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ABSTRACT 
This paper presents a new discriminative model for informa-
tion retrieval (IR), referred to as linear discriminant model (LDM), 
which provides a flexible framework to incorporate arbitrary 
features. LDM is different from most existing models in that it 
takes into account a variety of linguistic features that are de-
rived from the component models of HMM that is widely used 
in language modeling approaches to IR. Therefore, LDM is a 
means of melding discriminative and generative models for IR. 
We present two algorithms of parameter learning for LDM. 
One is to optimize the average precision (AP) directly using an 
iterative procedure. The other is a perceptron-based algorithm 
that minimizes the number of discordant document-pairs in a 
rank list. The effectiveness of our approach has been evaluated 
on the task of ad hoc retrieval using six English and Chinese 
TREC test sets. Results show that (1) in most test sets, LDM 
significantly outperforms the state-of-the-art language model-
ing approaches and the classical probabilistic retrieval model; 
(2) it is more appropriate to train LDM using a measure of AP 
rather than likelihood if the IR system is graded on AP; and  (3) 
linguistic features (e.g. phrases and dependences) are effective 
for IR if they are incorporated properly. 

Categories and Subject Descriptors 
H.3.3 [Information Storage and Retrieval]: Retrieval models  

General Terms 
Design, Algorithms, Theory, Experimentation 

Keywords 
Language Model, Discriminative Training, Hidden Markov 
Model, Perceptron, Optimization 

1. Introduction 
Language modeling (LM) approaches to information retrieval 
(IR) assume that the relevance of a document, given a query, 
can be estimated as the generative probability of the query 
from the document [23]. One of the most appealing properties 
of this approach is its ability to incorporate linguistic informa-
tion of language such as phrase and dependences into the re-
trieval model in a systematic manner. For example, [9] assumes 

a two-step generation process of a query from a document. 
First, a dependency structure is generated from a document. 
Then, a sequence of query terms is generated from the depend-
ency structure. This model is conventionally called Hidden 
Markov Model (HMM), where the dependency structure can be 
viewed as the hidden variable. In theory, the hidden variable 
can represent any internal structures of language, which makes 
HMM a very powerful modeling framework in many natural 
language processing (NLP) tasks. 

However, the HMM approach may be deficient for realistic 
applications for two reasons. The first is from a theoretical per-
spective. The parameters of HMM have been traditionally 
trained using maximum likelihood estimation (MLE), usually with 
smoothing methods to deal with the sparse data problem. This 
approach is proved to be optimal in theory under two assump-
tions: the true distribution of data (documents and queries) on 
which HMM is based is known; and there are enough training 
data. Unfortunately, these assumptions rarely hold in IR tasks. 
The second reason is from a practical perspective. The per-
formance of IR systems is generally measures in terms of preci-
sion and recall (i.e. average precision, AP, in this study), which 
is loosely associated with the optimization criterion that MLE 
uses (i.e. to maximize the likelihood of training data). There-
fore, the traditional HMM approach may not lead to an opti-
mal solution in realistic IR systems.  

Recently, discriminative training methods have been found 
to outperform state-of-the-art HMM approaches in many NLP 
tasks [2]. The success is mainly attributed to the two properties 
which would eliminate to some degree the two aforementioned 
problems of the HMM approach. First, a discriminative model 
is based on a much weaker assumption that both training data 
(documents) and test data (queries) are generated from the 
same distribution but the form of the distribution is unknown. 
Second, unlike MLE that maximizes the function that is loosely 
associated with the performance measure of IR, discriminative 
training methods aim to directly optimize the precision and 
recall. So they potentially lead to a better solution. The per-
formance of discriminative models depends to a large degree 
upon the selection of an optimal set of feature functions that 
can best distinguish desired results from undesired ones. How-
ever, there is no systematic selection method. Most previous 
work simply begins with a list of candidate features defined 
manually (e.g. by a domain expert), and then construct an op-
timal set empirically by trial and error. 

We see that both HMM and discriminative training meth-
ods have their strength and weakness. The HMM approach 
assumes a generation process of data so that a sequence of 
models (e.g. each for a generation step) can be derived to cap-
ture linguistic information. The discriminative training meth-
ods, given a set of feature functions, tend to learn a model di-
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rectly optimized for IR tasks. Our design strategy is to combine 
the strength of both approaches as follows: We first assume a 
query generation process, and derive a set of component mod-
els within the framework of HMM. We then derive a set of 
feature functions from the component models, and construct a 
linear discriminant model (LDM) for IR, where the linear interpo-
lation weights are estimated using discriminative training 
methods so as to optimize the AP on the training set. The effec-
tiveness of this design strategy will be demonstrated on the 
task of ad hoc retrieval on six English and Chinese TREC test 
sets. Results show that in most test sets, LDM outperforms 
significantly the state-of-the-art LM approaches and the classi-
cal probabilistic retrieval model. The robustness of the ap-
proach is also studied empirically in this paper. 

The rest of this paper is structured as follows. Section 2 de-
scribes a method of deriving linguistically-motivated feature 
functions within the HMM framework. Section 3 describes the 
LDM for IR and discusses in detail two discriminative training 
methods of estimating parameters. Section 4 presents experi-
mental results. The discussion and related work are presented 
in Section 5. Finally, the paper is concluded in Section 6. 

2. HMM for IR 
In LM approaches to IR, a Markov model is trained on each 
document d in the collection C to be searched. Then the docu-
ments are ranked by the probability that a query q = {q1,…,qm} 
would be generated from the respective document model 
P(q|d). Most state-of-the-art approaches assume a unigram 
Markov model, where P(q|d)=∏i=1…mP(qi|d) [30].  

Hidden Markov Model is an extension of the Markov 
model by introducing hidden variables. In the context of lan-
guage modeling, the hidden variables can be used to represent 
any linguistic concepts that may improve the performance of IR 
but are “hidden” in the text. Some representative examples of 
such concepts are semantic chunks (e.g. named entities like 
person name, location name, etc.) and syntactic chunks (e.g. 
noun phrases, verb phrases, etc.). In HMM approaches to IR, 
documents are ranked by P(q|d). But unlike the case of 
Markov model, a two-stage generation process is assumed 
when estimating P(q|d), as follows. 

First, a user chooses a sequence of concepts c (e.g. person 
name) to be queried, according to the probability distribution 
P(c|d); Then the user attempts to express each concept by 
choosing a sequence of terms, according to the probability dis-
tribution P(q|c, d). Therefore, P(q|d) can be recovered over all 
possible c as 

∑=
c

dcdcqdq )|(),|()|( PPP   

For efficiency, in practical systems we usually only consider 
the most likely c, which can be detected by parsing technolo-
gies, described in Section 4. We then end up with the basic 
form of HMM for IR in Equation (1).  
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c
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P(q|c, d) in Equation (1) is referred to as concept model after-
wards, and P(c|d) as document model. In our system we use one 
document model where we assume that each concept ci is gen-
erated depending on its preceding concept ci-1, and each con-
cept is represented by its headword hi which is detected using 

rules (e.g. the rightmost noun is the head of a NP, and so on). 
Therefore, the document model is a headword bigram model 
P(hi|hi-1, d). We use a set of concept models, each of which 
models a different concept (i.e. estimates the generative prob-
ability of a term sequence given a certain type of concept), as 
shown in Table 1.  
Type Models 
NP P(q’|NP)=P(h|NP) ∏ q∈q’ P(q|h, NP) 
VP P(q’|VP)=P(h|VP) ∏ q∈q’ P(q|h, VP) 
NE P(q’|NE)=P(h|NE) ∏ q∈q’ P(q|h, NE), where there are three 

NE models, each for one type of NE. 
FT P(q’|FT)=1 if q’ can be parsed by FT grammar, 0 otherwise; 

where the FT grammar is a set of Finite-State Machines, each 
for one type of factoids 

Table 1. Linguistic concepts and concept models: NP stands for 
noun phrase; VP for verb phrase; NE for named entities (i.e. person 
names, locations, and organizations); FT for factoids (e.g. date, 
time.); q’ denotes the chunk of query terms, which represent a 
concept c within the query q; h is the headword of the concept 
(detected by rules) and q is any other term in the concept. 

It should also be noted that different concept models are 
constructed in different ways (e.g. person name models are n-
gram models trained via MLE on the corpus of person name 
list whereas factoid models use derivation rules and have bi-
nary values). The dynamic value ranges of different concept 
models can be so different that it is inappropriate to combine 
all models through simple multiplication as in Equation (1). 

To remedy this problem, one can introduce a set of weights, 
one for each concept model, to effectively balance the contribu-
tion of each component model to the performance of IR. Intui-
tively, we would assign a high weight to the component model 
which is either reliably trained (on enough training data) or 
represents a salient concept of a query (e.g. proper noun). This 
motivates the use of the LDM framework, which will be de-
scribed in the next section. 

3. LDM for IR 
Linear discriminant model in this study follows the general 
framework of linear discriminant functions widely used for 
pattern classification [4], and has been recently introduced into 
NLP tasks in [2].  

In the LDM framework, we assume a set of N+1 features 
fi(q, c, d), for i = 0, …, N. The features are arbitrary functions 
that map (q, c, d) to real values. Using vector notation, we have 
f(q,c,d) ∈ℜN+1, where f(q,c,d) = {f0(q,c,d), f1(q,c,d), …, fN(q,c,d)}. 
The parameters of the model are a vector of N + 1 parameters, 
each for one feature function, λ= {λ0, λ1, …, λN}. The relevance 
score of a document d with respect to a given query q can be 
written as 

∑
N
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Equation (2) is essentially of the same form of any linear 
discriminant functions in [4]. Our method is novel in that most 
of the feature functions in Equation (2) are derived from the 
component models in the HMM framework, as shown in Table 
1. More specifically,  

 f0(.) is called the base feature and is defined as the loga-
rithm of the unigram probability, i.e.  
f0(q, d) = ∑i log(P(qi|d)); 



 f1(.) is defined as the logarithm of the bigram probabil-
ity, i.e. f1(q, d) = ∑i log(P(qi|qi-1, d)); 

 f2(.) is defined as the logarithm of the document model 
probability, i.e. f2(q, c, d) = ∑i log(P(hi|hi-1, d)). 

 fi(.), for i = 3,…,N, are defined for N-2 concepts, respec-
tively (i.e., they are basically derived from the concept 
models listed in Table 1). Their values are either the 
negative logarithm of the probabilities of the corre-
sponding probabilistic models, or assigned heuristically 
(e.g. the value of an FT feature is defined as the count of 
term sequences of that type of FT in q). 

The LDM method described above is expected to be supe-
rior to both traditional discriminative training methods and 
HMM methods. Most discriminative models use only binary-
valued features, while the feature functions in LDM are much 
more “informative” because they are derived from probabilis-
tic models. In HMM approaches, each component model is 
optimized independently according to a criterion loosely asso-
ciated with AP, while all feature functions in the LDM frame-
work can be jointly optimized directly toward the maximal AP 
on training data. In this study, our training set consists of a set 
of queries, each with a list of documents whose relevance has 
been judged manually.  

We now turn to the description of two methods of estimat-
ing λ under the framework of gradient descent: an iterative 
procedure of adjusting the parameters λ in the direction that 
optimizes the objective function. For each of the two algo-
rithms, we will present in turn the objective function and the 
optimization algorithm. 

3.1 Maximum AP Training 
The first algorithm is to select an optimal parameter setting so 
as to directly maximize the average precision (AP) on training 
data. We call the algorithm maximum AP (MaxAP) training. AP 
is the most common performance measure in the IR research 
community. So MaxAP is intuitively appealing since it opti-
mizes the performance measure directly. We now give the 
formal definition of AP, and then describe the algorithm.  

Let Rq be the set of relevant documents of the query q, and 
Q be the query set in training data. Let Rank(di, q, λ) be the 
rank of the i’th relevant document di (for i = 1,…,|Rq|) appear-
ing in the document list of q, ordered according to the score 
computed by Equation (2), where λ is the current parameter 
setting of the LDM.  Then, the AP of a query q is defined as 

∑
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The MaxAP algorithm is to optimize the empirical AP on 
training data, and is defined in Equation (4). 

∑
∈

=
Qqλ

λq
Q

),AP(
||

1maxarg
def

MaxAP  (4) 

The MaxAP algorithm can be cast as the multi-dimensional 
function optimization algorithm (e.g. [24]). Assume that we can 
maximize AP with respect to one parameter λ using line search, 
which will be described below. The MaxAP algorithm works as 
follows: Take λ0, λ1, …, λN as a set of directions. Using line 
search, move along the first direction so that the objective func-

tion, as shown in Equation (4), is maximized; then move from 
there along the second direction to its maximum, and so on. 
Cycling through the whole set of directions as many times as 
necessary, until the object function stops increasing.  

We now describe how to implement line search. We notice 
that regular numeric line search methods [24] cannot be ap-
plied directly because the value of a parameter λ versus the 
objective function AP(.) is not smooth and there are multiple 
local maxima. Therefore, we use the method proposed in [22]: 
Let λ be the selected parameter. The line search is to find the 
optimal value of λ so as to maximize the average precision. By 
adjusting λ within a bracket (i.e. an interval which is known to 
contain acceptable points), we obtain for each query in training 
data an ordered sequence of AP(.) values and a corresponding 
sequence of λ intervals. By averaging AP(.) values over all que-
ries in training data, we obtained a global sequence of AP(.) 
and the corresponding global sequence of λ intervals. We can 
therefore find the optimal λ as well as its corresponding AP(.) 
by traversing the sequence. 

In our experiments, we found that the MaxAP algorithm 
can converge on different maxima given different starting 
points. Following [25], we attempt to perform the algorithm 
multiple times, each from a different, random starting point, 
and pick the parameter setting that achieves the maximal AP. 

3.2 Perceptron-based Training 
This section first formulates the ranking problem under the 
framework of ordinal regression [14, 12]; then presents a loss 
function which is closely associated with AP, and a perceptron-
based algorithm to optimize the parameter setting with respect 
to the loss function. 

The ranking problem in IR can be formulated as follows: 
Given a query q, let r*(q) be the target (or optimal) document 
rank list, usually judged manually, and r(q, λ) the rank list 
generated by the LDM of Equation (2) with the parameter set-
ting λ. Then, within the framework of ordinal regression, λ is 
optimized in such a way that r(q, λ) is closest to r*(q).  As [14] 
suggested, the similarity between two ranks can be measured 
in terms of Kendall’s τ, which is defined as follows. A docu-
ment pair di ≠ dj is concordant, if both r(q, λ) and r*(q) agree on 
how they order di and dj. It is discordant if they disagree. Let X 
and Y be the numbers of concordant and discordant document 
pairs, respectively. Note that if there are M documents in the 
collection C to be searched, the sum of X and Y is M(M-1)/2 for 
strict orderings. Then, Kendall’s τ can be defined in Equation 
(5). See [14] for a full description.  
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The optimization problem can be written as below, where Q is 
the query set in training data. 

∑
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Equation (6) shows that the optimal λ is the one that leads to 
least number of discordant document pairs. It is worth noticing 



that as proved in [14], the number of inversions Y gives a lower 
bound on AP. So, optimizing λ by minimizing Y is closely as-
sociated with increasing AP.  

In our experiments, given a query q, each of the documents 
in C is judged by a binary value: 1 if the document is relevant, 0 
otherwise. There is no order among relevant (or irrelevant) 
documents. Therefore, Y in Equation (6) is reduced to the 
number of document pairs, where the irrelevant document is 
ranked higher than the relevant document. Using LDM, all 
documents are ranked by the score computed by Equation (2). 
Therefore, Equation (6) can be rewritten as follows 

∑ ∑
∈ ∈
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)],,(),,([minarg  (7) 

where I[π]=1 if π ≤ 0, and 0 otherwise; di is any relevant docu-
ment of q in C, and dj is any irrelevant document. 

Given the objective function in Equation (7), we use a per-
ceptron-based algorithm to search for the optimal parameter 
setting. Please see [2] for the application of the perceptron al-
gorithm in NLP tasks and the theoretical justifications (i.e. 
proofs of its convergence and bounded generalization errors). 
It is an incremental, error-correction training procedure. As 
shown in Figure 1, it starts with an initial parameter setting 
and adapts it each time a discordant pair is detected.  

Input: training samples, {(di, dj)q; di, dj ∈C, q ∈ Q} 
Output: parameter setting λT 
1. Initialization: set λ0 = 1, λi = 0, for i=1…N. 
2. For t = 1 to T 
3. For each training sample (di, dj)q 
4. If Score(q, dj, λt)>Score(q, di, λt) by Equation (4), then 
5. For each λtn (n=1…N) 
6. λt+1n = λtn + η(fn(q,c,di) – fn(q,c,dj)). 
Figure 1. Perceptron algorithm. In Input: (di, dj)q represents 
document pair of query q, where di is any relevant document of q 
in C, and dj is any irrelevant document; Q is the query set in 
training data. In Step 6: η is the learning rate and set to 0.001. 

The perceptron algorithm is proved to be robust and guaran-
teed to converge when the training samples are separable (i.e., 
there is an ideal parameter setting which leads to a LDM that 
can achieve zero discordant pair). But in IR tasks, such an ideal 
parameter setting does not exist, and the training samples are 
not linearly separable. In theory, this may lead the perceptron 
algorithm unstable, and the error-correction procedure can 
never cease. As [4] point out, if the correction process is deter-
mined at some arbitrary point, the parameter setting may or 
may not be in a good state. We used two methods to deal with 
this problem. First, to reduce the risk of obtaining a bad solu-
tion by accidentally choosing an unfortunate termination time, 
we average the parameter settings produced by the correction 
rule in Step 6 of Figure 1 as follows: Let λnt,m be the value for 
the n’th parameter after the m’th training sample has been 
processed in pass t over the training data. Then the average 
parameters are defined as  

λn = ∑t=1…T,m=1..Mλnt,m/MT. 

where M and T are the number of training samples and the num-
ber of learning iterations, respectively. This variant of the per-
ceptron algorithm is called the averaged perceptron algorithm, 

proposed in [2]. Second, we count the number of updates for 
each training sample. If the number is larger than a preset 
threshold (meaning that the sample cannot be correctly ordered 
after many trails and is likely to be a noisy sample), the sample 
will not be used for training in the consequential iterations. As 
will be illustrated in Section 4, the two methods lead to a ro-
bust algorithm for IR. 

4. Experiments 

4.1 Settings 
We evaluated the LDM approach to IR described in the previ-
ous sections using six different TREC test sets, including three 
English test sets and three Chinese ones. Some statistics are 
shown in Table 2, where TX_cn denotes Chinese collections 
used in TREC-X. (Note that TREC-5 and 6 use the same collec-
tion). The English queries are TREC topics 201 to 250 (descrip-
tion field only) on TREC disks 2 and 3. Those topics are “natu-
ral language” queries consisting of one sentence each of length 
10 to 15 words. Following [11], for the three English TREC col-
lections, we remove those queries that have no relevant docu-
ment. The Chinese queries are TREC topics CH1 to CH79. We 
use long queries that contain the title, description and narrative 
fields. The average length of these queries is 120 characters.  

Coll. Description  Size 
(MB) 

# 
Doc.

# 
Query

WSJ Wall Street Journal (90, 91, 92), Disk 2 248 74,520 45 
AP Associated Press (88 - 90), Disks 2, 3 484 158,240 49 
FR Federal Register (88), Disk 2 213 19,860 27 
T5_cn 28 
T6_cn

People’s Daily (91-93) and Xinhua News 
(94-95). 

167 164,789
26 

T9_cn HK Commercial Daily (98-99), HK Daily 
News (99), Takungpao (98-99) 

260 126,937 25 

Table 2. TREC collections. 

To extract the concept sequence c for each sentence, which 
is used for constructing LDM, we process the collections as 
follows. All Chinese texts have been word-segmented using the 
word segmentation system MSRSeg2 [8]. The system also iden-
tifies factoids and named entities of various types. We then 
used an in-house HMM chunk parser to detect phrases such as 
NP and VP, as described in Table 1. Similarly, all English texts 
have been tokenized and chunked by an in-house HMM parser, 
which is trained on Penn Treebank.  

We compare LDM to both the classical probabilistic model 
(i.e. the binary independent retrieval (BIR) model [15]) and 
some state-of-the-art language models proposed for IR in the 
literature. All models contain free parameters that must be 
estimated empirically by trial and error. These parameters in-
clude feature weights in LDM, smoothing or interpolation pa-
rameters in language models and weights or constants in the 
BIR model. Therefore, we have applied an experimental para-
digm called two-fold cross validation. For each of the six query 
set, we divided it into two subsets, with one used for parame-
ter training and the other for test. The retrieval results reported 
on each TREC test set (as shown in Tables 3 and 4) combine 
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two sets of results on two subsets of the query set, respectively. 
Each set of results on one subset is obtained using the parame-
ter settings optimized on the other subset. 

The performance of IR is measured through the precision-
recall pair. The main evaluation metric in this study is the non-
interpolated average precision (AP). The significance tests are 
also conducted. 

4.2 Results 
Tables 3 and 4 present our main experimental results, where 
we compare LDM with four probabilistic retrieval models, 
including an implementation of the BIR model and three state-
of-the-art language modeling approaches that are based on the 
framework of either Markov model or HMM. 

BIR (Binary Independent Retrieval model) is one of the 
most representative classical probabilistic retrieval models, and 
serves as one of the baseline models in our experiments. In 
particular, we used the Okapi system, which is the best-known 
implementation of BIR. Among the great number of term 
weighting functions provided by Okapi, we choose BM2500 for 
it has achieved good performance in previous experiments[27]. 

UGM (Unigram Model) is an implementation of the uni-
gram language model approach to IR proposed in [30]. It 
serves as the baseline LM approach in our experiments. Over 
all six TREC test sets, UGM achieves the performance similar 
to, or slightly worse than, that of BIR. It has been observed that 
in general the classical probabilistic retrieval model and the 
unigram language model approach perform very similarly if 
both have been fine-tuned. The slightly worse performance of 
UGM in our experiment might be due to our “over-tuned” 
Okapi system, i.e. BM2500 has more weighting parameters 
tuned empirically. Notice that unlike LDM, whose parameters 
can be trained using appropriate learning algorithms as de-
scribed in Section 3, there is no systematic way of tuning free 
parameters of BIR and UGM (and other language models de-
scribed below). So, we first use heuristics to find for each pa-
rameter a bracket, and perform exhaustive search. 

BGM (Bigram Model) is an implementation of the bigram 
language model approach to IR. The query generation prob-
ability is estimated by P(q|d) = P(q1|d)∏i=2…mP(qi|qi-1, d). It 
assumes that the query term only depends on its one preceding 
term. To deal with the sparse data problem, we used two 
smoothing methods. First, we linearly interpolated the bigram 
models trained on the document d and the entire collection C, 
respectively. Second, for both bigram models, the bigram prob-
ability was linearly interpolated with the unigram probability. 
All n-gram (n = 1 or 2 in BGM) probabilities are estimated via 
MLE with a modified version of the absolute discount smooth-
ing [10]. BGM can be viewed as a special case of HMM de-
scribed in Section 2, where the concept sequence c is a sequence 
of adjacent word pairs. Results show that BGM substantially 
outperforms UGM in all English test sets, demonstrating that 
even the simplest c can benefit the IR performance. However, 
BGM does not outperform UGM on Chinese test sets. A possi-
ble reason is that MSRSeg already groups many adjacent short 
word sequences into long words, such as named entities and 
compound nouns. Therefore, BGM may not be able to capture 
additional useful local information compared to UGM. Our 
speculation has been justified in the pilot study: When using 
maximal matching to segment words by looking up a small 
dictionary, BGM outperforms UGM on Chinese test sets. 

DLM (Dependence Language Model) is an implementa-
tion of the dependence language model described in [9]. It 
serves in the comparison experiments as an example of the 
HMM approaches to IR. DLM uses a score function similar to 
Equation (1), where c is defined as a so-called linkage. The link-
age is detected by a parser and is represented an acyclic, pla-
nar, undirected graph where two related query terms are con-
nected by a graph edge. DLM assumes a two stage generation 
process as described in Section 2: First, the linkage is generated 
from the document according to the distribution P(c|d). Sec-
ond, the query is generated according to the distribution P(q|c, 
d) where each query term is generated depending on the asso-
ciated term with which it is linked in the linkage. Therefore, 
DLM can be viewed as an extension of BGM in that c is a set of 
word pairs where the two words are not necessarily adjacent. 
This advantage is however paid by the complexity of modeling. 
DLM uses a more sophisticated smoothing method than BGM 
does, and introduces more free parameters to be optimized 
heuristically. As shown in Table 3, although DLM outperforms 
BGM slightly but significantly on two out of three English test 
sets, considering the modeling cost, the limited performance 
gain may not be worthwhile in practical systems. More impor-
tantly, it is almost impossible to integrate more sophisticated 
linguistic concepts through the hidden variables. 

LDM (Linear Discriminative Model) is the model de-
scribed in Section 3. LDM(MaxAP) is the LDM trained using 
the MaxAP algorithm described in Section 3.1, and 
LDM(Percep) is the model trained using the perceptron-based 
algorithm described in Section 3.2. We see that both LDM 
methods achieve improvements over both BIR and UGM on 
five out of six query test sets, and also outperform other LM 
approaches on most of the test sets. As one of the reviewers 
point out that the comparison may be unfair for the LDM uses 
more features. We argue that this is the main advantage of 
LDM to incorporate arbitrary features. When the same set of 
features are used for both LDM and LMs, similar results were 
achieved. 

We notice that on the T9_cn test set, the LDM methods are 
worse than other models. The reason is that while our parser is 
trained on news articles from People’s Daily, T9_cn is a collec-
tion of news articles using Hong Kong Chinese (a local official 
language). Thus, the language gap between training and test 
texts leads to a bad result of concept extraction, and LDM can-
not be generated properly. Another point worth noting is that 
FR query set is “unbalanced” in that a small number of queries 
have much more relevant documents than the rest. Therefore, 
the results of LDM are sensitive to the training/test split. We 
therefore randomly create 10 training/test splits. The results 
reported in this paper are the average among 10 tests. 

It is also interesting to investigate the robustness of the two 
training algorithms. We find that MaxAP is robust across all 
test sets. It generally converges on both training and test sets 
after four or five iterations. We do not observe a severe overfit-
ting problem. The perceptron-based algorithm, on the other 
hand, performed differently across different test sets. We can 
observe the learning curves of this algorithm on six test sets in 
Figure 2. Recall that the algorithm aims to minimize the num-
ber of discordant document pairs (i.e. Y in Equation (6)). It 
turns out that the algorithm achieves its goal quite successfully: 
In all six test sets, Y decreases with the increase of the number 
of iterations, though the overfitting problem can be observed in 
some test sets. For example, on FR, T5_cn and T9_cn, Y  



WSJ AP FR  
Models AP % change 

over BIR 
% change 
over UGM 

AP % change 
over BIR 

% change 
over UGM 

AP % change 
over BIR 

% change 
over UGM 

BIR 22.30  -- -- 25.34  -- -- 16.58  -- -- 
UGM 17.91  -19.69% * -- 24.58  -3.00% -- 14.81  -10.68% -- 
DLM 22.41  0.49% 25.13% * 25.87  2.09% 5.25% * 18.51  11.64% 24.98% 
BGM 21.46  -3.77% 19.82% 26.24  3.55%  6.75% * 18.03  8.75% 21.74% 
LDM(MaxAP) 23.61  5.87% 31.83% * 27.33 7.85% * 11.19% * 18.51  11.64% 24.98% 
LDM(Percep) 23.34  4.66% 30.32% * 27.51  8.56% * 11.92% * 19.42  17.13% 31.13% 
Table 3. Comparison results on WSJ, AP and FR collections. * indicates that the difference is statistically significant. 

T5_cn T6_cn T9_cn  
Models AP % change 

over BIR 
% change 
over UGM 

AP % change 
over BIR 

% change 
over UGM 

AP % change 
over BIR 

% change 
over UGM 

BIR 32.45  -- -- 50.28  -- -- 20.79  -- -- 
UGM 31.81  -1.97% -- 51.15  1.73% -- 19.93  -4.14% -- 
BGM 31.28  -3.61% -1.67% 50.58  0.60% -1.11% 19.60  -5.72% -1.66% 
LDM(MaxAP) 33.87  4.38% 6.48% * 53.06  5.53% * 3.73% * 19.37  -6.83% -2.81% 
LDM(Percep) 33.92  4.53% * 6.63% * 51.40  2.23% 0.49% 18.59  -10.58% -6.72% 
Table 4.  Comparison results on T5_cn, T6_cn and T9_cn collections. * indicates that the difference is statistically significant. 
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Figure 2. Learning curves of the perceptron-based algorithm on six query sets, where the upper figures show the curves of the number of 
discordant document pairs and lower figures show the curves of average precision (AP). 
   

decreases in the beginning and then increases. We also observe 
a strong correlation between the reduction of Y and the im-
provement of AP in half of the test sets (WJS, AP and T6_cn). 
Globally, the perceptron algorithm is less robust than MaxAP. 

In summary, the experimental results show that  
(1) LDM significantly outperforms the state-of-the-art LM 

approaches and the BIR model in most  test sets; 

(2) It is more appropriate to train whatever IR model  to 
optimize the objective that the IR system is graded on 
(e.g. AP) rather than likelihood; and  

(3) Linguistic features (e.g. phrases and dependences) are 
effective for IR if they are incorporated properly by for 
example using LDM. 



5. Discussions and Related Work 

5.1 Generative and Discriminative Models 
for IR 

The IR problem can be reformulated as a pattern classification 
problem via many ways, one of which is that, given a query, 
each document of the collection to be searched is classified into 
two classes: relevant and non-relevant. Probabilistic classifiers 
have been typically grouped into two categories: generative 
and discriminative models. The former learn a model of the 
joint probability P(x, y) of the input x and the label y, and make 
predictions by using the Bayes rules to calculate P(x|y), and 
picking the most likely y. The latter model the posterior P(y|x) 
directly. Recently, discriminative classifiers are preferred to 
generative ones due to several compelling reasons, one of 
which, as pointed out by Vapnik [29], is that “one should solve 
a (classification) problem directly and avoid solving a more 
general problem as an intermediate step (such as modeling 
P(x|y)).” 

As discussed in [19], most of the existing retrieval models 
can be viewed as generative models. For example, in the LM 
approach to IR [17, 30], assume each document is a unique 
class (y), and the task of IR model is to classify a query (x) into 
its most likely class as given by the posterior P(y|x). Then, 
language models make their prediction by using the Bayes 
rules to estimate P(x|y). Similarly, [19] shows that the classical 
probabilistic models including the BIR model [15] and its vari-
ant, the two-Poisson model [26], also belong to generative 
models. Although all these generative models achieve state-of-
the-art performance in large scale IR experiments, there are 
several appealing reasons to explore discriminative models for 
IR. (Readers can refer to [19] for a detailed discussion.) The first 
reason is the issue of the modeling assumption in generative 
models, as discussed in Section 1. Generative models used in IR 
assume a multinomial distribution where query terms (or term 
pairs in bigram models) are generated independently by the 
document model. However, this independence assumption is 
observed to be false in reality. Moreover, a single document 
cannot be regarded as a large training set for language model 
learning. Discriminative models, on the other hand, make very 
few assumptions on model form. They explore arbitrary fea-
tures that can differentiate correct labeling versus wrong label-
ing. Even if a feature function (which for example is derived 
from a probabilistic model) is poorly estimated due to the 
sparse data problem, it can still bring some positive impact on 
the performance of the combined linear discriminative model, 
provided that the weights are properly learned using an ap-
propriate algorithm. 

The second reason concerns the flexibility of incorporating 
arbitrary features. In generative models, as described earlier, 
the incorporation can be achieved in two ways (see e.g. [9, 20, 
18, 28]). The first approach is to model those features as hidden 
variables of HMM and integrate them into the generation proc-
ess. The second approach is to model those features independ-
ently, and combine them as a mixture model. The problem of 
the first approach is its complexity. The parameters of different 
component models are difficult to learn consistently via MLE. 
In the second approach, the interpolation weights can only be 
determined by empirical means and cannot guarantee the op-
timality. In discriminative models, the features can be arbitrary 

functions, while the feature weights are learned to optimize an 
objective function which is defined to be closely related to the 
evaluation measure of IR systems.  

The LDM approach to IR described in this paper can be 
viewed as a version of discriminative models. As discussed in 
[20], being a discriminative model, the parameters can be fit 
either to maximize the conditional likelihood on the training 
set, or to minimize training error. In LDM, the parameters λ are 
learned either to maximize the AP directly, or to minimize the 
discordant document pairs in a rank list on the training set. In 
that sense, LDM belongs to the latter version of discriminative 
models, which is more truly in the “spirit” of discriminative 
learning. 

Whilst there are many previous attempts similar to the 
LDM approach, most of them focus on parameter learning 
algorithms and do not explore thoroughly the problem of how 
to derive features. They either assume a set of pre-defined fea-
tures or merge multiple preferences provided by multiple ex-
perts directly. In the latter case, each expert can be viewed as a 
feature function, solely on which a rank (i.e. preference) is 
based. In our approach, most feature functions are derived 
from the component models of HMM, and are expected to be 
more tractable and informative. Below we review some of the 
parameter learning methods that are closely related to ours. 

5.2 Parameter Learning Algorithms 
The ranking SVM proposed by Joachims [14] is related to the 
perceptron-based algorithm described in Section 3.2. If we de-
compose the sum term in right-hand-side of Equation (7), and 
rewrite each decomposed term as a constraint of the form 

λ(f(q, di) – f(q, dj)) ≥ 1 – ξi,j,q , 

where ξi,j,q>0, the optimization problem appears to be equiva-
lent to that of a classification SVM on pairwise difference vec-
tor λ(f(q, di) – f(q, dj)), and can be solved using decomposition 
algorithms similar to those used for SVM classification. In our 
experiments, we have adapted the SVMlight algorithm [13]. It 
achieves similar performance to that of the perceptron-based 
algorithm. 

As described in Section 3.2, the IR problem can be cast as a 
special case of ordinal regression discussed in [12]. In ordinal 
regression, all objects are ranked on the same scale, while in IR 
documents need to be ranked with respect to one query. 

Freund et al. [6] proposed a learning approach based on 
boosting algorithm to linearly combining multiple ranks pro-
vided by experts. If we consider each expert as a feature func-
tion, it appears to be equivalent to our problem. However, they 
do not consider explicitly the distribution over queries. In our 
pilot study that uses the two fold cross-validation method (see 
Section 4.1), we observe a serious overfitting problem of the 
boosting algorithm. The optimal parameter setting leaned on 
one query subset works poorly on the other subset. If we re-
define the two fold cross-validation for each query, i.e. half 
documents for training and the other half for test, then the 
boosting algorithm works well. However, in realistic IR sys-
tems, we have to handle unseen queries which might be very 
different from previously seen queries. We leave the extension 
of the method to future work. Earlier work along this line can 
be found in [1]. 

Another similar approach is the Pranking algorithm pro-
posed by Crammer and Singer [3]. Unlike the perceptron-based 



algorithm described in Section 3.2, which reduces the total rank 
into a set of document pairs, the Pranking algorithm maintains 
a total ordered set via project, and adjusts the position of 
documents in the rank directly by adjusting model parameters. 
Thus, the algorithm is theoretically more efficient. It will be 
interesting to compare it in the LDM approach in large scale 
TREC experiments. We leave it to future work. 

Finally, it is worth noting that the MaxAP algorithm is a 
simple example of the non-smooth optimization (NSO) algo-
rithms [5].  Most parameter learning problem in NLP and IR 
tasks can be considered as a multi-dimensional function opti-
mization problem. However, the objective function, such as the 
classification error rate of a given finite set of training samples, 
is usually a non-smooth function (i.e. a piecewise constant 
function) of the model parameters, and thus cannot be easily 
optimized using regular gradient-based numerical methods. 
Therefore, the line search methods of optimizing non-smooth 
function form a valuable research in IR. Our results show that 
the line search method (i.e. MaxAP), though simple, achieves 
even slightly better results than the perceptron-based method 
in some test sets. This is largely due to its property of directly 
optimizing the performance measure (i.e. AP). Similar observa-
tions have been reported in the experiments on machine trans-
lation [22, 25] and LM [7]. Though the method shows empirical 
benefits, the lack of theoretical underpinnings (such as optimal-
ity and stability) is the major concern. We leave it to further 
study. An alternative approach to the NSO problem is to use an 
approximated but smoothed objective function that can be 
easily optimized, such as the one suggested by Juang et al. [16]. 
The comparison of those NSO methods forms another area of 
future work. 

6. Conclusions 
We have presented a discriminative model for IR, referred to as 
LDM. It provides a flexible framework to incorporate effec-
tively a wide variety of features, including linguistically moti-
vated features. We have also demonstrated that the feature 
functions that are derived from component model under the 
framework of HMM provide useful information for IR. When 
integrated in LDM, they achieve significant improvements over 
state-of-the-art language models and the classical probabilistic 
retrieval model on the task of ad hoc retrieval on six English 
and Chinese TREC test sets. Thus, our method demonstrates an 
interesting meld of discriminative and generative models for IR. 
There are plenty of interesting problems left for future work, as 
described in Section 5. We are particularly interested in explor-
ing the theoretical underpinnings of the learning algorithms 
presented in Section 3, such as robustness, scalability and sta-
bility, without which we cannot prove that our methods al-
ways work well. 
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