
ARTICLES 

Human Aspects of 
Computing 

Hen!/ P. Ledgard 
Edito:r 

The Case Against User 
Interface Consistency 
Designers striving for user interface consistency can resemble Supreme Court 
justices trying to define pornqgraphy: each of us feels we know it when we 
see it, but people often disagree and a precise definition remains elusive. A 
close examination suggests that consistency is an unreliable guide and that 
designers would often do better to focus on users’ work environments. 

Jonathan Grudin 

Many writers have presented the case for user interface 
consistency. Ben Shneiderman’s [48] first “Golden Rule 
of Dialogue Design” reads: “Strive for consistency. This 
principle is the most frequently violated one, and yet 
the easiest one to repair and avoid (violating).” Rubin- 
stein and Hersh [46] conclude their book, The Human 
Factor: Designing Computer Systems for People, with the 
directive, “Build consistent human interfaces.” Such 
methodological encouragement has been buttressed 
with empirical work presented in support of user inter- 
face consistency. Polson [43] summarizes several exper- 
iments by stating, “Experimental results . . . show that 
consistency (leads) to large positive transfer effects, that 
is, reductions in training time ranging from 100% to 
3003’0.” Smith and Mosier [49] conclude the introduc- 
tion to their compendium, Guidelines for Designing User 
Interface Software, in which over 60 guidelines contain 
“consistent” in the title, by stating, “the common appli- 
cation of design rules by all designers working on a 
system should result. in a more consistent user interface 
design. And the single objective on which experts agree 
is design consistency.” 

Several steps m.ust be taken before such advice is 
useful. First, consistency must be defined. Second, one 
must be able to identify good consistency, since foolish 
or undesirable consistency is possible. More subtly, one 
needs a procedure for discriminating among conflicting 
approaches to achieving consistency. Finally, a method 
must be found to determine when other design consid- 
erations overshadow consistency in importance. 

There has been little progress in these matters. In 
198l, Reisner [45] wrote, “What is (not) clear, however, 
is precisely what we mean by consistency and, more 
importantly, how to identify its absence.” In 1988, a 
two-day workshop of 15 experts was unable to produce 
a definition of consistency [35]. Acknowledging the dif- 
ficulty of defining the term, one prominent interface 
designer said, “I know consistency when I see it.” One 
researcher has suggested that perceived consistency 
might be a better goal [26]. 
- 
019~89ACM0001-0782/89/1000-1164 51.50 

1164 Communications of rhe ACM 

This article argues for a shift in perspective, suggest- 
ing that when user interface consistency becomes our 
primary concern, our attention is directed away from 
its proper focus: users and their work. Focu.sing on con- 
sistency may encourage the false hope that good design 
can be found in properties of the interface. There is an 
easily overlooked conflict between the search for for- 
mal properties of interfaces and the call for “user- 
centered” design and task analysis. The thesis that in- 
terface consistency is an important goal supports the 
search for interface properties that can be measured 
and manipulated in isolation and suggests that identify- 
ing these properties may lead to successful design. 

Such a position holds out the attractive possibility of 
automating the design and evaluation of some aspects 
of interfaces [e.g., 10, 28, 41, 42, 531. This article pre- 
sents the antithetical view: interface consistency is a 
largely unworkable concept; the more closely one 
looks, the less substance one finds. In the examples that 
follow, the dimensions on which one might argue for 
consistency shift or disappear when examined closely. 

Rejecting consistency as a primary user interface goal 
does not argue for randomness in user interface design. 
The studies that appear to support particular applica- 
tions of consistency [e.g., 5, 16, 431 are not wrong, but 
their proper interpretation may be more contextually 
bound, less general than is explicitly recog,nized. Shift- 
ing the focus from general interface properties to the 
users’ tasks and work context, to physical constraints, 
and to psychology does not mean defocusing. Attacking 
the maxim “strive for consistency” may seem a step 
backward, but it may be a necessary first step in find- 
ing a better path forward. By placing the case for inter- 
face consistency in its proper context-alongside the 
case against interface consistency-we can develop a 
new synthesis. 

An Illustrative Example from Everyday Life 
Consider the household interface design problem of de- 
ciding where to shelve implements, specifically knives: 
butter knives, table knives, steak knives. All may be 
kept in the same drawer. Consistent, easy to learn, easy 

October 3959 Volume 32 Number 10 



Articles 

to remember: there is one place to go for knives. This 
arrangement makes it easy for guests to be more help 
than hindrance when they assist in cleaning up. 

But it isn’t quite so simple. To begin with, there are 
the carving knives, too large for the drawer, stuck in a 
wood block. At least it is close by, in plain view; a good 
strategy for handling exceptions, perhaps. But then, 
there is the real silverware packed away in a drawer in 
a cabinet holding crystal, china, and other finery for 
special occasions. The silver knives are not in the 
kitchen, are not visible, but are not too far distant. But 
what about the putty knife, stowed in a workbench 
drawer in the garage, or the Swiss army knife, packed 
away with the camping gear in the basement? 

By distributing the knives, we have introduced in- 
consistency and increased the time needed to learn 
where to find them. Why is it the best solution? We 
have made the knives easier to use by placing them 
according to how they are used, according to the tasks 
in which they are involved. User tasks or activity pat- 
terns totally dominate such design decisions. A formal 
examination of the properties of household objects 
would reveal that the knives all have very much in 
common, yet we distribute them in such a way that 
they are grouped more closely with objects such as 
forks, tent pegs, and a jar of putty than with other 
knives. The organizing element is the context of use. A 
shift in that context, in work organization, may lead to 
a design change. I recently lost my corkscrew, leaving 
me to rely on the corkscrew in the Swiss army knife, 
which I moved to the kitchen (though to a drawer of 
assorted implements, not the silverware drawer). 

Interface objects, too, must be designed and placed in 
accordance with users’ tasks. Once this is fully appreci- 
ated, the concept of “interface consistency” becomes 
surprisingly insignificant in many design situations. But 
designers who have only a sketchy or partial under- 
standing of users’ tasks will find it difficult to appreci- 
ate the dominant role tasks should play in interface 
design. In the absence of task analysis, the designer has 
little to go on and it becomes convenient to focus on 
properties of the interface-which in the absence of 
something better is likely to help more than hurt. But it 
is a mistake to believe that this is the appropriate focus. 

Several interface features are presented in the follow- 
ing section that improve upon alternative “consistent” 
designs. Most of the design choices cannot easily be 
described in terms of consistency but can be under- 
stood through careful analysis of the users’ work. 

Three Types of “Consistency” 
User interface consistency is used in three interrelated 
senses: the internal consistency of a design with itself; 
the external consistency of a design with other inter- 
face designs familiar to a user; and an external analogic 
or metaphoric correspondence of a design to features in 
the world beyond the computer domain. Although 
none of these is a reliable guide to user interface de- 
sign, each has somewhat different properties. Each de- 

sign example covered in subsequent sections will apply 
more to one or another use of “consistency.” 

Internal consistency of an interfnce design. The designer 
or design team may not know the context in which 
people will use their product, but they usually control a 
range of features affecting the dialogue of users with 
their particular application or system. Thus, internal 
design consistency receives the most conscious atten- 
tion of designers. Consistency might be sought in physi- 
cal and graphic layout, command naming and use, se- 
lection techniques, dialogue forms, etc. For each 
domain, different dimensions of consistency are possi- 
ble. The graphic properties of a set of interface objects 
may be consistent in color, size, shape, or less easily 
defined style. Carroll [5] notes more complex dimen- 
sions in the design of command namesets: “Move back- 
ward” would be consistent with “Move forward,” but 
“Go backward, ” “Backward,” or “Reverse” would be in- 
consistent (in Carroll’s terms “incongruent,” “hierarchi- 
cally inconsistent,” and both, respectively). Green and 
Payne [16] regularized EMACS commands along a sin- 
gle set of organizing principles and produced dramati- 
cally better performance in a learning task. Other inter- 
nally consistent designs would result from using one 
abbreviation algorithm, one approach to setting menu 
defaults, one functional mapping of mouse button as- 
signments, and so forth. Initial learning in particular, 
but also ease of use and perceived quality are reported 
to benefit from internal consistency [5]. 

External consistency of interface features with features of 
other interfaces familiar to the users. A design can be 
internally consistent, yet conflict with other interfaces. 
This can happen for any of several reasons: the other 
interface may itself be internally inconsistent, the other 
interface may be internally consistent but incorporate 
different choices (e.g., different names for objects), or 
the other interface may only cover some of the same 
functionality and thus differs in the distinctions that it 
needs to make. External consistency may be achieved 
at the expense of internal consistency, as when a de- 
signer borrows a highly salient feature from a familiar 
system for use in an otherwise different interface. Al- 
ternatively, internal consistency may be achieved at 
the expense of external consistency; such “local optimi- 
zation” of the interface often occurs when an applica- 
tion designer has limited knowledge of what the end- 
user is familiar with and what application set the 
product being designed will appear with. When an 
application will appear without modification in 
different environments, full external consistency may 
not generally be possible. “Transfer of training” is then 
a key concern. 

Correspondence of interface features to familiar features of 
the world beyond computing. A user interface design 
may use metaphor or analogy to objects, attributes, or 
relations in the world outside of computer interfaces. 
With analogic consistency, there is some common 
structure, but the elements may have quite different 

October 1989 Volume 32 Number 10 Communications of the ACM 1165 



Articles 

meanings; for example, the arrangement of arrows on 
cursor control keys may match the arrangement of 
compass point arrows on a map. This is quite different 
from the more precise external consistency of the cur- 
sor key arrangement on one keyboard with the cursor 
key arrangement on a different keyboard, where the 
elements have the same meaning.’ Analogies are 
weaker correspondences, but because the real-world 
domains are part of everyone’s experience, they may be 
significant aids to initial learning and recall-as well as 
possible pitfalls for the designer. Carroll [6] points out 
that if technology is to provide an advantage, the corre- 
spondence to the real world must break down at some 
point. 

These distinctions among types of consistency may 
be less salient to users than to the designer. At a given 
moment, a user may be dealing with various applica- 
tions and systems (as well as the world). Where the 
designers see two applications with internally consis- 
tent but externally inconsistent interfaces, a user may 
see one internally inconsistent system. However, the 
distinction may be important to the interface designer, 
who may be able to influence the internal consistency 
of the application being worked on while having no 
knowledge of or control over the applications it will be 
used with. And there can be performance conse- 
quences-the cost of one-time retraining on a new in- 
terface can be high, but if each interface is internally 
consistent the disturbance may be transitory, whereas 
users may never adjust to an internally inconsistent 
inte:rface (or when two incompatible interfaces are used 
inte:rmittently). 

Ease of Learning can Conflict with Ease of Use 
Muc:h of the empirical work on consistency has focused 
on learning, whether initial learning or transfer of 
training to a new situation. Learning is prerequisite to 
usage, of course, and in the case of infrequent or casual 
use, a user may always he in a state best described as 
learning. It seems reasonable that a consistent interface 
will be easy to learn. An internally consistent design 
can often be characterized with a small number of 
names and relations. An externally consistent interface 
may allow the use of previously learned associations or 
be i:nvoked by reference to a guiding analogy that will 
also aid in subsequent recall. 

However, ease of learning can conflict with suhse- 
quent ease of use. When this happens, priorities must 
be established carefully. If learning isn’t possible, use 
will not happen. ‘However, people buy systems and ap- 
plications not to l.earn them, but to use them. We gen- 
erally build user interfaces, not learner interfaces. If a 
consistent interface supports learning but impedes 
skilled performance, and if its major use is by skilled 
uselrs, then consistency is working against good design. 

’ Gentner 1121 uses the terms “analogy” and “literal similarity” to describe this 
distinction. 

The keyboard examples that follow are of particular 
interest because they have been extensively studied 
and because their designs have evolved over time. Sub- 
sequent examples will demonstrate that similar design 
considerations apply to software interfaces. 

Design exercise #l: Function key layout 
Figure la presents a design problem confronted by the 
International Organization for Standardization as this is 
written: Given the six possible positions illustrated, 
where should the four arithmetic operations be placed 
on a numeric keypad that is to support data entry and 
calculator functions? 

It was proposed that the assignment be across the top 
row, in the sequence +, -, X, f [24]. The rationale was 
that this is consistent with the order in which we learn 
and remember these operations. When I gave 24 inter- 
face professionals this task, a plurality (8) produced this 
solution. 

The proposed design is easy to learn and recall, but it 
is difficult to use. For data entry and calculator use, the 
keys struck most frequently are Enter, +, and 0. Thus, 
placing the + key in the upper left corner maximizes 
hand movement. Placing it directly above t.he Enter key 
minimizes finger movement and error. This is in fact a 
common arrangement on commercial keyboards. 

Thus, the best design violates consistency-it is not 
consistent with the order in which we learn and spon- 
taneously recall the operations, and it seems aestheti- 
cally inferior to spread the operations across multiple 
rows and columns as well. Developing the appropriate 
design required analysis of the users’ task and an un- 
derstanding of human motor control. 

Figure lb shows three cursor key configurations used 
to move the user’s screen position left, right, up, and 
down. Setting aside factors introduced by the size and 
shape of the keyboard and the locations of other keys, 
which is the best design? 

The set of 24 interface experts unanimously chose 
the star (ii) as the design that they thought novices 
would rate most highly and about half of t:hem also 
chose the star as the best design. The star has an ob- 
vious aesthetic appeal and it is consistent by analogy 
with directional indicators that appear on compasses, 
maps, and so forth. But studies have shown that the 
inverted T (iii) is the most usable configuration [29] and 
its use is spreading through the industry. IJsers require 
access to opposed pairs of directional keys (e.g., to com- 
pensate for overshoot), and with (ii), with -the index 
finger on the cursor left key and the ring finger on 
cursor right, the middle finger can cover both the cur- 
sor up and cursor down keys most efficiently. This per- 
formance advantage may have first been discovered by 
the designers of fast-action computer games, who often 
map the directional movements to the i, j, k, and 1 keys, 
which form the inverted T pattern. 

The appropriate design is based on an u:nderstanding 
of the cursor manipulation task and of the user-in this 
case, the physical characteristics of the hand. In both 
function key examples, designs consistent with exter- 

1166 Communications of fhe ACM October 1989 Volume 32 Number 10 



0 i 

~ 
(iii) 

a) Where should +, -, x, ibe placed? b) Which cursor key arrangement is best? 

FIGURE 1. Function Key Design Decisions 

nal experience were tried, but ultimately were found to 
work against performance efficiency.’ 

Design exercise #2: The typewriter keyboard 
Consider the typewriter keyboard layout as a pure de- 
sign problem, setting aside the retraining problems that 
a new design would entail. The earliest keyboards were 
alphabetic [3] and with the advent of calculators and 
computers alphabetic keyboards have again been pro- 
posed (see [36]). The rationale for alphabetic keyboards 
is a consistency argument-we are familiar with the 
alphabet, so key assignments consistent with alphabetic 
letter order are easier to learn and perhaps recall (but 
see [38]). Nicolson and Gardner [34] show that in some 
situations complete novices do better with an alpha- 
betic keyboard. 

It is not necessary to review the history of keyboard 
optimization efforts to discern in Figure 2 the key point: 
Apart from alphabetic keyboards, consistency has 
played no role. Typing performance is governed by sev- 
eral factors, including the balance of workload across 
hands and fingers, the average length of finger trajecto- 
ries, and whether letter pairs frequently typed in 
succession are typed by the same finger, by two fingers 
of the same hand, or by fingers on different hands (the 
latter is fastest because we can carry out such motor 
actions in parallel). These factors are functions of the 
frequency of individual letters in the language being 
typed and the distance between keys often typed in 
succession by the same finger or hand, which in turn is 
a function of the two- and three-letter combinations 

’ Of course, a narrow measure of performance efficiency for heavy wars is 
just one design consideration. Aesthetic considerations may have a marketing 
role and may lead people to feel better about their work, perhaps boosting 
productivity. Function key placement may also be influenced by keyboard 
space constraints. To know how heavily to weight performance efficiency, 
one needs to know bow much time users will spend with a feature. In short, 
only a higher-level analysis can determine the cost of overriding a design 
decision that was based on a task analysis focused strictly on performance 
efficiency. 

(digraphs and trigraphs) in the language. Designers have 
given slightly more work to the stronger right hand and 
to the stronger forefingers and middle fingers, and con- 
centrated typing activity on the middle row of the key- 
board to minimize vertical finger and hand movements. 
Keyboard designers have also proposed “split” key- 
boards better adapted to our hands, arms, and shoul- 
ders [32, 391. 

Thus, keyboard design requires knowledge of human 
physiology and motor control, as well as properties of 
the language to be typed. The evolution of designs has 
reflected the changing view of which factors are ger- 
mane and how they should be balanced. It is a complex 
constraint satisfaction process-a slow, empirical pro- 
cess that may never be demonstrably complete. The 
resulting layouts are difficult to memorize; they are not 
consistent with experience and letters are not grouped 
according to simple rules. Whether an alphabetic ar- 
rangement is optimal for children learning to use a mi- 
crocomputer [34] or leads to problems [38], even raising 
the issue emphasizes that the design process must 
center on a detailed understanding of the users’ 
experiences3 

Summa y: Consistency that supports ease of learning can 
conflict with ease of use 
In the three keyboard examples, designs consistent 
with user experience in other domains were marketed 
and provided easy learning and recall. Performance 
considerations then led to user-centered, task-centered 
approaches and new designs, with no role for the con- 
cept of consistency. Thus, the empirical studies of the 
benefits of consistency, which have largely measured 
ease of learning, recall, and transfer to new situations, 
must be treated cautiously. Learning and recall can be 

‘For full accounts of physical and linguistic influences on typing perfor- 
mance. see (13. 141; for a detailed and entertaining review of the history of 
keyboard optimization efforts. see [39]. 

October 1989 Volume 32 Number 20 Communications of the ACM 1167 



Articles 

Z 
BCDEFGHIJ u Y -WFGDCJ 

LMNOPQRS;’ ‘I’AEOHLNTSRQ 
UVWXYZ,.? * I / “ K ? B M P V X 

An alphabetic keyboard. The Minimotion keyboard (1949). 

ERTYUIOP BOIQFRCP ? 
DFGHJKL;’ 

XCIVBNM,.? 
‘YSAEUDHTN’W- 

l/2 ; XKZLMGJV 

The Rhythmic keyboard (1953) I 

J U Y I C M H P B Z 
IDHTNS- FDTAONSERG 

FIGURE 2. Attempts to Optimize the Typewriter Keyboard (after Noyes [39]) 

important, but using an interface to carry out a task can the text in the clipboard and Paste will then move it 
be very different :from remembering what the interface from the clipboard to the cursor location. The user 
is. Furthermore, as the next section illustrates, inter- brings up the menu of commands and overrides the 
face consistency sometimes works against both novice default to select and execute Copy (Figure 3, Za). Then 
and skilled users. the user moves the cursor to the destination and brings 

up the menu again. This time it automatically defaults 
Conlsistency can Work Against Both Learning and Use 

Design exercise #3: Default menu selections 
With many designs, when a menu appears, one item is 
highlighted, the default selection. Which item should it 
be? Commercially available systems have experi- 
mented with a number of approaches: the first item on 
the menu, the item that users most frequently access, 
or the item that this particular user most recently 
accessed. 

The examples shown in Figure 3 and described be- 
low demonstrate that any such internally consistent de- 
sign is sub-optimal. Menus are employed for a variety 
of tasks and optimal. menu defaults vary with those 
tasks. 

Consider the following scenario: A user wishes to 
italicize certain words in a document. After the first 
sucln word is found and selected, the edit menu is ac- 
cessed-in the system illustrated, by using a mouse 
button to pop up the menu. It appears with the default 
selection of “Props” (for properties). The user overrides 
the default to select Fonts, then Italics from the second- 
level menu, and On from the third (as shown in Fig- 
ure 3, la). When the user then finds the next word to 
be italicized and brings up the menu, it automatically 
comes up as shown in lb)-with Fonts, Italics, and On 
already defaulted. This is the “last item accessed” rule. 

Now the user wants to copy a paragraph using the 
Copy and Paste operations. Copy will place a copy of 

to Paste! (Figure 3, gb.) This violates the “last item ac- 
cessed” rule but is what the user virtually always 
wants. After pasting, the user again brings up the 
menu, which now defaults to Copy (Figure 3, 2~). This 
toggling allows a user to make multiple copies rap- 
idly-clicking the button six times produces three cop- 
ies, without requiring close attention. 

The rule “consistently default to the item the user is 
most likely to select next” would cover the cases exam- 
ined so far. However, the next example illustrates that 
even this is not optimal. Now the user wishes to right- 
justify the text. The user accesses the Properties menu, 
selects Flush right, and brings up the menu to apply the 
change. It comes up defaulted to Apply, which would 
apply the change only to the current paragraph. The 
user wishes to right-justify the whole document, so 
overrides the default and selects Global apply. This 
can be an irreversible operation, so a confirmation step 
is required: a second-level menu with Confirm and 
Cancel choices appears, defaulted to Cancel. This forces 
the user to take the step of confirming that this action 
is desired (Figure 3, 3a). If the user then wishes to make 
another global change, the entire sequence must be 
stepped through again (Figure 3, 3b). Apply and Cancel 
will still be defaulted, even though Global apply and 
Confirm were chosen the previous time and even 
though Confirm is what the user will select the over- 
whelming majority of times this menu is accessed. The 

1168 Communications of the ACM October 1989 Volume 32 Number 10 



Initial Selection Subsequent Menu Default(s) 

1. a) “Italic On” selected in 4 steps. b) “italic On” is then the default. 

2. a) “Copy” selected in 2 steps. b) “Paste” is then default. c) Then “Copy.” 

3. a) “Global apply” in 3 steps. b) “Apply” and then “Cancel” defaulted. 

FIGURE 3. Menu Default Patterns Vary with Aspects of the Task 

point of a confirmation step is to force the user to do it 
every time. Thus, the rule of “default to the item the 
user is most likely to select next” is violated when 
the most likely choice is a potentially irreversible 
operation4 

No rule, consistently applied, produces good menu 
defaults. Enforcing a blanket consistency will damage 
the interface. In fact, subtle shifts in the situation can 
change the optimal interface behavior. If the applica- 
tion were changed by introducing an Undo operation, 
so Global apply was reversible, there would be no need 
to default repeatedly to the less dangerous Apply opera- 
tion. Then, after one Global apply was executed, the 
menu default could be Global apply, the most likely 
next choice. 

Menu defaulting is typical of where one might hope 
to enforce interface consistency through examination of 
formal properties of the interface. But, as with knife 
placement, the “inconsistent” interface choices de- 
scribed earlier are so naturally molded to the users’ 

’ One of many scenarios in which “Global Apply” is irreversible: Some text is 
in bold, some is in italics, and one globally changes it all to be standard font. 
The system now retains no memory of what was previously bold, what was 
italicized. so the only way to recwer the initial state is to try to recall it word 
by word. The system has no general “undo” capability. 

tasks that users may not even notice the inconsistency.5 
No tool to produce or check for interface consistency 
could handle this interface design appropriately unless 
it contained a detailed knowledge of the users and their 
tasks, as well as high-level knowledge of the correspon- 
dence between those tasks and the functions applicable 
to specific interface objects (e.g., the difficulty of undo- 
ing particular operations). 

Establishing Appropriate Dimensions for Consistency 

Design exercise #4: Abbreviating command or operation 
names 

Assume we wish to construct abbreviations for 
20 command names. What abbreviation strategy would 
be best? Truncation? Vowel deletion? Single-letter ab- 
breviations? 

You may have anticipated the answer: It depends on 
how the abbreviations will be used. Truncation is the 
best abbreviation strategy if users will be typing famil- 
iar commands in a typical command-driven interface 
[SO]. In this situation, the users know the command 
they want to enter and must reproduce the abbrevia- 

‘Conversations with users suggest that the inconsistencies may be noticed 
initially, then quickly forgotten. 

October 1989 Volume 32 Number 10 Communications of the ACM 1169 



tion. Truncation is a simple rule to recall and apply, 
generally leading to short abbreviations. However, if 
the abbreviations are being created to put on key caps, 
for example, then vowel deletion may be more appro- 
priate.” In this case, the users will see the abbreviation 
and use it to reconstruct the full name of the operation, 
and longer abbreviations may be OK. Finally, if the 
command is one that users will type thousands of times 
or if a menu will be visible to remind the users of the 
options, as in many electronic mail programs, then a 
single-letter abbreviation strategy may be best. When 
com.mands are overlearned or otherwise cued, mini- 
mizing the number of keystrokes may be the highest 
priority. (The role of task and experience in abbrevia- 
tion are further discussed in [l, 191.) 

This picture is more complicated when an abbrevia- 
tion serves multiple purposes. For example, a user 
might try to recall an abbreviated file name in order to 
type it or see the same abbreviated name in an index 
and try to recall what it stands for. A command might 
he overlearned for some users but not for other users. 
Allowing users to customize the interface may be possi- 
ble, though it can he very risky [20]. The availability of 
customization does not eliminate the need for good de- 
sign defaults. 

A Snare: A Form of Consistency that 
is Always Available but Often Inappropriate 

FIGURE 4. What Should Happen When ‘Print’ Folder (directory) 
is Executed? 

whether document or folder is selected. Of course, it is 
“consistent with what users want,” since most users 
wish to print documents more often than lists of docu- 
ments. Once again we are focused on understanding 
the users’ tasks. 

Summary: The most available consistency is @en harmful 
This example is particularly important because the 
mapping of the system architecture onto the user inter- 
face is a common source of interface design flaw (see 
e.g., [2, 171). Other examples of mapping the system 
design onto the user interface design include grouping 
menu items based on implementation considerations, 
assigning functions to function keys on similar grounds, 
and even consistently displaying informat.ion in screen 
regions based on data type. Recommending consistency 
as a design guide leaves designers free to look for con- 
sistency where they will, and they are often much 
more familiar with the system architecture side of the 
interface than they are with the “human architec- 
ture”-that is, users’ tasks and psychology. 

The advocate for the user must realize that the job 
often requires arguing for inconsistency-inconsistency 
of the user interface with the underlying software ar- 
chitecture. If on other occasions the advocate endorses 
consistency as a general rule, the engineer will under- 
standably be confused or frustrated. A quest for a for- 
mally expressible consistency within the interface may 
almost inevitably take one in the wrong direction- 
toward the underlying system architecture, which we 
know how to express formally, and away from the hu- 
man psychological and task architecture, which are not 
understood nearly as well. 

Design exercise #S: Printing a folder or directory 
Consider the situation depicted in Figure 4. A folder 
containing several documents has been selected. A 
menu of operations has been accessed and the Print 
operation selected. The design question is: What should 
he printed when the operation is executed? 

III informal studies, most people said that they would 
expect all of the documents in the folder to be printed. 
However, system architects have argued that issuing 
the Print command in this situation should cause a list 
of the documents within the folder to be printed. In one 
project, the implementers argued successfully for this 
design on the basis of consistency with the internal system 
architecture. A folder in this system was a list of pointers 
to documents. Printing a document produced a hard- 
copy of the contents of the document, and it was ar- 
gued that printing a folder should similarly produce a 
hardcopy of its contents, namely a list of the docu- 
ments contained in the folder. The developers argued 
that consistency was of paramount importance, in this 
case consistency based on the underlying software 
architecture.’ 

Clearly, the wrong dimension for consistency was 
chosen. But it is not clear how to describe the optimal 
des:ign as being “consistent’‘-printing documents, 
- 
6”V,awel deletion” has various definitions, and rarely is as simple as literally 
deleting every vowel. Initial vowels are almost always left in place. Some- 
times, final vowels are also left intact--only internal vowels are deleted. 
Streeter et al. [SO] deleted all internal vowels following the first syllable. 

’ In the case described. a human factors engineer proposed that an index 
appear, allowing a user to select among possible options. This design was 
rejected in favor of consistency with the system architecture. [The system 
illustrated in Figure 4 actually prints all documents in the folder.) 

DISCUSSION 
The abbreviation and menu defaulting examples dem- 
onstrate that internal design consistency is an unrelia- 
hle measure of good interface design. Choosing appro- 
priate abbreviations requires knowledge ‘of their ulti- 
mate use, and may require a careful tradseoff 
analysis. Choosing the appropriate menu default 

1170 Comnunications of tht ACM October 1.989 Volume 32 Number 10 



Articles 

requires detailed knowledge of the higher-level tasks 
represented and also depends on system characteristics 
such as the availability of an “undo” operation. 
Small changes in the environment may challenge an 
existing, consistently-applied principle. For example, 
the Macintosh conventions of pull-down menus at the 
top of the display and a strict correlation of mouse 
pointer movement with mouse movement are particu- 
larly suited to single applications and the original small 
display screen. With larger screens and multi-tasking 
environments, these conventions may force users to 
make frequent, large movements--HyperCard tear-off 
menus are a sign that skilled user performance issues 
will break down this consistent design feature. 

The keyboard examples demonstrate the unreliabil- 
ity of designing by analogy to real-world structures. In 
each case designers first adopted consistency with a 
natural external domain but abandoned these designs 
when the users’ tasks were better understood. Analogy 
to a familiar domain facilitated immediate learning but 
had negative consequences for subsequent perfor- 
mance. Initial learning, the focus of most laboratory 
research and usability testing, is an important and in 
some cases the primary issue. But skilled performance 
may be of greater concern; also, as we move to more 
interactive systems, certain aspects of learning become 
less relevant; in the case of menu defaults, novices as 
well as experts may operate smoothly and efficiently 
without consciously learning the design criteria. 

A special case of designing by analogy is that of de- 
signing the user interface to correspond to the underly- 
ing system architecture, as in the print folder example. 
The system architecture is external to the user inter- 
face and will not be familiar to many users, but is 
typically very familiar to the designers. Although it 
may work against the user, mapping the system archi- 
tecture onto the user interface is very seductive, ap- 
pealing to the designer’s sense of consistency and sim- 
plicity. Some have even argued that one should, in fact, 
teach the user veridical models or how it works [26, 27, 
441. But as our designs adapt to the ways that computer 
communities actually use systems, it is more likely that 
the user interface and system design will diverge, reduc- 
ing the appropriateness of burdening the user with both 
descriptions. 

The external consistency of a given interface with 
those of other computer applications and systems is an 
increasingly important issue as computer use spreads 
through the population and into different application 
areas. Interoperability and backwards-compatibility re- 
quirements reflect aspects of the users’ experience and 
environment that should be reflected in an interface 
design, but designers who lack the necessary informa- 
tion about the installed customer base or the marketing 
strategy will optimize interface designs locally for their 
own product at the expense of a more global efficiency 
[18, 211. These complexities and the resulting tradeoffs 
present further difficulties for formal approaches to 
generating or monitoring for consistency. 

TOWARD A SYNTHESIS 
The first step toward integrating the case against user 
interface consistency with the intuitive feeling and ex- 
perimental evidence that some kinds of consistency are 
beneficial and that inconsistency can be harmful is to 
recognize that a “fully consistent system” [25] is not 
achievable. Interface design is an engineering problem 
that forces tradeoffs among many factors, often includ- 
ing many possible forms and dimensions of consistency. 
Next, we need to recognize the primacy of the users’ 
work contexts in dealing with these tradeoffs, cognizant 
that in some circumstances, the highest priority may 
not be characterized as consistency at all. The impor- 
tance of centering the interface design on users and 
their tasks is acknowledged [e.g., 15, 371, but often the 
focus is on individual users carrying out simple, cogni- 
tive tasks. Hutchins, Hollan and Norman [23] go quite 
far in shifting the focus by stressing the importance of 
the “task domain” and of making the “mechanisms of 
the system match the thoughts and goals of the user”; 
others have gone further into the work context to ob- 
tain an understanding of the physical, social, and even 
historical structures in which users’ tasks are carried 
out [e.g., 4, 9, 51, 521. This article describes a pattern in 
the history of interface design that this focus explains- 
the evolution away from consistent designs in areas 
where user tasks are understood. 

In a concise review of the work on consistency, 
Kellogg [25] developed Moran’s [30] taxonomy of user 
interface levels into a framework for consistency. Of six 
interface levels on which consistency might be 
sought-device, spatial layout, lexical, syntactic, se- 
mantic, and task-the work reviewed dealt with the 
middle four. Payne and Green [JO] used a similar tax- 
onomy in outlining a formal model to represent “task 
languages.” Both Kellogg’s “task level” and Payne and 
Green’s “task language” are defined in terms of simple 
operations or system functions, such as entering a num- 
ber. “Task” is thus very narrowly defined; Green and 
Payne call them “simple-tasks,” and Kellogg describes 
her focus as “the structure of tasks defined by the sys- 
tem (e.g., whether similar tasks are decomposed into 
analogous subtasks)” and “the mapping of the user’s 
understanding of the task domain to system procedures 
(e.g., whether tasks with analogous semantic proce- 
dures on the system are in fact perceived as similar 
tasks by the users).” 

In this article, the term “tasks” encompasses users’ 
actual work in a much broader sense: the different 
tasks of data entry and numerical calculation may em- 
ploy the same function of entering a number; further, 
data entry done frequently is a different task than data 
entry carried out infrequently. Since computer applica- 
tions and interfaces rarely represent the physical, tem- 
poral, or social contexts of users’ work, Kellogg’s frame- 
work did not have to address these factors. But these 
contexts do, or should, implicitly influence our design 
choices at lower levels, whether or not they are explic- 
itly recognized in the design. 

October 1989 Volume 32 Number 10 Communications of the ACM 1171 



Articles 

Given this hierarc:hy of user interface elements and 
the recognition that highest level (task) considerations 
can warrant overriding consistency at lower levels, one 
mig:ht propose that concerns at any one level override 
those of lower levels. For example, we saw that seman- 
tic a.spects of users’ tasks could justify overriding a syn- 
tact:ic approach to menu defaulting. Along these lines. 
Kellogg [25] suggested that a possible strategy is “to 
optimize low-level interactions for each environment, 
but to hold the underlying conceptual model of the 
system constant.” 

However, this conflicts with intuitive and empirical 
evidence that inconsistency in low-level interactions 
can be very frustrating-keyboards that differ in the 
position of a few keys (e.g., escape and control keys), 
programs that differ in the names of important com- 
mands (e.g., “quit” and “exit”), and so forth. Perfor- 
mance decrements in keypad use have been measured 
when the conceptual model was held constant and the 
low-level interactions were allowed to vary [a]. More 
generally, transfer of training experiments show that 
the learning or unlearning of low-level productions can 
be c:entral [43]. In an experiment that varied both phys- 
ical surface similarity and the absence or presence of 
an underlying conceptual model of an interface, 
Schumacher and Gentner [47] found that both surface 
similarity and the conceptual model had significant 
effects on transfer of training. 

Thus, there may be no simple approach to determin- 
ing the relative significance of consistency along var- 
ious dimensions and levels. We know that detailed 
knowledge of the users’ task context can identify or 
eliminate some dimensions on which a design should 
be consistent. Perhaps the significance of consistency 
on a dimension or level is related to the frequency with 
which users operate on the level or vary their activity 
along the dimension. In addition, we are helped by 
thinking of consistency as one goal, often in conflict 
with other goals that are at times more important. 
Wh.ere task knowledge is unavailable or does not con- 
strain the design, some form of consistency may be the 
best resort, suggesting a role for formal approaches to 
generating or evaluating consistency [e.g., 10, 28, 41, 42, 
581, but formal systems must provide enough flexibility 
to permit the dimensions of consistency to be changed 
or overridden as task knowledge increases, and the 
temptation to map the system design onto the user in- 
ter:face design must be resisted. The studies that iden- 
tify dimensions on which unmotivated inconsistency 
can be costly lend support to design tools that bring 
such inconsistency to the attention of the designer [e.g., 
22, 31, 331 and to design tools that provide for the rep- 
resentation of arguments for particular design deci- 
sions, including conflicting arguments [e.g., 7, 111. 

7Nhen a user interface is designed for a system built 
for a wide range of applications and users, such as the 
Macintosh interface, it is more difficult to get a mean- 
ingful understanding of the users’ tasks. In this situa- 
tion, it may make sense to adhere consistently to some 

interface choices to provide users with the benefits of 
easier learning and transfer. But this analysis suggests 
that as these systems are pushed into specific applica- 
tion areas with dedicated users, maintaining that con- 
sistency will lead to increasing performance costs. Only 
careful attention to the users and their tasks will indi- 
cate where those costs outweigh the benefits. 

The examples in this article were drawn. from a lim- 
ited number of domains-keyboards, menus, command 
names, file structures-but this may primarily reflect 
our greater familiarity with these domains. In these 
areas, designs often went through a sub-opltimal consis- 
tent phase before our understanding of the relevant 
users’ tasks grew and the consistent design was aban- 
doned in favor of a better one. Revisiting the example 
from the introduction, if a Martian were arranging our 
household implements, with no idea of the tasks for 
which each would be used, placing all of the knives 
together would be a good idea. Once the hlartian came 
to understand how we used different knives, it could 
come up with a better arrangement. Similarly, as we 
come to understand users’ work environments better, 
we should find designs evolving away frorn consistent 
interfaces in many areas of interface design. The way to 
stay at the forefront of this evolution is to know your 
users and their tasks a little better than anyone else. 

Acknowledgments: Many colleagues at the MCC Hu- 
man Interface Laboratory, and earlier at Wang Labora- 
tories and the MRC Applied Psychology Unit, have puz- 
zled over these issues with me. In particular, I am 
indebted to Phil Barnard, Susan F. Ehrlich, and Steven 
Poltrock, as well as to discussions with Dedre Gentner, 
Don Gentner, Catherine Marshall, and Don Norman. 
Kenichi Akagi provided information on aspects of key- 
board layout, and with Will Hill, Jim Ho&n, Jim Miller, 
Tom Erickson, Larry Parsons, and Jack Carroll, com- 
mented usefully on an earlier draft. Editorial guidance 
by Henry Ledgard and two anonymous reviewers led to 
marked improvements. This paper would not have 
been written without the impetus provided by Jon 
Meads, Jakob Nielsen, and the participants in the Work- 
shop on Coordinating User Interfaces for Consistency at 
CHI’88; discussions with Wendy Kellogg were particu- 
larly helpful. 

REFERENCES 
1. Barnard, P. and Grudin, J. Command names. In Handbook of Human- 

Computer Interaction, M. Helander, Ed. Elsevier Science Publishers, 
Amsterdam, 1988. 

2. Barnard. P.J., Hammond, N.V., Morton, J., Long, J.B., and Clark, I.A. 
Consistency and compatibility in human-computer dialogue. Int. I. 
Man-Machine Studies 15, (1981), 87-134. 

3. Beeching, W.A. Century offhe typewriter. St. Martin’s Press, New 
York, 1974. 

4. Bodker, S., Ehn, P., Knudsen, J., Kyng, M., Madsen, K. Computer 
support for cooperative design. In Proceedings of the CSCW’BB Confer- 
ence on Computer-Supported Cooperative Work (Portland, September 
26-28, 1988). 

5. Carroll, J.M. Learning, using, and designing filenames and command 
paradigms. Behav. Info. Tech. 1, (1982), 327-346. 

6. Carroll, J.M., Mack, R.L. and Kellogg, W.A. Interface metaphors and 
user interface design. In Handbook of human-computer interaction. M. 
Helander, Ed. Elsevier Science Publishers, Amsterdam, 1988. 

1172 Communications of the ACM October 1989 Volume 32 Number 10 



Articles 

7. Conklin, J. Design rationale and maintainability. In Proceedings of the 
22nd Annual Hawaii International Conference on System Sciences (Janu- 
ary, 1989). 

8. Conrad, R., and Hull, A. The preferred layout for numeral data- 
entry keysets. Ergonomics II, (1968), 165-174. 

9. Ehn. P., and Kyng, M. The collective resource approach to systems 
design. In Computers and democracy--A Scandinavian challenge. 
G. Bjerknes, et al., Eds. Aldershot, UK. 

10. Feiner, S., 1988. An architecture for knowledge-based graphical in- 
terfaces. In Proceedings of fhe AAAI/Lockheed Workshop on Zntelligent 
Interfaces (March, 1988). 

11. Fischer, G. and March, A. CRACK: A critiquing approach to cooper- 
ative kitchen design. In Proceedings of the International Conference on 
Intelligent Tutoring Systems (Montreal, June, 1988). 

12. Gentner, D. Structure-mapping: A theoretical framework for anal- 
ogy. Cognit. Sri. 7, (19831, 155-170. 

13. Gentner, D.R. Keystroke timing in transcription typing. In Cognitive 
aspects of skilled typewriting. Springer-Verlag, New York, 1983. 

14. Centner, D.R.. Larochelle, S., and Grudin, J. Lexical, sublexical and 
peripheral effects in skilled typewriting. Cognit. Psy. 20, (1988), 
524-548. 

15. Gould, J., and Lewis, C. Designing for usability-Key principles and 
what designers think. Commun. ACM 28, (1985), 300-311. 

16. Green, T.R.G., and Payne, S.J. Organization and learnability in com- 
puter languages. Int. J. Man-Machine Studies 21, (1984), 7-18. 

17. Grudin. J. Designing in the dark: Logics that compete with the user. 
In Proceedings of the CH1’86 Human Factors in Computing Systems 
(Boston, April 13-17, 1986). 

16. Grudin, J. Organizational influences on interface design. In Mentul 
models and user-centered design. A.A. Turner, Ed. Workshop Report. 
TR 88-9. University of Colorado. Institute of Cognitive Science. 

19. Grudin, J., and Barnard, P. The role of prior task experience in 
command name abbreviation. In Proceedings of the INTERACT’84 
Conference on Human-Computer Interaction (London, September 4-7, 
1984). 

20. Grudin, J., and Barnard, P. When does an abbreviation become a 
word? and related questions. In Proceedings of the CHI’8.5 Human 
Factors in Computing Systems (San Francisco, April 14-18, 1985). 

21. Grudin, J., and Poltrock, S. User interface design in large corpora- 
tions: Coordination and communication across disciplines. In Pro- 
ceedings of the CHZ’89 Human Factors in Computing Systems (Austin, 
April JO-May 4, 1989). 

22. H&an, J.D., Hutchins, E.L., McCandless. T.P., et al. Graphic inter- 
faces for simulation. In Advances in man-machine systems research, 3, 
W.B. Rouse, Ed. JAI Press, Greenwich, Corm., 129-163. 

23. Hutchins. E.L.. Hollan, J.D., and Norman, D.A. (1985), Direct manip- 
ulation interfaces. Human-Computer Interaction 1, (1985). 311-338. 

24. International Organization for Standardization. Information process- 
ing-keyboard layouts for text and office systems-part 41: Func- 
tion zones of the numeric section. Draft Proposal ISO/DP 9995-41, 
1988. 

25. Kellogg, W.A. Conceptual consistency in the user interface: Effects 
on user performance. In Proceedings of INTERACT’87 Conference on 
Human-Computer Interaction, (Stuttgart. September l-4. 1987). 

26. Kellogg, W.A. Coordinating user interfaces for consistency (unpub- 
lished position paper for CH1’88 workshop of same name). 

27. Kieras, D. Mental models for engineered systems and computers. In 
Menfal models and user-centered design. A.A. Turner, Ed. Workshop 
Report. TR 88-9. University of Colorado, Institute of Cognitive Sci- 
t3”CC 

28. Mackinlay, J. Automating the design of graphical presentations of 
relational information. ACM Trans. Graph. 5, (1986), 110-141. 

29. Manuel, T. Molding computer terminals to human needs. Electronics 
(June 30,1982), 97-109. 

30. Moran, T.P. The command language grammar: A representation of 
the user interface of interactive computer systems. ht. j. Man- 
Machine Studies 15, 3-50. 

31. Myers, B. Creating dynamic interaction techniques by demonstra- 
tion. In Proceedings of the CHl+G1’87 Human Factors in Computing 
Systems (Toronto, April 5-9, 1987). 

32. Nakaseko, M.. Grandjean, E., Hunting. W., and Gierer, R. Studies on 
ergonomically designed alphanumeric keyboards. Human Factors 27, 
(19851, 175-187. 

33. Neches, R. Knowledge-based tools to promote shared goals and ter- 
minology between interface designers. ACM Trans. Off. Info. Syst. 6, 
215-231. 

34. Nicolson. R.I., and Gardner, P.H. The QWERTY keyboard hampers 
schoolchildren. British J. Psy. 76, (1985). 525-531. 

35. Nielsen, J. Coordinating user interfaces for consistency. SICCHZ Bul- 
letin 20, (1989). 63-65. 

36. Norman, D.A. The psychology of everyday things. Basic Books, New 
York, 1988. 

37. Norman, D.A., and Draper, S.W., Eds. User centered system design. 
Hillsdale, Lawrence Erlbaum Associates, Hillsdale, N.J., 1986. 

38. Norman, D.A., and Fisher, D. Why alphabetic keyboards are not 
easy to use: Keyboard layout doesn’t much matter. Human Factors 
24, (1982), 509-515. 

39. Noyes, J. The QWERTY keyboard: A review. Jnt. J. Man-Machine 
Studies 18, 265-281. 

40. Payne, S.J., and Green, T.R.G. Task-action grammars: A model of the 
mental representation of task languages. Human-Computer Interaction 
2 93-133. 

41. Perlman, G. Multilingual programming: Coordinating programs, user 
interfaces, on-line help, and documentation. ACM SlGDOC Asterisk, 
(1986), 123-129. 

42. Perlman, G. An axiomatic model of information presentation. In 
Proceedings of the 1987 Human Factors Society Meeting. Human Fac- 
tors Society, New York, pp. 1229-1233. 

43. Poison, P. The consequences of consistent and inconsistent user 
interfaces. In Cognitive science and ifs applications for human-computer 
interaction. Lawrence Erlbaum. Hillsdale. N.J., (1988). 

44. Poison. P. The role of how-it-works knowledge in the acquisition of 
how-to-do-it knowledge. In Mental models and user-centered design. 
A.A. Turner, Ed. Workshop Report. TR 88-9. University of Colorado, 
Institute of Cognitive Science. 

45. Reisner, P. Formal grammar and human factors design of an interac- 
tive graphics system. IEEE Trans. Soffw. Eng. 7, 229-240. 

46. Rubinstein, R., and Hersh, H. The human factor. Digital Press, Bed- 
ford, Mass., 1984. 

47. Schumacher. R.M., and Gentner, D. Remembering causal systems: 
Effects of systematicity and surface similarity in delayed transfer. In 
Proceedings of the 32nd Annual Meeting of the Human Factors Society 
(Anaheim, Calif.), pp. 1271-1275. 

48. Shneiderman, 8. Designing the user interface. Addison-Wesley, Read- 
ing, Mass., 1987. 

49. Smith, S.L., and Mosier, J.N. Guidelines for designing user interface 
software. Report 7 MTR-10090, Esd-Tr-86-278. MITRE Corporation, 
Bedford, Mass., 1986. 

50. Streeter, L.A., Ackroff, J.M., and Taylor, G.A. On abbreviating com- 
mand names. Bell System Tech. J. 62, (1983), 1807-1826. 

51. Sucbman, L. Plans and situated actions: The problem of human-machine 
communication. Cambridge University Press, Cambridge: Mass., 1987. 

52. Whiteside. J., Bennett, J., and Holtzblatt, K. Usability engineering: 
Our experience and evolution. In Handbook of human-computer inter- 
action. M. Helander, Ed. Elsevier Science Publishers, Amsterdam, 
1988. 

53. Wiecha. C., Bennett, W., Boies, S., and Gould, J. Tools for generating 
consistent user interfaces. Manuscript draft. 

CR Categories and Subject Descriptors: D.2.2 [Software Engineer- 
ing]: Tools and Techniques; H.1.2 [Information Systems]: User Machine 
Systems 

General Terms: Human Factors 
Additional Key Words and Phrases: Consistency, user interfaces 

ABOUT THE AUTHOR: 

JONATHAN GRUDIN is a visiting member of the faculty of 
the Computer Science Department of Aarhus University. He is 
currently on leave from the Microelectronics and Computer 
Technology Corporation, where he is a member of the techni- 
cal staff of the Human Interface Laboratory doing research on 
user interface design as a group process. His interest in user 
interface consistency was motivated by past work on large 
software development projects, as well as by earlier research 
in several areas described in this article. Author’s Present Ad- 
dress: MCC Human Interface Laboratory, 3500 West Balcones 
Center Drive, Austin, TX 78759. grudin@mcc.com. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct commer- 
cial advantage, the ACM copyright notice and the title of the publication 
and its date appear, and notice is given that copying is by permission of 
the Association for Computing Machinery. To copy otherwise. or to 
republish, requires a fee and/or specific permission. 

October 1989 Volume 32 Number 10 Communications of the ACM 1113 


