
Spatiotemporal Sampling and Interpolation for Dense Video Camera Arrays∗

Bennett S. Wilburn†

Stanford University
Neel S Joshi‡

Stanford University
Katherine Chou§

Stanford University
Marc Levoy¶

Stanford University
Mark Horowitz‖

Stanford University

Abstract

We explore the application of dense camera arrays to view inter-
polation across space and time for dynamic scenes. Large video
camera arrays are typically synchronized, but we show that stagger-
ing camera triggers provides a much richer set of samples on which
to base the interpolation. We do not increase the total number of
samples—we merely distribute them more effectively in time. We
use optical flow to interpolate new views. Within this framework,
we find that the dense space-time sampling provided by staggered
timing improves the robustness of the interpolation. We present
an novel optical flow method that combines a plane plus parallax
framework with knowledge of camera spatial and temporal offsets
to generate flow fields for virtual images at new space-time loca-
tions. We present results interpolating video from a 96-camera light
field using this method.

CR Categories: I.4.8 [Image Processing and Computer Vision]:
Scene Analysis—Time-varying imagery; I.4.9 [Image Processing
and Computer Vision]: Applications

Keywords: spatiotemporal sampling, image-based rendering,
view interpolation, optical flow, multiple camera systems

1 Introduction

Video cameras are rapidly becoming commodity hardware, causing
image sensors, lenses, and video compression electronics to drop
rapidly in price. Today one can easily build a modest camera array
for the price of a high-performance studio camera, and it is likely
that arrays of 100s or even a 1000 cameras will soon reach price
parity with these larger more expensive units. The increased flexi-
bility of this type of camera array creates a number of new applica-
tions and interesting research challenges. For example, researchers
have already shown how to use such an array for dense sampling
in time, demonstrating a virtual 1560fps camera composed of 52
densely packed cameras [Wilburn et al. ] while others have used
dense video camera arrays for view interpolation [J.-C.Yang et al.
2002]. Rather than viewing these results as independent, this pa-
per explores the use of dense camera arrays for view interpolation

†e-mail: wilburn@stanford.edu
‡e-mail:nsj@cs.stanford.edu
§e-mail:seneca@stanford.edu
¶e-mail:levoy@cs.stanford.edu
‖e-mail:horowitz@stanford.edu

Figure 1: The video light fields in this paper were captured using a
96-camera subset of this array.

in both space and time. Thus we look at the more general prob-
lem of optimal sampling patterns and interpolation methods for the
spatiotemporal volume of images that the camera array records.

The simplest spatiotemporal interpolation method is extending light
field rendering to video by linearly interpolating in time. For this re-
construction to work, the image volume must be bandlimited. Such
prefiltering adds undesirable blur to the reconstructed images. Even
with very large camera arrays, the sampling density is not suffi-
ciently high to make the blur imperceptible. If the images are not
bandlimited, the output exhibits ghosting artifacts. This occurs for
large disparities or temporal motions.

To avoid the conflicting requirements for sharp images with no
sampling artifacts, most image based rendering systems use more
sophisticated interpolation schemes based on an underlying scene
model. The simplest method is to estimate motion in an image
based on local information from neighboring views. Other meth-
ods generate increasingly sophisticated three-dimensional models
of the scene. Motion estimation grows less robust as the distance
between cameras increases. More complicated models can handle
more widely separated images, but their runtime increases as more
global information is incorporated.

This paper explores how sampling affects reconstruction. Tradi-
tionally, designers of camera arrays have striven to synchronize
their cameras. This often leads to much more temporal motion be-
tween camera frames than there is parallax between neighboring
cameras. Instead, staggered triggers are a better sampling strategy.
Improved temporal sampling decreases temporal image motion, al-
lowing us to use simpler, more robust interpolation methods such
as optical flow. As section 2 shows, planar arrays are well-suited
to using a simple plane + parallax formulation that allows one to
robustly calibrate images and also provides a very nice framework
to set up flow. It provides a constrained space for computing optical
flow between disparate cameras.

The next section describes previous work in capturing and inter-
polating between space-time image samples. Following that, we
describe our method for calibrating the camera array and rendering

0Submitted to Siggraph 2004



new views. We review plane + parallax geometry, which plays a
central role in our calibration and optical flow algorithms. We then
describe a framework for determining how best to distribute our
camera array samples in time. We show for linear interpolation be-
tween views that better sampling greatly improves reconstruction.
Finally, we present an optical flow method for determining spatial
and temporal motion between several views in space and time.

1.1 Previous Work

The increasing availability and lower cost of cam arrays has en-
abled a number of researchers to look at the potential of these sys-
tems. Virtualized RealityTM [Rander et al. 1997] and its successor
the 3D-Room[Kanade et al. 1998] are two pioneering large-array
designs. The systems capture video from widely spaced, synchro-
nized cameras. Because the system captures samples that are sparse
in space and time, interpolation depends strongly on the quality of
the inferred scene model. Yang et al. took a different approach.
Rather than construct a scene model, they capture denser samples
and use simple light field interpolation to run in real-time. This in-
terpolation method produces ghosting artifacts in their output. They
are not concerned with interpolation in time. The most visible mul-
tiple camera work is the linear array of over 100 cameras used to
produce the “Bullet Time” effects for The Matrix. They simulate a
virtual high-speed camera flying at impossibly high speeds around
a dynamic scene. Their system captures one trajectory through time
and space.

Our goal is to investigate how well one could do “Bullet Time” ef-
fects as a post-processing step for a captured set of images without
specifying the view trajectory in advance. We explore this using
a 100 camera array that combines selected features from these de-
signs. It captures all of the data from a large number of precisely
timed, inexpensive CMOS video image sensors. Although this ar-
ray was built to enable a wide range of research, the technologies
required for this work are commonly available. The key feature of
the array for the results presented in this paper is a programmable
trigger offset at each camera. Many CMOS sensors offer the digi-
tal synchronization inputs required to implement this sort of precise
timing control.

Image-based rendering methods for view synthesis differ primar-
ily in how they resample acquired images to generate new views.
Light Field Rendering [Levoy and Hanrahan 1996] assumes a flat
scene, which leads to aliasing artifacts. Lumigraphs [Gortler et al.
1996] assume a known geometry, either synthetic data or a manu-
ally specified geometric proxy [Buehler et al. ]. [Lin and Shum ]
present a maximum camera spacing for light fields with a constant
depth assumption, and [Chai et al. 2000] analyze the minimum spa-
tial sampling rate for light fields including geometry information.
We are the first to investigate the minimum temporal sampling rates
for video light fields.

While hardware allows us to capture samples in the spatiotemporal
volume, our next task is to interpolate between images to produce
new views. View interp using image warps[Chen and Williams
1993; Seitz and Dyer 1995] allows one to produce sharp images
even when large image motion is present but requires some means
of determining how to warp pixels between views. The simplest of
these schemes are image based methods using optical flow[Avidan
and Shashua 1998; Irani et al. 1998], which is not robust over
large displacements or lighting changes. For more widely sep-
arated cameras, 3D models have been computed using disparity
maps[Rander et al. 1997], voxel coloring[Seitz and Dyer 1997],
or visual hulls[Matusik et al. 2000]. Although models compensate

for larger camera spacings, inferring the structure of complex, real
scenes is a challenging task.

2 Calibration and Rendering

A challenge of working with many cameras is finding a framework
for combining information from the different views. Even simple
camera hopping will produce poor results if the cameras have dif-
ferent color responses. Because inexpensive image sensors rely on
human sensitivity to relative, not absolute, color differences, the re-
sponses of image sensors varies greatly. We correct this using the
automatic color calibration method of [Wilburn et al. ], iteratively
adjusting camera gains so each sensor approximates a desired linear
response, then applying a post-processing step to correct for sensor
nonlinearities and color differences.

Once the camera color responses are matched, we need to under-
stand the geometry of our cameras and images. Our goals here are
twofold. First, we must correct for nonuniformities between cam-
eras, such as varying focal lengths and orientations. As with color
variations, view hopping across cameras will look poor if the virtual
camera’s perspective properties jump discontinuously from view to
view. Second, we need a framework for combining data from dif-
ferent images that captures the geometric relationship between our
cameras but does not require knowledge of the scene geometry. We
use the method of [Vaish et al. ] for calibrating a planar array of
cameras using plane + parallax [Shashua and Navab 1994; Kumar
et al. 1994; Irani et al. 1997]. This method aligns views in im-
age space instead of relying on full geometric calibration, making
it both simpler and more robust. As we will see, it also provides an
effective framework for computing optical flow in space and time
and for analyzing spatiotemporal sampling.

2.1 Plane + Parallax Calibration

We will briefly summarize the implementation and implications of
the plane + parallax calibration described in [Vaish et al. ]. We start
by aligning images from all of our cameras to a reference plane that
is roughly parallel to the camera plane. To do this, we take a picture
of a planar calibration target roughly in the middle of our scene,
frontoparallel to the camera plane. We use an automatic feature
detector to locate and label points on the target. We designate a
central camera to be the reference view and compute an alignment
for it that makes the target appear frontoparallel while perturbing
the imaged target feature locations as little as possible. We then
compute planar homographies that align the rest of the views to
the aligned reference view [Hartley and Zisserman 2000]. Figure 2
shows the original and aligned images of our calibration target from
a non-reference view.

In the aligned images, there is a simple relation between a point’s
distance from the reference plane and its parallax between two
views. Figure 3 shows a scene point P and its locations p0 =
(s0, t0)T

, p1 = (s1, t1)T in the aligned images from two cameras
C0 and C1. Let ∆zp be the signed distance from P to the refer-
ence plane (negative for this example), Z0 be the distance from the
camera plane to the reference plane, and ∆x be the vector from C0
to C1 in the camera plane. Define the relative depth of P to be
d =

∆zp
∆zp+Z0

. Given this arrangement, the parallax ∆p = p1 − p0 is
simply ∆p = ∆x·d.

This has two important consequences for our work:



(a) (b)

Figure 2: Alignment using planar homographies. Using images of
a planar calibration target, we compute a planar homography that
aligns each image to a reference plane. (a) shows an image of the
target from a corner camera of the array. (b) show the same image
warped to the reference view. The planar target appears frontopar-
allel in all of the aligned images.

PlaneReference

Pt

∆x

p0 p1∆p

∆zp

Z0

C0C1

Figure 3: Planar parallax for planar camera arrays. A point P not
on the reference plane has distinct images p0, p1 in cameras C0,C1.
The parallax between these two is the product of the relative camera
displacement ∆x and the relative depth ∆zp.

• The parallax between aligned images of a single point off the
reference plane is enough to determine the relative locations
in the camera plane of all of the cameras. Typically, one mea-
sures the parallax of many points to make the process more
robust.

• Once we know the relative camera locations, determining the
relative depth of a point in one view is enough to determine
its location in all other views.

This gives us the framework we need for interpolation. The aligned
images provide a common space in which to analyze and combine
views. In fact, they correspond to the (u,v) parameterized images
for light field rendering (assuming constant depth at the reference
plane), so measuring motion in reference plane indicates how much
aliasing we will see in reconstructed light field images. As we will
see later, parallax being a function of relative depth permits a simple
optical flow method for determining image flow between neighbor-
ing spacetime views.

2.2 Rendering

Aligning our images to a reference plane automatically corrects for
geometric variations in our cameras (excluding translations out of
the camera plane and radial distortion, which we have found to be

PlaneReference

v∆t
Pt Pt+∆t

∆x

p0 p1∆p

Z0

∆znear

C1 C0

Figure 5: The temporal and spatial view axes are related by im-
age motion. For a given scene configuration, we can determine a
timestep ∆t for which the maximum image motion between tem-
poral samples is equal to the maximum parallax between spatially
neighboring views. If we measure time in increments of ∆t and
space in increments of the camera spacing, then distance between
view coordinates corresponds to the maximum possible image mo-
tion between views.

negligible for our application). The aligned images are generally
off-axis projections, which are visually disturbing. This is clear
from the aligned views of the calibration target, in which the ref-
erence plane target always appears frontoparallel regardless of the
camera position.

The transformation that corrects the off-axis projection is equiva-
lent to taking a picture of the aligned plane from the virtual camera
position. The plane + parallax calibration does not provide enough
information to do this. If we fix the relative camera locations pro-
duced by our calibration, the missing information corresponds to
the field of view of our reference camera and the distance from the
camera plane to the reference plane. These quantities can be de-
termined either by calibrating the reference camera relative to the
reference plane or simple manual measurement. In practice, we
have found that small errors in these quantities produce very subtle
perspective errors and are visually negligible.

3 Spatiotemporal Sampling

We now turn our attention to the temporal distribution of our sam-
ples. We assume that our cameras all run at a single standard video
rate (30fps for our array), that they are placed on a planar grid, and
that the desired camera spacing has already been determined. Fig-
ure 4 shows aligned synchronized images from our array of 30fps
video cameras. Differences between images are due to two com-
ponents: parallax between views and temporal motion between
frames. From the images, it is clear that the temporal image motion
is much greater than the parallax for neighboring views in space
and time. This suggests that we should sample more finely tempo-
rally to minimize the maximum image motion between neighboring
views in space and time. In the next section, we show how temporal
and spatial view sampling are related by image motion.



(a) (b) (c)

Figure 4: For synchronized cameras, the motion due to parallax between neighboring cameras is often much less than the temporal motion
between frames for the same camera. (a) and (b) are images from adjacent cameras at the same point in time. Disparities between images are
small. (c) shows a picture from the same camera as (b), one frame later. The motion is obvious and much larger.

3.1 Normalizing the Spatial and Temporal Sampling

Axes

For a given location of the reference plane at a distance Z0 from the
camera plane, if we bound the maximum parallax in our aligned
images, we can establish near and far depth limits for our scene,
znear and z f ar . Alternatively, we could determine the minimum and
maximum depth limits of our scene and place the reference plane
accordingly [Chai et al. 2000]. The near and far bounds and cam-
era spacing ∆x determine the maximum parallax for any point be-
tween neighboring cameras. Given this near depth limit znear and
a maximum velocity of v for any object in the scene, we can de-
termine the time for which the maximum possible temporal image
motion equals the maximum parallax between neighboring views.
This is shown in figure 5. The temporal motion for P in camera C0
is greatest if it is at the near depth limit and moves such that the
vector PtPt+1 is orthogonal to the projection ray from C0 at time
t + 1. If we assume a narrow field of view for our lenses, we can
approximate this with a vector perpendicular to the reference plane,
shown as v∆t. If P has velocity v, the maximum temporal motion of
its image in C0 is v∆tZ0

Z0+∆Znear
. Equating this motion to the maximum

parallax for P in a neighboring camera yields

∆t =
∆XZnear

v∆Z0
(1)

This is the timestep for which maximum image motion equals max-
imum parallax between neighboring views.

Measuring time in increments of the timestep ∆t and space in units
of camera spacings provides a normalized set of axes to relate
space-time views. A view is represented by coordinates (x,y, t)
in this system. For nearest-neighbor or weighted interpolation be-
tween views, measuring view distance in these coordinates will
minimize jitter or ghosting during reconstruction. Choosing a tem-
poral sampling period equal to ∆t will also ensure that maximum
temporal motion between frames will not exceed the maximum par-
allax between neighboring views.

Determining maximum scene velocities ahead of time (for example,
from the biomechanics of human motion, or physical constraints
such as acceleration due to gravity) can be difficult. An alterna-
tive to computing the motion is filming a representative scene with
synchronized cameras and setting the timestep equal to the ratio be-
tween the maximum temporal and parallax motions for neighboring

0

1

2

3

4

5

6

7

8

Figure 6: An example trigger pattern for a 3x3 array of cameras
with nine evenly staggered triggers. The numbers represent the or-
der in which cameras fire. The order was selected to have even
sampling in the (x,y, t) space across the pattern. We tessellate larger
arrays with patterns such as this one to ensure even spatiotemporal
sampling.

views. One could even design a camera array that adaptively deter-
mined the timestep based on tracked feature points between views.

3.2 Spatiotemporal Sampling Using Staggered Trig-

gers

The timestep ∆t tells us the maximum temporal sampling period
that will ensure temporal resolution at least as good as the spatial
resolution across views. One could increase the temporal sampling
rate by using an array of high-speed cameras, but this could be
prohibitively expensive and would increase demands on data band-
width, processing, and storage. By staggering the cameras’ trigger
times, we can increase the temporal sampling rate without adding
new samples.

Our goal is to ensure even sampling in space and time using our
normalized axes. A convenient way to do this is with a tiled pattern,
using the minimum number of evenly staggered trigger times that
gives an offset less than ∆t. To approximate uniform sampling,
the offsets are distributed evenly within the tile, and the pattern is
then replicated across the camera array. Figure 6 shows an example
trigger pattern for a 3x3 array of cameras. For larger arrays, this
pattern is replicated vertically and horizontally. The pattern can
be truncated at the edges of arrays with dimensions that are not
multiples of three.



3.3 Interpolating New Views

We can now create our distance measure for interpolation. The
plane + parallax calibration gives up camera positions in the cam-
era plane up to some scale factor. We normalize these positions
by dividing by the average space between adjacent cameras, so the
distance from a camera to its horizontal and vertical neighbors is
approximately one. Let (x,y) be the position of each camera in
these normalized coordinates, and let t be the time at which a given
image is acquired, measured in timestep of ∆t. Because we have
chosen a timestep that sets the maximum parallax between views
equal to the maximum temporal motion between timesteps, the eu-
clidean distance between the (x,y, t) coordinates representing two
views is a valid measure of the maximum possible motion between
the two images.

The simplest way we could interpolate new views would be to use
nearest neighbors. This is the method used by [Wilburn et al. ] to
create a virtual camera using a dense camera array. This method
produces acceptable results, but as points move off the reference
plane, their images jitter due to parallax between views. The per-
ceived jitter can be reduced using interpolation between several
nearby views. To determine which images to blend and how to
weight them, we compute a Delauney tessellation of our captured
image coordinates. For a new view (x,y, t), we find the tetrahedron
of images in the tessellation containing the view and blend the im-
ages at its vertices using their barycentric coordinates as weights.
Using this tessellation and barycentric weighting ensures that our
blending varies smoothly as we move the virtual viewpoint. As we
leave one tetrahedron, the weights of dropped vertices go to zero.
Our temporal sampling pattern is periodic in time, so we only need
to compute the tessellation for three 30Hz sampling periods to com-
pute the weights for an arbitrarily long sequence.

Figure 7 shows the benefits of improved temporal sampling. In
this experiment, we used a 12x8 array of 30fps video cameras to
film a soccer player. The cameras were triggered according to the
pattern in figure 6, tiled across the array. We then generated 270fps
interpolated video using several methods. First, we used a cross-
dissolve between sequential frames at one camera to simulate linear
interpolation for a synchronized array. The motion of the soccer
ball between captured frames is completely absent. Next, we used
nearest-neighbor interpolation, which assembles a video sequence
using video captured at the proper time from neighboring cameras.
This produces sharp images and captures the path of the ball, but
the motion is jittered due to parallax between views. Finally, we
used the barycentric weighted averaging described previously. This
reduces the ball’s motion jitter but introduces ghosting.

Staggering the cameras clearly improves our temporal resolution
and results in much better results even for simple nearest-neighbor
and weighted interpolation. Because our input images are not ban-
dlimited in space and time, new views interpolated with either of
these methods will always suffer from artifacts if the motion be-
tween views in time or space is too great. One could imagine pre-
filtering spatially as described in [Levoy and Hanrahan 1996], or
temporally by using overlapped exposure windows, but prefilter-
ing adds undesirable blur to our images. In the next section, we
improve our spacetime view interpolation by analyzing the motion
between captured images.

4 Optical Flow for Spatiotemporal View In-

terpolation

We have seen that distributing samples from a dense camera ar-
ray more evenly in time improves spatiotemporal view interpola-
tion using nearest-neighbor or weighted interpolation. Reducing
the image motion between captured spatiotemporal views can also
decrease the complexity or increase the robustness of other inter-
polation methods. We have found that the combination of dense
cameras, improved temporal sampling, and plane + parallax cali-
bration allows us to compute new views robustly using optical flow.

We extended the optical flow method of [Black and Anandan 1993]
using code available on the author’s web site. Their algorithm is
known to handle violations of the intensity constancy and smooth-
ness assumptions well using robust estimation. It uses a standard
hierarchical framework to capture large image motions, but can fail
due to masking when small regions of the scene move very dif-
ferently from a dominant background[Bergen et al. 1992]. For our
30fps synchronized juggling sequence, the algorithm succeeded be-
tween cameras at the same time but failed between frames for the
same camera. The motion of the small juggled balls was masked by
the stationary background. Once we retimed the cameras, the mo-
tion of the balls was greatly reduced, and the algorithm computed
flow accurately between pairs of images captured at neighboring
locations and timesteps.

Our modified spatiotemporal optical flow algorithm has two novel
features. First, we solve for a flow field at the (x,y, t) location of
our desired virtual view. Typically, optical flow methods will com-
pute flow between two images by iteratively warping one towards
the other. This was inspired by the bidirectional flow of [Kang et al.
2003], who observe that for view interpolation, computing the flow
at the new view position instead of either source image handles
degenerate flow cases better and avoids the hole-filling problems
of forward-warping when creating new views. They use this to
compute flow at a frame halfway between two images in a video
sequence. We extend the method to compute flow at a desired
view in our normalized (x,y, t) view space. We iteratively warp the
nearest four captured images toward the virtual view and minimize
the weighted sum of the robust pairwise data errors and a robust
smoothness error.

Motion cannot be modelled consistently for four images at different
spacetime locations using just horizontal and vertical image flow.
The second component of our algorithm is simultaneously account-
ing for parallax and temporal motion. We decompose optical flow
into the traditional two-dimensional temporal flow plus a third flow
term for relative depth that accounts for parallax between views.
Plane + parallax calibration produces the relative displacements of
all of our cameras, and we know that parallax between two views
is the product of their displacement and the point’s relative depth.
The standard intensity constancy equation for optical flow is

I(i, j, t) = I(i+uδ t, j + vδ t, t +δ t) (2)

Here, (i, j, t) represent the pixel image coordinates and time, and u
and v are the horizontal and vertical motion at an image point. We
use i and j in place of the usual x and y to avoid confusion with our
view coordinates (x,y, t).

Our modified intensity constancy equation includes new terms to
handle parallax. It represents constancy between a desired virtual
view and a nearby captured image at some offset (dδx,dδy,dδ t) in
the space of source images. It accounts for the relative depth, d, at
each pixel as well as the temporal flow (u,v):



(a) (b) (c)

Figure 7: Better temporal sampling improves interpolation. (a) Linear interpolation between frames in time for a synchronized camera array
is just a cross-dissolve. (b) Nearest-neighbor interpolation using staggered cameras produces sharp images, but this composite of multiple
images shows that the path of the ball is jittered due to parallax between different cameras. (c) Weighted interpolation using the nearest views
in time and space reduces the perceived jitter but causes ghost images.

Ivirtual(i, j,x,y, t) = Isource(i+uδ t +dδx, j+vδ t +dδy, t +δ t) (3)

We compute flow using four images from the tetrahedron which
encloses the desired view in the same Delauney triangulation as
before. The images are progressively warped toward the common
virtual view at each iteration of the algorithm. We cannot test the
intensity constancy equation for each warped image against a vir-
tual view, so we instead minimize the error between the four warped
images themselves, using the sum of the pairwise robust intensity
constancy error estimators. This produces a single flow map, which
can be used to warp the four source images to the virtual view.
We currently do not reason about occlusions and simply blend the
flowed images using their barycentric weights in the tetrahedron.

Figure 8 compares view interpolation results using our spatiotem-
poral optical flow vs. a weighted average. Because the computed
flow is consistent for the four views, when the source images are
warped and blended, the ball appears sharp.

5 Discussion

We have shown that using a well-constructed camera array allows
one to control the image samples that are recorded from the spa-
tiotemporal volume a scene generates, and that the sampling pat-
tern chosen greatly affects the complexity of the view interpolation
task. While in theory it is possible to simply resample a linear fil-
tered version of the samples to generate new views, even with large
numbers of inexpensive cameras, it seems unlikely one could obtain
high enough sampling density to prevent either blurred images or
ghosting artifacts. Instead, the correct placement of samples allows
the use of simpler modeling approaches rather than none at all. The
key question is, how sophisticated a model is needed and what sam-
pling basis allows the most robust modelling methods to be used to
construct a desired view? [Chai et al. 2000] et al. address this for
spatial view interpolation.

For many interpolation methods, minimizing image motion leads to
better quality view synthesis, so we use minimizing image motion
to guide our sample placement. Given our relatively planar camera
array, we use a very simple plane + parallax calibration for inter-
polation in space. For images aligned to a reference plane, spatial

view motion results in parallax for points not on the reference plane.
This motion must be balanced against temporal image motion. In
our camera array this disparity motion is modest between adjacent
cameras, and is much smaller than the true motion from frame to
frame.

Staggering camera trigger in time distributes samples to reduce
temporal image motion between neighboring views without adding
new samples. In a way staggered time sampling is never a bad
sampling strategy. Clearly the denser time samples help for scenes
with high image motion. For scenes with small motion, the denser
time samples do no harm. Since the true image motion is small,
it is easy to estimate the image at any intermediate time, undoing
the time skew adds little error. Since the spatial sampling density
remains unchanged, it does not change the view interpolation prob-
lem at all. Better temporal sampling lets us apply relatively simple,
fairly robust models like optical flow to view interpolation in time
and space. We solve for temporal image motion and image motion
due to parallax which improves our interpolation.

Because our flow based view interpolation methods are local, the
only constraints on the camera timings are also local. They need
to sample evenly in every local neighborhood. We use a simple
tessellated pattern with locally uniform sampling at the interior and
across boundaries. Algorithms that aggregate data from an entire
array of cameras will benefit from different time stagger patterns
and raises the interesting question of finding an optimal sampling
pattern for a few of the more sophisticated model-based methods.

While it is tempting to construct ordered dither patterns to gener-
ate unique trigger times for all cameras there is a tension between
staggered shutters to increase temporal resolution and models that
exploit the rigid-body nature of a single time slice. This seems to
be an exciting area for futher research.

Staggered trigger times for camera arrays increase temporal reso-
lution with no extra cost in hardware or bandwidth, but have other
limits. One fundamental limit is the number of photons imaged
by the cameras if the exposure windows are nonoverlapping. The
aperture time for each camera is set to be equal to the smallest time
difference between the cameras. While this minimizes unintended
motion blur, allowing sharp images in “Bullet time” camera motion,
at some point the number of photons in the scene will be too small,
and the resulting image signal to noise ratio will begin to increase.
This gives rise to another dimension that needs to be explored—
optimizing the relation between the minimum spacing between time



(a) (b)

Figure 8: View interpolation using spacetime optical flow. (a) Interpolated 270fps video using weighted average of four source images. (b)
Interpolated 270fps video using optical flow. The four source images were warped according to the computed flow and then averaged using
the same weights as in image a. No double images are present because parallax and motion for the ball were correctly recovered.

samples and the aperture of the cameras. Shechtman et. al. [2002]
have done some promising work in this area, using multiple unsyn-
chronized cameras with overlapping exposures to eliminate motion
blur and motion aliasing in a video sequence. They perform a reg-
ularized deconvolution to synthesize the high-speed frames.

For our image-based methods, uniform spatiotemporal sampling
limits image motion and enhances the performance of our inter-
polation methods. We analyzed spatiotemporal sampling from the
perspective of interpolation with a constant depth assumption and
related the temporal and spatial axes with maximum image motions
due to parallax and time. That constant-depth assumption is one of
the limitations of this work. In the future, we would like to enable
more general scene geometries. Our spatiotemporal optical flow
method generates significantly better results than weighted averag-
ing, but still suffers from the standard vulnerabilities of optical flow,
especially occlusions and masking.

6 Conclusion

In this paper, we show that for dense video camera arrays, sam-
pling more efficiently temporally leads to much better spatiotem-
poral view interpolation results. For a given array of cameras, stag-
gered triggers can provide increased temporal resolution without
increasing the total number of samples or the frame rate of the cam-
eras. We describe a method for computing the minimum temporal
sampling rate by equating the maximum possible image motions
due to parallax and temporal motion between neighboring views.
Constraining image motion between neighboring views greatly aids
optical flow algorithms. We present a spatiotemporal optical flow
algorithm for view interpolation that uses plane + parallax calibra-
tion and knowledge of the trigger times to solve for both temporal
flow and relative depth.

References

AVIDAN, S., AND SHASHUA, A. 1998. Novel view synthesis by
cascading trilinear tensors. IEEE Transactions on Visualization
and Computer Graphics 4, 4.

BERGEN, J., BURT, P., HINGORANI, R., AND PELEG, S. 1992. A
three frame algorithm for estimating two-component image mo-

tion. IEEE Trans. on Pattern Analysis and Machine Intelligence
14, 9, 886–895.

BLACK, M., AND ANANDAN, P. 1993. A framework for the robust
estimation of optical flow. In ICCV93, 231–236.

BUEHLER, C., BOSSE, M., MCMILLAN, L., GORTLER, S., AND
COHEN, M. Unstructured lumigraph rendering. In Proceedings
of SIGGRAPH 2001, 425–432.

CHAI, J.-X., TONG, X., CHAN, S.-C., AND SHUM, H.-Y.
2000. Plenoptic sampling. Proc. ACM Conference on Com-
puter Graphics (SIGGRAPH’00), New Orleans, USA (Aug.),
307–318.

CHEN, S., AND WILLIAMS, L. 1993. View interpolation for im-
age synthesis. In Proc. ACM Conference on Computer Graphics
(SIGGRAPH’93), 279–288.

GORTLER, S., GRZESZCZUK, R., SZELISKI, R., AND COHEN,
M. 1996. The lumigraph. In Proc. ACM Conference on Com-
puter Graphics (SIGGRAPH’96), 43–54.

HARTLEY, R., AND ZISSERMAN, A. 2000. Multiple view geome-
try in computer vision. Cambridge University Press.

IRANI, M., ROUSSO, B., AND PELEG, P. 1997. Recovery of ego-
motion using region alignment. IEEE Trans. on Pattern Analysis
and Machine Intelligence 19, 3 (March), 268–272.

IRANI, M., ANANDAN, P., AND WEINSHALL, D. 1998. From ref-
erence frames to reference planes: Multi-view parallax geometry
and applications. In European Conference on Computer Vision,
829–845.

J.-C.YANG, EVERETT, M., BUEHLER, C., AND MCMILLAN, L.
2002. A real-time distributed light field camera. In Eurographics
Workshop on Rendering, 1–10.

KANADE, T., SAITO, H., AND VEDULA, S. 1998. The 3d-
room: Digitizing time-varying 3d events by synchronized mul-
tiple video streams. Tech. Rep. CMU-RI-TR-98-34, Carnegie
Mellon University.

KANG, S., UYTTENDAELE, M., WINDER, S., AND SZELISKI, R.
2003. High dynamic range video. In ACM SIGGRAPH and ACM
Trans. on Graphics.



KUMAR, R., ANANDAN, P., AND HANNA, K. 1994. Direct re-
covery of shape from multiple views: A parallax based approach.
International Conference on Pattern Recognition, 685–688.

LEVOY, M., AND HANRAHAN, P. 1996. Light field render-
ing. In Proc. ACM Conference on Computer Graphics (SIG-
GRAPH’96), 31–42.

LIN, Z., AND SHUM, H. On the number of samples needed in
light field rendering with constant-depth assumption. In Proc.
Computer Vision and Pattern Recognition 2000, vol. 1, IEEE,
588–595.

MATUSIK, W., BUEHLER, C., RASKAR, R., GORTLER, S., AND
MCMILLAN, L. 2000. Image-based visual hulls. In Proceedings
of ACM Conference on Computer Graphics (SIGGRAPH-2000),
369–374.

RANDER, P., NARAYANAN, P., AND KANADE, T. 1997. Virtual-
ized reality: Constructing time-varying virtual worlds from real
events. In Proceedings of IEEE Visualization, 277–283.

SEITZ, S. M., AND DYER, C. M. 1995. Physically-valid view
synthesis by image interpolation. In Proc. Workshop on Repre-
sentation of Visual Scenes.

SEITZ, S. M., AND DYER, C. R. 1997. Photorealistic scene re-
construction by voxel coloring. In Proceedings of the Computer
Vision and Pattern Recognition Conference, 1067–1073.

SHASHUA, A., AND NAVAB, N. 1994. Relative affine struc-
ture: theory and application to 3d reconstruction from perspec-
tive views. In IEEE Conference on Computer Vision and Pattern
Recognition, 483–489.

SHECHTMAN, E., CASPI, Y., AND IRANI, M. 2002. Increasing
space-time resolution in video sequences. In European Confer-
ence on Computer Vision (ECCV).

VAISH, V., WILBURN, B., AND LEVOY, M. Using plane + par-
allax for calibrating dense camera arrays. In Submittedto CVPR
2004.

WILBURN, B., JOSHI, N., VAISH, V., LEVOY, M., AND
HOROWITZ, M. High speed video using a dense array of cam-
eras. In Submittedto CVPR 2004.


