
Linear Discriminant Model for Information Retrieval1
Jianfeng Gao*, Haoliang Qi$, Xinsong Xia#, Jian-Yun Nie**

*Microsoft Research, Asia, Email: jfgao@microsoft.com; $Harbin Institute of Technology, China;
#Peking University, China; **Université de Montréal, Email: nie@iro.umontreal.ca

1The work was done while Haoliang and Xinsong were visiting Microsoft Research Asia. Thank Ken Church for comments on early draft of the paper.

ABSTRACT
This paper presents a new discriminative model for informa-
tion retrieval (IR), referred to as linear discriminant model (LDM),
which provides a flexible framework to incorporate arbitrary
features. LDM is different from most existing models in that it
takes into account a variety of linguistic features that are de-
rived from the component models of HMM that is widely used
in language modeling approaches to IR. Therefore, LDM is a
means of melding discriminative and generative models for IR.
We present two algorithms of parameter learning for LDM.
One is to optimize the average precision (AP) directly using an
iterative procedure. The other is a perceptron-based algorithm
that minimizes the number of discordant document-pairs in a
rank list. The effectiveness of our approach has been evaluated
on the task of ad hoc retrieval using six English and Chinese
TREC test sets. Results show that (1) in most test sets, LDM
significantly outperforms the state-of-the-art language model-
ing approaches and the classical probabilistic retrieval model;
(2) it is more appropriate to train LDM using a measure of AP
rather than likelihood if the IR system is graded on AP; and (3)
linguistic features (e.g. phrases and dependences) are effective
for IR if they are incorporated properly.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Retrieval models

General Terms
Design, Algorithms, Theory, Experimentation

Keywords
Language Model, Discriminative Training, Hidden Markov
Model, Perceptron, Optimization

1. Introduction
Language modeling (LM) approaches to information retrieval
(IR) assume that the relevance of a document, given a query,
can be estimated as the generative probability of the query
from the document [23]. One of the most appealing properties
of this approach is its ability to incorporate linguistic informa-
tion of language such as phrase and dependences into the re-
trieval model in a systematic manner. For example, [9] assumes

a two-step generation process of a query from a document.
First, a dependency structure is generated from a document.
Then, a sequence of query terms is generated from the depend-
ency structure. This model is conventionally called Hidden
Markov Model (HMM), where the dependency structure can be
viewed as the hidden variable. In theory, the hidden variable
can represent any internal structures of language, which makes
HMM a very powerful modeling framework in many natural
language processing (NLP) tasks.

However, the HMM approach may be deficient for realistic
applications for two reasons. The first is from a theoretical per-
spective. The parameters of HMM have been traditionally
trained using maximum likelihood estimation (MLE), usually with
smoothing methods to deal with the sparse data problem. This
approach is proved to be optimal in theory under two assump-
tions: the true distribution of data (documents and queries) on
which HMM is based is known; and there are enough training
data. Unfortunately, these assumptions rarely hold in IR tasks.
The second reason is from a practical perspective. The per-
formance of IR systems is generally measures in terms of preci-
sion and recall (i.e. average precision, AP, in this study), which
is loosely associated with the optimization criterion that MLE
uses (i.e. to maximize the likelihood of training data). There-
fore, the traditional HMM approach may not lead to an opti-
mal solution in realistic IR systems.

Recently, discriminative training methods have been found
to outperform state-of-the-art HMM approaches in many NLP
tasks [2]. The success is mainly attributed to the two properties
which would eliminate to some degree the two aforementioned
problems of the HMM approach. First, a discriminative model
is based on a much weaker assumption that both training data
(documents) and test data (queries) are generated from the
same distribution but the form of the distribution is unknown.
Second, unlike MLE that maximizes the function that is loosely
associated with the performance measure of IR, discriminative
training methods aim to directly optimize the precision and
recall. So they potentially lead to a better solution. The per-
formance of discriminative models depends to a large degree
upon the selection of an optimal set of feature functions that
can best distinguish desired results from undesired ones. How-
ever, there is no systematic selection method. Most previous
work simply begins with a list of candidate features defined
manually (e.g. by a domain expert), and then construct an op-
timal set empirically by trial and error.

We see that both HMM and discriminative training meth-
ods have their strength and weakness. The HMM approach
assumes a generation process of data so that a sequence of
models (e.g. each for a generation step) can be derived to cap-
ture linguistic information. The discriminative training meth-
ods, given a set of feature functions, tend to learn a model di-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.
.
Copyright 2005 ACM 1-58113-000-0/00/0004…$5.00.

rectly optimized for IR tasks. Our design strategy is to combine
the strength of both approaches as follows: We first assume a
query generation process, and derive a set of component mod-
els within the framework of HMM. We then derive a set of
feature functions from the component models, and construct a
linear discriminant model (LDM) for IR, where the linear interpo-
lation weights are estimated using discriminative training
methods so as to optimize the AP on the training set. The effec-
tiveness of this design strategy will be demonstrated on the
task of ad hoc retrieval on six English and Chinese TREC test
sets. Results show that in most test sets, LDM outperforms
significantly the state-of-the-art LM approaches and the classi-
cal probabilistic retrieval model. The robustness of the ap-
proach is also studied empirically in this paper.

The rest of this paper is structured as follows. Section 2 de-
scribes a method of deriving linguistically-motivated feature
functions within the HMM framework. Section 3 describes the
LDM for IR and discusses in detail two discriminative training
methods of estimating parameters. Section 4 presents experi-
mental results. The discussion and related work are presented
in Section 5. Finally, the paper is concluded in Section 6.

2. HMM for IR
In LM approaches to IR, a Markov model is trained on each
document d in the collection C to be searched. Then the docu-
ments are ranked by the probability that a query q = {q1,…,qm}
would be generated from the respective document model
P(q|d). Most state-of-the-art approaches assume a unigram
Markov model, where P(q|d)=∏i=1…mP(qi|d) [30].

Hidden Markov Model is an extension of the Markov
model by introducing hidden variables. In the context of lan-
guage modeling, the hidden variables can be used to represent
any linguistic concepts that may improve the performance of IR
but are “hidden” in the text. Some representative examples of
such concepts are semantic chunks (e.g. named entities like
person name, location name, etc.) and syntactic chunks (e.g.
noun phrases, verb phrases, etc.). In HMM approaches to IR,
documents are ranked by P(q|d). But unlike the case of
Markov model, a two-stage generation process is assumed
when estimating P(q|d), as follows.

First, a user chooses a sequence of concepts c (e.g. person
name) to be queried, according to the probability distribution
P(c|d); Then the user attempts to express each concept by
choosing a sequence of terms, according to the probability dis-
tribution P(q|c, d). Therefore, P(q|d) can be recovered over all
possible c as

∑=
c

dcdcqdq)|(),|()|(PPP

For efficiency, in practical systems we usually only consider
the most likely c, which can be detected by parsing technolo-
gies, described in Section 4. We then end up with the basic
form of HMM for IR in Equation (1).

)|(),|(max)|(dcdcqdq
c

PPP ∝ (1)

P(q|c, d) in Equation (1) is referred to as concept model after-
wards, and P(c|d) as document model. In our system we use one
document model where we assume that each concept ci is gen-
erated depending on its preceding concept ci-1, and each con-
cept is represented by its headword hi which is detected using

rules (e.g. the rightmost noun is the head of a NP, and so on).
Therefore, the document model is a headword bigram model
P(hi|hi-1, d). We use a set of concept models, each of which
models a different concept (i.e. estimates the generative prob-
ability of a term sequence given a certain type of concept), as
shown in Table 1.
Type Models
NP P(q’|NP)=P(h|NP) ∏ q∈q’ P(q|h, NP)
VP P(q’|VP)=P(h|VP) ∏ q∈q’ P(q|h, VP)
NE P(q’|NE)=P(h|NE) ∏ q∈q’ P(q|h, NE), where there are three

NE models, each for one type of NE.
FT P(q’|FT)=1 if q’ can be parsed by FT grammar, 0 otherwise;

where the FT grammar is a set of Finite-State Machines, each
for one type of factoids

Table 1. Linguistic concepts and concept models: NP stands for
noun phrase; VP for verb phrase; NE for named entities (i.e. person
names, locations, and organizations); FT for factoids (e.g. date,
time.); q’ denotes the chunk of query terms, which represent a
concept c within the query q; h is the headword of the concept
(detected by rules) and q is any other term in the concept.

It should also be noted that different concept models are
constructed in different ways (e.g. person name models are n-
gram models trained via MLE on the corpus of person name
list whereas factoid models use derivation rules and have bi-
nary values). The dynamic value ranges of different concept
models can be so different that it is inappropriate to combine
all models through simple multiplication as in Equation (1).

To remedy this problem, one can introduce a set of weights,
one for each concept model, to effectively balance the contribu-
tion of each component model to the performance of IR. Intui-
tively, we would assign a high weight to the component model
which is either reliably trained (on enough training data) or
represents a salient concept of a query (e.g. proper noun). This
motivates the use of the LDM framework, which will be de-
scribed in the next section.

3. LDM for IR
Linear discriminant model in this study follows the general
framework of linear discriminant functions widely used for
pattern classification [4], and has been recently introduced into
NLP tasks in [2].

In the LDM framework, we assume a set of N+1 features
fi(q, c, d), for i = 0, …, N. The features are arbitrary functions
that map (q, c, d) to real values. Using vector notation, we have
f(q,c,d) ∈ℜN+1, where f(q,c,d) = {f0(q,c,d), f1(q,c,d), …, fN(q,c,d)}.
The parameters of the model are a vector of N + 1 parameters,
each for one feature function, λ= {λ0, λ1, …, λN}. The relevance
score of a document d with respect to a given query q can be
written as

∑
N

i
ii fλScore

0

),,(),,(),,(
=

== dcqdcqλfλdq (2)

Equation (2) is essentially of the same form of any linear
discriminant functions in [4]. Our method is novel in that most
of the feature functions in Equation (2) are derived from the
component models in the HMM framework, as shown in Table
1. More specifically,

 f0(.) is called the base feature and is defined as the loga-
rithm of the unigram probability, i.e.
f0(q, d) = ∑i log(P(qi|d));

 f1(.) is defined as the logarithm of the bigram probabil-
ity, i.e. f1(q, d) = ∑i log(P(qi|qi-1, d));

 f2(.) is defined as the logarithm of the document model
probability, i.e. f2(q, c, d) = ∑i log(P(hi|hi-1, d)).

 fi(.), for i = 3,…,N, are defined for N-2 concepts, respec-
tively (i.e., they are basically derived from the concept
models listed in Table 1). Their values are either the
negative logarithm of the probabilities of the corre-
sponding probabilistic models, or assigned heuristically
(e.g. the value of an FT feature is defined as the count of
term sequences of that type of FT in q).

The LDM method described above is expected to be supe-
rior to both traditional discriminative training methods and
HMM methods. Most discriminative models use only binary-
valued features, while the feature functions in LDM are much
more “informative” because they are derived from probabilis-
tic models. In HMM approaches, each component model is
optimized independently according to a criterion loosely asso-
ciated with AP, while all feature functions in the LDM frame-
work can be jointly optimized directly toward the maximal AP
on training data. In this study, our training set consists of a set
of queries, each with a list of documents whose relevance has
been judged manually.

We now turn to the description of two methods of estimat-
ing λ under the framework of gradient descent: an iterative
procedure of adjusting the parameters λ in the direction that
optimizes the objective function. For each of the two algo-
rithms, we will present in turn the objective function and the
optimization algorithm.

3.1 Maximum AP Training
The first algorithm is to select an optimal parameter setting so
as to directly maximize the average precision (AP) on training
data. We call the algorithm maximum AP (MaxAP) training. AP
is the most common performance measure in the IR research
community. So MaxAP is intuitively appealing since it opti-
mizes the performance measure directly. We now give the
formal definition of AP, and then describe the algorithm.

Let Rq be the set of relevant documents of the query q, and
Q be the query set in training data. Let Rank(di, q, λ) be the
rank of the i’th relevant document di (for i = 1,…,|Rq|) appear-
ing in the document list of q, ordered according to the score
computed by Equation (2), where λ is the current parameter
setting of the LDM. Then, the AP of a query q is defined as

∑
=

=
||

1),,Rank(||
1),AP(

qR

q λqdR
λq

i i

i (3)

The MaxAP algorithm is to optimize the empirical AP on
training data, and is defined in Equation (4).

∑
∈

=
Qqλ

λq
Q

),AP(
||

1maxarg
def

MaxAP (4)

The MaxAP algorithm can be cast as the multi-dimensional
function optimization algorithm (e.g. [24]). Assume that we can
maximize AP with respect to one parameter λ using line search,
which will be described below. The MaxAP algorithm works as
follows: Take λ0, λ1, …, λN as a set of directions. Using line
search, move along the first direction so that the objective func-

tion, as shown in Equation (4), is maximized; then move from
there along the second direction to its maximum, and so on.
Cycling through the whole set of directions as many times as
necessary, until the object function stops increasing.

We now describe how to implement line search. We notice
that regular numeric line search methods [24] cannot be ap-
plied directly because the value of a parameter λ versus the
objective function AP(.) is not smooth and there are multiple
local maxima. Therefore, we use the method proposed in [22]:
Let λ be the selected parameter. The line search is to find the
optimal value of λ so as to maximize the average precision. By
adjusting λ within a bracket (i.e. an interval which is known to
contain acceptable points), we obtain for each query in training
data an ordered sequence of AP(.) values and a corresponding
sequence of λ intervals. By averaging AP(.) values over all que-
ries in training data, we obtained a global sequence of AP(.)
and the corresponding global sequence of λ intervals. We can
therefore find the optimal λ as well as its corresponding AP(.)
by traversing the sequence.

In our experiments, we found that the MaxAP algorithm
can converge on different maxima given different starting
points. Following [25], we attempt to perform the algorithm
multiple times, each from a different, random starting point,
and pick the parameter setting that achieves the maximal AP.

3.2 Perceptron-based Training
This section first formulates the ranking problem under the
framework of ordinal regression [14, 12]; then presents a loss
function which is closely associated with AP, and a perceptron-
based algorithm to optimize the parameter setting with respect
to the loss function.

The ranking problem in IR can be formulated as follows:
Given a query q, let r*(q) be the target (or optimal) document
rank list, usually judged manually, and r(q, λ) the rank list
generated by the LDM of Equation (2) with the parameter set-
ting λ. Then, within the framework of ordinal regression, λ is
optimized in such a way that r(q, λ) is closest to r*(q). As [14]
suggested, the similarity between two ranks can be measured
in terms of Kendall’s τ, which is defined as follows. A docu-
ment pair di ≠ dj is concordant, if both r(q, λ) and r*(q) agree on
how they order di and dj. It is discordant if they disagree. Let X
and Y be the numbers of concordant and discordant document
pairs, respectively. Note that if there are M documents in the
collection C to be searched, the sum of X and Y is M(M-1)/2 for
strict orderings. Then, Kendall’s τ can be defined in Equation
(5). See [14] for a full description.

)1(
41)*,(

−
−=

+
−

=
MM

Y
YX
YXrrτ (5)

The optimization problem can be written as below, where Q is
the query set in training data.

∑
∈

=
Qqλ

λqrqrλ)),(),(*(maxarg τ

∑
∈ −

−=
Qqλ)1(

41maxarg
MM

Y

∑
∈

=
Qqλ

Yminarg (6)

Equation (6) shows that the optimal λ is the one that leads to
least number of discordant document pairs. It is worth noticing

that as proved in [14], the number of inversions Y gives a lower
bound on AP. So, optimizing λ by minimizing Y is closely as-
sociated with increasing AP.

In our experiments, given a query q, each of the documents
in C is judged by a binary value: 1 if the document is relevant, 0
otherwise. There is no order among relevant (or irrelevant)
documents. Therefore, Y in Equation (6) is reduced to the
number of document pairs, where the irrelevant document is
ranked higher than the relevant document. Using LDM, all
documents are ranked by the score computed by Equation (2).
Therefore, Equation (6) can be rewritten as follows

∑ ∑
∈ ∈

−=
Qq ddλ

λdqλdqλ
C

ji
ji

ScoreScoreI
,

)],,(),,([minarg (7)

where I[π]=1 if π ≤ 0, and 0 otherwise; di is any relevant docu-
ment of q in C, and dj is any irrelevant document.

Given the objective function in Equation (7), we use a per-
ceptron-based algorithm to search for the optimal parameter
setting. Please see [2] for the application of the perceptron al-
gorithm in NLP tasks and the theoretical justifications (i.e.
proofs of its convergence and bounded generalization errors).
It is an incremental, error-correction training procedure. As
shown in Figure 1, it starts with an initial parameter setting
and adapts it each time a discordant pair is detected.

Input: training samples, {(di, dj)q; di, dj ∈C, q ∈ Q}
Output: parameter setting λT
1. Initialization: set λ0 = 1, λi = 0, for i=1…N.
2. For t = 1 to T
3. For each training sample (di, dj)q
4. If Score(q, dj, λt)>Score(q, di, λt) by Equation (4), then
5. For each λtn (n=1…N)
6. λt+1n = λtn + η(fn(q,c,di) – fn(q,c,dj)).
Figure 1. Perceptron algorithm. In Input: (di, dj)q represents
document pair of query q, where di is any relevant document of q
in C, and dj is any irrelevant document; Q is the query set in
training data. In Step 6: η is the learning rate and set to 0.001.

The perceptron algorithm is proved to be robust and guaran-
teed to converge when the training samples are separable (i.e.,
there is an ideal parameter setting which leads to a LDM that
can achieve zero discordant pair). But in IR tasks, such an ideal
parameter setting does not exist, and the training samples are
not linearly separable. In theory, this may lead the perceptron
algorithm unstable, and the error-correction procedure can
never cease. As [4] point out, if the correction process is deter-
mined at some arbitrary point, the parameter setting may or
may not be in a good state. We used two methods to deal with
this problem. First, to reduce the risk of obtaining a bad solu-
tion by accidentally choosing an unfortunate termination time,
we average the parameter settings produced by the correction
rule in Step 6 of Figure 1 as follows: Let λnt,m be the value for
the n’th parameter after the m’th training sample has been
processed in pass t over the training data. Then the average
parameters are defined as

λn = ∑t=1…T,m=1..Mλnt,m/MT.

where M and T are the number of training samples and the num-
ber of learning iterations, respectively. This variant of the per-
ceptron algorithm is called the averaged perceptron algorithm,

proposed in [2]. Second, we count the number of updates for
each training sample. If the number is larger than a preset
threshold (meaning that the sample cannot be correctly ordered
after many trails and is likely to be a noisy sample), the sample
will not be used for training in the consequential iterations. As
will be illustrated in Section 4, the two methods lead to a ro-
bust algorithm for IR.

4. Experiments

4.1 Settings
We evaluated the LDM approach to IR described in the previ-
ous sections using six different TREC test sets, including three
English test sets and three Chinese ones. Some statistics are
shown in Table 2, where TX_cn denotes Chinese collections
used in TREC-X. (Note that TREC-5 and 6 use the same collec-
tion). The English queries are TREC topics 201 to 250 (descrip-
tion field only) on TREC disks 2 and 3. Those topics are “natu-
ral language” queries consisting of one sentence each of length
10 to 15 words. Following [11], for the three English TREC col-
lections, we remove those queries that have no relevant docu-
ment. The Chinese queries are TREC topics CH1 to CH79. We
use long queries that contain the title, description and narrative
fields. The average length of these queries is 120 characters.

Coll. Description Size
(MB)

Doc.

Query

WSJ Wall Street Journal (90, 91, 92), Disk 2 248 74,520 45
AP Associated Press (88 - 90), Disks 2, 3 484 158,240 49
FR Federal Register (88), Disk 2 213 19,860 27
T5_cn 28
T6_cn

People’s Daily (91-93) and Xinhua News
(94-95).

167 164,789
26

T9_cn HK Commercial Daily (98-99), HK Daily
News (99), Takungpao (98-99)

260 126,937 25

Table 2. TREC collections.

To extract the concept sequence c for each sentence, which
is used for constructing LDM, we process the collections as
follows. All Chinese texts have been word-segmented using the
word segmentation system MSRSeg2 [8]. The system also iden-
tifies factoids and named entities of various types. We then
used an in-house HMM chunk parser to detect phrases such as
NP and VP, as described in Table 1. Similarly, all English texts
have been tokenized and chunked by an in-house HMM parser,
which is trained on Penn Treebank.

We compare LDM to both the classical probabilistic model
(i.e. the binary independent retrieval (BIR) model [15]) and
some state-of-the-art language models proposed for IR in the
literature. All models contain free parameters that must be
estimated empirically by trial and error. These parameters in-
clude feature weights in LDM, smoothing or interpolation pa-
rameters in language models and weights or constants in the
BIR model. Therefore, we have applied an experimental para-
digm called two-fold cross validation. For each of the six query
set, we divided it into two subsets, with one used for parame-
ter training and the other for test. The retrieval results reported
on each TREC test set (as shown in Tables 3 and 4) combine

2 The simplified version of MSRSeg is accessible at

http://research.microsoft.com/~jfgao

two sets of results on two subsets of the query set, respectively.
Each set of results on one subset is obtained using the parame-
ter settings optimized on the other subset.

The performance of IR is measured through the precision-
recall pair. The main evaluation metric in this study is the non-
interpolated average precision (AP). The significance tests are
also conducted.

4.2 Results
Tables 3 and 4 present our main experimental results, where
we compare LDM with four probabilistic retrieval models,
including an implementation of the BIR model and three state-
of-the-art language modeling approaches that are based on the
framework of either Markov model or HMM.

BIR (Binary Independent Retrieval model) is one of the
most representative classical probabilistic retrieval models, and
serves as one of the baseline models in our experiments. In
particular, we used the Okapi system, which is the best-known
implementation of BIR. Among the great number of term
weighting functions provided by Okapi, we choose BM2500 for
it has achieved good performance in previous experiments[27].

UGM (Unigram Model) is an implementation of the uni-
gram language model approach to IR proposed in [30]. It
serves as the baseline LM approach in our experiments. Over
all six TREC test sets, UGM achieves the performance similar
to, or slightly worse than, that of BIR. It has been observed that
in general the classical probabilistic retrieval model and the
unigram language model approach perform very similarly if
both have been fine-tuned. The slightly worse performance of
UGM in our experiment might be due to our “over-tuned”
Okapi system, i.e. BM2500 has more weighting parameters
tuned empirically. Notice that unlike LDM, whose parameters
can be trained using appropriate learning algorithms as de-
scribed in Section 3, there is no systematic way of tuning free
parameters of BIR and UGM (and other language models de-
scribed below). So, we first use heuristics to find for each pa-
rameter a bracket, and perform exhaustive search.

BGM (Bigram Model) is an implementation of the bigram
language model approach to IR. The query generation prob-
ability is estimated by P(q|d) = P(q1|d)∏i=2…mP(qi|qi-1, d). It
assumes that the query term only depends on its one preceding
term. To deal with the sparse data problem, we used two
smoothing methods. First, we linearly interpolated the bigram
models trained on the document d and the entire collection C,
respectively. Second, for both bigram models, the bigram prob-
ability was linearly interpolated with the unigram probability.
All n-gram (n = 1 or 2 in BGM) probabilities are estimated via
MLE with a modified version of the absolute discount smooth-
ing [10]. BGM can be viewed as a special case of HMM de-
scribed in Section 2, where the concept sequence c is a sequence
of adjacent word pairs. Results show that BGM substantially
outperforms UGM in all English test sets, demonstrating that
even the simplest c can benefit the IR performance. However,
BGM does not outperform UGM on Chinese test sets. A possi-
ble reason is that MSRSeg already groups many adjacent short
word sequences into long words, such as named entities and
compound nouns. Therefore, BGM may not be able to capture
additional useful local information compared to UGM. Our
speculation has been justified in the pilot study: When using
maximal matching to segment words by looking up a small
dictionary, BGM outperforms UGM on Chinese test sets.

DLM (Dependence Language Model) is an implementa-
tion of the dependence language model described in [9]. It
serves in the comparison experiments as an example of the
HMM approaches to IR. DLM uses a score function similar to
Equation (1), where c is defined as a so-called linkage. The link-
age is detected by a parser and is represented an acyclic, pla-
nar, undirected graph where two related query terms are con-
nected by a graph edge. DLM assumes a two stage generation
process as described in Section 2: First, the linkage is generated
from the document according to the distribution P(c|d). Sec-
ond, the query is generated according to the distribution P(q|c,
d) where each query term is generated depending on the asso-
ciated term with which it is linked in the linkage. Therefore,
DLM can be viewed as an extension of BGM in that c is a set of
word pairs where the two words are not necessarily adjacent.
This advantage is however paid by the complexity of modeling.
DLM uses a more sophisticated smoothing method than BGM
does, and introduces more free parameters to be optimized
heuristically. As shown in Table 3, although DLM outperforms
BGM slightly but significantly on two out of three English test
sets, considering the modeling cost, the limited performance
gain may not be worthwhile in practical systems. More impor-
tantly, it is almost impossible to integrate more sophisticated
linguistic concepts through the hidden variables.

LDM (Linear Discriminative Model) is the model de-
scribed in Section 3. LDM(MaxAP) is the LDM trained using
the MaxAP algorithm described in Section 3.1, and
LDM(Percep) is the model trained using the perceptron-based
algorithm described in Section 3.2. We see that both LDM
methods achieve improvements over both BIR and UGM on
five out of six query test sets, and also outperform other LM
approaches on most of the test sets. As one of the reviewers
point out that the comparison may be unfair for the LDM uses
more features. We argue that this is the main advantage of
LDM to incorporate arbitrary features. When the same set of
features are used for both LDM and LMs, similar results were
achieved.

We notice that on the T9_cn test set, the LDM methods are
worse than other models. The reason is that while our parser is
trained on news articles from People’s Daily, T9_cn is a collec-
tion of news articles using Hong Kong Chinese (a local official
language). Thus, the language gap between training and test
texts leads to a bad result of concept extraction, and LDM can-
not be generated properly. Another point worth noting is that
FR query set is “unbalanced” in that a small number of queries
have much more relevant documents than the rest. Therefore,
the results of LDM are sensitive to the training/test split. We
therefore randomly create 10 training/test splits. The results
reported in this paper are the average among 10 tests.

It is also interesting to investigate the robustness of the two
training algorithms. We find that MaxAP is robust across all
test sets. It generally converges on both training and test sets
after four or five iterations. We do not observe a severe overfit-
ting problem. The perceptron-based algorithm, on the other
hand, performed differently across different test sets. We can
observe the learning curves of this algorithm on six test sets in
Figure 2. Recall that the algorithm aims to minimize the num-
ber of discordant document pairs (i.e. Y in Equation (6)). It
turns out that the algorithm achieves its goal quite successfully:
In all six test sets, Y decreases with the increase of the number
of iterations, though the overfitting problem can be observed in
some test sets. For example, on FR, T5_cn and T9_cn, Y

WSJ AP FR
Models AP % change

over BIR
% change
over UGM

AP % change
over BIR

% change
over UGM

AP % change
over BIR

% change
over UGM

BIR 22.30 -- -- 25.34 -- -- 16.58 -- --
UGM 17.91 -19.69% * -- 24.58 -3.00% -- 14.81 -10.68% --
DLM 22.41 0.49% 25.13% * 25.87 2.09% 5.25% * 18.51 11.64% 24.98%
BGM 21.46 -3.77% 19.82% 26.24 3.55% 6.75% * 18.03 8.75% 21.74%
LDM(MaxAP) 23.61 5.87% 31.83% * 27.33 7.85% * 11.19% * 18.51 11.64% 24.98%
LDM(Percep) 23.34 4.66% 30.32% * 27.51 8.56% * 11.92% * 19.42 17.13% 31.13%
Table 3. Comparison results on WSJ, AP and FR collections. * indicates that the difference is statistically significant.

T5_cn T6_cn T9_cn
Models AP % change

over BIR
% change
over UGM

AP % change
over BIR

% change
over UGM

AP % change
over BIR

% change
over UGM

BIR 32.45 -- -- 50.28 -- -- 20.79 -- --
UGM 31.81 -1.97% -- 51.15 1.73% -- 19.93 -4.14% --
BGM 31.28 -3.61% -1.67% 50.58 0.60% -1.11% 19.60 -5.72% -1.66%
LDM(MaxAP) 33.87 4.38% 6.48% * 53.06 5.53% * 3.73% * 19.37 -6.83% -2.81%
LDM(Percep) 33.92 4.53% * 6.63% * 51.40 2.23% 0.49% 18.59 -10.58% -6.72%
Table 4. Comparison results on T5_cn, T6_cn and T9_cn collections. * indicates that the difference is statistically significant.

149000

150000

151000

152000

153000

154000

155000

156000

157000

158000

0 1000 2000 3000 4000 5000
of iterations

of
 d
is
co

rd
an

t
pa

irs

training

test

315000

320000

325000

330000

335000

340000

345000

0 500 1000 1500 2000 2500 3000
of iterations

of
 d
is
co

rd
an

t
pa

irs training

test

38000

40000

42000

44000

46000

48000

50000

52000

0 500 1000 1500 2000 2500 3000
of iterations

of
 d
is
co

rd
an

t
pa

irs

training

test

22.2

22.4

22.6

22.8

23.0

23.2

23.4

23.6

23.8

0 1000 2000 3000 4000 5000
of iterations

A
P

training

test

27.0

27.2

27.4

27.6

27.8

28.0

28.2

0 500 1000 1500 2000 2500 3000
of iterations

A
P

training

test

15.0

17.0

19.0

21.0

23.0

25.0

27.0

29.0

0 500 1000 1500 2000 2500 3000
of iterations

A
P

training

test

(a) WJS (b) AP (c) FR

250000

252000

254000

256000

258000

260000

262000

264000

266000

268000

270000

0 500 1000 1500 2000 2500 3000
of iterations

of
 d
is
co

rd
an

t p
ai
rs

training

test

265000

270000

275000

280000

285000

290000

0 500 1000 1500 2000 2500 3000
of iterations

of
 d
is
co

rd
an

t p
ai
rs

training

test

61000

61500

62000

62500

63000

63500

64000

64500

65000

0 500 1000 1500 2000 2500 3000
of iterations

of
 d
is
co

rd
an

t p
ai
rs

training

test

32.0

32.5

33.0

33.5

34.0

34.5

35.0

0 500 1000 1500 2000 2500 3000
of iterations

A
P

training

test

50

50.5

51

51.5

52

52.5

53

53.5

54

0 500 1000 1500 2000 2500 3000
of iterations

A
P

training

test

16.5

17

17.5

18

18.5

19

19.5

20

20.5

0 500 1000 1500 2000 2500 3000
of iterations

A
P

training

test

(d) T5_cn (e) T6_cn (f) T9_cn

Figure 2. Learning curves of the perceptron-based algorithm on six query sets, where the upper figures show the curves of the number of
discordant document pairs and lower figures show the curves of average precision (AP).

decreases in the beginning and then increases. We also observe
a strong correlation between the reduction of Y and the im-
provement of AP in half of the test sets (WJS, AP and T6_cn).
Globally, the perceptron algorithm is less robust than MaxAP.

In summary, the experimental results show that
(1) LDM significantly outperforms the state-of-the-art LM

approaches and the BIR model in most test sets;

(2) It is more appropriate to train whatever IR model to
optimize the objective that the IR system is graded on
(e.g. AP) rather than likelihood; and

(3) Linguistic features (e.g. phrases and dependences) are
effective for IR if they are incorporated properly by for
example using LDM.

5. Discussions and Related Work

5.1 Generative and Discriminative Models
for IR

The IR problem can be reformulated as a pattern classification
problem via many ways, one of which is that, given a query,
each document of the collection to be searched is classified into
two classes: relevant and non-relevant. Probabilistic classifiers
have been typically grouped into two categories: generative
and discriminative models. The former learn a model of the
joint probability P(x, y) of the input x and the label y, and make
predictions by using the Bayes rules to calculate P(x|y), and
picking the most likely y. The latter model the posterior P(y|x)
directly. Recently, discriminative classifiers are preferred to
generative ones due to several compelling reasons, one of
which, as pointed out by Vapnik [29], is that “one should solve
a (classification) problem directly and avoid solving a more
general problem as an intermediate step (such as modeling
P(x|y)).”

As discussed in [19], most of the existing retrieval models
can be viewed as generative models. For example, in the LM
approach to IR [17, 30], assume each document is a unique
class (y), and the task of IR model is to classify a query (x) into
its most likely class as given by the posterior P(y|x). Then,
language models make their prediction by using the Bayes
rules to estimate P(x|y). Similarly, [19] shows that the classical
probabilistic models including the BIR model [15] and its vari-
ant, the two-Poisson model [26], also belong to generative
models. Although all these generative models achieve state-of-
the-art performance in large scale IR experiments, there are
several appealing reasons to explore discriminative models for
IR. (Readers can refer to [19] for a detailed discussion.) The first
reason is the issue of the modeling assumption in generative
models, as discussed in Section 1. Generative models used in IR
assume a multinomial distribution where query terms (or term
pairs in bigram models) are generated independently by the
document model. However, this independence assumption is
observed to be false in reality. Moreover, a single document
cannot be regarded as a large training set for language model
learning. Discriminative models, on the other hand, make very
few assumptions on model form. They explore arbitrary fea-
tures that can differentiate correct labeling versus wrong label-
ing. Even if a feature function (which for example is derived
from a probabilistic model) is poorly estimated due to the
sparse data problem, it can still bring some positive impact on
the performance of the combined linear discriminative model,
provided that the weights are properly learned using an ap-
propriate algorithm.

The second reason concerns the flexibility of incorporating
arbitrary features. In generative models, as described earlier,
the incorporation can be achieved in two ways (see e.g. [9, 20,
18, 28]). The first approach is to model those features as hidden
variables of HMM and integrate them into the generation proc-
ess. The second approach is to model those features independ-
ently, and combine them as a mixture model. The problem of
the first approach is its complexity. The parameters of different
component models are difficult to learn consistently via MLE.
In the second approach, the interpolation weights can only be
determined by empirical means and cannot guarantee the op-
timality. In discriminative models, the features can be arbitrary

functions, while the feature weights are learned to optimize an
objective function which is defined to be closely related to the
evaluation measure of IR systems.

The LDM approach to IR described in this paper can be
viewed as a version of discriminative models. As discussed in
[20], being a discriminative model, the parameters can be fit
either to maximize the conditional likelihood on the training
set, or to minimize training error. In LDM, the parameters λ are
learned either to maximize the AP directly, or to minimize the
discordant document pairs in a rank list on the training set. In
that sense, LDM belongs to the latter version of discriminative
models, which is more truly in the “spirit” of discriminative
learning.

Whilst there are many previous attempts similar to the
LDM approach, most of them focus on parameter learning
algorithms and do not explore thoroughly the problem of how
to derive features. They either assume a set of pre-defined fea-
tures or merge multiple preferences provided by multiple ex-
perts directly. In the latter case, each expert can be viewed as a
feature function, solely on which a rank (i.e. preference) is
based. In our approach, most feature functions are derived
from the component models of HMM, and are expected to be
more tractable and informative. Below we review some of the
parameter learning methods that are closely related to ours.

5.2 Parameter Learning Algorithms
The ranking SVM proposed by Joachims [14] is related to the
perceptron-based algorithm described in Section 3.2. If we de-
compose the sum term in right-hand-side of Equation (7), and
rewrite each decomposed term as a constraint of the form

λ(f(q, di) – f(q, dj)) ≥ 1 – ξi,j,q ,

where ξi,j,q>0, the optimization problem appears to be equiva-
lent to that of a classification SVM on pairwise difference vec-
tor λ(f(q, di) – f(q, dj)), and can be solved using decomposition
algorithms similar to those used for SVM classification. In our
experiments, we have adapted the SVMlight algorithm [13]. It
achieves similar performance to that of the perceptron-based
algorithm.

As described in Section 3.2, the IR problem can be cast as a
special case of ordinal regression discussed in [12]. In ordinal
regression, all objects are ranked on the same scale, while in IR
documents need to be ranked with respect to one query.

Freund et al. [6] proposed a learning approach based on
boosting algorithm to linearly combining multiple ranks pro-
vided by experts. If we consider each expert as a feature func-
tion, it appears to be equivalent to our problem. However, they
do not consider explicitly the distribution over queries. In our
pilot study that uses the two fold cross-validation method (see
Section 4.1), we observe a serious overfitting problem of the
boosting algorithm. The optimal parameter setting leaned on
one query subset works poorly on the other subset. If we re-
define the two fold cross-validation for each query, i.e. half
documents for training and the other half for test, then the
boosting algorithm works well. However, in realistic IR sys-
tems, we have to handle unseen queries which might be very
different from previously seen queries. We leave the extension
of the method to future work. Earlier work along this line can
be found in [1].

Another similar approach is the Pranking algorithm pro-
posed by Crammer and Singer [3]. Unlike the perceptron-based

algorithm described in Section 3.2, which reduces the total rank
into a set of document pairs, the Pranking algorithm maintains
a total ordered set via project, and adjusts the position of
documents in the rank directly by adjusting model parameters.
Thus, the algorithm is theoretically more efficient. It will be
interesting to compare it in the LDM approach in large scale
TREC experiments. We leave it to future work.

Finally, it is worth noting that the MaxAP algorithm is a
simple example of the non-smooth optimization (NSO) algo-
rithms [5]. Most parameter learning problem in NLP and IR
tasks can be considered as a multi-dimensional function opti-
mization problem. However, the objective function, such as the
classification error rate of a given finite set of training samples,
is usually a non-smooth function (i.e. a piecewise constant
function) of the model parameters, and thus cannot be easily
optimized using regular gradient-based numerical methods.
Therefore, the line search methods of optimizing non-smooth
function form a valuable research in IR. Our results show that
the line search method (i.e. MaxAP), though simple, achieves
even slightly better results than the perceptron-based method
in some test sets. This is largely due to its property of directly
optimizing the performance measure (i.e. AP). Similar observa-
tions have been reported in the experiments on machine trans-
lation [22, 25] and LM [7]. Though the method shows empirical
benefits, the lack of theoretical underpinnings (such as optimal-
ity and stability) is the major concern. We leave it to further
study. An alternative approach to the NSO problem is to use an
approximated but smoothed objective function that can be
easily optimized, such as the one suggested by Juang et al. [16].
The comparison of those NSO methods forms another area of
future work.

6. Conclusions
We have presented a discriminative model for IR, referred to as
LDM. It provides a flexible framework to incorporate effec-
tively a wide variety of features, including linguistically moti-
vated features. We have also demonstrated that the feature
functions that are derived from component model under the
framework of HMM provide useful information for IR. When
integrated in LDM, they achieve significant improvements over
state-of-the-art language models and the classical probabilistic
retrieval model on the task of ad hoc retrieval on six English
and Chinese TREC test sets. Thus, our method demonstrates an
interesting meld of discriminative and generative models for IR.
There are plenty of interesting problems left for future work, as
described in Section 5. We are particularly interested in explor-
ing the theoretical underpinnings of the learning algorithms
presented in Section 3, such as robustness, scalability and sta-
bility, without which we cannot prove that our methods al-
ways work well.

7. References
[1] Cohen, W. R. Shapire and Y. Singer. 1999. Learning to order

things. Journal of Artificial Intelligence Research, 10, pp. 243-270.
[2] Collins, Michael. 2002. Discriminative training methods for Hid-

den Markov Models: theory and experiments with the perceptron
algorithm. In: EMNLP. pp 1-8.

[3] Crammer, K and Y. Singer. 2001. Pranking with ranking. In: NIPS.
[4] Duda, Richard O, Hart, Peter E. and Stork, David G. 2001. Pattern

classification. John Wiley & Sons, Inc.

[5] Fletcher, R. 1987. Practical methods of optimization. John Wiley &
Sons, Inc.

[6] Freund, Yoav, Raj Iyer, Robert E. Schapire, and Yoram Singer.
1998. An efficient boosting algorithm for combining preferences.
In ICML’98, pp. 170-178.

[7] Gao, Jianfeng, Hao Yu, Wei Yuan and Peng Xu. 2005. Minimum
sample risk methods for language modeling. In HLT/EMNLP.

[8] Gao, Jianfeng, Mu Li, Andi Wu and Changning Huang. 2004. A
pragmatic approach to Chinese word segmentation. Tech-Report
of Microsoft Research. MSR-TR-2004-123.

[9] Gao, Jianfeng, Jian-Yun Nie, Guangyuan Wu and Guihong Cao.
2004. Dependence language model for information retrieval. In:
SIGIR, pp. 170-177.

[10] Gao, Jianfeng, Joshua Goodman and Jiangbo Miao. 2001. The use
of clustering techniques for language model – application to
Asian language. Computational Linguistics and Chinese Language
Processing. Vol. 6, No. 1, pp 27-60.

[11] Harman, D. K. 1995. Overview of the fourth Text REtrieval Con-
ference (TREC-4). In: TREC-4, pp 1-24.

[12] Herbrich, R. T. Graepel and K. Obermayer. 2000. Large margin
rank boundaries for ordinal regression. Advances in Large Margin
Classifiers, pp. 115-132. MIT Press, Cambridge, MA.

[13] Joachims, T. 1999. Making large-scale SVM learning practical. In B.
Scholkopt, C. Burges and A. Smola, editors, Advances in Kernel
Methods – Support Vector Learning. MIT Press, Cambridge, MA.

[14] Joachims, T. 2002. Optimizing search engines using clickthrough
data. In: SIGKDD, pp. 133-143.

[15] Jones, K. S., S. Walker and S. Robertson. 1998. A probabilistic model
of information retrieval: development and status. Technical Report
TR-446, Cambridge University Computer Laboratory.

[16] Juang, Biing-Hwang, Wu Chou and Chin-Hui Lee. 1997. Mini-
mum classification error rate methods for speech recognition.
IEEE Tran. Speech and Audio Processing. Vol. 5, No. 3. pp. 257-265.

[17] Lafferty, John and Chengxiang Zhai. 2001. Document language
models, query models, and risk minimization for information re-
trieval. In: SIGIR, pp. 111-119.

[18] Miller, D. H., Leek, T. and Schwartz, R. 1999. A hidden Markov
model information retrieval system. In: SIGIR’99, pp. 214-221.

[19] Nallapati, R. 2004. Discriminative models for information re-
trieval. In: SIGIR, pp. 67-71.

[20] Nallapati, R. and J. Allan. 2002. Capturing term dependencies
using a language model based on sentence trees. In: CIKM, pp.
383-390.

[21] Ng, A. N. and M. I. Jordan. 2002. On discriminative vs. generative
classifiers: a comparison of logistic regression and naïve Bayes. In:
NIPS, pp. 841-848.

[22] Och, Franz. 2003. Minimum error rate training in statistical ma-
chine translation. In: ACL, pp. 160-167.

[23] Ponte, J. and W. B. Croft. 1998. A language modeling approach to
information retrieval, In: SIGIR’98, pp. 275-281.

[24] Press, W. H., S. A. Teukolsky, W. T. Vetterling andB. P. Flannery.
1992. Numerical Recipes In C: The Art of Scientific Computing. New
York: Cambridge Univ. Press.

[25] Quirk, C., A. Merezes and C. Cherry. 2005. Dependency tree
translation: syntactically informed phrasal SMT. To appear.

[26] Robertson, S. E. and S. Walker. 1994. Some simple effective ap-
proximations to the 2-Poisson model for probabilistic weighted
retrieval. In: SIGIR, pp. 232-241.

[27] Robertson, S. E. and Walker, S. 2000. Microsoft Cambridge at
TREC-9: Filtering track. In: TREC-9, pp. 361-368.

[28] Song, F. and Croft, B. 1999. A general language model for infor-
mation retrieval. In: CIKM’99, pp. 316–321.

[29] Vapnik, V. N. 1999. The nature of statistical learning theory.
Springer-Verlag, New York.

[30] Zhai, C., and J. Lafferty. 2002. Two-stage language models for
information retrieval. In: SIGIR, pp. 49-56.

