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ABSTRACT

Considerable work in web page classification has focused on
incorporating the topical structure of the web (e.g., the hy-
perlink graph) to improve prediction accuracy. However,
the majority of work has primarily focused on relational or
graph-based methods that are impractical to run at scale
or in an online environment. This raises the question of
whether it is possible to leverage the topical structure of
the web while incurring nearly no additional prediction-time
cost. To this end, we introduce an approach which adjusts
a page content-only classification from that obtained with
a global prior to the posterior obtained by incorporating a
prior which reflects the topic cohesion of the site. Using
ODP data, we empirically demonstrate that our approach
yields significant performance increases over a range of top-
ics.
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1. INTRODUCTION

Topical webpage classification has proven useful for a vari-
ety of information retrieval applications. For example, one of
its most common applications is in building profiles for per-
sonalization [5, 7] including building short- and long-term
topical profiles [1]. Additionally, topical classification has
also been used for improving time-to-find information by or-
ganizing search results into a categorical display [3], detect-
ing temporal shifts in query intent using changes in clicked
URL and query topic distribution [9], and improving search
relevance by matching query intent to topic intent [2]. Given
the wide variety of applications for text classification in in-
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formation retrieval, there remains interest in novel methods
to improve text classification accuracy.

To this end, there has been considerable effort on incor-
porating the topical structure of the web (e.g., the hyperlink
graph) to improve prediction accuracy [4, 6, 8]. Given both
the size of the web and the frequently changing nature of
web pages, production environments require efficient classi-
fiers that can be updated with every re-crawl of a page while
meeting very stringent performance demands. However, the
majority of work has focused on relational or graph-based
methods that are impractical to run at scale or in an online
environment [4, 6, 8]. This raises the question of whether it
is possible to leverage the topical structure of the web while
incurring nearly no additional prediction-time cost.

Our key insight is to leverage the topical structure of the
web. Namely, collections of webpages are typically organized
into websites whose contents are topically related. For ex-
ample, www.espn.com is a high-level web domain containing
a collection of webpages centered around the Sports topic.
More generally, each website tends to have a different topical
focus that we view as a website-dependent prior over topics.
In this paper, we demonstrate that these website-dependent
priors can improve the accuracy of a classifier trained glob-
ally across all websites. Using this intuition, we develop a
wrapper approach to incorporate website-dependent priors
that can be used in conjunction with any probabilistic clas-
sifier.

Importantly, our method scales at a cost similar to the
content-only classification of the webpage. That is, at train-
ing time we need only aggregate and estimate the priors
for each website. For our purposes, a URL’s corresponding
‘website’ is its top-level domain. Given this identification
into website, it is straightforward to construct a mapping of
website to distribution over topics using a map-reduce ap-
proach. Then, at prediction-time — the most computation-
ally restrictive time in a production environment — incorpo-
rating website topical structure is a simple website look-up
and a constant-time reweighting of the topical classification.

2. RELATED WORK

Here, we highlight previous work that has discussed ad-
justing posterior predictions when either the priors do not
match [10] or attribute distributions vary [14]. Previous
work discussing the priors mismatch assumes the correspond-
ing correct priors cannot be directly estimated, leading to
an iterative expectation-maximization solution. Similarly,
modeling the distribution of covariates [14] for high dimen-
sional text data would be difficult given the small sample



Hypothetical web as a collection of three websites

edition.cnn.com (50%)

News = 99%
Sports - 50%
Science -> 10%

The probability that a webpage drawn at
random from this entire collection is: [
MNews 64%; Sports 61%; Science 25% ~

News -> 40%

Sports = 99%
Science -> 5%

Figure 1: Example collection of three websites to demonstrate that the overall distribution of topics may
vary greatly from that within website due to topical cohesion. Note that topic probabilities (over the web or
within a website) need not sum to one, as we do not restrict a webpage to have only one category label.

sizes for the website-specific instances. In this work, we
utilize the immediately available URL to group the items,
allowing for a simpler approach to modeling the website-
specific priors that is more suitable for online and time-
constrained situations.

3. PROBLEM APPROACH

We hypothesize that the universe of webpages is not one
homogeneous entity with a uniform distribution of labels,
but is composed of many communities (websites') each of
which has its own prior distribution of class labels that can
significantly differ from the global prior distribution of labels
(Figure 1).

Ideally then, when a new webpage x is presented to the
classifier, the model should make the class prediction ¢ us-
ing both its content and its web domain w according to
P(c|x,w). One way to approach this problem is to build a
separate model for each website w; but this is not feasible
due to limited labeled data. Alternatively, we can let all the
websites share the same set of classifiers and incorporate the
website specific class-distributional information in the priors
alone. This is the key insight underlying our method.

3.1 Using a Website-specific Prior
from a Generative Viewpoint

For explanatory purposes, it is useful to first approach
how to incorporate website-specific priors from the view-
point of a generative model. Consider Bayes’ rule applied to
the global distribution of the class (without using any web
domain information) labels:

Py(clx) oc P(x]e)Py(c) (1)

Here, we use a subscript g for the global prior, P,(c), but
omit one on the class-conditional language model, P(x|c).
This corresponds to the following hypothesized generative
model for webpages: first, a class is picked from the global
class distribution Py(c). Then, conditioned on the class,

words are generated according to the language model, P(x|c).

Assuming that the words are generated according to the
same class-conditional language model, P(x|c) = P(x|c, w),

'In this paper, we reserve the term “webpage” to refer to the
content associated with a single URL and website to refer
to a collection of webpages. For simplicity, we represent a
website as the top-level domain of the URL although future
work contemplates that improving identification of website-
breaking of the URL may further improve our approach.

we can write: P(cfx, w) ocP(x]e, w) Pu(c)

=P(x|c)Pw(c)

While this assumption that the same class-dependent lan-
guage model is used to generate content across websites may
not hold in practice, it is a useful first-pass approximation.
In the next section, we discuss how a similar approach can
be taken with a discriminative classifier.

(2)

3.2 Discriminative Website-Specific Classifiers

Here, we wish to utilize a global discriminative classifier,
Py(c|x), to make website-specific predictions of a webpage
(i.e., P(c|x,w)). We highlight that the conditional P(x|c)
appears under our generative model for both the global class
conditional and domain-specific conditional (i.e., Equations
1 and 2). Solving Equation 1 for P(x|c) and incorporating
the normalization P,(x), we recover:

P(xc) = Py(c|x) Py(x)
Py(c)
Inserting the above into Equation 2, we derive:
P(x|c) Pu(c)
P, (x)

Py (c[x) Py (x)
’ Py(c>q P ( )

Plclx,w) =

x Py(ex)L

3)

where in the last step we have simply dropped the variables
that do not depend on the class c. The normalization of this
last line can be marginalized over classes to write:

Poleh ‘(C)) (4)

3. Pylelx)
Note the intuitive form of this conditional in Eq. 4. It only
requires adjusting a classifier’s prediction by the ratio of the

website-specific to global prior. This process is summarized
in Figure 2. Now, we turn to estimating the priors.

Plclx,w) =

4. ESTIMATING PRIORS

We assume that we have a set of labeled data to both
estimate the global priors and website-specific priors. While
we leave the more general case of estimating website-specific
priors from unlabeled data as future work, we do consider
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Figure 2: Overview of the proposed methodology.

how to smooth estimates to deal with the realistic conditions
that labeled data for any particular website may be very
sparse.

4.1 Estimating the Global Prior

The global prior can be estimated from the training set
T or more generally any labeled dataset L drawn from the
same distribution as T'. Py(c) is obtained using the maxi-
mum likelihood estimate, i.e., the proportion of webpages in
the labeled data that actually belong to the class. If £(x)
denotes the set of classes (or labels) that a webpage x be-
longs to and 1(-) is the indicator function?, the estimate for
the global prior of a class c¢ is the usual:

ZL 1(c € L(x))
Py(c) = XET (5)

4.2 Estimating Website-Specific Priors

Using a website-conditioned counterpart of Eq. 5 directly
to estimate P, (c) may result in overfitting the website-specific
priors to the labeled set. To overcome this problem, we
smooth the website-specific prior using a Bayesian m-estimate
with the global prior. That is:

> 1(c € L(x)) +mewPy (c)
Pj(c) _ Xcw

|w| + me,w

Here, m. . can be regarded as a virtual count of exam-
ples observed from the global distribution for this particular
website and class. We focus on the case where there is a sin-
gle value of m across all classes and websites, i.e., m = mc, w
for all ¢, w. By tying the parameter value across classes and
websites in this way, the method is less prone to overfitting.

5. EMPIRICAL METHODOLOGY

As it is commonly used in many topic classification stud-
ies, we used the Open Directory Project (ODP, dmoz.org)
ontology of the web to study the empirical effectiveness of
our proposed approach. We crawled these web pages and
randomly split them into 70% train, 15% validation, and
15% test. We chose to restrict the class set to focus on
those categories with more than 1K positive training exam-
ples. This resulted in the 219 most frequent categories at
the top two levels of the hierarchy. While still at a high-level
of granularity, this is a similar number of categories shown
to improve downstream applications such as personalization
[1, 11]. Furthermore, like those works we choose to flatten
the hierarchy and deal with the issue that a document can

2For a boolean variable y, 1(y) = 1 if y is true; else 1(y) = 0.

, where me, >0  (6)

belong to multiple categories by training a binary classifier
per class. We focus on the impact of predictive performance
on the top category and the top three categories as use of
the top three categories tend to be most common in the lit-
erature in downstream applications such as personalization.
As standard in text classification, we examine the micro and
macro averages of precision, recall, and F1 [13, 12].

Baseline

To create our baseline global classifier, we train a binary lo-
gistic regression classifier with L2 regularization on each of
the classes. We use a tfidf representation where each feature
vector is normalized to the unit sphere to deal with length
variation. When optimized by a score cut threshold over the
validation set, the micro-average F'1 of the baseline is 0.60
which is a reasonably strong baseline whose performance is
on a par with similar classifiers used in downstream appli-
cations [1, 11].

Cohesion

The Cohesion approach reported uses the labeled training
data to estimate the website-specific priors according to Eq.
6 and incorporate them into the website specific posterior
as in Eq. 4. Treating each binary classifier separately, we
performed binary normalization in the denominator using
its positive and negative examples. The final posteriors are
used to rank the classes. A single value of the smoothing
parameter m is chosen by doing a sweep over the validation
data over m € {0, 0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5,
0.75, 1, 2.5, 5, 7.5, 10, 25, 50, 75, 100, 250, 500, 750, 1000}
and selecting the value of m that yielded the best reduction
in residual macro- and micro-F1 (equally weighting both).

6. RESULTS AND DISCUSSION

Table 1 presents the summary of each method when pre-
dicting the top category and top 3 categories for the value
of m selected on the validation set. For the rank 3 cutoff,
Figure 3 (left) shows the variation of residue with m while
Figure 3 (right) shows a histogram of number of classes im-
pacted versus the per-class change in F1 performance. First,
we note in the table that the Cohesion method improves
both macro and micro F1 at both rank 1 and rank 3 cutoffs.
In fact, the Cohesion method improves every measure ex-
cept for macro-precision at rank 1. Taken together with the
improvement in micro-precision at rank 1, we see the Cohe-
sion method hurts precision across a majority of classes al-
though it improves for the more common classes (which have
a larger impact on the micro-average). As the rank cutoff
is increased to rank=3, we see that all measures improve —
indicating that those categories that suffered at rank=1 still
remain quite high in the ranks. At rank=3, Cohesion im-
proves the precision/recall/F1 on 62%/77%/75% of classes,
respectively. Thus, the gains are very robust over a large
number of classes. Figure 3 (right) shows further detail on
the distribution of gains/losses for F1 for rank=3.

To explain the trend observed in Figure 3 (left), as de-
scribed earlier m indicates the pseudo count of webpages
from the global distribution. Low values of m overfit the
website-specific prior to the labeled set and a high residual
F1 (error) is observed. As m is increased, the contribution
from the global prior increases till m is just enough to offset
the overfitting to training data. If m is increased beyond this
value, the performance is again hurt as the topic cohesion of
the websites are increasingly ignored.
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Figure 3: Predictions on the top three categories: variation of residual micro- and macro- F1 (left) and the
distribution of absolute (right) improvement of the Cohesion model of the 165 improved categories (blue)

and 54 hurt categories (red) (no categories tied).

Method || Micro-Precision | Micro-Recall | Micro-F1 || Macro-Precision | Macro-Recall | Macro-F1
Rank—1 Baseline 0.6509 0.3423 0.4487 0.7683 0.1623 0.2494
Cohesion 0.6923 0.3641 0.4772 0.7328 0.2006 0.2969
Rank—3 Basel.ine 0.4180 0.6595 0.5117 0.4329 0.4423 0.4277
Cohesion 0.4353 0.6868 0.5328 0.4428 0.4718 0.4410

Table 1: Predicting the top and top 3 categories for webpages in the test set. The best performer for each rank
cutoff in each column is shown in bold. Underline indicates significant differences (p < 0.05) in macro-averages

according to a two-sided macro-sign test [13].

7. CONCLUSION AND FUTURE WORK

In summary, we demonstrated how the topic cohesion of
websites could be leveraged at scale to improve webpage clas-
sification through website-specific priors. Though our cur-
rent approach is limited to the availability of labeled data for
each domain, the significant overall gains we obtained in our
experiments with a large majority of classes (75%) improv-
ing over the baseline as well demonstrate the effectiveness
and robustness of our method. Future work in this area
could investigate the amount of the labeled training data
required for our approach and examine cautious techniques
to learn website-specific priors from unlabeled data to gener-
alize across websites where labeled data may be completely
unavailable. In addition, we are also interested in methods
that go beyond the top-level domain representation to model
cohesion as a hierarchical relationship.
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