

Shrink – Prescribing Resiliency Solutions for Streaming

Badrish Chandramouli and Jonathan Goldstein

Microsoft Research

{badrishc, jongold}@microsoft.com

ABSTRACT

Streaming query deployments make up a vital part of cloud oriented

applications. They vary widely in their data, logic, and statefulness,

and are typically executed in multi-tenant distributed environments

with varying uptime SLAs. In order to achieve these SLAs, one of

a number of proposed resiliency strategies is employed to protect

against failure. This paper has introduced the first, comprehensive,

cloud friendly comparison between different resiliency techniques

for streaming queries. In this paper, we introduce models which

capture the costs associated with different resiliency strategies, and

through a series of experiments which implement and validate these

models, show that (1) there is no single resiliency strategy which

efficiently handles most streaming scenarios; (2) the optimization

space is too complex for a person to employ a “rules of thumb”

approach; and (3) there exists a clear generalization of periodic

checkpointing that is worth considering in many cases. Finally, the

models presented in this paper can be adapted to fit a wide variety

of resiliency strategies, and likely have important consequences for

cloud services beyond those that are obviously streaming.

 INTRODUCTION
Streaming query deployments make up a vital part of cloud oriented

applications, like online advertising, online analytics, and internet

of things scenarios. They vary widely in their data, logic, and

statefulness, and are typically executed in multi-tenant distributed

environments with varying uptime service level agreements (SLAs),

i.e., how often query response time is impacted by failure.

Ingress

Compute1 Storage1

StorageK

Input Input

...

Figure 1: Typical Streaming Query Deployment

For instance, consider a typical deployment of a streaming query,

shown in Figure 1. In this figure, input arrives at or is born at the

ingress node. Input is then typically journaled (written) to

replicated storage for later analysis, and is therefore sent to multiple

storage nodes. The actual streaming computation is performed at

the compute node, which may also be running other jobs. Note that

compute nodes typically perform stateful computations, like

windowed aggregates, which require that various counters and data

structures be maintained in memory over time. As these queries are

very long running, nodes eventually fail, and one of a number of

proposed resiliency strategies [11] is employed to protect against

failure.

Unfortunately, the choice of resiliency strategy is highly

challenging, and scenario dependent. For instance, consider the

system described in MillWheel [13]. This system periodically

checkpoints the query state, and optionally allows users to

implement caching, which is highly useful for scenarios like online

advertising. In such scenarios, the event rate is small to moderate

(e.g., tens of thousands of events per second), and there are a very

large number of states (e.g., one for each browsing session) which

are active for a short period of time, then typically expire after a

long holding period. Rather than redundantly store states in

compute node RAM, states are cached in the streaming nodes for a

period, then sent to a key-value store after some time, where they

are written in replicated fashion to cheap storage, and typically

expire unaccessed. As a result, the RAM needed for streaming

nodes is small, and may be checkpointed and recovered cheaply.

This design would, however, be untenable for online gaming,

where the event rate is high (e.g., millions of events per second),

with a large number of active users, and with little locality for a

cache to leverage. The tolerance for recovery latency is very low,

making it impossible to recover a failed node quickly enough.

While many streaming resiliency strategies are discussed in the

literature, along with some modeling work, the state of the art does

not quantify the performance and resource cost tradeoffs across

even basic strategies in a way which is actionable in today's cloud

environments. For instance, prior efforts (e.g., [11]) do not consider

uptime SLAs and resource reservation costs, leading to analyses

useful for establishing some intuition for the differences between

approaches, but not for selecting strategies in today’s datacenter

oriented applications.

Lacking tools or frameworks sufficient to prescribe resiliency

approaches, practitioners typically choose the technique which is

easiest to implement, or in cases like MillWheel, build systems

tailored to solve particular classes of problems, hoping that these

systems will have high general applicability.

This paper presents an analytical framework based on uptime SLAs

and resource reservation, as well as detailed analyses of a number
of resiliency designs for streaming systems. We show:

 One size doesn’t fit all: There is no resiliency strategy which

efficiently covers most of the streaming query space. Specific

strategies can be vastly better compared to others (by orders

This work is licensed under the Creative Commons Attribution-

NonCommercial-NoDerivatives 4.0 International License. To view a copy of

this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For any

use beyond those covered by this license, obtain permission by emailing

info@vldb.org.

Proceedings of the VLDB Endowment, Vol. 10, No. 5

Copyright 2017 VLDB Endowment 2150-8097/17/01.

of magnitude!), depending on scenario and environment

characteristics, even when considering only realistic

scenarios. While [11] presented similar results for a limited

spectrum of strategies, we confirm that this holds across a

much broader spectrum of approaches when considering
SLAs and with a resource allocation style of provisioning.

 No actionable “rules of thumb”: While some strategies are

better than others for specific scenarios, the tradeoffs are too

complex for useful “rules of thumb”. Models are needed to
understand the efficacy of specific approaches for scenarios.

 Informative models are tractable: Models are provided in this

paper which make the alternatives explicit and clear, and,

surprisingly, only depend on a few scenario and infrastructure

parameters. Our models are a major contribution, and can be
applied easily without deep understanding of their derivation.

 Our models are accurate: Using real data and a real streaming

system running a real query, we show through our distributed

resiliency emulator that the SLAs achieved in practice are

typically within 1% of what our models predict.

 Our models are straightforward to build upon: Once

understood, they can be adapted and extended to describe

many resiliency strategies: We provide the precise model

modifications for modeling sharded/parallel streaming

queries. We also sketch model modifications for handling
distributed pipelines and Millwheel style caching.

 We introduce active-active periodic checkpointing: A

straightforward generalization of periodic checkpointing, it is

not discussed in the literature, likely because it is considered

to be inferior to active-active on-demand checkpointing. We

show that periodic checkpointing is a better strategy in most

situations.

Paper organization: Section 2 describes the modeled resiliency

strategies. Section 3 describes our simplest model, and in the

process, introduces our modeling framework, including the

intuition behind the framework, as well as our metrics and

parameters, and our modeling assumptions. Section 4 then

describes our most complex model, which provides a ceiling on the

model complexity for the considered strategies using our

framework. Section 5 describes the other resiliency strategies

evaluated in this paper in enough detail to understand the

experimental results. Section 6 validates the accuracy of our models

using a distributed resiliency emulator and a real query on real data

with a real streaming query processor. Section 7 evaluates the

strategies, by applying our models with varying parameter settings.

Section 8 presents the model modification for caching in systems

like MillWheel. Section 9 gives an overview of related work.

Section 10 concludes the paper with lessons learned and future

work. Our technical report [20] presents models for the three

remaining resiliency strategies, and describes the numerical

approaches of Section 6.1.

 RESILIENCY STRATEGIES
This section gives an overview of the resiliency strategies

considered in this paper. We’ve observed that these seem to be

foundational approaches, mostly described in the literature, and can

be varied to create derivative solutions like MillWheel. In Section

8, we discuss some of these derivative solutions, and how the

models in this paper can be adapted and applied.

These strategies are described visually in Figure 2, Figure 3, and

Figure 4, which show the states of a streaming compute node (see

Figure 1) for different resiliency approaches. These figures will be

referred to throughout this section. Note that initially, we do not

consider sharded scenarios. We relax this restriction with precise

model modifications in [20].

Note that these foundational strategies were proposed by systems

like Borealis [6] and TelegraphCQ [5], which call their versions of

compute nodes “processing nodes” and “query nodes” respectively.

In the figures below, compute nodes begin by recovering the state

of the failed node which they are replacing. This is the case for all

compute nodes except for nodes which initially start the query.

Similarly, the lifetimes of almost all nodes end with failure.

Note that in all resiliency approaches described in this paper, we

assume the existence of a resilient (i.e. replicated) store, and further

assume that all input is journaled in this store. Furthermore, for all

cases, except one version of replay based (for explanatory

purposes), we assume that all output must be delivered exactly once

in the face of failure.

Also, in all active-active variants, replicas are placed on different

racks/failure zones, which significantly reduces correlated failure.

This is typically accomplished with tools such as Azure Service

Fabric [24].

 Replay Based
These strategies leverage knowledge of the query’s window size.

For instance, in a 1 minute trailing average, the window size is 1

minute. Note that such information isn’t always available, in which

case these resiliency approaches are not possible.

In the single node version, as described by the timeline in Figure 2,

when the node fails, a new node is created which first consumes a

window of input. During this time, the query falls further behind,

so it subsequently enters a catchup phase until normal operation can

resume. Note that one can either start consuming input from a point

in time which guarantees no loss of output, or choose, application

permitting, a point in time a bit later which minimizes catch up cost.

In active-active replay, all nodes simultaneously run the query.

When a copy fails, it recovers in the same manner as single node

replay. The query is only down when all running copies go down.

Active-active approaches are critical for high availability scenarios,

but how many copies should be run to meet an availabilty SLA?

Note that for all active-active approaches, including replay based,

we assume that there is a primary copy which is responsible for

sending output. Part of handling failure is to seamlessly switch

primaries from one copy to another. As a result, the cost of output

transmission doesn’t vary significantly between strategies.

Replay
Input

Catch
Up

Normal
Operation

Node
Recovers

Node
Fails

Figure 2: Replay Based Node Timeline

Recover
Checkpoint

Catch
Up

Normal
Operation

Node
Recovers

Node
Fails

Take
Checkpoint

Catch
Up

Normal
Operation

Figure 3: Periodic Checkpointing Based Timeline

Normal
Operation

Take
Checkpoint

Catch
Up

Normal
Operation

Recover
Checkpoint

Catch
Up

Normal
Operation

Node
Recovers

Node
Fails

Recover To
Node

Recover From
Node

Figure 4: On Demand Checkpointing Based Timeline

 Periodic Checkpointing Based
These solutions make use of some systems’ ability to checkpoint

the state of a running query. As shown in Figure 3, the running

query periodically checkpoints its state to a resilient store. Upon

failure, the latest checkpoint is read and rehydrated on a new node,

and the input is replayed from the time of the checkpoint. Note that

for checkpointing based strategies, duplicate output is typically

thrown away as part of catching up [5].

While we found no reference to its active-active version, it is a clear

extension of the single node version, where the query is run on

many nodes. One reserved copy periodically checkpoints. When a

copy fails, a new copy is spun up as in the single node version. If

the checkpointing node fails, during the subsequent catchup phase

of recovery, checkpoints are still taken at the same points of input

processing, as if the node wasn’t recovering.

Checkpointing based solutions are typically chosen when either

replay solutions aren’t possible, or where the checkpoint size is

significantly smaller than the input needed to reproduce it, but how

much smaller does the checkpoint need to be? Are there other

important factors?

 On-demand Checkpointing Based
These are the solutions usually referred to in the literature as active-

active checkpointing. As shown in Figure 4, in this approach,

multiple copies of the computation are run. When a node fails,

another running node stops processing input and takes a

checkpoint, which is used to rehydrate a new running copy. Note

that this approach requires at least 2 running nodes.

This approach never writes checkpoints to storage, checkpoints

only when needed, and catchup times are less. However, an extra

node is needed to jump-start a failed node (i.e., when a node goes

down, two stop processing input), and if all running copies fail, the

state is lost. As we will see, in practice, this strategy is mostly

inferior to active-active periodic checkpointing.

 Resiliency Modelling Results

Strategy Description Evaluated

Replay All Output Section 3 Yes

Replay Missing Output [20] No

AA Replay [20] Yes

Periodic Checkpointing [20] Yes

AA Periodic Checkpointing Section 4 Yes

On-Demand Checkpointing [20] Yes

Including CPU and Storage [20] No

Caching Section 8 No

Sharding [20] No

Distribution [20] No

Figure 5: Shrink's Current Results

This paper is the first to describe our substantial modelling effort.

We now overview the Shrink project’s current results, in Figure 5.

 First, note that we have models for all the strategies discussed in

this section, including results for both single node and active-active

variants of replay and checkpointing, as well as on-demand

checkpointing, which is inherently active-active.

Note, however, that due to space constraints, this paper only

presents models for single node replay and active-active periodic

checkpointing. Models for the other resiliency strategies may be

found in our technical report [20]. Nevertheless, we include models

for all these strategies in our implementation and evaluation.

Also, as discussed later, for ease of understanding, this paper

focuses on models for network costs. Our technical report presents

the complete models, which incorporate network, CPU, and storage

costs, along with the precise model extensions needed to handle

distribution and sharding. Caching extensions are presented here.

Note that these extensions are not included in our evaluation, which

is designed to support our claim that even just the networking

behavior of the foundational approaches is sufficiently complex to

justify these models. We have, however, actually implemented the

models which incorporate all resources, but feel it would

unnecessarily complicate our evaluation.

 MODELING SINGLE NODE REPLAY
In this section we present the full cost model for single node replay

based resiliency. This is the simplest of our models, and is useful

for establishing important modeling concepts and intuition.

 Modeling Intuition
Streaming queries using replay based recovery are run on multiple
nodes in a datacenter, and incur various costs, including:

 CPU costs to run, and recover the query

 Storage costs to resiliently journal the input

 Networking costs to move input

 Memory costs associated with maintaining query state

These costs are impacted by various scenario and infrastructure

parameters, and also by a downtime SLA. This type of SLA allows

the user to specify, for instance, the maximum number of minutes

per year during which the query is allowed to be “down”. Down, in

this context, means that the results are not being delivered in as

timely of a fashion as they would if failure never occurred.

For instance, the query is down during all of recovery, since query

output is delayed until the query has completely caught up to the

arriving input. Note that the actual downtime experienced can be

reduced by increasing the system resources for the bottlenecked

resource (e.g. CPU cycles/sec, or network throughput). As a result,

there is a tradeoff between allocated resources and downtime. An

important and in some cases, challenging, aspect of building

accurate cost models is to accurately capture this tradeoff, which is

frequently necessary to make precise statements about determining

overall cost.

In capturing the tradeoff between allocated resources and downtime

in our cost models, we take a resource reservation approach. This

is in contrast to previous work, which focuses on actual work

done/bytes sent. Resource reservation based approaches pay the

cost of reserving the resource, whether or not it is actually

consumed. We use this approach because we assume that queries

are run in a multitenant environment, where more than one query

may be run on a single compute node. Resource capacity is then

reserved to ensure that SLAs are met, where reservations may

decrease over time, but not increase, since additional capacity may

not be available when needed.

In this paper, we focus on NIC bandwidth costs. It is useful as a

proxy for overall network costs. This choice captures all network

activity at the edges, regardless of internal topology, including NIC

bandwidth at storage, compute, and ingress nodes. More complex

models could be developed for specific datacenter network

topologies, which vary widely amongst cloud providers.

Additionally, our network oriented models actually capture the

mathematical complexity present in modeling other resources, and

can be varied to capture the other resource costs. Our technical

report [20] contains the complete extended models, incorporating

all resource types into the cost models. Note that making our

models sensitive to these phenomena results in a more complex, but

still tractable, optimization space, which further emphasizes the

need for models.

To better understand the role of NIC bandwidth reservations in

single node replay, consider the network load profile of a compute

node shown in Figure 6. Note that each query on a node begins its

life by recovering a previously failed query’s state.

Once recovery is complete, the load settles down to the bandwidth

needed to receive arriving input. This suggests that we must find

enough bandwidth on the node to recover quickly enough to meet

our SLA, but that we can significantly lower the bandwidth

reservation once recovery is over, leaving room on the node for

other work.

Recovery

Replay

Figure 6: NIC Load for Single Node Replay

With this bandwidth reservation approach in mind, the goal of our
model is to answer two questions:

1. How much NIC bandwidth, compared to the input arrival

bandwidth, do I need to reserve initially to recover my query
while meeting my SLA?

2. How costly, in terms of reserved NIC bandwidth, is my

resiliency approach compared to running the query non-

resiliently?

Note that both of the costs mentioned above are in comparison to

the cost of running the query non-resiliently. This is a deeply

important facet of our modeling approach which greatly simplifies

our modeling task, dramatically reduces the number of potential

infrastructure and scenario parameters, and gives us a common

baseline for comparing resiliency strategies. For instance, if single

node replay is twice as costly as the non-resilient solution, and

single node checkpointing is three times as costly as the non-

resilient solution, we know that single node checkpointing is 50%

more costly than single node replay.

 Modeling Assumptions
In order to simplify our analysis, we make certain assumptions:

 All network load and other work associated with processing

the query unresiliently is unvarying over time. While our

models make this assumption mathematically, and the

accuracy of our models reduces as this assumption fails, we

found that in practice, with real data and queries, this

assumption was not problematic (See Section 6). Also, our

models can be used to perform strictly correct worst case

analysis.

 The output is small compared to the input and is, therefore, not

part of the model. This assumption simplifies our presentation,

and is almost always true for streaming queries. Output

transmission could easily be added to our models.

 Failure doesn’t occur during recovery. This is an assumption

made to simplify the presentation of our models. In all cases,

this is a second order effect, and only has small impact on the

resulting costs. This assumption could be relaxed by extending

the presented approaches.

 Failure detection and failover are instantaneous

 Modeling Metrics and Parameters
Corresponding to the two questions posed at the end of Section 3.1,

we introduce the following two metrics which will be computed for

each resiliency option, given application and infrastructure

parameters:

 𝑅𝑅𝐹 = The recovery NIC bandwidth reservation needed to
meet the SLA, as a factor of input bandwidth (factor, e.g. 2x).

 𝐶𝑜𝑠𝑡𝐹 = The cost, in terms of total reserved NIC bandwidth,

as a factor of the NIC costs associated with running the query

non-resiliently (factor). This includes NIC bandwidth
reservation costs at storage, compute, and ingress nodes.

Note that for all metrics and parameters, the subscripts represent

the unit type. To compute the above metrics for single node replay,

we introduce the following two scenario parameters:

 𝑊𝑇 = windows size, such as 10 minutes in a 10 minute trailing

window (time, e.g. 10 minutes).

 𝑆𝐿𝐴 = Fraction of the time that the system response to input is

unaffected by failure (ratio, e.g. .99999)

We also have the following infrastructure parameters:

 𝐹𝑇 = Mean time between failure for a single node (time)

 𝐾𝐹 = Number of copies in replicated storage (factor)

 Computing the baseline for 𝑪𝒐𝒔𝒕𝑭
Figure 7 illustrates the network flows when computation isn’t made

resilient to failure. The NIC costs associated with these flows form

the baseline with which all other approaches are compared. Put

quantitatively, the network cost of this non-resilient approach will

be used in the denominator of every 𝐶𝑜𝑠𝑡𝐹 calculation

Ingress

Compute1 Storage1

StorageK

C1

C1

C1

C1

C1

...

Figure 7: Network Flow Diagram With No Resiliency

From the ingress node, there is a network flow transmitting the

input to the compute node, as well as to each of the storage nodes

on which a copy of the data will be stored. Note that there is only

one path on the ingress node to all the storage nodes which store

the data. This reflects our decision to capture the costs in common

with all implementations of cloud storage, which must push a copy

to each of 𝑘 storage nodes, but may reduce network costs with

interesting topologies and/or broadcast networks. These varying

costs could easily be accounted for in all of our models for a

particular storage implementation. Also, note that the storage nodes

in our figure are logical, as a single copy of the data may actually

be spread out over a very large number of nodes in a storage cluster.

The aggregate NIC bandwidth is, however, insensitive to this, so

we model each of these copies as sent to a single node.

Associated with each network flow are NIC costs at either end (i.e.,

𝐶1), which, in this case, are symmetric. For some strategies,

however, the reservations are not symmetric, and for this reason,

we separately account for the costs at both ends. To compute the

cost of all network flows, we calculate the expected total NIC

reservation costs for the compute node lifetime. For instance, if

a compute node typically runs for a month before failure, assuming

each of the network links shown in Figure 7 reserve just enough

bandwidth to transmit the input, 𝐶1 = 1 𝑚𝑜𝑛𝑡ℎ, since 1 month of

input is transmitted over the link during that period. In other words,

𝐶1 = 𝐹𝑇.

When computing 𝐶𝑜𝑠𝑡𝐹, we will not include the cost of acquiring

the data, since it is insensitive to the choice of resiliency strategy,

and the data may be born on the node, in which case there are no

network costs. As a result, the baseline cost, adding up all the

network flow costs at both sender and receiver, is 2 ⋅ 𝐹𝑇 for the

ingress node, 𝐹𝑇 for the compute node, and 𝑘 ⋅ 𝐹𝑇 for the storage

nodes, or (𝑘 + 3) ⋅ 𝐹𝑇 in total.

 Single Node Replay
We begin our first analysis by deriving 𝑅𝑅𝐹. Note that we are trying

to find the minimal setting for 𝑅𝑅𝐹 which meets our SLA over an

arbitrarily long period of time. In particular, to exactly meet our

SLA in the long run, each failure is allowed a downtime budget,

which, on average, is used to fully recover when the query initially

starts. For instance, if we have a 𝑆𝐿𝐴 = .99, and failures happen,

on average, every 100 days, then we are allowed to be down . 01 ⋅
100 = 1 day every failure period, which becomes our recovery

budget. Specifically, our budget 𝐵𝑇 is:

𝐵𝑇 = 𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

We will now derive the time to recover, 𝑅𝑇 , which, to exactly meet

our SLA, must exactly consume our recovery budget. Since we are

not allowed to miss output, recovery must start reading input

starting from a full window before failure occurred. Once a full

window of data has been read, we have fallen behind by the time it

takes to transmit that window’s worth of data. Once we have caught

up by that amount, we have further fallen behind by a smaller

amount, and so on. This leads to the following infinite series:

𝑅𝑇 =
𝑊𝑇
𝑅𝑅𝐹

+
𝑊𝑇

𝑅𝑅𝐹
2 +

𝑊𝑇

𝑅𝑅𝐹
3 +⋯

Note that, for convenience, we will frequently substitute:

𝑈 =
1

𝑅𝑅𝐹

We now have the geometric series:

𝑅𝑇 = 𝑊𝑇 ⋅ 𝑈 ⋅∑𝑈𝑖
∞

𝑖=0

, 𝑈 < 0

Using the closed form for the series, we get:

𝑅𝑇 =
𝑊𝑇 ⋅ 𝑈

(1 − 𝑈)
= 𝐵𝑇 = 𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

𝑈 =
𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

𝑊𝑇 + 𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

𝑅𝑅𝐹 =
𝑊𝑇 + 𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

𝐹𝑇 ⋅ (1 − 𝑆𝐿𝐴)

In computing 𝐶𝑜𝑠𝑡𝐹, first consider Figure 8, which shows the flows

and costs associated with replay. First, note that cost 𝐶1 is the same

as in the non-resilient case. We additionally have cost 𝐶2, which is

associated with the replay flow. The total cost is straightforward to

calculate, as 𝐶2 is just the cost of reading a window’s worth of data:

𝐶𝑜𝑠𝑡𝐹 =
2 ⋅𝑊𝑇 + (𝐾𝐹 + 3) ⋅ 𝐹𝑇

(𝐾𝐹 + 3) ⋅ 𝐹𝑇

Ingress

Compute1 Storage1

StorageK

C1

C1

C1

C1

C1

...

C2 C2

Figure 8: Network Flow Diagram for Single Node Replay

 ACTIVE-ACTIVE PERIODIC

CHECKPOINTING
We have chosen to include the model for active-active periodic

checkpointing as it is the most complex model across all the

resiliency strategies discussed in the paper.

Recall that with this resiliency approach, multiple copies of the

streaming computation are running, and one of these copies is

reserved for periodic checkpointing. When one of the copies goes

down, recovery from the last successful checkpoint is initiated. As

long as at least one non-checkpointing copy remains, there is no

downtime. If, after a time, all copies go down, the remaining

recovery time for the first down node is charged against the SLA

budget for that failure.

Similar to our discussion of single node replay, we begin our

discussion by considering the network load profile of the two types

of compute nodes, shown in Figure 9.

Recovery
Checkpoint
& Catchup

Checkpoint
& Catchup

Recovery

Checkpointing
Node

Outputting
Node

Figure 9: NIC Load for active-active periodic checkpointing

Since the checkpointing node is never used for output, it may fall

behind without impacting the uptime SLA. As a result, the

checkpointing node must keep up overall with arriving input, but

may fall behind for periods of time. We therefore continuously

reserve the average load, rather than the peak, resulting in a

constant allocation of network resources, despite periodic

checkpointing. Note that nodes used for producing output will

never need to produce checkpoints. These nodes have load profiles

like the replay based approach, and we can similarly decrease their

bandwidth reservation once recovery is over.

While both types of nodes will contribute to our cost formula, the

really difficult nodes to model are the output producing nodes,

where we must understand how downtime, initial network

reservation size, checkpointing frequency, and the number of

replicas are all related. We pursue a similar approach as the

previous analysis, quantifying how much budget is consumed by

initial recovery depending on initial reservation size, and use this

equation to determine the initial reservation size for a particular

SLA and setting for optimizable parameters. We then optimize cost

by exploring the space of parameter settings and their associated

costs using a straightforward hill climbing technique.

We now introduce the following additional infrastructure and

application parameters for active-active periodic checkpointing:

 𝐶𝑆= Checkpoint size (size, e.g. bytes)

 𝐶𝑇 = Checkpoint period for periodic checkpointing (time)

 𝐼𝑅= Input rate (size/time)

 𝑁𝐹 = Number of running copies (factor).

For convenience, we also introduce the following computed value,
which is computed from the above parameters:

 𝑆𝑇 =
𝐶𝑆

𝐼𝑅
–= The checkpoint transfer time assuming input rate

bandwidth (time)

We begin our analysis by describing our failure model for nodes

used in active-active approaches. Specifically, assume that the

distribution for the amount of time it takes for a node to fail is

captured by the exponential distribution [23]. We determine the

resiliency cost associated with all running copies failing before

recovery is complete, as follows:

Let the random variables 𝑋𝑖 = the time for node 𝑖 to fail given 𝜆 =
1

𝐹𝑇
. The PDF and CDF for 𝑥𝑖 , 𝑓(𝑡) and 𝐹(𝑡) respectively, are:

𝑓(𝑡) = 𝑃(𝑋𝑖 = 𝑡) = 𝜆𝑒
−𝜆𝑡

𝐹(𝑡) = 𝑃(𝑋𝑖 ≤ 𝑡) = 1 − 𝑒
−𝜆𝑡

Let 𝑌 = the time for the 𝑘 = 𝑁𝐹 − 2 remaining nodes to fail. The

PDF and CDF for 𝑌, 𝑔(𝑡) and 𝐺(𝑡) respectively, are:

𝐺(𝑡) = 𝑃(𝑌 ≤ 𝑡) = ∏𝑃(𝑋𝑖 ≤ 𝑡) =

𝑘

𝑖=1

(1 − 𝑒−𝜆𝑡)𝑘

𝑔(𝑡) =
𝑑(𝐺(𝑡))

𝑑𝑡
=
𝑑((1 − 𝑒−𝜆𝑡)𝑘)

𝑑𝑡

Each time a node fails, its state must by recovered and the node

must be caught up to the latest input. If all other nodes fail before

recovery is complete, then the user will experience downtime,

which will be charged against the downtime budget.

We now consider the impact to our resiliency budget in 3 cases. In

all these cases, t is the time until all running nodes fail after one

begins recovery. Recovery involves both a fixed sized cost, which

includes the time to recover the checkpoint, and an input catch up

cost which is twice the time it takes to take a checkpoint (time to

take the checkpoint and time to restore the checkpoint), plus an

additional variable sized input catch up cost, which depends on how

far back the last checkpoint completed.

4.1.1 Case 1: 𝑡 < 𝑈 ⋅ (𝑆𝑇 +
2⋅𝑈⋅𝑆𝑇

1−𝑈
)

In this case, failure occurs before the fixed portion of the recovery

cost is complete. This includes the time to restore a checkpoint of

time length 𝑆𝑇, plus the time length of input which arrived while

the used checkpoint was taken (i.e. 𝑈 ⋅ 𝑆𝑇), plus an equal amount

of input which arrived while the checkpoint was restored.

Consider a variable 0 < 𝑝 < 𝐶𝑇, which represents, at the time of

initial failure, the amount of time which passed since the last

checkpoint completed. For a given t, the budget used is:

𝑏1𝑇(𝑡) = ∫
𝑈 ⋅ (𝑆𝑇 + (2 ⋅ 𝑈 ⋅ 𝑆𝑇 + 𝑝) ⋅ ∑ 𝑈𝑖∞

𝑖=0) − 𝑡

𝐶𝑇

𝐶𝑇

0

𝑑𝑝

= ∫
𝑈 ⋅ (𝑆𝑇 +

2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

+
𝑝

1 − 𝑈
) − 𝑡

𝐶𝑇

𝐶𝑇

0

𝑑𝑝

Note that in the above, 𝑈 ⋅ 𝑆𝑇 is the portion of recovery associated

with rehydrating the checkpoint, while 𝑈 ⋅ (2 ⋅ 𝑈 ⋅ 𝑆𝑇 + 𝑝) ⋅
∑ 𝑈𝑖∞
𝑖=0 is the time needed to catch up, depending on how long it’s

been since the last checkpoint completed. The 2 ⋅ 𝑈2 ⋅ 𝑆𝑇 portion

of this reflects the time to catch up associated with both taking and

restoring the checkpoint.

Integrating over the relevant times for this case, the overall impact
on our recovery budget is:

𝐵1𝑇 = ∫ 𝑔(𝑡) ⋅ 𝑏1𝑇(𝑡) ⋅ 𝑑𝑡
𝑈⋅(𝑆𝑇+

2⋅𝑈⋅𝑆𝑇
1−𝑈

)

0

4.1.2 Case 2:

U ⋅ (ST +
2 ⋅ U ⋅ ST
1 − U

) < t < U ⋅ (ST +
2 ⋅ U ⋅ ST
1 − U

+ CT ⋅∑Ui)

∞

i=0

Or equivalently:

U ⋅ (ST +
2 ⋅ U ⋅ ST
1 − U

) < t < U ⋅ ST +
U ⋅ (2 ⋅ U ⋅ ST + CT)

1 − U

In this case, failure happens after all fixed recovery costs, but we

cannot conclude that recovery completes in all cases before total

failure occurs. For each value of 𝑡 in this range, there are some sub-

cases where total failure occurs before catch-up is complete, which

incurs a cost against our resiliency budget, but there are also some

sub-cases where total failure occurs after catch-up is complete,

incurring no penalty.

In particular, in the above upper bound, 𝑈 ⋅ 𝑆𝑇 represents the time

to rehydrate the checkpoint, while the second term,
𝑈⋅(2⋅𝑈⋅𝑆𝑇+𝐶𝑇)

1−𝑈
,

represents the portion of the recovery time to catch-up, by as much

as 𝑈 ⋅ (2 ⋅ 𝑈 ⋅ 𝑆𝑇 + 𝐶𝑇) after checkpoint rehydration is complete.

Consider a variable 𝑡𝑝 = 𝑡 − 𝑈 ⋅ (𝑆𝑇 +
2⋅𝑈⋅𝑆𝑇

1−𝑈
), which represents

how much time we had after the fixed portion of the recovery, to

catch up before total failure. Furthermore, consider a scaled version

of 𝑝, called 𝑝𝑐, which is the amount of variable catch-up time

needed given a particular value of 𝑝. Note that:

𝑝𝑐 =
𝑈 ⋅ 𝑝

1 − 𝑈

Consider Figure 10, which illustrates the entire range of

possibilities for the current case. For each time 𝑡𝑝, we have

enumerated the space of possibilities, which is to say, that 𝑝 could

range anywhere from 0 to 𝐶𝑇, resulting in:

0 ≤ 𝑝𝑐 ≤
𝑈 ⋅ 𝐶𝑇
1 − 𝑈

Now consider the diagonal where 𝑡𝑝 = 𝑝𝑐. This is the case where

the new node exactly catches up when the last running node fails,

resulting in 0 downtime. For the lower right triangle, the new node

has been fully caught up before the other nodes fail, also resulting

in 0 downtime. There are also contour lines, parallel to and above

the diagonal, which represent constant and increasing amounts of

time between catch-up and failure. We now define a new variable

𝑥 = 𝑝𝑐 − 𝑡𝑝. In order to calculate the contribution of these

scenarios to the cost of resiliency, we calculate:

𝐵2𝑇 = ∫ 𝑥 ⋅ 𝑃(𝑋 = 𝑥)

𝑈⋅𝐶𝑇
1−𝑈

0

𝑑𝑥

0

0 U · CT

1 - U

U · CT

1 - U

tp

pc

Figure 10: Case 2 variables and integration limits

In other words, we sum the various cost contour lines, where each

contour is multiplied by the likelihood of occurrence for that

contour. In order to calculate the likelihood, we integrate across the

relevant range of 𝑡𝑝, summing the probabilities of all points along

the contour line. We are aided here by the assumption that when

failure occurs, there is a uniform probability distribution (between

0 and 𝐶𝑇) for how far back the last checkpoint completed. Thus:

𝑃(𝑋 = 𝑥) = ∫ 𝑔 (𝑡𝑝 +𝑈 ⋅ (𝑆𝑇 +
2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

)) ⋅ (
1

(
𝑈 ⋅ 𝐶𝑇
1 − 𝑈

)
)

𝑈⋅𝐶𝑇
1−𝑈−𝑥

𝑡𝑝=0

𝑑𝑡𝑝

= ∫

(

𝑔(𝑡𝑝 +𝑈 ⋅ (𝑆𝑇 +

2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

)) ⋅ (1 − 𝑈)

𝑈 ⋅ 𝐶𝑇

)

𝑈⋅𝐶𝑇
1−𝑈−𝑥

𝑡𝑝=0

𝑑𝑡𝑝

A few notes:

 The 𝑡𝑝 in 𝑔 (𝑡𝑝 + 𝑈 ⋅ (𝑆𝑇 +
2⋅𝑈⋅𝑆𝑇

1−𝑈
)) comes from the outer

integral. We add the fixed costs of recovery to t because we

are picking probabilities for total failure times which occur

after these costs are incurred (i.e. we are converting from 𝑡𝑝 to

𝑡). We divide the resulting probability to spread it out

uniformly amongst all the cases for that total failure time.

 The upper bound on the definite integral decreases as 𝑥

increases because we only integrate the portion of the contour

line below 𝑝𝑐 =
𝑈⋅𝐶𝑇

1−𝑈
 . As we increase 𝑥, the portion of the

contour line we integrate over therefore gets shorter.

Thus, the total contribution of this case to our resiliency budget is:

𝐵2𝑇 = ∫ 𝑥 ⋅

(

∫

(

𝑔(𝑡𝑝 + 𝑈 ⋅ (𝑆𝑇 +

2 ⋅ 𝑈 ⋅ 𝑆𝑇
1 − 𝑈

)) ⋅ (1 − 𝑈)

𝑈 ⋅ 𝐶𝑇

)

𝑈⋅𝐶𝑇
1−𝑈−𝑥

𝑡𝑝=0

𝑑𝑡𝑝

)

⋅ 𝑑𝑥

𝑈⋅𝐶𝑇
1−𝑈

0

4.1.3 Case 3: 𝑡 > 𝑈 ⋅ 𝑆𝑇 +
𝑈⋅(2⋅𝑈⋅𝑆𝑇+𝐶𝑇)

1−𝑈

In this case failure is guaranteed to occur after recovery is complete,
and there is no impact on our resiliency budget. Therefore:

𝐵3𝑇 = 0

Considering all cases, the overall resiliency cost per failure is:

𝐵𝑇 = 𝐵1𝑇 + 𝐵2𝑇 + 𝐵3𝑇

Our goal is to solve for 𝑈 in:

(1 − 𝑆𝐿𝐴) ⋅
𝐹𝑇
𝑁𝐹
= 𝐵𝑇

First, note the use of 𝑁𝐹 in calculating our per failure budget. Our

budget is adjusted thus because failure is more common by a factor

of 𝑁𝐹, reducing the per failure budget. Throughout our modeling

efforts, we are presented with such equations, and while sometimes

it is possible to solve for 𝑈 analytically, in general, we take a

numerical approach. For instance, in this case, we find the zero for:

𝐹(𝑈) = 𝐵𝑇 − (1 − 𝑆𝐿𝐴) ⋅
𝐹𝑇
𝑁𝐹

Since 𝐹(𝑈) is monotonically increasing, 0 < 𝑈 < 1 , 𝐹(0) < 0,

and 𝑓(1) is an asymptote at infinity, we simply do a binary search

between 0 and 1, avoiding any potential instability issues in a
technique like Newton’s method.

Note that in practice, when we optimize cost, we must solve this

equation for each considered setting of 𝑁𝐹 and 𝐶𝑇. We will say

more about how we perform this optimization from a practical point
of view as part of our evaluation in Section 7.1.

Once we determine 𝑈, we can compute 𝑅𝑅𝐹:

𝑅𝑅𝐹 =
1

𝑈

In computing 𝐶𝑜𝑠𝑡𝐹, first consider Figure 11, which shows the

flows and costs associated with active-active periodic

checkpointing. First, note that cost 𝐶1 is the same as in the non-

resilient case, although there are additional flows with these costs
due to the active-active nature of this solution, incurring costs of:

(𝐾𝐹 + 1 + 2 ⋅ 𝑁𝐹) ⋅ 𝐹𝑇

Ingress

Compute1

ComputeN

Storage1

StorageK

C1

C1C1

C1

C1

C1

C1

...

...

C2

C2

C2

C2

C3

C3

C3

Figure 11: Network Flow Diagram for Active-Active Periodic

Checkpointing

We additionally have cost 𝐶2, which is associated with the recovery

flow, and occurs, on average, 𝑁𝐹 times during 𝐹𝑇. This flow

consists of sending and receiving a checkpoint, followed by

catching up to the point of failure by replaying stored input. Since

the expected time since the last checkpoint is 𝐶𝑇/2, the total costs

associated with 𝐶𝑇 are:

𝑁𝐹 ⋅ (2 ⋅ (𝑆𝑇 +
𝐶𝑇
2
))

𝐶3, the network costs of taking a checkpoint, like 𝐶2, involves

sending and receiving checkpoints, except that there is no replay

component, it occurs 𝐹𝑇/𝐶𝑇 times during the failure interval, and is

sent to 𝐾𝐹 storage nodes, leading to a cost of:

(𝐾𝐹 + 1) ⋅ 𝑆𝑇 ⋅ 𝐹𝑇
𝐶𝑇

Summing all the components of 𝐶𝑜𝑠𝑡𝐹 leads us to the following:

𝐶𝑜𝑠𝑡𝐹 =
(𝐾𝐹 + 1 + 2 ⋅ 𝑁𝐹) ⋅ 𝐹𝑇 + 𝑁𝐹 ⋅ 2 ⋅ (𝑆𝑇 +

𝐶𝑇
2
) +

(𝐾𝐹 + 1) ⋅ 𝑆𝑇 ⋅ 𝐹𝑇
𝐶𝑇

(𝐾𝐹 + 3) ⋅ 𝐹𝑇

 OTHER RESILIENCY STRATEGIES
Note that in addition to the two models presented in this paper, we

have full models for the other foundational resiliency approaches

mentioned earlier, and include an implementation of these models

in our evaluation. The detailed models are available in our tech

report [20]. In particular, this includes models for:

 Active-Active Replay

 Single Node Periodic Checkpointing

 On-Demand Checkpointing

For the purposes of interpreting the evaluation presented in this

paper, we now present the network load profiles for these strategies,

and discuss their implications. In particular, these profiles are

shown in Figure 12.

Recovery

Recovery
Checkpoint
& Catchup

Checkpoint
& Catchup

Recovery
Checkpoint
& Catchup

Checkpoint
& Catchup

Checkpoint
& Catchup

AA Replay
Node

Periodic
Checkpointing

Node

On-demand
Checkpointing

Node

Figure 12: NIC Loads for remaining strategies

Similar to single node replay, in active-active replay, once recovery

is complete, the load settles down to the load needed to process the

input. Note that we must find enough bandwidth on the node to

recover quickly enough to meet our SLA given the possibility of all

running copies failing, similar to active-active periodic

checkpointing.

For single node periodic checkpointing, there is one node

responsible for both taking checkpoints, and producing output,

resulting in a load profile which both increases and decreases. Note

that downtime is now experienced both during recovery, and also

while checkpointing and catching up. Since we are not allowed to

increase the bandwidth reservation, this leads to a continuous

reservation level high enough to ensure that our downtime SLA is

not violated. As a result, a significant portion of our reserved

bandwidth may be unused, resulting in significant resource waste.

This is reflected in our cost model for this approach.

For on-demand based approaches, after recovery is over, any node

may, at any time, be used to start a new instance. The load is

therefore characterized by sporadic heavy load associated with

checkpointing. Like single node periodic checkpointing, we

continuously reserve the peak checkpointing load needed to ensure

that the SLA is met, with similar potential for resource waste.

 MODEL VALIDATION
This section validates the accuracy of the models presented in this

paper by comparing the predicted results of applying the model to

actual results achieved using a distributed systems emulator that

runs an actual streaming query using a real streaming data

processor over real advertising data. By executing a real query with

real checkpoints, these experiments also show the effect of

dropping the first assumption in Section 3.2 with respect to

checkpoint size, as well as dropping the third assumption of no

failures during recovery. We show that our models achieve an

actual SLA typically within 1% of the target.

 The Shrink Emulator
In order to evaluate our models, we built a distributed system

emulator which executes a real query over real data using the Trill

streaming query processor [21]. The input to an emulator run

consists of the input to our models, except for the 𝑆𝐿𝐴, as well as

the output of applying our models, including the bandwidth

overprovisioning factor 𝑅𝑅𝐹, and the optimized checkpointing

frequency 𝐶𝑇 where appropriate.

Our system is an emulator in the sense that we have a virtual global

clock which ingresses data into the streaming engine/s in

accordance with an input bandwidth rate. Failures for all running

copies are also randomly generated and scheduled according to an

exponential distribution with the mean time to failure 𝐹𝑇. Where

appropriate, actual query checkpoints are taken in Trill according

to the schedule specified by 𝐶𝑇.

Upon both checkpointing and failure, 𝑅𝑅𝐹 is used to determine the

length of time until normal processing resumes based on both the

actual last successful checkpoint (size and virtual time), and the

amount of input needed to be processed in order to catch up. The

observed virtual downtime is then measured for each run, and

compared to the SLA target used to generate 𝑅𝑅𝐹 and 𝐶𝑇.

In other words, we are emulating the network, and removing CPU

and storage as potential bottlenecks, since these models are

sufficiently complex to support our claims. Our technical report

[20] contains a complete description of how the models presented

in this paper can easily be extended to handle these other resources.

 Experiments
These experiments consist of a series of paired model and emulator

runs. For each run, parameter settings were chosen, including an

uptime SLA, and a checkpoint size, which was measured in Trill

using the tested query on the first part of the dataset. These

parameter settings were then run through each of our models, which

in turn compute 𝑅𝑅𝐹 and, in some cases, 𝐶𝑇. All of these

parameters (except the uptime SLA), were then used to emulate

each strategy. The actual downtime was then measured, and

compared to the target SLA fed to our models.

The data were a random subset of <UserID, Search> pairs from

Bing, spanning about a 2 weeks. The query was a grouped count

aggregate, where the grouping field was (𝑈𝑠𝑒𝑟𝐼𝐷 𝑚𝑜𝑑 𝑘), where

𝑘 was varied to change the size of checkpoints relative to the input

that generates them. We varied the following parameters:

 Target uptime SLA – 2 nines to 5 nines

 𝑆𝑇 (when applicable) – Varied by varying 𝑘, which resulted in

a range of 1.4 to 611.3

 𝑊𝑇 (when applicable) - .01 to 100

 𝑁𝐹 (when applicable) –2 to 5

In all experiments, 𝐹𝑇 was 100. In other words, we varied the

checkpoint size between ~one 100th of a failure period and ~6 times

a failure period. The window size was varied between one ten

thousandth of a failure period and one failure period.

Figure 13 shows the actual uptime measured by the emulator given

the target uptime used to generate 𝑅𝑅𝐹. In all runs, the predicted

uptime was very close to the actual runtime, with very small

variations caused by randomness in failure and slight variation in

checkpoint size. Note that on-demand checkpointing isn’t included

since all copies failed before getting a reliable value for uptime.

 MODEL ANALYSIS
Through a series of parameter explorations of the models presented

in the earlier sections, this section establishes the following about
the resiliency techniques modeled in this paper:

 One size doesn’t fit all: There is no single resiliency strategy

which efficiently covers most of the streaming query space.

Specific strategies can be vastly better or worse compared to

others, depending on scenario and environment

characteristics. This is true even when considering only
realistic scenarios (by orders of magnitude!).

 No actionable “rules of thumb”: While some strategies are

better than others for specific scenarios, the tradeoffs are quite

complex, and a model is needed to wade through the efficacy
of different approaches for different scenarios.

 Active-active periodic checkpointing, an obvious

generalization of single node checkpointing, is not discussed

in the literature, likely due to the intuition that it is inferior to

active-active on-demand checkpointing. Our models,
however, show this strategy to be superior in many situations.

 Computing 𝑹𝑹𝑭 and 𝑪𝒐𝒔𝒕𝑭
While our model for single node replay allows computation of our

metrics directly from the parameters, all other techniques require

that we numerically find the zero of a function of 𝑈 = 1/𝑅𝑅𝐹 in

order to determine the value of 𝑅𝑅𝐹 which exactly consumes all

available budget.

Fortunately, the shape of these functions is straightforward, in that

they monotonically increase with 𝑈 between 0 and 1, which are the

bounds of interest. This allows us to do a binary search, avoiding

the instabilities associated with techniques like Newton’s method.

Additionally, techniques that use redundant active configurations

have an additional layer of complexity in the expression of these

functions in that the functions vary depending on the number of

actives in the configuration, and can become extremely complex

(e.g. the most complex function consumes an entire screen in

Visual Studio). These functions are computed automatically from

the vastly simpler integrals presented in this paper using

Mathematica, for specific settings of 𝑁𝐹.

Finally, the techniques in this paper which periodically checkpoint

must determine the setting of 𝐶𝑇 which optimizes some notion of

cost. At times we will actually optimize for minimal 𝐶𝑜𝑠𝑡𝐹. At

other times we will find the optimal 𝐶𝑜𝑠𝑡𝐹 for which some bound

on 𝑅𝑅𝐹 is met. For instance, we might find the setting for 𝐶𝑇 which

minimizes 𝐶𝑜𝑠𝑡𝐹 where 𝑅𝑅𝐹 is at most 2. Once again, we exploit

the shape of the cost curves to provide fully stable optimal

solutions. In this case, the curves are more complex, as they have a

single peak, so a simple binary search is insufficient. Our numerical

approaches are fully described in our technical report [20].

 Experimental Setup
When comparing the resiliency approaches in this paper, there are

generally known qualitative “rules of thumb”, which state

conditions under which some of these techniques will be superior.

For instance, replay based solutions tend to work better when

checkpoints are large compared to the input that generates them.

Also, there is a general consensus that active/active solutions

become more attractive as the SLA becomes more difficult to

satisfy. But where exactly are the cross-over points? And how harsh

is the penalty for choosing the wrong technique? Are there other

factors to consider? Also, we are the first to propose active-active

periodic checkpointing solutions (for streaming). How do they

compare to the on-demand checkpointing based solutions?

These questions and others will be explored through a series of

experiments which evaluate 𝐶𝑜𝑠𝑡𝐹 and 𝑅𝑅𝐹 for specific resiliency

techniques and parameter settings using the models and evaluation

techniques described in this paper. It is our intent to make available

both the C# model evaluation code with which these experiments

were conducted, as well as the Mathematica scripts used to

integrate the functions described in our models.

 Single Node: Replay vs. Checkpointing
We start with scenarios that contrast replay and checkpointing.

Intuitively, checkpoint size, as compared to input size, would seem

to provide the most interesting source of contrast. If the checkpoint

is small compared to the input that generated it, this would

intuitively favor checkpointing, as we trade off checkpointing costs

vs. replay costs. On the other hand, if the checkpoint is much larger

than the input that generated it, this would seem to favor replay.
Some situations which favor checkpointing are:

Figure 13: Target vs Actual Uptime

Figure 14: Replay vs. Checkpoint - Vary

Checkpoint Blowup

Figure 15: Replay vs. Checkpoint -

Vary WT

 Aggregation scenarios where the internal state is a

significantly reducing rollup

 “Needle in a haystack” queries, where rare events, and the

events around them are analyzed.

There are also realistic situations which favor replay. For instance:

 The query logic is very complicated, involving a large

number of stateful streaming operations

 The query logic contains an operation, like a cross-product,

which is highly expansionary, and is followed by another

non-reducing stateful operation.

There are many scenarios, covering a wide spectrum of

possibilities. Where is the crossover point? How bad do things get

in the extreme cases? Does the right choice depend on something

other than checkpoint size? To answer these questions, we
performed a sensitivity analysis, where we varied the following:

 Window size: Varied from .001 day to 1000 days (default 1)

 Checkpoint size: Varied from .001 windows of input to 1000

windows of input (default 1)

 The uptime SLA: from 50% to 99.999% (default 90%)

In addition, for all experiments, 𝐾𝐹 = 3, and 𝐹𝑇 = 1 month. In all

cases, we varied one attribute and kept the other two constant, at

their default values unless otherwise specified. Initially, we test

our intuition about the sensitivity to checkpoint size. The result is

shown in Figure 14.

As expected, as the checkpoint size increases relative to the input

size, periodic checkpointing becomes more and more costly,

reaching nearly 100x the cost of an unresilient solution. In contrast

the cost of replay doesn’t change at all as checkpoints get larger.

The story is identical for 𝑅𝑅𝐹 which, for periodic checkpointing,

grows to over 400x!

Next, we consider the sensitivity of these two techniques to window

size, with data reducing checkpoints (checkpoint size = 0.01).

Clearly both techniques become more expensive as window size

increases, but which one’s cost grows faster? The result of the

experiment is shown in Figure 15.

While both strategies become more expensive in response to larger

windows, it is clear that replay suffers more, growing to 12x the

cost of an unresilient solution, while checkpointing only grows to

3.4x the cost of an unresilient solution. The story becomes even

more stark when one considers the effect on 𝑅𝑅𝐹, which reaches

over 300x for replay, but is only 13x for checkpointing.

The story is less intuitive when considering the effect of varying

the SLA, which is shown in Figure 16 and Figure 17. Not

surprisingly single node periodic checkpointing becomes highly

problematic with tough SLAs, reaching costs over 3000x times the

cost of an unresilient solution, and requiring network capacity on

compute nodes almost 20,000x more than the input rate.

On the other hand, while replay also needs to initially find over

2000 times the input rate network capacity on compute nodes, the

overall cost remains at about the cost of an unresilient solution.

Once a window’s worth of data is replayed on a recovering node,

the cost becomes the same as an unresilient solution. The SLA only

affects how quickly that window’s worth of data must be replayed.

In fact, for very permissive SLAs, we have longer than a window

to replay the first window’s worth of data, leading to costs lower

than an unresilient solution, which never fails!

Checkpointing, on the other hand, continues to pay a price for tough

SLAs after recovery, since the taking of each checkpoint also incurs

a downtime cost, making reduction of the initial reservation

untenable. It is worth noting that a tradeoff is possible with periodic

checkpointing, where the bandwidth reservation is higher at the

beginning, incurring a lower resiliency budget for recovery, and

where that extra budget is used to lower the reservation during

normal operation. This will increase 𝑅𝑅𝐹 but reduce 𝐶𝑜𝑠𝑡𝐹. We

leave it to future work to examine this tradeoff.

 Periodic Checkpointing Strategies
Conventional wisdom is that for weak SLAs, single node solutions

are the most cost effective, but as the downtime SLA becomes more

strict, active/active solutions become more attractive. How quickly

does this effect become important, and how important? To address

these questions, we compare single node periodic checkpointing

with 2 node periodic checkpointing, where we vary the downtime,

using the default values established in the previous section for the

other parameters. The results are shown in Figure 18 and Figure 19.

First, note that the conventional wisdom concerning the cost of

single vs. multinode solutions is technically correct, but practically

wrong! With even just a single 9 of resiliency SLA, 2 node periodic

checkpointing is already cheaper than the single node version! As

the SLA becomes more strict, the advantage of using just 2 nodes

becomes quite extreme. While the dominance of multinode

checkpointing over single node is unintuitive at first, one must

consider that with a single node, there is no spare to cover both

checkpointing and recovery costs. As a result, with a single node,

we must overprovision networking during normal operation to

cover the times during which more bandwidth is needed for

checkpointing. The multinode version doesn’t suffer from this

problem, which is why cost is independent of the SLA.

On the other hand, 𝑅𝑅𝐹 for multinode periodic checkpointing isn’t

independent of the SLA, and becomes quite high for tough SLAs

with just 2 nodes. Fortunately, we can use more nodes to combat

 Figure 16: Replay vs. Periodic - Vary SLA,

Measure CostF

 Figure 17: Replay vs. Periodic - Vary

SLA, Measure RRF

Figure 18: 1 vs. 2 Node Periodic - Vary SLA,

Measure CostF

this problem. We therefore studied the effect of varying 𝑁𝐹 for

tough SLAs. In this experiment, we used default values for all

parameters except SLA, which was .99999, and the number of

nodes, which we varied. The results are shown in Figure 20.

Increasing the number of nodes reduces 𝑅𝑅𝐹, while increasing

costs. Fortunately, the cost increase isn’t prohibitive, with the lines

crossing at about 5 nodes, where 𝑅𝑅𝐹 and 𝐶𝑜𝑠𝑡𝐹 are both about 2.5.

 Multinode Periodic vs. On-Demand

Checkpointing
In our evaluation so far, we have only considered periodic

checkpointing. In fact, the literature on multinode checkpointing

focuses exclusively on on-demand checkpointing. To our

knowledge, we are the first to suggest that this obvious

generalization of single node checkpointing could be worth

considering. The purpose of this section is to, therefore, understand

the networking cost of multinode periodic checkpointing as

compared with on-demand checkpointing.

The comparison is complicated by the fact that while all techniques

other than on-demand checkpointing are backed by highly reliable

storage systems (e.g. 11 9s over a 1 year span for S3 [22]), on-

demand, lacking such a stabilizer, must also meet a durability SLA.

We include such a modeling approach in our technical report [20].

In our experiments, here, we chose the maximum 𝑅𝑅𝐹 between the

two types of analysis needed to meet all SLAs (uptime and

durability). We chose as our durability SLA for on-demand

checkpointing, 5 9s of durability over a span of 10 years. This is

actually a much weaker durability requirement than S3 provides.

The comparison is further complicated by the existence of two

tunable parameters, the checkpointing period (i.e. 𝐶𝑇), which is a

parameter for periodic checkpointing, and the number of replicated

compute nodes (i.e., 𝑁𝐹), which is a parameter for both strategies.

In addition, one can trade off 𝑅𝑅𝐹 and 𝐶𝑜𝑠𝑡𝐹 for both strategies by

varying the number of nodes.

In order to compare the techniques in a sensible way, we therefore,

for a particular scenario, vary 𝑅𝑅𝐹, and calculate the optimal 𝐶𝑜𝑠𝑡𝐹

across all possible settings of 𝐶𝑇 and 𝑁𝐹. This optimal value is

calculated by calculating the optimal 𝐶𝑜𝑠𝑡𝐹 for each setting of 𝑁𝐹

between 2 and 10 which is guaranteed to have 𝑅𝑅𝐹 of at most the

target. When reaching the target 𝑅𝑅𝐹 is not possible, that setting

for 𝑁𝐹 is not used. Calculating the optimal 𝐶𝑜𝑠𝑡𝐹 for a particular

setting of 𝐶𝑇 and 𝑅𝑅𝐹 is straightforward and is described in the

Appendix. Note that we use approaches that are guaranteed to be

stable, and are not approximations, as in previous calculations.

We now compare the two multinode checkpointing strategies,

choosing default values for all parameters except the SLA, which

is set to .99999. The results are shown in Figure 21.

First, note that for almost every case, periodic checkpointing is

actually cheaper than on-demand checkpointing! The cross-over

point is actually at about 2, which is not a very large value for 𝑅𝑅𝐹.

 MODELS FOR CACHING
Recent work, such as MillWheel [13], exploits the value of caching

for workloads where query state is very large, long living,

partitionable, and highly inactive after an initial period of activity.

Online advertising, a problem of such high value that large

distributed systems are built for the sole purpose of solving this

problem, is an example of such a workload. In particular, users’

browsing and ad related activity are tracked for a long period of

time (e.g. a week). But most browsing sessions are, in fact, over

after a short period of time (e.g. 10s of minutes), and will not

contribute further to the streaming calculation.

Keeping all the session state in expensive DRAM is a poor choice

for the states which are unlikely to be accessed. The problem is

exacerbated for checkpointing strategies, which repeatedly

checkpoint inactive states, significantly increasing the cost of

resiliency.

One solution is to push the inactive states into replicated, cheap

persistent storage, and only cache, in memory, the states which are

still active. This significantly reduces the memory footprint of the

compute nodes, which helps with both memory cost and resiliency.

MillWheel advocates using an existing key/value store for storing

inactive states, but if one is running one of the active/active

resiliency techniques to protect compute nodes, a better choice

could be for the replicas to store their inactive states in locally

attached storage. This would completely eliminate the network

traffic associated with sending the states to the distributed store.

Reasoning about resiliency for these cases is straightforward, as
long as we additionally know:

 The in-memory state reduction from caching.

 The required bandwidth for sending/receiving inactive states

to/from storage.

In particular, the state reduction from caching is a savings applied

directly to memory costs, and checkpoint sizes. The reduced

checkpoint sizes are then fed into the cost model. The bandwidth

for sending and receiving inactive states is used to calculate

additional storage costs, as well as network costs if a distributed

key/value store is used. Note that if locally attached storage is used

to store inactive states, part of the recovery cost is to transmit the

 Figure 19: 1 vs. 2 Node Periodic - Vary SLA,

Measure RRF

 Figure 20: Multinode Periodic - Vary

Nf, Measure CostF & RRF

 Figure 21: Periodic vs On-Demand

 Checkpointing - Vary RRf

cached states on other nodes, similar to failure of a node in the

key/value store, which must be accounted for if such a store is used.

 RELATED WORK
Streaming Resiliency Message-passing systems have

traditionally employed a wide variety of resiliency strategies,

including logging, checkpointing and redundancy; see [19] for a

survey. In data stream processing systems, active-active with on-

demand checkpointing (also called active replication, active

standby, or process-pairs) approaches were first proposed in Flux

[5], and were adopted by several systems [10]. Timestream [8] uses

checkpointing, along with leveraging query semantics to determine

how much replay is needed. D-Streams [7] treats a streaming query

as a sequence of micro-batch computations, with prior micro-batch

state serving as checkpoints. Several systems achieve resiliency by

offloading query state [13][14][15], either to resilient databases or

distributed key-value stores. In this paper, we describe and/or

discuss how the Shrink framework can model such resiliency

techniques.

Several research papers [1][2] argue that active replication in

streaming systems suffers from a high resource overhead, e.g.,

doubling the number of required processing nodes. In this work, we

show that depending on the required SLA, active replication may

in fact be the cheapest strategy by huge margins. On the other hand,

Hwang et al. [11] use analysis and simulations to similarly report

that active standby is superior to passive standby as it can achieve

much shorter recovery time with a similar amount of overhead. Gu

et al. [4] perform an empirical evaluation of the two resiliency

strategies: active standby and passive standby, and report that

passive standby presents a different tradeoff from active standby:

longer recovery time, but 90% less overhead. These techniques

provide useful intuitions for relative costs; however, unlike Shrink,

they do not take the uptime SLA into account, nor do they model

varying resource reservation requirements. These factors are

critical for the cloud deployments of today, and lead to the

completely different analysis techniques presented in this paper.

Offline Query Resiliency DBMSs generally provide fault-

tolerance through replication [17]; however they do not provide

intra-query fault-tolerance. Phoenix [18] explores resiliency for

Web enterprise applications. Techniques for query suspend and

resume [16] use models to choose techniques for rollback recovery

in a DBMS if a long-running query fails mid-execution, which is

similar to the streaming query recovery problem. Map-Reduce

provides intra-query resiliency by materializing output between the

map and reduce stages, and replaying these tuples on failure.

Upadhyaya et al. [9] propose a cost model for the total runtime of

an online (sharded) query plan over a bounded dataset in a

distributed setting, across several resiliency strategies (they do not

consider active standby). In contrast, we focus on modeling

resiliency overheads for real-time streaming queries in the context

of an overall SLA for downtime, and include active-active solutions

in the space of strategies considered.

 CONCLUSIONS & FUTURE WORK
This paper has introduced the first, comprehensive, cloud friendly

comparison between different resiliency techniques for streaming

queries. In particular, we take an uptime SLA and resource

reservation driven approach, where the reservation is allowed to

decrease over time. This is highly appropriate for the multi-tenant

cloud environments in which these queries typically run.

In this paper, we show that specific resiliency strategies can be

vastly better or worse compared to others by orders of magnitude,

there are no actionable “rules of thumb”, informative models are

tractable, our models are accurate (typically within 1% in practice),

and can be adapted to describe many resiliency strategies, including

distributed queries, sharding, and caching. We also introduce

active-active periodic checkpointing, a clear generalization of

single node checkpointing, and show that it is much better than on-

demand caching in most situations.

This paper focuses specifically on streaming queries, but many

distributed services in the cloud face similar design choices. The

uptime guarantees they provide can likely be modeled with an

approach similar to what is described here. Adapting the techniques

presented here to these other settings is likely very worthwhile.

REFERENCES
[1] A. Martin, C. Fetzer, et al. Active Replication at (Almost) No Cost. In

SRDS, 2011.

[2] Z. Zhang, Y. Gu, et al. A Hybrid Approach to HA in Stream
Processing Systems. In ICDCS, 2010.

[3] J. H. Hwang, Y. Xing, et al. A Cooperative, Self-Configuring High-

Availability Solution for Stream Processing. In ICDE, 2007.

[4] Y. Gu, Z. Zhang, et al. An Empirical Study of High Availability in
Stream Processing Systems. In Middleware, 2009.

[5] M. Shah, J. M. Hellerstein, E. Brewer. Highly Available, Fault-
Tolerant, Parallel Dataflows. In SIGMOD, 2004.

[6] M. Balazinska et al. Fault-tolerance in the Borealis distributed stream

processing system. TODS, Vol. 33, Issue 1, March 2008.

[7] M. Zaharia et al. Discretized streams: Fault-tolerant streaming
computation at scale. In SOSP, 2013.

[8] Z. Qian et al. Timestream: Reliable stream computation in the cloud.

In EuroSys, 2013.

[9] P. Upadhyaya et al. A latency and fault-tolerance optimizer for online
parallel query plans. In SIGMOD, 2011.

[10] J-H. Hwang, U. Cetintemel, and S. Zdonik. Fast and Highly-Available
Stream Processing over Wide Area Networks. In ICDE, 2008.

[11] J-H. Hwang et al. High-availability algorithms for distributed stream

processing. In ICDE, 2005.

[12] G. Jacques-Silva et al. Towards automatic fault recovery in System-
S. In ICAC, 2007.

[13] T. Akidau et al. MillWheel: fault-tolerant stream processing at internet

scale. In VLDB, 2013.

[14] D. Peng and F. Dabek. Large-scale Incremental Processing Using
Distributed Transactions and Notifications. In OSDI, 2010.

[15] J. Meehan et al. S-Store: Streaming Meets Transaction Processing. In
VLDB, 2015.

[16] B. Chandramouli, C. N. Bond, S. Babu, and J. Yang. Query suspend

and resume. In SIGMOD, 2007.

[17] A. Ray. Oracle data guard: Ensuring disaster recovery for the
enterprise. An Oracle white paper, Mar. 2002.

[18] D. Lomet. Dependability, abstraction, and programming. In DASFAA

2009.

[19] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A

survey of rollback-recovery protocols in message-passing systems.

ACM Comput. Surv., 34(3):375–408, 2002.

[20] B. Chandramouli and J. Goldstein. Shrink: Prescribing Resiliency

Solutions for Streaming. Technical Report, Microsoft Research.
http://aka.ms/shrink-tr.

[21] B. Chandramouli et al. Trill: A High-Performance Incremental Query
Processor for Diverse Analytics. In PVLDB, 2014.

[22] Amazon S3. http://aws.amazon.com/s3/.

[23] K. S. Trivedi. Probability and Statistics with Reliability, Queuing and

Computer Science Applications. John Wiley & Sons, 2002.

[24] Azure Service Fabric. http://aka.ms/vv5909.

