packed racks of hundreds or even thousands of SoCs
are aggregated into SubRacks within a rack, each with a
high-speed ICS to provide connectivity to the rest of the
rack. These SubRacks are connected to one another by a pas-
sive circuit component, or patch panel. We select this circuit-
based design to enable a high-performance interconnect with
little cabling complexity and no power requirement. We then
repurpose a subset of “leftover” links within the patch panel
to connect racks to one another, building e.g. a Clos-style
network in which each node is a full rack of SoCs.

4. PATCH PANEL CIRCUIT DESIGN
We now consider intra-rack connectivity, that is, the topol-

ogy implemented by the patch panel. Our ideal topology:

• Minimizes the amount of traffic that passes through ICSs
in SubRack SB while in transit from SubRack Sa to Sub-
Rack SC ,
• Supports a wide range of graph sizes (i.e. numbers of

ICSs) as well as node degrees (ICS port counts) and does
not have a dependency between the number of nodes in
the graph and the degree of each node, as with topologies
such as hypercubes [2, 6, 11]4, and,
• Reduces the disruption caused by failures; since ICSs are

responsible for a large number of SoCs, and since they
may also carry through-traffic, their failures can have sig-
nificant impact. Additionally, due to the large number of
ICSs across the data center, there are simply more com-
ponents to fail and so failures will be more frequent.

We have considered a number of alternatives for the patch
panel topology. For Theia, we chose not to focus on topolo-
gies such as DCell [12], BCube [11], and hypercubes and
toruses [2, 6], since these topologies work best with par-
ticular, well-constrained numbers of nodes and often have
a dependency between the radix of each node and the total
4This is important since we wish to tune the number of ICS
ports used to connect SubRacks to one another and those
used to connect to other racks, based on expected workloads.

number of nodes in the graph. Additionally, topologies like
DCell [12], BCube [11] include two types of nodes, servers
and switches, and servers play a switching role in the topol-
ogy. In contrast, we will only have a single type of node, the
ICS, and servers will not switch packets in our design.

We also considered Jellyfish [19], because it offers a low
average hop count between pairs of nodes. This can help
to minimize the through-traffic that ICSs carry on behalf
of other SubRacks. Another beneficial feature of Jellyfish
topologies is the ability to grow organically. That is, the
addition of a new node to the topology does not require
rewiring of existing nodes. However, while this feature is
quite valuable on a large scale, such as that of an entire data
center, it is less crucial at the rack-level, especially when
the topologies implemented by our patch panels are static.
Furthermore, our network operators were unwilling to work
with random rack-level topologies, as it made it difficult for
them to maintain a human-readable map of the network.

Given the three requirements above, we focus our initial
exploration on the circulant graph. Such graphs have desir-
able latency and failure resilience properties and retain these
properties and their regular structure across a wide range of
graph sizes and port counts. Another benefit of the circu-
lant graph is that it is isomorphic with respect to many node
and/or link swaps. This means that in many cases, a mis-
cabling at the patch panel level will lead to a graph that is
isomorphic to the intended topology. Miswirings are a com-
mon and expensive problem in today’s data centers and re-
ducing their impact can help significantly.

A circulant graph is defined by a number of nodes, N =
{n0,...,nN−1} and a set of strides S = {...,s,...}, such that
for each s∈S, n has links to nodes n±s (with all arithmetic
modulo N). Note that |S| is upper-bounded by half of the
number of ports per node. Thus the graph on the right side
of Figure 2 is a circulant graph with N=16 and S={1,2}. As
we show below, circulant graphs are able to minimize the
amount of through-traffic quite well, even across failures,
and we can build performant and failure-resilient circulant
graphs for varying values of N and |S|. Furthermore, the
selections of N and |S| are independent of one another.

Once the values for N and |S| have been decided for a
circulant graph, it is simply a matter of selecting the appro-
priate set of strides to optimize for desired properties. There
is a large amount of literature devoted to the computation of
optimal stride sets in circulant graphs [4, 5, 15, 21, 22], each
of which leverages a particular heuristic to make computa-
tions over large circulant graphs more performant at the cost
of some accuracy. For our relatively small graphs of only
tens of nodes and a few hundred links, we are able to simply
perform brute-force calculations of optimal stride sets.

We explore circulant graphs with respect to a number of
different properties, including:
Average Path Lengths This corresponds to both the
latency encountered by packets that traverse the circulant
graph as well as a measure of the amount of through-traffic

4

in the graph; if the average path length between pairs of
nodes in the graph is close to 1, this means that few pairs
of nodes send traffic through intermediate nodes.
Prevalence of Long Paths We also consider counts of
pairs of nodes with short and long paths. For instance, if the
average path length across the graph is 3, it may be prefer-
able for this to result from most node-pairs having 1-hop
paths and a few having say, 6-hop paths, rather than from all
node-pairs having 3-hop paths.
Failure Resilience We study the failure resilience of cir-
culant graphs along multiple metrics. First, we study how
many nodes (ICSs) can fail before a graph is disconnected,
since partitioning the network within a rack would lead to
poor application performance, especially for applications that
expect to leverage UDDCs’ enormous rack-locality. We also
consider the effects of failures on the path-length properties
above. Longer path lengths increase the chance of “interfer-
ence” between flows and can lead to poor performance.

We built a simulator to measure these properties. Our sim-
ulator generates circulant graphs (given values for N and S)
and calculates the forwarding tables that would be used by
standard shortest path algorithms.5 Note that if the stride
set elements of a circulant graph are not coprime as a group,
the circulant graph is not connected, even in the absence of
failures. Our simulator filters all such pathological graphs.

4.1 Average Path Lengths
To measure circulant graphs’ performance in terms of path

lengths, we used our simulator to generate a number of dif-
ferent graphs based on the parameter ranges we expect to
see in practice. We varied the number of nodes (i.e. ICSs)
in each graph from 16 to 32 in steps of 2. (This is along the
lines of the capacity of the Open Compute Rack [17].) We
varied the port count on each node from 2 to 10, again in
steps of 2; this corresponds to the expectations for ICS sizes
that we introduced in § 3. Figure 5 shows the best average
path length for each graph, across all possible stride sets for
a particular port count.

Figure 5: Average Path Lengths, Optimized Across All
S, for Circulant Graphs with N=16-32 and |S|=1-5

As the figure shows, for a sufficient number of strides, |S|,
the average path length between pairs of nodes stays fairly

5For these computations, we assume the presence of
shortest-path routing, with either tie-breaking or ECMP-
style [14] multi-path routing in the case of multiple options.

close to 1, meaning that the amount of through-traffic car-
ried by ICSs is quite low. As expected, when the graphs
grow larger it is more difficult to maintain low path lengths
with fewer strides. An interesting aspect to note is that occa-
sionally adjacent entries in the plot are nearly identical. That
is, there are graph sizes for which the number of strides does
not need to be higher than a particular threshold in order to
achieve a low average path length. For instance, the graph
with 32 nodes achieves nearly the same average path length
with 4 strides as it does with 5 strides, allowing a network
operator to free up 2 ports per ICS for other use.

4.2 Prevalence of Long Paths
We next consider the counts of node-pairs with distinct

path lengths. Since the smallest path length between a pair
of nodes is, by definition, a single hop, we expect that if the
average path length for a graph is close to 1, it is likely the
case that most pairs of nodes have a 1 or 2-hop path between
them.6 However, it is the outliers, that pull this average away
from 1, that we are concerned with. We would like to know
whether there are a few outliers with fairly long paths, many
with medium-length paths, and so on.

To measure this, we generated graphs with 16 6-port nodes
(|S|=3), with 24 8-port nodes (|S|=4), and with 32 10-port
nodes (|S|=5). We chose a representative sampling of good,
mediocre, and poor stride sets, and show for each the break-
down of node pairs with single-hop path lengths, those with
2-hop paths, and so on. In Figure 6, each x-axis value cor-
responds to a unique graph (N and S) and each y-axis bar
shows the percentage and counts of node pairs for each path
length.

Figure 6: Varying Stride Choices for Graphs with
(N=16, |S|=3),(N=24, |S|=4),(N=32, |S|=5)

The figure shows the wide variation in stride set choices
for a circulant graph of a given size. For instance, consider
the options shown for the 16-node graph with |S|=3. With
a stride set of {1,2,6}, all pairs of nodes that cannot have
1-hop paths (due to the limiting factor of |S|) have 2-hop
paths, whereas with a stride set of {1,7,8}, several nodes
have 3- and 4-hop paths. Thus the former graph has better
performance for less cost in terms of port count.

6The number of pairs of nodes with 1-hop paths is limited
by |S|; a node has 1-hop paths to at most 2|S| other nodes.

5

4.3 Failure Resilience
Next, we examine the resilience of circulant graphs to fail-

ures. For each of the graphs shown in Figure 5, we test all
possible single link failures, all combinations of 2-link fail-
ures, of 3-link failures, and so on until the graph becomes
disconnected. For each count of f failed links, we also
record the average path lengths across pairs of nodes, and
across all sets of f failures. Note that the upper bound for
disconnection is trivially the degree of each node, 2|S|, be-
cause we can disconnect a node from the graph by simply
failing all of its links.

It turns out that circulant graphs are quite resilient to fail-
ures. For all of our simulations, the graph remained con-
nected until it reached f = 2|S|, at which point it was trivial
to find a set of f links all incident upon the same node. When
we added lines to Figure 5 to show the average path lengths
for each possible value of f , we found that these path lengths
were barely affected by failures, even up to just before the
point of disconnection. In fact, the lines were so close to
the zero-failures case of Figure 5 that adding them made the
figure illegible. This highlights the benefits of the circulant
graph’s multipath characteristics; there are many short, link-
disjoint paths between each pair of nodes and even the in-
troduction of numerous simultaneous link failures does not
significantly affect the graph’s performance characteristics.

5. ROUTING
In addition to designing Theia’s architecture, we need to

build the appropriate routing primitives and protocols to run
over top of the hardware. As we build out our testbed, we
expect to revise and refine these proposals to tackle practical
challenges as they emerge. Here, we present our initial ideas.

5.1 Routing Within the Patch Panel
We are in the process of building a routing algorithm that

operates over circulant graphs to efficiently use the short
paths that they enable. Intuitively, our algorithm works as
follows: At each hop along the path, a packet takes the
longest possible next link without passing its destination. In
this case, “longest” does not refer to physical length, but
rather to the difference between the node numbers of the
nodes at either end of the link. Of course, it is possible to
construct circulant graphs for which the longest next hop is
not always preferable.

While our current algorithm is highly tuned to the par-
ticular circulant graphs with which we are experimenting,
it may also be possible to borrow from existing approaches
such as Chord [20]. Fortunately, since our relatively small
circulant graphs contain only tens of nodes and hundreds
of links, we can compute such paths quickly and easily for
any given graph. In fact, these calculations (and subsequent
re-computations upon failure) can easily be performed on a
small ICS CPU, without the help of a centralized controller.

As we showed in § 4, circulant graphs are quite efficient in
terms of path length. The patch panel provides a high-speed

interconnect on which to implement these circulant graphs;
In fact, our initial measurements show that two servers with
10G NICs are able to communicate at roughly 9.9Gbps across
the patch panel in the absence of cross traffic.

5.2 Routing Across Racks
Our current proposal for Theia’s inter-rack communica-

tion is quite simple. It operates similarly to the traditional
cross-data center methods today. Across the larger Clos topol-
ogy, racks exchange connectivity information and collec-
tively calculate shortest paths over a graph in which each
rack is a node. A packet to traveling from rack R1 to rack
R2 may travel through one or more intermediate racks Ri.
To accomplish this, it is routed through each Ri’s circuit to
an ICS with a connection to an appropriate neighboring rack,
as shown in Figure 7.

desnaon	
 source	

Figure 7: Routing Across Racks

This approach has the drawback of increasing the hop
count for inter-rack traffic. However, we hope that the low
latency of the patch panel and ICSs as well as the expected
rack-locality of our workloads will help to mitigate this added
cost. We are investigating other inter-rack topologies as part
of our ongoing work.

6. CONCLUSION
In this paper, we made the case that the traditional ToR-

based architecture does not scale for UDDCs, due to the high
density of compute nodes. We then presented a preliminary
design, Theia, that relies on in-rack switch-cards and pre-
wired patch panels to address this challenge. Simple simu-
lations show that by using a circulant graph topology in the
patch panel, our design can offer good performance and fail-
ure resilience across a wide variety of node and port counts.

Needless to say, much work remains to be done. We have
investigated only circulant graphs to wire the patch panels;
we plan to consider other topologies as well. We also need
to investigate inter-rack networking in more detail. We cur-
rently build a simple Clos network to connect the racks using
leftover ports on the patch panel, but many other possibili-
ties exists, including circuit-switched networks like Helios
and Mordia. We need to tackle issues such as addressing
schemes and routing protocols. Finally, we also plan to carry
out detailed performance evaluations over our testbed.

We stress again that networking is only one of the nu-
merous challenges that a comprehensive UDDC architecture
must tackle, and our hope is that this paper inspires further
exploration into the design of UDDCs.

6

7. REFERENCES
[1] Advanced Micro Devices. AMD Embedded G-Series

Gamily of Devices. http://www.amd.com/en-us/
products/embedded/processors/g-series.

[2] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and
R. S. Schreiber. HyperX: Topology, Routing, and
Packaging of Efficient Large-scale Networks. ACM
SC 2009.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable,
Commodity Data Center Network Architecture. ACM
SIGCOMM 2008.

[4] R. Beivide, C. Martínez, C. Izu, J. Gutierrez, J.-A.
Gregorio, and J. Miguel-Alonso. Chordal Topologies
for Interconnection Networks. In High Performance
Computing, volume 2858 of Lecture Notes in
Computer Science, pages 385–392. Springer Berlin
Heidelberg, 2003.

[5] J.-C. Bermond, F. Comellas, and D. F. Hsu.
Distributed Loop Computer Networks: A Survey. J.
Parallel Distrib. Comput., 24(1):2–10, 1995.

[6] L. N. Bhuyan and D. P. Agrawal. Generalized
Hypercube and Hyperbus Structures for a Computer
Network. IEEE Transactions on Computing,
33(4):323–333, Apr 1984.

[7] Cisco Systems, Inc. Cisco Data Center Infrastructure
2.5 Design Guide. www.cisco.com/univercd/cc/
td/doc/solution/, 2008.

[8] N. Farrington, G. Porter, S. Radhakrishnan, H. H.
Bazzaz, V. Subramanya, Y. Fainman, G. Papen, and
A. Vahdat. Helios: A Hybrid Electrical/Optical Switch
Architecture for Modular Data Centers. ACM
SIGCOMM 2010.

[9] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. VL2: A Scalable and Flexible Data
Center Network. ACM SIGCOMM 2009.

[10] J. L. Gross and J. Yellen. Graph Theory and Its
Applications, Second Edition (Discrete
Mathematics and Its Applications). Chapman &
Hall/CRC, 2005.

[11] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi,

C. Tian, Y. Zhang, and S. Lu. BCube: A High
Performance, Server-Centric Network Architecture for
Modular Data Centers. ACM SIGCOMM 2009.

[12] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu.
DCell: A Scalable and Fault-Tolerant Network
Structure for Data Centers. ACM SIGCOMM 2008.

[13] Hewlett-Packard. HP Moonshot System: The World’s
First Software-Defined Servers, Technical White
Paper. http://h10032.www1.hp.com/ctg/
Manual/c03728406.pdf, 2013.

[14] C. Hopps. Analysis of an Equal-Cost Multi-Path
Algorithm. RFC 2992, IETF, 2000.

[15] F. K. Hwang. A Survey on Multi-loop Networks.
Theor. Comput. Sci., 299(1-3):107–121, Apr 2003.

[16] Intel Corporation. Intel Plans System On Chip (SoC)
Designs.
http://www.intel.com/pressroom/kits/soc/.

[17] Open Compute Project. Open Rack. http:
//www.opencompute.org/projects/open-rack/.

[18] G. Porter, R. Strong, N. Farrington, A. Forencich,
P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and
A. Vahdat. Integrating Microsecond Circuit Switching
into the Data Center. SIGCOMM Comput.
Commun. Rev., 43(4):447–458, Aug 2013.

[19] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey.
Jellyfish: Networking Data Centers Randomly.
USENIX NSDI 2012.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. In
Proceedings of the 2001 Conference on
Applications, Technologies, Architectures, and
Protocols for Computer Communications,
SIGCOMM ’01, pages 149–160, New York, NY,
USA, 2001. ACM.

[21] I. Stojmenovic. Multiplicative Circulant Networks
Topological Properties and Communication
Algorithms. Discrete Appl. Math., 77(3):281–305,
Aug 1997.

[22] D. Wang and J. McNair. Circulant-Graph-Based
Fault-Tolerant Routing for All-Optical WDM LANs.
IEEE GLOBECOM 2010.

7

