
Private Authentication

Mart́ın Abadi

University of California at Santa Cruz

Cédric Fournet

Microsoft Research

Abstract

Frequently, communication between two principals reveals their identities and presence to
third parties. These privacy breaches can occur even if security protocols are in use; indeed,
they may even be caused by security protocols. However, with some care, security protocols
can provide authentication for principals that wish to communicate while protecting them
from monitoring by third parties. We discuss the problem of private authentication and
present two protocols for private authentication of mobile principals. Our protocols allow
two mobile principals to communicate when they meet at a location if they wish to do
so, without the danger of tracking by third parties. We also present the analysis of one of
the protocols in the applied pi calculus. We establish authenticity and secrecy properties.
Although such properties are fairly standard, their formulation in the applied pi calculus
makes an original use of process equivalences. In addition, we treat identity-protection
properties, thus exploring a formal model of privacy.

1 Privacy, authenticity, and the applied pi calculus

Although privacy may coexist with communication, it often does not, and there
is an intrinsic tension between them. Often, effective communication between two
principals requires that they reveal their identities to each other. Still, they may wish
to reveal nothing to others. Third parties should not be able to infer the identities
of the two principals, nor to monitor their movements and their communication
patterns. For better or for worse, they often can. In particular, a mobile principal
may advertise its presence at a location in order to discover and to communicate
with certain other principals at the location, thus revealing its presence also to third
parties.

Authentication protocols may help in addressing these privacy breaches, as follows.
When a principalA wishes to communicate with a principalB, and is willing to

To appear in TCS F-WAN special issue Feb. 2003 (Revised: Nov. 2003)

http://www.cogs.susx.ac.uk/users/vs/fwan/

disclose its identity and presence toB but not to other principals,A might demand
thatB prove its identity before revealing anything. An authentication protocol can
provide this proof. It can also serve to establish a secure channel for subsequent
communication betweenA andB.

However, authentication protocols are not an immediate solution, and they can
in fact be part of the problem. Privacy is not one of the explicit goals of com-
mon authentication protocols. These protocols often send names and credentials in
cleartext, allowing any eavesdropper to see them. An eavesdropper may also learn
substantial information from encrypted packets, even without knowing the corre-
sponding decryption keys; for example, the packets may contain key identifiers that
link them to other packets and to certain principals. Furthermore, in the course of
authentication, a principal may reveal its identity to its interlocutor before knowing
the interlocutor’s identity with certainty. IfA andB wish to communicate but each
wants to protect its identity from third parties, who should reveal and prove theirs
first?

This last difficulty is more significant in peer-to-peer communication than in client-
server communication, although the desire for privacy appears in both settings.

• In client-server systems, the identity of servers is seldom protected. However, the
identity of clients is not too hard to protect, and this is often deemed worthwhile.
For example, in the SSL protocol [20], a client can first establish an “anonymous”
connection, then authenticate with the protection of this connection, communi-
cating its identity only in encrypted form. An eavesdropper can still obtain some
addressing information, but this information may be of limited value if the client
resides behind a firewall and a proxy. (Similarly, the Skeme protocol [26] pro-
vides support for protecting the identity of the initiator of a protocol session, but
not the identity of the responder; the JFK protocol [8] is also asymmetric in this
respect.)

• The symmetry of peer-to-peer communication makes it less plausible that one
of the parties in an exchange would be willing to volunteer its identity first. Pri-
vacy may nevertheless be attractive. In particular, mobile principals may want
to communicate with nearby peers without allowing others to monitor them (cf.
Bluetooth [12] and its weaknesses [25]). Thus, privacy seems more problem-
atic and potentially more interesting in the fluid setting of mobile, peer-to-peer
communication.

This paper gives a definition of a privacy property (first informally, then in a process
calculus). This property implies that each principal may reveal and prove its identity
to certain other principals, and hide it from the rest. The definition applies even if
all parties are peers and have such privacy requirements.

Standard authentication protocols do not satisfy the privacy property. However, we
show two protocols that do, and undoubtedly there are others (to the extent that in-

2

formally described protocols can satisfy informally defined properties). In our pro-
tocols, a session between two principalsA andB consists of messages encrypted
under public keys and under session keys in such a way that onlyA andB discover
each other’s identity. The protocols differ from standard protocols by the absence of
cleartext identity information. More subtly, they rely on some mild but non-trivial
assumptions on the underlying cryptographic primitives. One of the protocols also
includes a subtle “decoy” message in order to thwart certain active attacks.

Our protocols do not assume that the principalsA andB have a long-term shared
secret. Neither do they require an infrastructure of on-line trusted third parties,
or suppose that the world is organized into domains and that each principal has
a home domain. In this respect, the protocols contrast with previous ones for re-
lated purposes (see for example [30,36,11,9] and section9). Because of their weak
infrastructure needs, the protocols are consistent with ad hoc networking.

As an example, consider a mobile principalA that communicates with others when
they are in the same (physical or virtual) location. In order to establish connec-
tions,A might constantly broadcast “hello, I amA, does anyone want to talk?”. An
eavesdropper could then detectA’s presence at a particular location. An eavesdrop-
per could even monitorA’s movements without much difficulty, given sensors at
sufficiently many locations. Our protocols are designed with this scenario in mind.
Suppose that two principalsA andB arrive anonymously at a location. AlthoughA
andB may know of each other in advance, they need not have a long-term shared
key. Furthermore, neither may be certain a priori that the other one is present at this
location. If they wish to communicate with one another, our protocols will enable
them to do it, without the danger of being monitored by others.

This paper also presents the analysis of one of our protocols in the applied pi cal-
culus [2], a recent variant of the pi calculus. This analysis is worthwhile for several
reasons:

• As we discussed above, the protocol aims to guarantee that third parties do not
learn the identity of protocol participants. Although this property and similar
ones appear prominently in several recent protocol designs, they have hardly
been specified and proved precisely to date. Therefore, this paper develops an
approach for stating and deriving those properties.

• In addition, the protocol is for a standard purpose, namely establishing a session
(with associated cryptographic keys), and it is concerned with standard security
properties, such as authenticity and secrecy. Therefore, the analysis of the proto-
col exemplifies concepts and techniques relevant to many other protocols.

• The protocol includes some delicate features, and is not a trivial example in-
vented in order to illustrate formal techniques. On the other hand, the protocol
remains fairly simple, so we can give relatively concise treatments of its main
properties.

3

In the applied pi calculus, the constructs of the classic pi calculus can be used to
represent concurrent systems that communicate on channels, and function symbols
can be used to represent cryptographic operations and other operations on data.
Large classes of important attacks can also be expressed in the applied pi calculus,
as contexts. These include the typical attacks for which a symbolic, mostly “black-
box” view of cryptography suffices (but not for example some lower-level attacks
that depend on timing behavior or on probabilities). Thus, in general, the applied pi
calculus serves for describing and reasoning about many of the central aspects of
security protocols. In particular, it is an appropriate setting for the analysis of the
protocol for private authentication. Some of the properties of the protocol can be
nicely captured in the form of equivalences between processes. Moreover, some of
the properties are sensitive to the equations satisfied by the cryptographic functions
upon which the protocol relies. The applied pi calculus is well-suited for expressing
those equivalences and those equations.

In a sense, private authentication is about hiding the names (or identities) of pro-
tocol participants, while the applied pi calculus permits hiding the names that rep-
resent private communication channels and secret cryptographic keys (through the
restriction constructν). Despite this superficial coincidence, the name hiding of pri-
vate authentication and that of the applied pi calculus are rather different. However,
the name hiding of the applied pi calculus is crucial for expressing the protocol
under consideration and for deriving the equivalences that express its properties.

The next section defines and discusses the privacy property sketched above. Sec-
tion 3 presents the assumptions on which our protocols rely. Section4 develops
the two protocols and some optimizations and extensions. Section5 explains the
applied pi calculus. Section6 shows how to express one of our protocols in the
applied pi calculus. Section7 treats the authenticity and secrecy properties of this
protocol; section8, its identity-protection properties. Section9 discusses some re-
lated problems and related work (including, in particular, work on message untrace-
ability). Section10concludes. An appendix contains proofs for the main claims of
sections7 and8.

Parts of this paper have appeared in preliminary form in proceedings [1,19].

2 The problem

Although we do not aim to provide a general definition of privacy (partly because
one might have to be too vague or empty), we focus on the following frequent
scenario in which privacy is a central concern: two or more mobile interlocutors
wish to communicate securely, protecting their messages and also their identities
from third parties. This scenario arises often in mobile telephony and mobile com-
puting [18,34,30,36,9,25]. In these contexts, roaming users may want to conceal

4

their identities from others and even from infrastructure providers and operators.
Furthermore, identity protection is a goal of several recent protocols for communi-
cation at the IP level [26,8].

More specifically, suppose that a principalA is willing to engage in communication
with some set of other principalsSA (which may change over time), and thatA is
willing to reveal and even prove its identity to these principals. This proof may be
required, for instance ifA wishes to make a sensitive request from each of these
principals, or if these principals would reveal some sensitive data only toA. The
problem is to enableA to authenticate to principals inSA without requiringA to
compromise its privacy by revealing its identity orSA more broadly:

(1) A should be able to prove its identity to principals inSA, and to establish
authenticated and private communication channels with them.

(2) A should not have to indicate its identity (and presence) to any principal out-
sideSA.

(3) Although an individual principal may deduce whether it is inSA from A’s
willingness to communicate,A should not have to reveal anything more about
SA.

Goal1 is common; many cryptographic protocols and security infrastructures have
been designed with this goal in mind.

Goal 2 is less common. As discussed above, it is seldom met with standard pro-
tocols, but it seems attractive. WhenC is a principal outsideSA, this goal implies
thatA should not have to prove its identity toC, but it also means thatA should
not have to give substantial hints of its identity toC.

We could consider strengthening goal2 by saying thatA should have to reveal its
identity only to principalsB ∈ SA such thatA ∈ SB, in other words, to principals
with which A can actually communicate. On the other hand, ifSB is underB′s
control,B could letA ∈ SB, or pretend that this is the case, in order to learn
A’s identity. (We revisit whetherSB is underB′s control with the definition of
compliant principal in section6.5.)

Goal3 concerns a further privacy guarantee. Like goal2, it is somewhat unusual,
seldom met with standard techniques, but attractive from a privacy perspective. It
might be relaxed slightly, in particular allowingA to reveal the approximate size
of SA.

Note thatA may be willing to engage in anonymous communication with some set
of principals in addition toSA. We expect thatA is programmed and configured so
that it does not spuriously reveal its identity (or other private data) to those other
principals accidentally. In actual systems, however, principals may well reveal and
even broadcast their names unnecessarily.

5

3 Assumptions

This section introduces the assumptions on which our protocols rely. They gener-
ally concern communication and cryptography, and the power of the adversary in
these respects. (Menezes et al. [29] give the necessary background in cryptography;
we rely only on elementary concepts.) Although the assumptions may not hold in
many real systems, they are realistic enough to be implementable, and advanta-
geously simple.

3.1 Communication

We assume that messages do not automatically reveal the identity of their senders
and receivers—for example, by mentioning them in headers. When the location of
the sender of a message can be obtained, for example, by triangulation, this assump-
tion implies that the location does not reveal the sender’s identity. This assumption
also entails some difficulties in routing messages. Techniques for message untrace-
ability (see for example [15,32,33] and section9) suggest some sophisticated so-
lutions. Focusing on a relatively simple but important case, we envision that all
messages are broadcast within some small area, such as a room or a building.

We aim to protect against an adversary that can intercept any message sent on a
public channel (within the small area under consideration or elsewhere). In addi-
tion, the adversary is active: it can send any message that it can compute. Thus, the
adversary is essentially the standard adversary for security protocols, as described,
for example, by Needham and Schroeder [31].

3.2 Cryptography

We also assume that each principalA has a public keyKA and a corresponding
private keyK−1

A , and that the association between principals and public keys is
known. This association can be implemented with the help of a mostly-off-line cer-
tification authority. In this case, some additional care is required: fetching certifi-
cates and other interactions with the certification authority should not compromise
privacy goals. Alternatively, the association is trivial if we name principals by their
public keys, for example as in SPKI [17]. Similarly, it is also trivial if we use or-
dinary principal names as public keys, with an identity-based cryptosystem [37].
Therefore, we may basically treat public keys as principal names.

WhenK−1 is a private key, we write{M}K−1 for M signed usingK−1, in such
a way thatM can be extracted from{M}K−1 and the signature verified using the
corresponding public keyK. As usual, we assume that signatures are unforgeable.

6

Similarly,1 whenK is a public key, we write{M}K for the encryption ofM
usingK. We expect some properties of the encryption scheme:

(1) Only a principal that knows the corresponding private keyK−1 should be able
to recover the plaintext of a message encrypted under a public keyK.

(2) Furthermore, decrypting a message with a private keyK−1 should succeed
only if the message was encrypted under the corresponding public keyK, and
the success or failure of a decryption should be evident to the principal who
performs it.

(3) Finally, encryption should be which-key concealing [7,10,13], in the following
sense. Someone who sees a message encrypted under a public keyK should
not be able to tell that it is underK without knowledge of the plaintext or the
corresponding private keyK−1, even with knowledge ofK and other mes-
sages underK. Similarly, someone who sees several different messages en-
crypted under a public keyK should not be able to tell that they are under the
same key without knowledge of the corresponding private keyK−1.

Property1 is essential and standard. Properties2 and3 are not entirely standard.
They are not implied by standard computational specifications of encryption (e.g.,
[21]) but appear in formal models (e.g., [5]). Property2 can be implemented by
including appropriate redundancy in encrypted messages, without compromising
secrecy properties. It is not essential, but we find it convenient, particularly for
the second protocol and its enhancements. Property3 is satisfied with standard
cryptosystems based on the discrete-logarithm problem [10,13], but it excludes im-
plementations that tag all encryptions with key identifiers. Although the rigorous
study of this property is relatively recent, it seems to be implicitly assumed in earlier
work; for example, it seems to be necessary for the desired anonymity properties
of the Skeme protocol [26].

4 Two protocols

This section shows two protocols that address the goals of section2. It also dis-
cusses some variants of the protocols.

The two protocols are based on standard primitives and techniques (in particular on
public-key cryptography), and resemble standard protocols. The first protocol uses
digital signatures and requires that principals have loosely synchronized clocks.
The second protocol uses only encryption and avoids the synchronization require-

1 These notations are concise and fairly memorable, but perhaps somewhat misleading.
In particular, they imply that the same key pair is used for both public-key signatures and
encryptions, and that the underlying algorithms are similar for both kinds of operations (as
in the RSA cryptosystem). We do not need to assume these properties.

7

ment, at the cost of an extra message. The second protocol draws attention to diffi-
culties in achieving privacy against an active adversary.

Undoubtedly, other protocols satisfy the goals of section2. In particular, these goals
seem relatively easy to satisfy when all principals confide in on-line authentication
servers. However, the existence of ubiquitous trusted servers may not be a reason-
able assumption. The protocols of this section do not rely on such trusted third
parties.

4.1 First protocol

In the first protocol, when a principalAwishes to talk to another principalB, andB
is willing to talk to a set of principalsSB, A andB proceed as follows:

• A generates fresh key materialK and a timestampT , and sends out

“hello” , {“hello” , KA, {KA, KB, K, T}K−1
A
}KB

The tag “hello” indicates the type of the message; it is not essential in this par-
ticular protocol. The key material may simply be a session key, for subsequent
communication; it may also consist of several session keys and identifiers for
those keys. The signature means that the principal with public keyKA (that is,
A) says that it has generated the key materialK for communicating with the prin-
cipal with public keyKB (that is,B) near timeT . The explicit mention ofKB is
crucial for security (see [6]).
• Upon receipt of any message that consists of “hello” and (apparently) a ci-

phertext, the recipientB tries to decrypt the second component using its pri-
vate key. If the decryption yields a keyKA and a signed statement of the form
{KA, KB, K, T}K−1

A
, thenB extractsKA andK, verifies the signature us-

ing KA, ensures that the message is not a replay using the timestampT , and
checks thatA ∈ SB. If the plaintext is not of the expected form, if the message
is a replay, or ifA /∈ SB, thenB does nothing.
• A andB may useK for encrypting subsequent messages. Each of these messages

may be tagged with a key identifier, derived fromK but independent ofA andB.
WhenA orB receives a tagged message, the key identifier suggests the use ofK
for decrypting the message.

This protocol is based on the Denning-Sacco public-key protocol and its corrected
version [16,6]. Noticeably, however, this protocol does not include any identities
in cleartext. In addition, the protocol requires stronger assumptions on encryption,
specifically that public-key encryption underKB be which-key concealing. This
property is needed so thatA’s encrypted message does not reveal the identity of its
(intended) recipientB.

8

WhenA wishes to communicate with several principalsB1, . . . ,Bn at the same
time (for example, whenA arrives at a new location),A may simply startn in-
stances of the protocol in parallel, sending different key material to each ofB1,
. . . ,Bn. Those ofB1, . . . ,Bn who are present and willing to communicate withA
will be able to do so using the key material. (Section4.4describes optimizations of
the second protocol for this situation.)

4.2 Second protocol

In the second protocol, when a principalA wishes to talk to another principalB,
andB is willing to talk to a set of principalsSB, A andB proceed as follows:

• A generates a fresh, unpredictable nonceNA, and sends out

“hello” , {“hello” , NA, KA}KB

(In security protocols, nonces are quantities generated for the purpose of being
recent; they are typically used in challenge-response exchanges.)

• Upon receipt of a message that consists of “hello” and (apparently) a ciphertext,
the recipientB checks that it is not a replay2 and tries to decrypt the second
component using its private key. If the decryption succeeds, thenB extracts the
corresponding nonceNA and keyKA, checks thatA ∈ SB, generates a fresh,
unpredictable nonceNB, and sends out

“ack”, {“ack”, NA, NB, KB}KA

If the message is a replay, if the decryption fails, if the plaintext is not of the
expected form, or ifA /∈ SB, thenB sends out a “decoy” message. This message
should basically look likeB’s other message. In particular, it may have the form

“ack”, {N}K

whereN is a fresh nonce (with padding, as needed) and onlyB knowsK−1, or
it may be indistinguishable from a message of this form.
• Upon receipt of a message that consists of “ack” and (apparently) a ciphertext,
A tries to decrypt the second component using its private key. If the decryption
succeeds, thenA extracts the corresponding noncesNA andNB and keyKB,
and checks that it has recently sentNA encrypted underKB. If the decryption or
the checks fail, thenA does nothing.

2 The filtering of replays byB is not in the original description of the protocol [1], and
may be avoided under certain conditions onB’s behavior, but we believe that it is a rea-
sonable refinement, with useful consequences. We omit the details of how to implement
the filtering, which are fairly standard; as usual, some but not all implementations preserve
security properties.

9

• Subsequently,A andB may useNA andNB as shared secrets. In particular,
A andB may useNB as a session key, or they may compute session keys by
concatenating and hashing the two nonces. They may also derive key identifiers,
much as in the first protocol.

In summary, the message flow of a successful exchange is:

A→ B : “hello” , {“hello” , NA, KA}KB

B → A : “ack”, {“ack”, NA, NB, KB}KA

Section4.4 describes variants of this basic pattern, for example (as mentioned
above) for the case whereA wishes to communicate withn principalsB1, . . . ,
Bn.

This protocol has some similarities with the Needham-Schroeder public-key pro-
tocol [31] and others [27,26]. However, like the first protocol, this one does not
include any identities in cleartext, and again that is not quite enough for privacy.
As in the first protocol, public-key encryption should be which-key concealing so
that encrypted messages do not reveal the identities of their (intended) recipients.
Furthermore, the delicate use of the decoy message is important:

• B’s decoy message is unfortunately necessary in order to prevent an attack where
a malicious principalC /∈ SB computes and sends

“hello” , {“hello” , NC , KA}KB

and then deducesB’s presence andA ∈ SB by noticing a response. In order to
prevent this attack, the decoy message should look toC like it has the form

“ack”, {“ack”, NC , NB, KB}KA

• B’s response toA whenA /∈ SB should look as thoughB was someone else,
lestA infer B’s presence. SinceB sends a decoy message when its decryption
fails, it should also send one whenA /∈ SB.

The decoy message “ack”, {N}K is intended to address both of these requirements.

4.3 Properties and limitations

Intuitively, the protocols are supposed to establish shared secrets betweenA andB.
At the very least, we would expect thatA andB, and only them, can obtain a ses-
sion key from these secrets. We would expect, moreover, that this key be essentially
independent of any other data. For example, it should not be possible for an attacker
without access to the key to compute a ciphertext under the key from a record of

10

the protocol messages. In short, the key should behave much like a pre-established
shared key. The only observable differences between running the protocol and hav-
ing a pre-established shared key should be that an attacker can disrupt a protocol
run, making it fail, and that an attacker can notice that the protocol generates some
opaque messages. Our results of section7 provide a more precise statement of this
comparison, in the form of an equivalence, for the second protocol.

The protocols are also supposed to assureA andB of each other’s identity. How-
ever, the two participants have somewhat different states in this respect at the con-
clusion of a key exchange.

• With the first protocol, after receiving and checkingA’s message,B has evidence
thatA is attempting to establish a session. On the other hand,A knows nothing
aboutB’s presence and interest in a session until receiving messages under the
session key.

• With the second protocol, after receiving and checkingB’s message,A has evi-
dence that it shares the session key with the principalB that responded. On the
other hand,B has evidence that it shares the session key at most withA, but
cannot be certain thatA initiated the protocol run. Any other principalC might
have contactedB pretending to beA, but thenC will not obtain the key. Only
after further communication canB be sure ofA’s participation in the session.

In addition, the protocols are supposed to protect the identity of the participants.
This should mean, in particular, that an attacker cannot learn anything whenA
wishes to communicate withB but not vice versa. It should also mean that an at-
tacker cannot distinguish a run betweenA andB from a run between two other
principalsA′ andB′, under appropriate hypotheses. The hypotheses should say, for
example, thatB is not the attacker, sinceB learnsA’s identity. The hypotheses
should also consider what the participants can do besides running the protocol. For
example, ifA were to broadcast “A has a secret!” after every protocol run, thenA’s
identity would clearly not be protected. Similarly, ifA would only contactC after
sessions withB, thenC could inferB’s recent presence fromA’s behavior. In gen-
eral, the hypotheses need to address possible leaks not caused by the protocol itself.
Section8 develops these hypotheses and gives our privacy results, also relying on
equivalences.

The protocols do not provide location information, so they do not guarantee that
two principalsA andB that establish a session are necessarily in the same location.
In a distributed system, a relay could allowA andB to establish a session remotely,
perhaps with the intention of misleadingA andB. Assuming that each principal can
name its own location, the protocols can easily be extended with location indicators
in order to detect relays across locations.

11

4.4 Efficiency considerations

Both protocols can be rather inefficient in some respects. These inefficiencies are
largely unavoidable consequences of the goals of private authentication.

• A generates its message and sends it before having any indication thatB is
present and willing to communicate. In other situations,A might have first en-
gaged in a lightweight handshake withB, sending the namesA andB and wait-
ing for an acknowledgment. Alternatively, bothA andB might have broadcast
their names and their interest in communicating with nearby principals. Here,
these preliminary messages are in conflict with the privacy goals, even though
they do not absolutely prove the presence ofA andB to an eavesdropper. Some
compromises may be possible; for example,A andB may publish some bits of
information about their identities if those bits are not deemed too sensitive. In
addition, in the second protocol,A may precompute its message.

• Following the protocols,B may examine many messages that were encrypted
under the public keys of other principals. This examination may be costly, per-
haps opening the door to a denial-of-service attack againstB. In other situations,
A might have included the nameB, the keyKB, or some identifier forKB in
clear in its message, as a hint forB. Here, again, the optimization is in conflict
with the privacy goals, and some compromises may be possible.

The second protocol introduces some further inefficiencies, but those can be ad-
dressed as follows:

• In the second protocol,A may process many acknowledgments that were en-
crypted under the public keys of other principals. This problem can be solved
through the use of a connection identifier:A can create a fresh identifierI, send
it to B, andB can returnI in clear as a hint thatA should decrypt its message.

A→ B : “hello” , I, {“hello” , NA, KA}KB

B → A : “ack”, I, {“ack”, NA, NB, KB}KA

The identifierI should also appear inB’s decoy message. Third parties may
deduce that the messages are linked, becauseI is outside the encryptions, but
cannot relate the messages toA andB.

• Suppose thatA wishes to communicate with several principals,B1, . . . ,Bn. It
could initiaten instances of the protocol. However, combining the messages
from all the instances can be faster. In particular, although each ofB1, . . . ,
Bn should receive a different nonce, they can all share a connection identifier.
Moreover, whenKA is long, its public-key encryption may be implemented as
a public-key encryption of a shorter symmetric keyK plus an encryption ofKA

usingK; the keyK and the latter encryption may be the same forB1, . . . ,Bn.

12

Thus,A may send:

“hello” , I, {KA}K , {“hello” , H(KA), NA1, K}KB1
, . . . ,

{“hello” , H(KA), NAn, K}KBn

whereH is a one-way hash function. Most importantly, the need for decoy mes-
sages is drastically reduced. A principal that plays the role ofB need not produce
n true or decoy acknowledgments, but only one. Specifically,B should reply to
a ciphertext encrypted underKB, if A included one in its message, and send a
decoy message otherwise. This last optimization depends on our assumption that
B can recognize whether a ciphertext was produced by encryption underKB.

We have not attempted a careful analysis of these variants, or a thorough study
of alternative designs (for instance, with other treatments of identifiers). There are
opportunities for further work in these directions.

With these and other improvements, both protocols are practical enough in certain
systems, although they do not scale well. Suppose that principals wish to commu-
nicate with few other principals at a time, and that any one message reaches few
principals, for instance because messages are broadcast within small locations; then
it should be possible for principals that come into contact to establish private, au-
thenticated connections (or fail to do so) within seconds. What is “few”? A simple
calculation indicates that 10 is few, and maybe 100 is few, but 1000 is probably not
few. Typically, the limiting performance factor will be public-key cryptography,
rather than communications: each public-key operation takes a few milliseconds
or tens of milliseconds in software on modern processors (e.g., [28]). Perhaps the
development of custom cryptographic techniques (flavors of broadcast encryption)
can lead to further efficiency gains.

4.5 Groups

In the problem described above, the set of principalsSA andSB with which A
andB wish to communicate, respectively, are essentially presented as sets of pub-
lic keys. In variants of the problem,SA, SB, or both may be presented in other
ways. The protocols can be extended to some situations where a principal wants
to deal with others not because of their identities but because of their attributes or
memberships in groups, such as “ACME printers” or “Italians”. These extensions
are not all completely satisfactory.

• Suppose thatB is willing to communicate with any principal in a certain group,
without having a full list of those principals. However, let us still assume thatSA

is presented as a set of public keys. In this case, we can extend our protocols
without much trouble:A can include certificates in its encrypted message toB,

13

proving its membership in groups.
• Suppose that, instead,A wants to communicate with any principal in a certain

group, andSB is presented as a set of public keys. The roles in the protocols may
be reversed to handle this case.

• However, the protocols do not address the case in which neitherSA nor SB is
presented as a set of public keys, for example when both are presented as groups.
Introducing group keys should reduce this case to familiar ones, but group keys
are harder to manage and protect.

5 The applied pi calculus (overview)

The applied pi calculus is a simple, general extension of the pi calculus with value
passing, primitive function symbols, and equations between terms. In [2], we intro-
duce this calculus, develop semantics and proof techniques, and apply those tech-
niques in reasoning about some security protocols. This section gives only a brief
overview. Later sections return to private authentication, relying on the applied pi
calculus.

5.1 Syntax and informal semantics

A signatureΣ consists of a finite set of function symbols, such ash anddecrypt,
each with an integer arity. Given a signatureΣ, an infinite set of names, and an
infinite set of variables, the set oftermsis defined by the grammar:

U, V,W ::= terms
a, n, . . . name
x, y, . . . variable
f(U1, . . . , Ul) function application

wheref ranges over the function symbols ofΣ andl matches the arity off . We use
meta-variablesu andv to range over both names and variables. We writeU = V
to indicate thatU andV are equal in an underlying equational theory associated
with Σ.

The grammar forprocessesis similar to the one in the pi calculus, except that here
messages can contain terms (rather than only names) and that names need not be
just channel names:

P,Q,R ::= processes (or plain processes)
0 null process
P | Q parallel composition

14

!P replication
νn.P name restriction (“new”)
if U = V then P else Q conditional
u(x).P message input
u〈V 〉.P message output

The null process0 does nothing;P | Q is the parallel composition ofP andQ; the
replication!P behaves as an infinite number of copies ofP running in parallel. The
processνn.P makes a new namen then behaves asP . The conditional construct
if U = V then P else Q is standard, but we should stress thatU = V represents
equality, rather than strict syntactic identity. We abbreviate itif U = V then P
whenQ is 0. Finally, the input processu(x).P is ready to input from channelu,
then to runP with the actual message replaced for the formal parameterx, while
the output processu〈V 〉.P is ready to output messageV on channelu, then to
runP . In both of these, we may omitP when it is0.

Further, we extend processes withactive substitutions:

A,B,C ::= extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{x = V } active substitution

We write{x = V } for the substitution that replaces the variablex with the termV .
The substitution{x = V } typically appears when the termV has been sent to
the environment, but the environment may not have the atomic names that appear
in V ; the variablex is just a way to refer toV in this situation. The substitution
{x = V } is active in the sense that it “floats” and applies to any process that
comes into contact with it. In order to control this contact, we may add a variable
restriction:νx.({x = V } | P) corresponds exactly tolet x = V in P . Although the
substitution{x = V } concerns only one variable, we can build bigger substitutions
by parallel composition. We always assume that our substitutions are cycle-free.
We also assume that, in an extended process, there is at most one substitution for
each variable, and there is exactly one when the variable is restricted.

A frameis an extended process built up from active substitutions by parallel com-
position and restriction. Informally, frames represent the static knowledge gathered
by the environment after communications with an extended process. We letϕ range
over frames, and letϕ(A) be the frame obtained from the extended processA by
erasing all plain subprocesses ofA. We letdom(ϕ) be the set of variables defined
by substitutions inϕ and not restricted inϕ. As usual, names and variables have
scopes, which are delimited by restrictions and by inputs. WhenE is any expres-
sion, fv(E), dv(E), bv(E), fn(E), andbn(E) are the sets of free, defined, and

15

bound variables and free and bound names ofE, respectively;E is closed when
every variable is either bound or defined by an active substitution. Anevaluation
contextC[] is an extended process with a hole in the place of an extended process.
The contextC[] closesA whenC[A] is closed.

We rely on a sort system for terms and extended processes [2, section 2]. We always
assume that terms and extended processes are well-sorted and that substitutions and
context applications preserve sorts.

5.2 Examples

We further explain the applied pi calculus with examples motivated by our second
protocol. We start with formatted messages. We then discuss one-way hash func-
tions and encryption functions.

In that protocol, we use two kinds of formated messages (“hello” and “ack”) with
two and three variable fields, respectively. Accordingly, we introduce binary and
ternary function symbolshello(,) andack(, ,) in the signatureΣ; these sym-
bols represent the message constructors. In addition, we introduce inverse, unary
function symbolshello.0 (), hello.1 (), ack.0 (), ack.1 (), andack.2 () in order
to select particular fields in messages. Finally, we describe the intended behavior
of formatted messages with the evident equations:

hello.0 (hello(x0, x1)) = x0

hello.1 (hello(x0, x1)) = x1

ack.0 (ack(y0, y1, y2)) = y0

ack.1 (ack(y0, y1, y2)) = y1

ack.2 (ack(y0, y1, y2)) = y2

A first equational theory may consist of these equations, and all equations obtained
by reflexivity, symmetry, and transitivity and by substituting terms for the variables
x0, . . . , y2.

In order to model the one-way hash computation of a session key out of the nonces
NA andNB, we introduce a binary function symbolh(,) with no equations. The
fact thath(NA, NB) = h(N ′

A, N
′
B) only whenNA = N ′

A andNB = N ′
B models

that h is collision-free. The absence of an inverse forh models the one-wayness
of h. In our protocol, these properties are important to guarantee thath(NA, NB) is
indeed secret (as long asNA orNB is) and, further, that the attacker cannot recover
NA orNB even if it obtainsh(NA, NB).

In order to model symmetric cryptography (that is, shared-key cryptography), we

16

may introduce binary function symbolsencrypt(,) anddecrypt(,) for encryp-
tion and decryption, respectively, with the equation:

decrypt(encrypt(x, y), y) =x (1)

Herex represents the plaintext andy the key. We often use the notation{U}V
instead ofencrypt(U, V). For instance, the (useless) processνK.c〈{U}K〉 sends
the termU encrypted under a fresh keyK on channelc. It is only slightly harder
to model asymmetric (public-key) cryptography, where the keys for encryption and
decryption are different. In addition toencrypt(,) anddecrypt(,), we introduce
the unary function symbolpk() for deriving a public key from a private key. Instead
of (1), we use the equation:

decrypt(encrypt(x, pk(y)), y) =x (2)

Since there is no inverse forpk(), a public keypk(s) can be passed to the envi-
ronment without giving away the capability to decrypt messages encrypted under
pk(s).

For instance, a principalB with public keyKB can be represented as a process
in a contextPB[]

def
= νs.({KB = pk(s)} | []) that binds a decryption keys and

exports the associated encryption key as a variableKB. As this example indicates,
we essentially viewν as a generator of unguessable seeds. In some cases, those
seeds may be directly used as passwords or keys; in others, some transformations
are needed.

5.3 Operational semantics

Given a signatureΣ, we equip it with an equational theory (that is, with an equiva-
lence relation on terms with certain closure properties). We writeΣ ` U = V when
the equationU = V is in the theory associated withΣ. We usually keep the theory
implicit, and abbreviateΣ ` U = V to U = V whenΣ is clear from context or
unimportant. We write(U = V)ϕ whenU andV are equal after applyingϕ, with
α-conversion on names and variables bound inϕ and free inU orV [2, section 4.2].

Structural equivalences, writtenA ≡ B, relate extended processes that are equal by
rearrangements of parallel compositions, restrictions, and active substitutions, and
by equational rewriting of terms. Formally, structural equivalence is defined as the
smallest equivalence relation on extended processes that is closed byα-conversion

17

on both names and variables, by application of evaluation contexts, and such that:

PAR-0 A ≡ A | 0

PAR-A A | (B | C) ≡ (A | B) | C

PAR-C A | B ≡ B | A

REPL !P ≡ P |!P

NEW-0 νn.0 ≡ 0

NEW-C νu.νv.A ≡ νv.νu.A

NEW-PAR A | νu.B ≡ νu.(A | B) whenu 6∈ fv(A) ∪ fn(A)

ALIAS νx.{x = V } ≡ 0

SUBST {x = V } | A ≡ {x = V } | A{x = V }

REWRITE {x = U} ≡ {x = V } whenΣ ` U = V

We say that a variablex can bederived from the extended processA when, for
some termV and extended processA′, we haveA ≡ {x = V } | A′. Intuitively,
if x can be derived fromA, thenA does not reveal more information thanνx.A,
because the context can build the termV and use it instead ofx.

Reductions, writtenA → B, represent silent steps of computation. Reduction is
defined as the smallest relation on extended processes closed by structural equiva-
lence and application of evaluation contexts such that:

COMM a〈x〉.P | a(x).Q → P | Q

THEN if U = U then P else Q → P

ELSE if U = V then P else Q → Q

for any ground termsU andV such thatΣ 6` U = V

Labelled transitions, writtenA α−→ B, represent interactions with the environment.

They consist of message inputs and message outputs, respectively writtenA
a(V)−−→

B andA
νũ.a〈V 〉−−−−→ B, with {ũ} ⊆ fv(V) ∪ fn(V) \ {a}. In both,a represents a

communication channel andV a message. In outputs,ũ collects the names and
variables revealed by the message. The labelled transition relation is defined as the
smallest relation indexed by labelsα that is closed by structural equivalence and

18

such that:

IN a(x).P
a(V)−−→ P{x = V } OUT a〈V 〉.P a〈V 〉−−→ P

OPEN-CHANNEL
A

a〈b〉−−→ A′ b 6= a

νb.A
νb.a〈b〉−−−−→ A′

OPEN-VARIABLE

A
νũ.a〈V 〉−−−−→ A′ x ∈ fv(V) \ {ũ}, z fresh

x can be derived fromνũ.({z = V } | A′)

νx.A
νx,ũ.a〈V 〉−−−−−→ A′

SCOPE
A

α−→ A′ α is a〈V 〉 or a(V), u does not occur inα

νu.A
α−→ νu.A′

PAR
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

In contrast with some other process calculi, output transitionsA
νũ.a〈V 〉−−−−→ B are

enabled only for messagesV that effectively reveal the names and variables inũ.

Typically, the transition is just of the formA
νx.a〈x〉−−−−→ B for some fresh variablex,

andB contains an active substitution that associatesx with a more complex mes-

sage. Input transitionsA
a(V)−−→ B may use variables defined inA (typically from

previous message outputs) to form the messageV .

5.4 Observational equivalences

In the analysis of protocols, we frequently argue that two given processes cannot be
distinguished by any context, that is, that the processes are observationally equiv-
alent. As in the spi calculus, the context represents an active attacker, and equiv-
alences capture security properties in the presence of the attacker. The applied pi
calculus has a useful, general theory of observational equivalence parameterized
by Σ and its equational theory [2]. Specifically, the following three relations are
defined for anyΣ and equational theory:

• Static equivalence, written ϕ ≈s ψ, relates frames with the same domain that
cannot be distinguished by any term comparison:dom(ϕ) = dom(ψ) and, for all
termsU andV , we have(U = V)ϕ if and only if (U = V)ψ. Static equivalence
is closed by structural equivalence, by reduction, and by application of closing
evaluation contexts. In the presence of theν construct, this relation is somewhat

19

delicate and interesting. For instance, we have

νN.{x = h(N,KB)} ≈s νN.{x = h(N,KC)}

for anyKB andKC , since the nonceN guarantees that both terms substituted
for x have the same (null) equational properties, but

νN.{x = hello(N,KB)} 6≈s νN.{x = hello(N,KC)}

as soon asKB andKC differ, since the comparisonhello.1 (x) = KB succeeds
only with the first frame.

• More generally,contextual equivalencerelates extended processes that cannot
be distinguished by any evaluation context in the applied pi calculus, with any
combination of messaging and term comparisons. Observational equivalence co-
incides with static equivalence on frames, but is strictly finer on extended pro-
cesses.

• Labelled bisimilarity, written≈l, coincides with contextual equivalence, but it is
defined in terms of labelled transitions instead of arbitrary evaluation contexts,
and it is the basis for standard, powerful proof techniques. We state our main
results in terms of≈l. We recall its definition below.

Definition 1 Labelled bisimilarity(≈l) is the largest symmetric relationR on closed
extended processes such thatA R B implies:

(1) A ≈s B,
(2) if A→ A′, thenB →∗ B′ andA′ R B′ for someB′,
(3) if A α−→ A′ andfv(α) ⊆ dom(A) andbn(α)∩fn(B) = ∅, thenB →∗ α−→→∗ B′

andA′ R B′ for someB′.

As usual, strong labelled bisimilarity (∼l) is defined analogously, requiringB →
B′ andB α−→ B′ instead ofB →∗ B′ andB →∗ α−→→∗ B′, respectively, in the
bisimulation clauses.

6 The second protocol in the applied pi calculus

In this section we give a precise model for our second protocol (described in sec-
tion 4.2) in the applied pi calculus: we first choose an adequate equational theory,
then detail our representation of principals and attackers, and finally give processes
that express the protocol.

We believe that the first protocol could be studied along similar lines. It introduces
one complication (the modeling of timestamps), but is otherwise much simpler.

20

6.1 An equational theory

The following grammar of terms indicates the function symbols and notation con-
ventions that we use:

T, U, V, V0,W, . . . ::= terms
A,B,K, x1, x2, . . . variable
c1, c2, initA,acceptB, connectA, . . . name (for a channel)
N,NA, K

−1
A , . . . name (typically for a nonce or a key)

h(U, V) cryptographic hash
pk(U) public-key derivation
{T}V public-key encryption
decrypt(W,U) private-key decryption
hello(U0, U1), ack(V0, V1, V2) constructor for protocol message
hello.0 (U) , . . . , ack.2 (V) field selector for protocol message
∅ empty set
U.V set extension

This grammar includes primitives for constructing sets (∅ and.) but not a set mem-
bership relation. We writeV ∈ W as an abbreviation forW.V = W .

Our equational theory is fairly standard. The equations on terms are:

decrypt({x}pk(z), z) = x private-key decryption

hello.j (hello(x0, x1)) = xj field selection in “hello” message

ack.j (ack(x0, x1, x2)) = xj field selection in “ack” message

(∅.x).x = ∅.x idempotence of set extension

(x.y).z = (x.z).y commutativity of set extension

The equational theory implicitly assumes that encryption is which-key concealing,
in the sense that someone who sees a message encrypted under a public keyK
should not be able to tell that it is underK without knowledge of the correspond-
ing private keyK−1 (see section3.2). On the other hand, it would be easy to add
functions and equations that negate this property, in order to model additional ca-
pabilities of an attacker. In particular, for the benefit of the attacker, we could add
the function symbolsget-key, test-key, or same-key, with respective equations:

get-key({x}z) = z

test-key({x}z, z) = true

same-key({x}z, {y}z) = true

21

These additions would not affect authentication and secrecy properties, but they
would compromise privacy properties.

6.2 The network and the attacker

In our model of the protocol, network messages are transmitted (asynchronous-
ly) on the channels namedc1 andc2. These represent two public communication
channels, or a single public channel, perhaps the ether, in which tags serve for
differentiating traffic flows.

As explained in section3, we assume that an attacker can interpose itself on all
public communication channels. In our model, an arbitrary environment (an arbi-
trary evaluation context) represents the attacker. This environment can interact with
the configuration of principals using labelled transitions on any free channel name.
We obtain an attractively simple representation of broadcast communication: each
message is simply made available to the attacker, on a public channel, and the at-
tacker may then decide to transmit the message, again on a public channel, to one
or more principals.

As a special case, we sometimes model a weaker, passive attacker that only eaves-
drops on messages. An attack step—that is, eavesdropping on a message—amounts
to a message interception (formally, with an output label) followed by a re-emission

of the same message (with an input label). We writeA
νũ.c[Ṽ]−−−−→ A′ as a shorthand for

the sequence of two transitionsA
νũ.c〈Ṽ 〉−−−−→ c(Ṽ)−−→ A′. Here,

νũ.c〈Ṽ 〉−−−−→ shows an output

of the protocol and
c(Ṽ)−−→ shows the same message being input.

6.3 The principals

We model arbitrary configurations of principals. Each principal may run any num-
ber of sessions and may perform other operations after session establishment or
even independently of the protocol. Only some of these principals are trustworthy.
We are interested in the security properties that hold for them.

Our model of a principalA has two parts: an implementation of the protocol, writ-
tenPA, and a “user process” (or “user protocol”), writtenUA. The user process
defines any additional behavior, such as when protocol runs are initiated and what
happens after each session establishment. It consumes the shared secrets produced
during the establishment of sessions and uses these secrets. According to the user
process, each principal may run several sessions of the protocol, possibly playing
both the role of initiator and that of responder. Of course, security properties de-
pend on bothPA andUA. We definePA below in section6.4; on the other hand, we

22

treatUA as a parameter.

We use the following control interface between the (abstract) user process and the
(specific) session-establishment protocol. The interface concerns both the roles of
session initiator and responder.

init : UA sendsinitA〈B〉 to trigger a session-establishment attempt with princi-
palB.

accept: PB sendsacceptB〈A,K〉 to notifyUB that it has accepted a session appar-
ently from principalA, with session keyK.

connect: PA sendsconnectA〈B,K〉 to notifyUA that its attempt to contact princi-
palB succeeded, with session keyK.

In addition, for each principalB, the setSB represents all acceptable interlocutors
for B. For simplicity, we do not provide an interface for updating this set, so it
remains constant (and therefore not under the control ofUB). Thus, the interface
between the session-establishment protocol and the user process for each princi-
palX consists of the communication channelsVX

def
= {initX , acceptX , connectX}

plus a (constant) set of principalsSX . These channels can be restricted (withν) in
order to hide the interface from the environment.

Note that the interface provides a keyK to the user process, rather than noncesNA

andNB. We prefer to defineK in such a way thatNA andNB cannot be computed
from K (for example,K = h(NA, NB)). Our results can thus be independent of
how the user process appliesK.

As suggested in the informal description of the protocol, we represent the identity
of each principal as its public key, using variablesA, B, . . . for both identities and
public keys. For the present purposes, the essence of a principal lies in its ability
to decrypt any message encrypted under its public key. Accordingly, we associate
a context of the form

PKA []
def
= νK−1

A .
(
{A = pk(K−1

A)} | []
)

with every principal identityA. This context restricts the use of the decryption
keyK−1

A to the process in the context and it exports the corresponding public key.
Whenever we put a processR in this context, our intent is thatR never communi-
catesK−1

A to the environment.

By definition of well-formed configurations in the applied pi calculus, a process of
the formC[PKA [R]] exportsA, only R can accessK−1

A , and we cannot apply a
context that would redefineA. On the other hand,C[] can define any number of
other principals. Thus, we obtain a fairly generous and convenient model when we
represent an attacker by an arbitrary context.

For example, the processPKA [0] indicates thatA is a principal whose decryption

23

key is never used. This process concisely models an absent principal.

6.4 The protocol

In this section we give a formal counterpart to the description of message flows of
section4.2.

Messages We rely on substitutions in order to define the protocol messages and
the key derivation, as follows.

σ1
def
= {x1 = {hello(NA, A)}B}

σ2
def
= {x2 = {ack(NA, NB, B)}A}

σ◦2
def
= {x2 = NB}

σK
def
= {K = h(NA, NB)}

AlthoughNA andNB are free here, they represent fresh nonces. They will be bound
in any process that introduces these substitutions. The substitutionσ◦2 corresponds
to the responder’s decoy message, in which here we use a name rather than a ci-
phertext, for simplicity.

Syntactic sugar We sometimes use the following abbreviations.

For testing, we writeif U1 = V1 and U2 = V2 then P else Q for the process
if U1 = V1 then (if U2 = V2 then P else Q) else Q, and rely on other similar
abbreviations.

For decryption, we use pattern matching on message contents. Specifically, we
write

if x = {ack(NA, νNB, B)}A using K−1
A then P else Q

for the process

νNB.

{NB = ack.1
(
decrypt(x,K−1

A)
)
} |

if x = {ack(NA, NB, B)}A then P else Q


with the assumption thatNB 6∈ fv(Q), and we use analogous abbreviations withνA
andνNA. Here, we use the identifiersNA andNB as variables rather than names,
locally.

24

For filtering duplicate messages, we write

!c1(x \ V).if x fresh then P else Q

for the process

νc.(c〈V 〉 | !c1(x).c(s).(c〈s.x〉 | if x ∈ s then Q else P))

wherec is a fresh channel name ands is a fresh variable. We use channelc for
maintaining a setV of previously received messages;Q is triggered instead ofP
when one of those messages is received again.

Processes The following code represents the protocol. It includes definitions of
processes for the initiator role and for the responder role. We writeA for the initia-
tor andB for the responder, but the definitions apply to every principal by renam-
ing.

PA
def
= IA | RA

IA
def
= !initA(B).νNA. (c1〈x1σ1〉 | I ′A)

I ′A
def
= c2(x2).

if x2 = {ack(NA, νNB, B)}A using K−1
A then connectA〈B,KσK〉

RB
def
= !c1(x1 \ ∅).

if x1 fresh and x1 = {hello(νNA, νA)}B using K−1
B and A ∈ SB

then νNB. (c2〈x2σ2〉 | acceptB〈A,KσK〉) else νNB.c2〈x2σ
◦
2〉

Here,IA shows the initiator receiving a session request on channelinitA and send-
ing the first protocol message;I ′A then shows the initiator receiving and checking a
response, and passing a session key on channelconnectA if the response is satisfac-
tory. On the other hand,RB shows the responder receiving a message, processing
it, responding, and in some cases passing a session key on channelacceptB. Both
IA andRB are replicated processes.

As coded, the protocol has little resistance to multiplexing errors. In particular,
the initiator fails if the first response that it receives is not the expected one. We
could add retries without much difficulty, but this aspect of the protocol is mostly
irrelevant in the study of safety properties.

25

6.5 Configurations of principals

In our statements of security properties (not in the definition of the protocol itself),
we distinguish a particular finite, non-empty setC of compliant principalsA, B,
. . . . A compliant principalA is one in which the decryption keyK−1

A is used ex-
clusively in the session-establishment protocol. The initial configuration of a single
compliant principalA with user processUA is therefore an extended process of the
form:

QA
def
= νVA.

(
UA | PKA [PA]

)
This extended process is parameterized by the setSA, and (at least) exports the
variableA and has free channelsc1 andc2. InQA, by definition,UA does not have
access toK−1

A .

Combining several such extended processes, we obtain a global configuration of the
form

∏
A∈CQA for any set of compliant principalsC. Sometimes, however, we do

not need to distinguish the user processes of several compliant principals. We can
instead group them in a single (compound) user processU , lettingU =

∏
A∈C UA.

Then, lettingV =
⋃

A∈C VA, we consider configurations of the form:

P def
=

∏
A∈C PKA [PA]

Q def
= νV .

(
U | P

)
We assume that the user processes of compliant principals (UA andU) never com-
municate control channels (V) in messages. For instance, the processc1〈connectA〉
cannot be the user process of a compliant principal. This assumption can easily be
enforced by the sort system.

We useP in section7 when we establish security properties that do not depend
onU , thus effectively regardingU as part of the attacker. We useQ in section8,
with additional hypotheses onU , when we study privacy.

7 Authentication and secrecy properties

We begin our analysis of the protocol with traditional properties, namely responder
authentication and session-key secrecy. We state and discuss the properties, leaving
proofs for an appendix. Such standard properties are important, and often a prereq-
uisite for privacy properties. Moreover, their formulation in the applied pi calculus
illustrates the use of observational equivalence for expressing security properties.
In contrast, many other formalisms for similar purposes rely only on properties of
traces, rather than on equivalences.

26

For a given set of compliant principalsC, we study runs of the protocol in the
presence of an active attacker, by examining transitionsP η−→ P ′ from the configu-
rationP defined above to some configurationP ′, whereη is an arbitrary sequence
of labels.

In our statements, we letω andϕ abbreviate the series of actions and the equational
“net effect”, respectively, of a successful run of the protocol:

ω−→ def
=

initA(B)−−−−→ νx1.c1[x1]−−−−−→→∗ νx2.c2[x2]−−−−−→→ νK.acceptB〈A,K〉−−−−−−−−−→ connectA〈B,K〉−−−−−−−−→

ϕ
def
= νNA. (σ1 | νNB.(σ2 | σK))

Thus,ω shows a message that initiates a session-establishment attempt fromA
to B, then two messagesx1 andx2 on channelsc1 andc2, respectively, then some
internal steps, and finally two messages that represent the establishment of a ses-
sion with a keyK atB andA, respectively. The environment learnsx1 andx2 by
eavesdropping. According to the frameϕ, x1 represents the “hello” message and
x2 represents the “ack” message; in addition,ϕ bindsK to its valueh(NA, NB).
Similarly, we letω− andϕ− abbreviate the series of actions and the equational “net
effect”, respectively, of a failed (rejected) run of the protocol:

ω−−→ def
=

initA(B)−−−−→ νx1.c1[x1]−−−−−→→∗ νx2.c2[x2]−−−−−→→

ϕ−
def
= (νNA.σ1) | (νNB.σ

◦
2)

We have that ifA ∈ SB then

P ω−→ Px1 | ϕ

else

P ω−−→ Px1 | ϕ−

wherePx1 is P updated so thatRB holds an elementx1 in the set of messages it
has received. Thus,P may perform a complete run of the protocol, and this run
succeeds if authorized by the responder and fails otherwise. More generally (in
part because of the replications inP), for anyP ′ such thatP η−→ P ′, we have that if
A ∈ SB then

P ′ ω−→ P ′
x1
| ϕ

else

P ′ ω−−→ P ′
x1
| ϕ−

whereP ′
x1

is a corresponding update ofP ′. These results express the functional cor-
rectness of the protocol. They hold independently of whether encryption is which-
key concealing.

27

The first theorem relates the two possible outcomes of an actual run to a “magical”
outcomeϕ◦ def

= νN1.{x1 = N1} | νN2.{x2 = N2} where the two intercepted mes-
sages are trivially independent of the principalsA andB and of the established key.

Theorem 2 (Key freshness for complete runs)LetA,B ∈ C.

(1) (Success:) IfP η−→ P ′ andA ∈ SB, thenP ′ ω−→≈l P
′ | ϕ◦ | νN.{K = N}.

(Failure:) If P η−→ P ′ andA 6∈ SB, thenP ′ ω−−→≈l P
′ | ϕ◦.

(2) Conversely, ifP ω−→ P ′′, thenA ∈ SB andP ′′ ≈l P | ϕ◦ | νN.{K = N}.

For instance, ifA ∈ SB thenP ω−→ Px1 | ϕ, as explained above; in this case
the theorem yieldsPx1 | ϕ ≈l P | ϕ◦ | νN.{K = N}, so the environment cannot
distinguish the actual messages and key (on the left-hand side) from fresh, indepen-
dent names (on the right-hand side). The active substitutionνN.{K = N} exports
the simplest definition of a fresh secret key, a fresh name, rather than an expression
computed fromx1 andx2.

Interestingly,ϕ◦ and νN.{K = N} do not depend onA andB at all, so this
theorem implies a first privacy guarantee: one does not learn anything aboutA
andB from ϕ◦ | νN.{K = N}, and hence fromϕ. The equivalences≈l are
used for rewritingP ′

x1
| ϕ andP ′

x1
| ϕ−, by simplifyingϕ andϕ− and by erasing

x1 from the set of messages thatRB has received, returning to the processP ′ and
hiding that a run has occurred. These equivalences hold only if encryption is which-
key-concealing. Otherwise, we would obtain only:

P ′
x1
| ϕ ≈l P

′
x1
| (νNA.σ1) | (νNANB.σ2) | (νN.{K = N})

On the right-hand side, we are left with messagesx1 andx2 that contain the public
keys ofA andB. Nonetheless,NA andNB are bound aroundσ1 andσ2, so the
independence of the session key is still guaranteed.

A direct corollary concerns two instancesPA andPB of the protocol in the initial
state. This corollary emphasizes the transitions observed by an environment with
no access to the control channels.

PA | PB | initA〈B〉 →
νx1.c1[x1]−−−−−→→∗ νx2.c2[x2]−−−−−→→≈l

PA | PB | ϕ◦ |

νN.(acceptB〈A,N〉 | connectA〈B,N〉) if A ∈ SB

0 if A 6∈ SB

Intuitively, when we erase control messages, we obtain the same trace and equa-
tional effect whether or notA ∈ SB.

We also obtain a complementary authentication property:

28

Theorem 3 (Responder authentication)Suppose thatP η−→ P ′ and (1)P η−→ P ′

has no internal communication step onc1 andc2; (2) P ′ has no immediate output
on channel acceptB.

If connectA〈B,K〉 occurs inη, thenP ω−→ η′−→ P ′ for some permutationωη′ of η.

In the statement of the theorem, we rely onα-conversion and assume that the names
and variables in processes and labels never clash. With this standard assumption,
the commutation of two transition steps (when enabled) can be written simply as
the commutation of their labels. Conditions 1 and 2 are technically convenient for
avoiding special cases in the statement of the theorem, but they are not essential.
Condition 1 rules out traces where a message onc1 or c2 is not intercepted by the at-
tacker, and is instead transmitted internally. (Formally, any internal communication

A→ A′ on channelci implies thatA
νxi.ci[xi]−−−−−→ A′′ with A′ ≡ νxi.A

′′.) Condition 2
rules out traces where the transitionacceptB in ω has not occurred and is enabled
in P ′.

In light of the results above, we can interpret this theorem partly as a correspon-
dence assertion: wheneverA receives a connection message after a protocol run,
apparently withB, we have that

(1) A initiated the session withB;
(2) B accepted the session withA;
(3) both parties are now sharing a fresh keyK, as good as a fresh shared name;

and
(4) intercepted messagesx1 andx2 are seemingly unrelated toA,B, andK.

8 Privacy properties

In this section, we focus on privacy properties. For this purpose, we need to con-
sider the behavior of user processes, not just the protocol itself (see section4.3).
For a given set of compliant principalsC, we address the question of whether an
attacker can distinguish two (compound) user processesU1 andU2 when we place
these processes in the contextνV .([]|P) that provides local access to the session-
establishment protocol. Therefore, indistinguishability for user processes depends
on the identity-protection features of the protocol, and it is coarser than ordinary ob-
servational equivalence≈l (that is, indistinguishability in all evaluation contexts).

For instance, ifU1 andU2 each contain a messageinitA1〈B1〉 and initA2〈B2〉, and
if U1 andU2 “behave similarly” once a session is established, thenU1 andU2 are
indistinguishable in this specific sense. On the other hand, we haveinitA1〈B1〉 ≈l

initA2〈B2〉 only if A1 = A2 andB1 = B2.

29

In order to capture this notion of indistinguishability without having to pick partic-
ular user processes, we introduce a special labelled transition system and a notion
of bisimulation. We obtain a general result in terms of that notion of bisimulation,
then derive some privacy properties as corollaries. Thus, for the study of a particular
protocol, we develop a special notion of observation of user processes. In contrast,
in recent, related work [4,3], we take a standard notion of observation, and develop
communication protocols that are secure with respect to it (and which, for instance,
rely on “noise” messages in order to hide communication patterns between compli-
ant principals).

We adopt the following notation convention. We writeA,B for principals in the set
of compliant principalsC, andE for a principal not inC.

8.1 A labelled transition system

Next we define labelled transitions for user processes with control state. The con-
trol state records the setsSB of acceptable interlocutors and abstractly keeps track
of the sessions being negotiated. The labelled transitions reflect only what the en-
vironment can observe about these sessions, filtering out identity information.

Formally, a control stateρ consists of two functions, one that maps each principal
B ∈ C to a setSB, and the other a finite map from integers to entriest. The entries
are of four kinds:

• A B: a session offer fromA toB not yet considered byB.
• ABKi: a session offer fromA toB accepted byB with keyKi (whenA ∈ SB).
• A B − : a session offer fromA toB rejected byB (whenA 6∈ SB).
• A E: a session offer fromA to some non-compliant principalE.

For anyρ and any integeri not in ρ’s domain, we letρ[i 7→ t] be the control state
that extendsρ by mappingi to t. We assume that the keysKi are all distinct. We let
Vρ be the union ofV with the keysKi for all integersi in the domain ofρ.

We pair a process with a control state, with the notationρ :U . We assume thatKi

is free inU only if ρ mapsi to an entry of the formABKi. (InQ, the user process
U may have free variables defined byP, such as variablesA andB that represent
compliant principals, orKi for a computed key. When we consider transitions ofU
or ρ :U , we treat these variables as names.)

Such a pairρ :U may have the three sorts of transitionsρ :U
γ−→ ρ′ :U ′ that we

define next: ordinary transitions, blinded transitions, and external transitions.

• Ordinary transitions are essentially those of the processU . Let λ−→ range over→
and α−→ for all labelsα that do not contain control channels or bind keysKi (that

30

is, fn(α) ∩ Vρ = ∅ andbn(α) ∩ (C ∪ Vρ) = ∅). We have:

L IFT
U

λ−→ U ′

ρ :U
λ−→ ρ :U ′

• The attacker can blindly intercept all messages sent on public channels by the
principals inC and resend any of these messages later. Specifically, the attacker
can notice new session attempts, make responders consider session offers (ei-
ther genuine or fake), and make initiators consider intercepted “ack” messages.
These attacker actions are correlated with messages on restricted control chan-
nels, which the attacker cannot observe directly. Accordingly, we reflect these

actions using blinded transitionsinit νi−−−→,
accepti−−−−→,

acceptB(A)−−−−−−→, and connecti−−−−→.

INIT
U

initA〈B〉−−−−→ U ′

ρ :U
init νi−−−→ ρ[i 7→ A B] :U ′

ACCEPT

ρ[i 7→ A B] :U
accepti−−−−→

ρ[i 7→ A B Ki] :U | acceptB〈A,Ki〉 if A ∈ SB

ρ[i 7→ A B −] :U if A 6∈ SB

ACCEPT-FAKE

ρ :U
acceptB(A)−−−−−−→

ρ :U | νN.acceptB〈A,N〉 if A ∈ SB

ρ :U if A 6∈ SB

CONNECT

ρ[i 7→ A B Ki] :U
connecti−−−−→ ρ : νKi.(U | connectA〈B,Ki〉)

ρ[i 7→ A B −] :U
connecti−−−−→ ρ :U

• In addition, compliant principals may be willing to open sessions with non-
compliant ones. These sessions are also mediated by the protocol, even if they
are transparent to the attacker who can in principle decrypt all messages in

these sessions. We reflect these actions using external transitions
νiE.initA〈i,E〉−−−−−−−→,

acceptB(W,V)−−−−−−−→,
connectA(i,E,V)−−−−−−−−→, whereE is a variable andV andW are terms such

thatfn(V) ∩ Vρ = fn(W) ∩ Vρ = ∅.

31

INIT-E
U

νE.initA〈E〉−−−−−−→ U ′

ρ :U
νiE.initA〈i,E〉−−−−−−−→ ρ[i 7→ A E] :U ′

when(E 6= B)ϕ(U ′) for all B ∈ C

ACCEPT-E ρ :U
acceptB(W,V)−−−−−−−→ ρ :U | acceptB〈W,V 〉

when(W = A)ϕ(U)

for someA ∈ SB \ C

CONNECT-E ρ[i 7→ A E] :U
connectA(i,E,V)−−−−−−−−→ ρ :U | connectA〈E, V 〉

8.2 Private bisimulation

In order to express hypotheses on the observable properties of user processes, we
define an ad hoc notion of bisimulation:

Definition 4 Private bisimilarity(≈C) is the largest symmetric relationR on ex-
tended processes with control state such that, wheneverT1 R T2 with T1 = ρ1 :U1

andT2 = ρ2 :U2, we have:

(1) νVρ1 .U1 ≈s νVρ2 .U2,
(2) if T1 → T ′

1, thenT2 →∗ T ′
2 andT ′

1 R T ′
2 for someT ′

2,
(3) if T1

γ−→ T ′
1 andfv(γ) ⊆ dom(νVρ1 .U1) andbn(γ) ∩ fn(νVρ2 .U2) = ∅,

thenT2 →∗ γ−→→∗ T ′
2 andT ′

1 R T ′
2 for someT ′

2.

This definition is an adaptation of that of weak labelled bisimilarity for the applied
pi calculus (Definition1 in section5.4). The three clauses are analogous to those
for the applied pi calculus; the main novelty here is that

γ−→ ranges over different
transitions in clause3.

We also letε range over initial control states, that is, control states that have no
session entries and only define setsSB forB ∈ C. We writeP(ε) for the protocolP
with these setsSB. Whenε is clear from context, we may write (as usual)P instead
of P(ε).

Our main privacy result states that, if two user processes are privately bisimilar
(under our new notion of bisimulation), then the two corresponding configurations
are observationally equivalent from the environment’s point of view. As we show
below, this result provides an effective proof technique for privacy properties.

Lemma 5 (Privacy) If ε1 :U1 ≈C ε2 :U2, then

νV .
(
U1 | P(ε1)

)
≈l νV .

(
U2 | P(ε2)

)

32

The hypothesisε1 :U1 ≈C ε2 :U2 deals with arbitrary user processes and setsSB,
and is typically not difficult to establish in particular cases. Importantly, its state-
ment does not depend on any detail of the session-establishment protocol, only on
its control interface. The conclusionνV .(U1 | P(ε1)) ≈l νV .(U2 | P(ε2)) then
says that two composite systems, each with a user process, are indistinguishable.

The converse of Lemma5 does not quite hold, at least because the definition of la-
belled transitions is conservative in some respects. (For instance, in that definition,
we safely presume that the attacker has a private key associated with any valueE
thatU employs to identify a non-compliant principal.) Thus, user processes that
are not privately bisimilar may still be part of indistinguishable systems. Such user
processes can be excluded with additional hypotheses.

8.3 Applications of the Privacy Lemma

One may formulate and prove many specific privacy properties for the protocol. The
various properties may differ, in particular, on which user processes and setsSB

they consider. We give a series of simple examples of such properties. In the exam-
ples, the hypotheses can usually be made less demanding, and more specific and
complicated. The proofs follow directly from Lemma5.

We begin with a basic example that concerns the anonymity of failed sessions.
Provided thatU never inputs on channelinitX for anyX ∈ C, if A 6∈ SB and
A′ 6∈ SB′, then replacinginitA〈B〉 with initA′〈B′〉 in U does not affectQ up to
observational equivalence.

The next result deals with a single initial session attempt, and states that the ses-
sion attempt may not compromise any private bisimilarity that would hold after
establishing the session.

Theorem 6 (Equivalent sessions)For j = 1, 2, let

Uj
def
= initAj

〈Bj〉 | connectAj
(Bj, K).Vj

U ′
j

def
= νK.

(
acceptBj

〈Aj, K〉 | Vj

)
withAj, Bj ∈ C andAj ∈ SBj

in εj. If ε1 :U ′
1 ≈C ε2 :U ′

2, thenε1 :U1 ≈C ε2 :U2.

For any user processesV1 andV2 that do not use the control channels, the private
bisimilarity hypothesis holds as soon asνK.V1 ≈l νK.V2. With this additional as-
sumption and Lemma5, we have a corollary expressed in terms of standard labelled
bisimilarity: we obtain that ifνK.V1 ≈l νK.V2 thenνV .(U1 | P(ε1)) ≈l νV .(U2 |
P(ε2)).

A further privacy property concerns compliant principals that attempt to open ses-

33

sions with one another but do not perform any action observable by the attacker
after establishing a session. (They may for instance use private channels, or pub-
lic channels with adequate decoys.) We may describe any such configuration of
principals inC by a parallel compositions ofinitA messages withA ∈ C, plus the
sets(SB)B∈C. In this special case, we easily characterize the equivalence of two
configurations:

Theorem 7 (Silent sessions)LetU1 andU2 be parallel compositions of messages
initA〈X〉 withA ∈ C. If

(1) U1 andU2 contain the same number of messages,
(2) U1 andU2 contain exactly the same messagesinitA〈W 〉 for W 6∈ C, and
(3) the setsSB \ C are identical inε1 andε2,

thenνV .(U1 | P(ε1)) ≈l νV .(U2 | P(ε2)).

In order to prove the theorem, we may establishε1 :U1 ≈C ε2 :U2 by enumerat-
ing a few blinded and external transitions, then apply Lemma5. Conversely, the
three hypotheses seem necessary for the conclusion, since the attacker can count
the number of “hello” messages, can decrypt “hello” messages sent to principals
outsideC (as long asW is a public key not inC), and can attempt to establish a
session with anyB ∈ C.

We can derive other similar privacy results for uniform families of user processes,
such as processes that do not use any principal identity after establishing sessions.

Our final result relates a configuration with a present but silent principal to a con-
figuration with an absent principal. (This theorem does not require Lemma5; it has
a simple, direct bisimulation proof.)

Theorem 8 (Absent principal) Assume that|C| > 1, and letX 6∈ C andSX = ∅.
We have:

Q | νVX .PKX [PX] ≈l Q | PKX [0]

The process on the left-hand side is structurally equivalent to a configurationQ′

with compliant principalsC ∪ {X}; the process on the right-hand side includes
an absent principal (a principalX whose decryption key is never used). Hence,
one may first use private bisimilarity to show thatX is apparently not involved
in any session inQ′, then apply Theorem8 to substitute an absent principal forX.
(Conversely, ifC = {} orC = {A}, then the addition of any instance of the protocol
is observable.)

34

9 Related problems and related work

The questions treated here are related to traffic analysis, and how to prevent it.
This subject is not new, of course. In particular, work on message untraceability
has dealt with the question of hiding (unlinking) the origins and destinations of
messages (e.g., [15,32,33]). It has produced techniques that allow a principalA
to send messages to a principalB in such a way that an adversary may know the
identities ofA andB and their locations, but not that they are communicating with
one another. Those techniques address how to route a message fromA to B with-
out leaking information. In the case of cellular networks, those techniques can be
adapted to hide the locations of principals [18,34]. In contrast, here we envision
that all messages are broadcast within a location, simplifying routing issues, and
focus on hiding the identities of principals that meet and communicate at the lo-
cation. Other interesting work on untraceability in mobile networks has addressed
some important authentication problems under substantial infrastructure assump-
tions, for instance that each principal has a home domain and that an authentication
server runs in each domain [30,36,9]. That work focuses on the interaction between
a mobile client and an authentication server of a domain that the client visits, typi-
cally with some privacy guarantees for the former but not for the latter. In contrast,
we do not rely on those infrastructure assumptions and we focus on the interaction
between two mobile principals with potentially similar privacy requirements.

There has been other research on various aspects of security in systems with mo-
bility (e.g., [14,40,39] in addition to [18,25,30,36,11,9], cited above). Some of that
work touches on privacy issues. In particular, the work of Jakobsson and Wetzel
points out some privacy problems in Bluetooth. The protocols of this paper are
designed to address such problems.

The questions treated here are also related to the delicate balance between privacy
and authenticity in other contexts. This balance plays an important role in electronic
cash systems (e.g., [23]). It can also appear in traditional access control. Specifi-
cally, suppose thatA makes a request toB, and thatA is member of a group that
appears in the access control list thatB consults for the request. In order to conceal
its identity,A might use a ring signature [35] for the request, establishing that the
request is from a member of the group without lettingB discover thatA produced
the signature. However, it may not be obvious toA that showing its membership
could help, andB may not wish to publish the access control list. Furthermore,A
may not wish to show all its memberships toB. Thus, there is a conflict between
privacy and authenticity in the communication betweenA andB. No third parties
need be involved. In contrast, we do not guarantee the privacy ofA andB with
respect to each other, and focus on protecting them against third parties.

Designated verifier proofs address another trade-off between confidentiality and
authenticity [24]. They allow a principalA to construct a proof that will convince

35

only a designated principalB. For instance, onlyB may be convinced ofA’s iden-
tity. Designated verifier proofs differ from the protocols of this paper in their set-up
and applications (e.g., for fair exchange). Moreover, in general, they may leak in-
formation aboutA andB to third parties, without necessarily convincing them.
Therefore, at least in general, they need not provide a solution to the problem of
private authentication treated in this paper.

More broadly, this paper is partly a contribution to the formal study of security pro-
tocols and of their properties. In recent years, the understanding of basic security
properties such as integrity and confidentiality has become both deeper and wider.
There has also been substantial progress in the design and verification of protocols
that aim to guarantee these properties. On the other hand, fundamental tasks such
as secure session establishment remain the subject of active, productive research.
Moreover, properties beyond integrity and confidentiality have been studied rather
lightly to date. These properties include, for example, protection of identity infor-
mation and protection against denial-of-service attacks. They may seem secondary
but they are sometimes important.

The literature contains many other formal treatments of protocols. We will not at-
tempt to survey that work here, but mention only the two most relevant papers. One
of them is our original paper on the applied pi calculus [2], which considers session
establishment and some of its properties, and which includes additional references.
The other is a recent paper by Hughes and Shmatikov that defines several notions of
anonymity and privacy [22]. A preliminary version of that paper [38] sketches—in
just a few sentences—an analysis of the protocol that is the subject of this paper.
Hughes and Shmatikov develop a special formal framework for protocols, commu-
nication graphs. Despite some thematic overlap, the applied pi calculus appears to
be richer than communication graphs. In particular, communication graphs do not
include an account of user processes. While the definitions of anonymity and pri-
vacy seem appropriate and useful for communication graphs, it is not yet entirely
clear whether and how they would carry over to the applied pi calculus and other
settings.

10 Conclusions

Security protocols can contribute to the tension between communication and pri-
vacy, but they can also help resolve it. In this paper, we construct two protocols
that allow principals to authenticate with chosen interlocutors while hiding their
identities from others. In particular, the protocols allow mobile principals to com-
municate when they meet, without being monitored by third parties. The protocols
resemble standard ones, but interestingly they rely on some non-standard assump-
tions and messages to pursue non-standard objectives. As virtually all protocols,
however, they are only meaningful in the context of complete systems. They are

36

part of a growing suite of technical and non-technical approaches to privacy.

We also analyze one of the protocols in the applied pi calculus. We cover standard
authenticity and secrecy properties and also privacy (identity protection) properties.
The formulation of these properties mainly relies on equivalences, which express
indistinguishability in an arbitrary context. Our analysis concerns not only the core
of the protocol but also its composition with a user process, since this composi-
tion may endanger privacy properties. Thus, we examine the protocol under several
hypotheses on user processes. We obtain several related results that transfer hy-
potheses on user processes to security properties of complete systems.

Acknowledgements

Markus Jakobsson and Mike Reiter provided encouragement and useful references.
The access-control scenario sketched in section9 arose in the context of SPKI [17]
during discussions with Carl Ellison, Alan Kotok, and Andrew Palka in 1997. Dis-
cussions with Vitaly Shmatikov were helpful in thinking about section4.4(though
this section does not report on Vitaly’s ideas). Hubert Comon and Véronique Cortier
started to study the protocols in the spi calculus. Mike Burrows suggested an in-
teresting variant of the second protocol with timestamps and without decoy mes-
sages. Hugo Krawczyk confirmed points related to the Skeme protocol. Anand De-
sai made available information on his unpublished work. Mary Baker suggested
many improvements in the presentation of this paper.

Mart́ın Abadi’s work was started at Bell Labs Research, Lucent Technologies,
and at InterTrust’s Strategic Technologies and Architectural Research Laboratory,
and was partly done at Microsoft Research, Silicon Valley. Martı́n Abadi’s work
was also partly supported by the National Science Foundation under Grants CCR-
0204162 and CCR-0208800.

References

[1] Mart́ın Abadi. Private authentication. InProceedings of the Workshop on Privacy
Enhancing Technologies (PET 2002), volume 2482 ofLNCS, pages 27–40. Springer-
Verlag, 2003.

[2] Mart́ın Abadi and Ćedric Fournet. Mobile values, new names, and secure
communication. InProceedings of the 28th ACM Symposium on Principles of
Programming Languages (POPL 2001), pages 104–115. ACM, January 2001.

[3] Mart́ın Abadi, Ćedric Fournet, and Georges Gonthier. Authentication primitives and
their compilation. InProceedings of the 27th ACM Symposium on Principles of
Programming Languages (POPL 2000), pages 302–315. ACM, January 2000.

37

[4] Mart́ın Abadi, Ćedric Fournet, and Georges Gonthier. Secure implementation of
channel abstractions.Information and Computation, 174(1):37–83, April 2002.

[5] Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols: The
spi calculus.Information and Computation, 148(1):1–70, January 1999. An extended
version appeared as Digital Equipment Corporation Systems Research Center report
No. 149, January 1998.

[6] Mart́ın Abadi and Roger Needham. Prudent engineering practice for cryptographic
protocols.IEEE Transactions on Software Engineering, 22(1):6–15, January 1996.

[7] Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (The
computational soundness of formal encryption). InProceedings of the First IFIP
International Conference on Theoretical Computer Science, volume 1872 ofLNCS,
pages 3–22. Springer-Verlag, August 2000.

[8] William Aiello, Steven M. Bellovin, Matt Blaze, Ran Canetti, John Ionnidis,
Angelos D. Keromytis, and Omer Reingold. Efficient, DoS-resistant, secure key
exchange for internet protocols. In Vijay Atluri, editor,Proceedings of the 9th ACM
Conference on Computer and Communications Security (CCS 2002), pages 48–58.
ACM, November 2002.

[9] Giuseppe Ateniese, Amir Herzberg, Hugo Krawczyk, and Gene Tsudik. On traveling
incognito.Computer Networks, 31(8):871–884, 1999.

[10] Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval. Key-
privacy in public-key encryption. In Colin Boyd, editor,Advances in Cryptology—
ASIACRYPT 2001, volume 2248 ofLNCS, pages 566–582. Springer-Verlag, 2001.

[11] V. Bharghavan and C. V. Ramamoorthy. Security issues in mobile communications.
In Proceedings of the Second International Symposium on Autonomous Decentralized
Systems, pages 19–24, 1995.

[12] Specification of the Bluetooth system (core, v1.0b). On the Web at
http://www.bluetooth.com , December 1999.

[13] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable
anonymous credentials with optional anonymity revocation. In Birgit Pfitzmann,
editor, Advances in Cryptology—EUROCRYPT 2001, volume 2045 ofLNCS, pages
93–118. Springer-Verlag, 2001.

[14] Luca Cardelli. Mobility and security. In F.L. Bauer and R. Steinbrueggen, editors,
Foundations of Secure Computation, NATO Science Series, pages 1–37. IOS Press,
2000. Volume for the 20th International Summer School on Foundations of Secure
Computation, held in Marktoberdorf, Germany (1999).

[15] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the Association for Computing Machinery, 24(2):84–88, February
1981.

[16] Dorothy E. Denning and Giovanni Maria Sacco. Timestamps in key distribution
protocols.Communications of the ACM, 24(7):533–535, August 1981.

38

[17] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. SPKI
certificate theory. On the Web athttp://www.ietf.cnri.reston.va.us/
rfc/rfc2693.txt , September 1999.

[18] Hannes Federrath, Anja Jerichow, and Andreas Pfitzmann. MIXes in mobile
communication systems: Location management with privacy. In Ross J. Anderson,
editor,Information hiding: First international workshop, volume 1174 ofLNCS, pages
121–135. Springer-Verlag, 1996.

[19] Cédric Fournet and Martı́n Abadi. Hiding names: Private authentication in the
applied pi calculus. InSoftware Security – Theories and Systems. Mext-NSF-JSPS
International Symposium (ISSS’02), volume 2609 ofLNCS, pages 317–338. Springer-
Verlag, 2003.

[20] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The SSL protocol: Version 3.0.
Available athttp://wp.netscape.com/eng/ssl3/ , March 1996.

[21] Shafi Goldwasser and Silvio Micali. Probabilistic encryption.Journal of Computer
and System Sciences, 28:270–299, April 1984.

[22] Dominic Hughes and Vitaly Shmatikov. Information hiding, anonymity, and privacy:
a modular approach.Journal of Computer Security, 2003. To appear.

[23] Markus Jakobsson.Privacy vs. Authenticity. PhD thesis, University of California, San
Diego, 1997.

[24] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier
proofs and their applications. In Ueli Maurer, editor,Advances in Cryptology—
EUROCRYPT 96, volume 1070 ofLNCS, pages 143–154. Springer-Verlag, 1996.

[25] Markus Jakobsson and Susanne Wetzel. Security weaknesses in Bluetooth. InTopics
in Cryptology - CT-RSA 2001, Proceedings of the Cryptographer’s Track at RSA
Conference 2001, volume 2020 ofLNCS, pages 176–191. Springer-Verlag, 2001.

[26] Hugo Krawczyk. SKEME: A versatile secure key exchange mechanism for internet.
In Proceedings of the Internet Society Symposium on Network and Distributed
Systems Security, February 1996. Available athttp://bilbo.isu.edu/
sndss/sndss96.html .

[27] Butler Lampson, Martı́n Abadi, Michael Burrows, and
Edward Wobber. Authentication in distributed systems: Theory and practice.ACM
Transactions on Computer Systems, 10(4):265–310, November 1992.

[28] Arjen K. Lenstra and Eric R. Verheul. The XTR public key system. In Mihir Bellare,
editor,Advances in Cryptology—CRYPT0 2000, volume 1880 ofLNCS, pages 1–19.
Springer-Verlag, 2000.

[29] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone.Handbook of Applied
Cryptography. CRC Press, 1996.

[30] Refik Molva, Didier Samfat, and Gene Tsudik. Authentication of mobile users.IEEE
Network, 8(2):26–35, March/April 1994.

39

http://www.ietf.cnri.reston.va.us/rfc/rfc2693.txt
http://www.ietf.cnri.reston.va.us/rfc/rfc2693.txt
http://wp.netscape.com/eng/ssl3/

[31] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication
in large networks of computers.Communications of the ACM, 21(12):993–999,
December 1978.

[32] Andreas Pfitzmann and Michael Waidner. Networks without user observability.
Computers and Security, 6(2):158–166, April 1987.

[33] Charles Rackoff and Daniel R. Simon. Cryptographic defense against traffic analysis.
In Proceedings of the Twenty-Fifth Annual ACM Symposium on the Theory of
Computing, pages 672–681, 1993.

[34] Michael G. Reed, Paul F. Syverson, and David M. Goldschlag. Protocols using
anonymous connections: Mobile applications. In B. Christianson, B. Crispo,
M. Lomas, and M. Roe, editors,Security Protocols: 5th International Workshop,
volume 1361 ofLNCS, pages 13–23. Springer-Verlag, 1997.

[35] Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In Colin
Boyd, editor,Advances in Cryptology—ASIACRYPT 2001, volume 2248 ofLNCS,
pages 552–565. Springer-Verlag, 2001.

[36] Didier Samfat, Refik Molva, and N. Asokan. Untraceability in mobile networks. In
Proceedings of the First Annual International Conference on Mobile Computing and
Networking (MobiCom 1995), pages 26–36, 1995.

[37] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and
David Chaum, editors,Advances in Cryptology—CRYPTO 84, volume 196 ofLNCS,
pages 47–53. Springer-Verlag, 1984.

[38] Vitaly Shmatikov and Dominic Hughes. Defining anonymity and privacy (extended
abstract). InWorkshop on Issues in the Theory of Security (WITS’ 02), January 2002.

[39] Alex C. Snoeren and Hari Balakrishnan. An end-to-end approach to host mobility. In
Proceedings of the Sixth Annual International Conference on Mobile Computing and
Networking (MobiCom 2000), pages 155–166, 2000.

[40] Yongguang Zhang and Wenke Lee. Intrusion detection in wireless ad-hoc networks.
In Proceedings of the Sixth Annual ACM/IEEE International Conference on Mobile
Computing and Networking (MobiCom 2000), pages 275–283, 2000.

A Appendix: Proofs

This appendix contains the proofs for the results of sections7 and 8 about the
second protocol. It partly relies on definitions and proof techniques for the applied
pi calculus [2]. As could be expected, the proofs require the consideration of many
details (sometimes abbreviated in this presentation); mechanical support for such
proofs may be useful in the future.

We first give a co-inductive proof technique for establishing labelled bisimilarity in
the applied pi calculus. Recall that∼l is the strong variant of labelled bisimilarity.

40

We write→d for the subset of→ that corresponds to term-comparison steps and
inputs on filter channels in the protocol—these steps are deterministic and commute
with any other step, so they can almost be considered part of structural equivalence
in weak bisimulation proofs.

Lemma 9 (Bisimulation proofs up to context, deterministic steps, and strong
bisimilarity) To establish thatR ⊆ ≈l, it suffices to show thatR meets the condi-
tions in the definition of≈l (Definition1) modified as follows: In conditions 2 and 3,
instead ofA′ R B′, we haveA′ →∗

d∼l C[A′′], B′ →∗
d∼l C[B′′], andA′′ R B′′ for

some extended processesA′′ andB′′, and some evaluation contextC[].

The proof is a standard variation of the proof that≈l is closed by application of
closing evaluation contexts (see [2]).

A.1 State translation

For a given set of compliant principalsC, we translate (that is, we compile) each
abstract control state to a specific state of the process that implements the session-
establishment protocol. We first refine the abstract state and define auxiliary substi-
tutions, then give the translation, and finally state lemmas on the frames that appear
in the translation.

We refine the abstract stateρ so that it keeps track of additional transient states for
the protocolP. (Intuitively, the attacker can do less in the refined statesρ, so these
states need to appear only in transition invariants of the proofs.)

• We supplementρ with a third map fromB ∈ C to finite sets of messagesFB

already received inRB (and terms representing those sets). This map is not mod-
ified in transitions between processes with control state.

• For each entryt, we introduce another entry?t to represent the same session
state ast but with no subprocessI ′A (typically a state afterI ′A received a wrong
message). We write?t for t or ?t.

In extended processes with control statesρ :U , wheneverρ mapsi to an entry?t
with targetB (that is,t = AB, t = ABKi, andt = AB−), andρ mapsB toFB,
we assume that(x1i 6∈ FB)ϕ(U)—in the translation below,x1i is selectively added
to FB. We also assume that?A B Ki and?A B − occur inρ only if A ∈ SB in ρ
andA 6∈ SB in ρ, respectively, and thatA E occurs inρ only if E 6∈ C.

We letσ◦K
def
= νN.{K = N} andσ◦1

def
= {x1 = NA}. We use indexed substitutions

σ1i, σ◦1i, σ2i, σ◦2i, σKi, andσ◦Ki instead of those defined in section6.4 to represent
multiple instances of the substitutions with distinct free names and variables. (For
instance,σ2i is σ2 with defined variablex2i and free noncesNAi, NBi instead ofx2

andNA, NB.)

41

We translateρ :U into the extended processQ(ρ :U) defined as follows:

Q(ρ :U)
def
= νVρ.(U | P(ρ))

P(ρ)
def
=

∏
A∈C PKA

[
IA | RA(SA, F

′
A) | ∏(i7→?t)∈ρ, t=A... S(i 7→?t)

]
F ′

B
def
= FB] {x1i | ρ = ρ′[i 7→?A B (Ki or−)]}

S(i 7→?A B)
def
= νNAi.(σ1i |?I ′Ai)

S(i 7→?A B Ki)
def
= νNAi.(σ1i |?I ′Ai | νNBi.(σ2i | σKi))

S(i 7→?A B −)
def
= νNAi.(σ1i |?I ′Ai) | νNBi.σ

◦
2i | σ◦Ki

S(i 7→ A E)
def
= I ′Ai{B = E}

where?I ′Ai
def
= I ′Ai when? is nil and?I ′Ai

def
= 0 when? is ?, and whereRA(SA, F

′
A)

is RA with setsSA of acceptable interlocutors andF ′
A of messages in the cache

(instead of∅). In particular, we haveP(ε) ≡ P andQ(ε :U) ≡ Q as defined in
section6.5.

The state translationP(ρ) defines the variables

dv(P(ρ)) = C] ⋃
(i7→?t)∈ρ


{x1i} whent = A B

{x1i, x2ij, Ki} whent = A B Ki or t = A B −

∅ whent = A E

We let D def
=

⋃
ρ dv(P(ρ))—this co-infinite set gathers all variables potentially

exported inP(ρ). When we writeρ :U , we always assume that the variables in
D \ dv(P(ρ)) do not occur inρ andU .

At each stage of a session between compliant principalsA andB, the corresponding
frame in the translation is given byψ(i 7→?t)

def
= S(i 7→ ?t). Except for the indexing

on defined variables,ψ(i 7→ ABKi) coincides withϕ andψ(i 7→ AB−) coincides
with ϕ− | νN.{K = N} as defined for the theorems of section7. We also define
auxiliary frames for fake messages toB with termsV instead of a nonce andW
instead of a public key:

χ(V,W B)
def
= νNB.({x2 = {ack(V,NB, B)}W} | {K = h(V,NB)})

χ◦
def
= νNB.σ

◦
2 | σ◦K

A.2 Invariant lemma

Next, we systematically write down the protocol states and their transitions, using
the distinguished statesP(ρ).

42

In the lemma below, we rely on the following notation conventions. Equality on
terms is to be interpreted in the frame associated withP(ρ) (soU = V stands
for (U = V)ϕ(P(ρ))). When we use structural equivalence to make explicit some
restrictions withinP ′, we always assume that the bound names and variables do not
clash withP(ρ) andα.

Lemma 10 The transitionsP(ρ)
α−→ P ′ are those enumerated below, with the fol-

lowing properties ofP ′. (We also mention the corresponding transition rules of
section8.1, if any.)

• P(ρ)
initA(X)−−−−→ P ′ for any A ∈ C. For each fresh indexi, we have subcases

depending onX:
(1) P ′ ≡ νx1i.(c1〈x1i〉 | P(ρ[i 7→ A B])) if X = B ∈ C.
(2) P ′ ≡ νx1i.(c1〈x1i〉 | νNAi.(σ1i{B = E} | P(ρ[i 7→ A E]))) if X = E 6∈ C.

(These cases correspond to special transitionsINIT and INIT-E.)

• P(ρ)
c1(X1)−−−−→ P ′. For eachB ∈ C, we have subcases depending onρ andX1:

(3) If ρ = ρ′[i 7→?A B] andX1 = x1i for somei, then we have

P ′ →+
d νx2iKi.

c2〈x2i〉 |

P(ρ′[i 7→?A B Ki])|acceptB〈A,Ki〉 if A ∈ SB

P(ρ′[i 7→?A B −]) if A 6∈ SB


For the other subcases, letρ′ beρ withX1 added toFB.

(4) If X1 6∈ F ′
B andX1 = {hello(V,W)}B for some termsV andW withW ∈ SB,

we haveP ′ →+
d P(ρ′) | νx2, K.(c2〈x2〉 | acceptB〈V,K〉 | χ(V,W B)).

(5) Otherwise, we haveP ′ →+
d P(ρ′) | νNB.c2〈x2σ

◦
2〉.

(These transitions do not depend on “?”, and always addX1 toB’s filter. Case3
corresponds to the two branches ofACCEPT. Case4 covers both the first branch
of ACCEPT-FAKE andACCEPT-E. Case5 covers the second branch ofACCEPT-
FAKE.)

• P(ρ)
c2(X2)−−−−→ P ′. For eachi such thatρ = ρ′[i 7→ t], we have subcases depending

on t andX2:
(6) t = A B Ki,X2 = x2i, and we haveP ′ →d P(ρ′[i 7→ ?t]) | connectA〈B,Ki〉;

t = A B − ,X2 = x2i, and we haveP ′ →d P(ρ′[i 7→ ?t]).
(7) t = A B or, for anyX2 6= x2i, t = A B Ki or t = A B − . Then, we have

P ′ →d P(ρ′[i 7→ ?t]).
(8) t = A E,X2 = {ack(NAi, V, E)}A for some termV . Then, we have

P ′ →d P(ρ′) | connectA〈E, h(NAi, V)〉.
(9) t = A E for any otherX2, and we haveP ′ →d P(ρ′).

(Cases6 and8 correspond to rulesCONNECT andCONNECT-E.)

Proof: The proof follows from our definition of translated states, and is by case
analysis on the input prefixes inP(ρ). (P(ρ) has neither internal steps nor outputs.)
We detail the following cases:

43

• P(ρ)
initA(X)−−−−→ P ′ is a replicated input ofIA.

• P(ρ)
c1(X1)−−−−→ P ′ is a replicated input ofRB for someB ∈ C. The determin-

istic steps→+
d consist of a communication on the local channelc to readF ′

B

followed by a series of tests onX1 in RB: a test for freshnessX1 6∈ F ′
B, one

for pattern matchingX1 = {hello(NA, A)}B in a context that defines{NA =
hello.0(decrypt(X1, K

−1
B))} and{A = hello.1(decrypt(X1, K

−1
B))}, and one for

authorizationA ∈ SB.
3. The freshness test succeeds by hypothesisx1i 6∈ F ′

B when i 7→?A B (with
X1 added toF ′

B in the resulting state). By equational rewriting and structural
equivalence, the pattern matching succeeds withA bound inPKA [] andNA =
NAi bound inS(i 7→?A B). If A ∈ B, the resulting subprocess is:

νx2iKi.(c2〈x2i〉 | νNBi.(σ2i | σKi | acceptB〈A,Ki〉))

If A 6∈ B, we use0 ≡ νKi.σ
◦
Ki and obtain by structural equivalence

νx2iKi.(c2〈x2i〉 | νNBi.σ
◦
2i | σ◦Ki)

In any case, we rely on the hypothesis onD and structural equivalence to lift
the restriction onx2i andKi to the top level of the translation.

4. The three tests succeed, each using a hypothesis in the case definition, withX1

added toFB in the resulting state. (The hypothesisX1 6∈ F ′
B impliesX1 6= x1i

for anyi with targetB in the domain ofρ.)
5. If the freshness test fails, thenρ = ρ′. Otherwise,X1 6= x1i for any i with

targetB in the domain ofρ, andX1 is added toFB. In any case, a fresh decoy
message is sent.

• P(ρ)
c2(X2)−−−−→ P ′ is a single input in a subprocessI ′Ai of P(ρ), which corresponds

to someA ∈ C and entryi 7→ t in ρ (not i 7→ ?t). After the test,I ′Ai is replaced
with either a message onconnectA or the null process0 and we conclude by
structural equivalence.

We detail the test in the pattern matching ofI ′A in the casesi 7→ A B Ki

and i 7→ A B − with two subcases depending onA ∈ SB. (The casesi 7→
A B andi 7→ A E are similar.) SinceNAi andK−1

A are bound inP(ρ), we can
assume that they do not syntactically occur inX2. Let X be a term such that
fn(X) ∩ {NAi, K

−1
A } = ∅, andV andW be any terms. We have:

- X
(
σ1i | σ2i | σKi | {A = pk(K−1

A)}
)

= {ack(NAi, V,W)}A succeeds if and
only if X = x2i.

- X
(
σ1i | σ◦2i | σ◦Ki) | {A = pk(K−1

A)}
)

= {ack(NAi, V,W)}A always fails.
6. The test inI ′A succeeds or fails according tot, as detailed above. When the test

succeeds, we rely on structural equivalence and the active substitutionσKi in
ψ(i 7→ AB Ki) to replace the key computation triggered inI ′Ai by the defined
variableKi.

7. The test fails and yields0 = ?I ′Ai.
8. The test succeeds and yields a connect message.
9. The test fails and yields0. 2

44

A.3 Equational properties

The next lemmas relate frames appearing in the protocol implementation; they cru-
cially rely on which-key concealment.

Lemma 11 We have the following static equivalences:

PKA [0] | χ(V,A B)≈s PKA [0] | χ◦ (A.1)
PKB [0] | νNAi.σ1i≈s PKB [0] | νNAi.σ

◦
1i (A.2)

PKA [0] | PKB [0] | ψ(i 7→ A B Ki)

≈s PKA [0] | PKB [0] | ψ(i 7→ A B −) (A.3)

Proof: Within our equational theory, we check that, for all terms with free vari-
ables in the domain of the related frames, the substituted terms are “equationally
inert”, that is, do not enable any additional rewrite step.

EquivalenceA.1 is an instance of:

νs,NB.


{A = pk(s)} |

{x2 = {ack(V,NB,W)}pk(s)} |

{K = h(V,NB)}

 ≈s νs,M,N.


{A = pk(s)} |

{x2 = M} |

{K = N}


whereV andW range over arbitrary terms (up to≡ and supposings /∈ fn(V,W)).
Consider two termsV1, V2 with fv(Vi) ⊆ {A, x2, K} andfn(Vi)∩{s,NB,M,N} =
∅. Let σ andσ◦ be the two plain substitutions obtained from the frames above by
discarding restrictions. We show thatV1σ = V2σ iff V1σ

◦ = V2σ
◦ by structural

induction onV1 andV2. For each axiom in the equational theory, we check the
correspondence of rewrite steps after applying either substitution: as regardsx2,
for instance, the rule for decryption does not apply tox2 because the key term is
not equal tos; the rule for field selection does not apply tox2 because the encrypted
message is not a plain message constructor.

EquivalenceA.3 is obtained from equivalenceA.1 (with A andB swapped) by
indexingK andx2 with i and applying the contextPKA [0] | νNAi.(σ1i |).

EquivalenceA.2 follows from a more general static equivalence:

νs,NA.

 {B = pk(s)} |

{x1i = {hello(NA, V)}pk(s)}

 ≈s νs,M.

 {B = pk(s)} |

{x1i = M}


whereV is an arbitrary term, with a similar proof. 2

45

By composing these static equivalences in evaluation contexts, we obtain that the
frame associated with any state of the protocol is equivalent to a frame that defines
all its variables as distinct fresh names, and is thus equationally inert:

Lemma 12 ϕ(P(ρ)) ≈s
∏

x∈dv(P(ρ)) νN.{x = N}.

Proof: For a givenρ, let Is = {i | (i 7→?A B si) ∈ ρ} wheres is nil, K, or−.
We have:

P(ρ)
def
=

∏
A∈C

PKA

[
PA |

∏
(i7→?t)∈ρ, t=A... S(i 7→?t)

]
≈s

∏
A∈C

PKA [0] |
∏
I

ψ(i 7→?A B) |
∏
IK

ψ(i 7→?A B Ki) |
∏
I−
ψ(i 7→?A B −)

(A.4)

≈s

∏
A∈C

PKA [0] |
∏
I

ψ(i 7→ A B) |
∏

IK∪I−
ψ(i 7→ A B −) (A.5)

≡
∏
A∈C

PKA [0] |
∏

I∪IK∪I−
νNAi.σ1i |

∏
IK∪I−

(νNBi.σ
◦
2i | σ◦Ki)

≈s

∏
A∈C

PKA [0] |
∏

I∪IK∪I−
νNAi.σ

◦
1i |

∏
IK∪I−

(νNBi.σ
◦
2i | σ◦Ki) (A.6)

≈s

∏
A∈C

νN.{A = N} |
∏

I∪IK∪I−
νNAi.σ

◦
1i |

∏
IK∪I−

(νNBi.σ
◦
2i | σ◦Ki) (A.7)

≡ ∏
x∈dv(P(ρ)) νN.{x = N} (A.8)

where (A.4) is obtained by erasure of plain subprocessesPA andI ′A followed by
structural equivalence (since the decryption key does not occur anywhere except
in its definition); (A.5) follows from Lemma11(A.3) for eachi ∈ IK ; (A.6)
follows from Lemma11(A.2) for eachi ∈ I ∪ IK ∪ I−; (A.7) follows from
νs.{A = pk(s)} ≈s νN.{A = N}. (A.8) is a renaming of bound names. 2

From Lemma12, we obtain that, for any compliant user processesU andU ′ and
any labelα such thatbv(α) ∩ D = ∅, we have:

(1) if U α−→ U ′ considering the variablesdv(P(ρ)) as distinct fresh names, then
U | P(ρ)

α−→ U ′ | P(ρ).
(2) if U | ϕ(P(ρ))

α−→ U ′′ | ϕ(P(ρ)), thenU α−→ U ′ considering the variables
dv(P(ρ)) as distinct fresh names, withU ′ | ϕ(P(ρ)) ≡ U ′′ | ϕ(P(ρ)).

The next lemma lifts Lemma11 from frames to translated states:

Lemma 13 For any extended control stateρ andA,B ∈ C, we have:

P(ρ) | χ(V,A B)∼l P(ρ) | χ◦ (A.9)

46

Letρ = ρ′[i 7→ A B Ki] andρ1i beρ′ with x1i added toFB. We have:

P(ρ1i) | νNA.σ1i≈l P(ρ′) | νNA.σ
◦
1i (A.10)

P(ρ1i) | ψ(i 7→ A B Ki)≈l P(ρ1i) | ψ(i 7→ A B −) (A.11)

Proof:

(A.9): Let χ abbreviateχ(V,A B). By definition, we have:

χ
def
= νNB.({x2 = {ack(V,NB, B)}A} | {K = h(V,NB)})

χ◦
def
= νN.{x2 = N} | νN.{K = N}

For a givenχ, letR be the relation that contains(A.9) for all ρ. We show that
R is a strong bisimulation up to context and conclude using (a strong variant of)
Lemma9.

The static equivalence requirement is Lemma11(A.1) in context. The strong
bisimulation requirements are easily established using the case analysis of Lem-
ma 10: in each case, it suffices to check that all tests inP(ρ) yield the same
results when placed in parallel withχ and withχ◦.

We detail the cases6–9 of Lemma10 when ρ = ρ′[i 7→ t], which cover
all transitions leading to a decryption attempt ofx2 with a decryption key that
matches the encryption keyA used inχ. (For all other transitions, the static
equivalence of11(A.1) suffices to conclude.) In the frames ofP(ρ) | χ and
P(ρ) | χ◦, we havex2 6= x2i by Lemma12, and thus case6 is excluded. Simi-
larly, in both frames,x2 6= {ack(NA, V, E)}A for anyE 6∈ C, sincex2χ

◦ is not an
encrypted message andx2χ has a third fieldB 6= E, and thus case8 is excluded.
In case7, we obtain processes related byR for the control stateρ′[i 7→ ?t]. In
case9, we obtain processes related byR for the control stateρ′.

(A.10): The proof similarly relies on Lemmas9, 11, and10. We use a candidate
relationR that contains all pairs

P(ρ1i) | νNA.σ1iRP(ρ′) | νNA.σ
◦
1i (A.12)

P(ρ1i) | νNA.σ1iRP(ρ1i) | νNA.σ
◦
1i (A.13)

The cases3–5 of Lemma10 cover all potential decryption attempts ofx1i as a
“hello” message with decryption keyK−1

B . In P(ρ′) | νNA.σ
◦
1i, the messagex1i

passes the freshness test but fails the pattern matching (the message is a nonce,
not an encrypted message), a decoy is generated, andx1i is added toFB. For
all other processes related byR, we havex1i ∈ F ′

B, so the message fails the
freshness test, a decoy is generated, and the protocol state is left unchanged.
Thus, we are always in case5 and obtain on each side the processes related on
line (A.13) in the evaluation context[] | νNB.c2〈x2σ

◦
2〉. Other transitions are

handled using Lemma11(A.2).

47

(A.11): Similarly, x1i ∈ FB always excludes the decryption ofx1i, and the test
in pattern matching of cases6 and8 always fails onx2i, either because the first
nonce is different from the expected one or because the message is not encrypted
underA. Other transitions are handled using Lemma11(A.3). 2

A.4 Proofs of section7

While its statement is optimized for the proof of Lemma5, Lemma10also provides
precise syntactic support for establishing the theorems of section7. We first relate
the results of arbitrary transitions ofP to state translations in context:

Lemma 14 If P η−→ P ′, thenP ′ →∗
d≡ C[P(ρ)] for some control stateρ and eval-

uation contextC[], whereC[] is obtained by composing the evaluation contexts
appearing in Lemma10 and deleting their messages as they are consumed by out-
put transitions and internal communication steps onc1 andc2.

Proof: By induction onη, definition of (ordinary) labelled transitions, Lem-
ma 10, and subcommutation of→d with any other transition: ifP1

η−→ P ′ and
P1 →∗

d≡ C[P(ρ)], then for someP ′′ andη′ obtained fromη by deleting→d-steps,

we haveP ′ →∗
d≡ P ′′ andC[P(ρ)]

η′−→≡ P ′′. The transition label (or, in case of an
internal communication on channelsc1 or c2, the message consumed inC[]) and
the input prefix inP(ρ) determine the case in Lemma10. 2

The next theorem corresponds to the discussion before Theorem2; it uses the same
notation conventions.

Theorem 15 (Complete runs)LetA,B ∈ C.

(1) (Success:) IfP η−→ P ′ andA ∈ SB, thenP ′ ω−→ P ′
x1
| ϕ.

(Failure:) If P η−→ P ′ andA 6∈ SB, thenP ′ ω−−→ P ′
x1
| ϕ−.

(2) Conversely, ifP ω−→ P ′′, thenA ∈ SB andP ′′ ≡ Px1 | ϕ.

Proof of Theorem 15: We first apply Lemma14 to obtainP ′ →∗
d≡ C[P(ρ)].

From the translation stateP(ρ), we exhibit a particular traceω−→ (or ω−−→), up to
α-conversion to erase indices in bound variables in the trace and avoid clashes with
C[]. We then check thatC[P(ρ)] (by construction) and finallyP ′ (by commutation
of each→d step occurring inP ′ →d≡ C[P(ρ)] with ω−→) have the same trace.

The trace is obtained by composing the following transitions:

48

• transition1 of Lemma10 for some indexi fresh inρ, leading toP(ρ[i 7→ A B])
in evaluation contextνx1i.(c1〈x1i〉 |);

• νx1i.c1〈x1i〉−−−−−−→ that discards this evaluation context;
• transition3 withX1 = x1i, leading (after→+

d) toP(ρ[i 7→ ABKi]) in evaluation
contextνx2iKi.(c2〈x2i〉 | | acceptB〈A,Ki〉);

• νx2i.c2〈x2i〉−−−−−−→ that discards the evaluation contextνx2i.(c2〈x2i〉 |) and leaves
P(ρ[i 7→ A B Ki]) in evaluation contextνKi.(| acceptB〈A,Ki〉);

• transition6 for i 7→ A B Ki leading (after→+
d) to P(ρ[i 7→ ?A B Ki]) in

evaluation contextνKi.(| acceptB〈A,Ki〉 | connectA〈B,Ki〉);
• νK.acceptB〈A,K〉−−−−−−−−−→ connectA〈B,K〉−−−−−−−−→ (afterα-convertingKi toK) that discard the evalu-

ation context given above and leave justP(ρ[i 7→ i 7→ ?A B Ki]) = P(ρ)x1 | ϕ;

and, whenA 6∈ B, similar initial five transitions leading to

νKi.(P(ρ[i 7→ ?A B −]) ≡ P(ρ)x1 | ϕ−

To prove the second part of the theorem, we apply Lemma14 for the labelsω and
check that, after each labelled transition, there is a unique reachable state translation
up to≡ that enables the rest of the trace. 2

Proof of Theorem 2: It suffices to relate the processes obtained by Theorem15
and Lemma14 to those appearing in the statement of Theorem2, that is, to show
that

C[P(ρ)x1] | ϕ ≈l C[P(ρ)] | ϕ◦ | νN.{K = N}

≈l C[P(ρ)x1] | ϕ− | νN.{K = N}
Moreover, for some evaluation contextC ′[], we have

C[P(ρ)x1] | ϕ ≡ C ′[P(ρ)x1 | ϕ]

and similarly for the other frames. Since≈l is closed by application of evaluation
contexts, it suffices to show that

P1 = P(ρ)x1 | ϕ

≈l P2 = P(ρ) | ϕ◦ | νN.{K = N}

≈l P3 = P(ρ)x1 | ϕ− | νN.{K = N}

Finally,P1 ≈l P3 is Lemma13(A.11) andP2 ≈l P3 is Lemma13(A.10) in evalua-
tion context[] | νNB.{x2 = NB} | νN.{K = N}. 2

Proof of corollary after Theorem 2: For all processesA, we have thatA
a(V)−−→

A′ impliesA | a〈V 〉 → A′ and (for asynchronous outputs)A
νx.a〈x〉−−−−→ A′ implies

49

A ≡ νx.(A′ | a〈x〉). We apply Theorem2 (Success), then use these remarks and
the context-closure property of≈l for the evaluation contextνK.(connectA〈B,K〉 |
acceptB〈A,K〉 |). We finally discardνN.{K = N} by structural equivalence.2

Proof of Theorem 3: We apply Lemma14 to obtainP(ε)
η−→→∗

d≡ C[P(ρ)] and

use the case analysis of Lemma10. Starting from the first transition
connectA〈B,W 〉−−−−−−−−→

that occurs inη (for any termW), and going backwards, we successively identify
preliminary input transitions that must appear in the trace and correspond to the
first branch of case6, case3 with A ∈ SB, and case1 of Lemma10. Hypothesis (1)
in the theorem guarantees that no input transition described in Lemma10 depends
onC[].

• This firstconnecttransition commutes with any preceding transition (as given by
Lemma10) that does not introduce the messageconnectA〈B,W 〉 in C[]. The
only transitions that introduce such message are described in Lemma10, case6,
and enabled only by an input ofx2i for some indexi with statet = A B K.

• For this indexi, we identify the two other input transitions inη that yield the
statest = A B andt = A B K at indexi.

• The outputs of the messagesx2i andx1i introduced by these transitions neces-
sarily precede their input inη.
• Hypothesis (2) ensures that the messageacceptB〈A,K〉 introduced by case3

with A ∈ SB yields an output transition
acceptB〈A,K〉−−−−−−−→ in η.

Once we have identifiedω as a subtrace ofη, we easily check that each of these tran-
sitions commute with any other preceding transition inη, using again Lemma10.
2

A.5 Proofs of section8.2

We first refine our notion of private bisimilarity to deal with refined control states
and give some basic properties as regards failed sessions, then we prove (a gener-
alization of) our main result.

So far, private bisimilarity is defined only for processes with control states as de-
fined in section8.2. The next lemma relates the control states of bisimilar processes:

Lemma 16 (Related control states)If ρ1 :U1 ≈C ρ2 :U2, then ρ1 and ρ2 have
identical domain, and yield session statestz of the same kind: either bothAz Bz,
or bothAz Bz Ki or Az Bz −, or bothA E with the sameA ∈ C andE 6∈ C.

50

Proof: This property follows from the definition of transitions that operate onρz.
We apply the simulation hypothesis of private bisimilarity (Definition4(3)) to spe-
cific transitions

γ−→ that characterize the structure ofρ. For instance, for any indexi,

we haveρ :U
accepti−−−−→ ρ′ :U ′ if and only if (i 7→ A B) ∈ ρ for someA,B ∈ C. 2

We now extend our definitions of labelled transitions and private bisimilarity to
user processes with refined control state.

• T γ−→ T ′ is defined as in section8.1 (and leaves the setsFB unchanged), except
that rule ACCEPTis extended to operate on failed states?t:

ACCEPT

ρ[i 7→? A B] :U
accepti−−−−→

ρ[i 7→? A B Ki] :U | acceptB〈A,Ki〉 if A ∈ SB

ρ[i 7→? A B −] :U if A 6∈ SB

Conversely, “initiator” rules CONNECT and CONNECT-E are defined as before,
and do not operate on entries?t.

• ρ1 :U1 ≈C ρ2 :U2 is defined as in Definition4 with two additional requirements:
4. For allB ∈ C, the setsFB in ρ1 andρ2 are syntactically identical.
5. ρ1 andρ2 have identical domain and yield entries of the same kind (as defined

in Lemma16) with ? at the same indices.

User processes with unrefined control states are closed under transitions, so our
extension of≈C coincides with Definition4 for such processes.

The next lemma describes how to change parts of the refined control state while
preserving private bisimilarity. These changes will be convenient to reflect changes
in the state of the protocol translation.

Lemma 17 (Control changes)For all well-formed extended processes with con-
trol state, we have:

(1) For someB ∈ C andz = 1, 2, let Tzx beTz with the same termX1 added to
FB. If T1 ≈C T2, thenT1x ≈C T2x.

(2) Let t1 andt2 be control states of the kindA B Ki or A B −.
If ρ1 : νKi.U1 ≈C ρ2 : νKi.U2, thenρ1[i 7→ ?t1] :U1 ≈C ρ2[i 7→ ?t2] :U2.
If ρ1[i 7→ t1] :U1 ≈C ρ2[i 7→ t2] :U2, thenρ1[i 7→ ?t1] :U1 ≈C ρ2[i 7→
?t2] :U2.

(3) If ρ1[i 7→ A E] :U1 ≈C ρ2[i 7→ A E] :U2, thenρ1 :U1 ≈C ρ2 :U2.

Proof: For each private bisimilarity claim in the lemma, we easily show that
the relationR containing all processes that meet the hypothesis is a private bisim-
ulation, up to an injective re-indexing on the domain ofρ1 andρ2 for the proof
of 3.

51

(1) Our transitions are independent ofFB.
(2) Conditions1 in Definition 4 is structurally equivalent to condition1 for both

private bisimilarity hypotheses. Conditions2 and3 follow from the direct cor-
respondence between the transitions ofρ[i 7→ ?t] :U and those ofρ : νKi.U
andρ[i 7→ t] :U (although the latter processes have additional labelled transi-
tions).

(3) The proof is immediate, except for transitions with labelνi that “reuse” the
index of the discarded session (rules INIT and INIT-E). For those transition,
we choose another fresh indexi′ and conclude up to injective re-indexing after
the transitions. 2

Next, we relate transitions of translated protocol configurations to those of user
processes. In the lemma, we writeCz[] for the evaluation context aroundP() in
Lemma10(z).

Lemma 18 LetT = ρ :U . IfQ(T)
α−→ Q′ with fn(α)∩Vρ = ∅ andbn(α)∩(C∪Vρ),

then one of the following holds:

(1) U α−→ U ′, withT α−→ T ′ = ρ :U ′ andQ′ ≡ Q(T ′).
(2) α = τ and P(ρ) receives a message on initA for someA ∈ C, with two

subcases:

(a) U
initA〈B〉−−−−→ U ′ for someB ∈ C and, for any fresh indexi,

T
init νi−−−→ T ′ = ρ[i 7→ A B] :U ′ andQ′ ≡ C1[Q(T ′)].

(b) U
νE.initA〈E〉−−−−−−→ U ′ and, for any fresh indexi,

T
νiE.initA〈i,E〉−−−−−−−→ T ′ = ρ[i 7→ A E] :U ′ andQ′ ≡ νE.C2[Q(T ′)].

(3) α = τ andP(ρ) receives a message onc1 or c2.
(4) α is an input onc1 with ϕ(U) | P(ρ)

α−→ P ′ | ϕ(U) andQ′ ≡ νVρ.(U | P ′).
(5) α is an input onc2 with ϕ(U) | P(ρ)

α−→ P ′ | ϕ(U) andQ′ ≡ νVρ.(U | P ′).

Proof: By definition of (ordinary) transitions and Lemma10, P(ρ) can at most
input on control channels (whenU outputs on those channels) and network chan-
nelsc1 andc2 (when eitherU or the environment output on those channels). For all
other transitions, we also haveU | ϕ(P(ρ))

α−→ U ′′ | ϕ(P(ρ)). By Lemma12, this
impliesU α−→ U ′ (treating variables defined inϕ(P(ρ)) as distinct names) for some
U ′ such thatQ′ ≡ U ′ | P(ρ).

Case2 of the lemma details an input on channelinitA for someA ∈ C, correspond-
ing to an output inU . For any such output, we can introduce a fresh variable,E, use
structural equivalence to introduce an active substitution that definesE, and write

the outputU
νE.initA〈E〉−−−−−−→ U ′. There are two subcases:

• If (E = B)ϕ(U ′) for someB ∈ C, then we also have the free variable output

52

U
initA〈B〉−−−−→ U ′′. Let ρ′ = ρ[i 7→ A B] for some freshi. By rule INIT, we have

ρ :U
init νi−−−→ ρ′ :U ′′. Using Lemma10(1), we haveP(ρ)

initA(B)−−−−→ C1[P(ρ′)] and
finally Q′ ≡ C1[νVρ′ .(U

′′ | P(ρ′))].

• Otherwise, letρ′ = ρ[i 7→ A E]. By rule INIT-E, we haveU : ρ
νiE.initA〈i,E〉−−−−−−−→

ρ′ :U ′. Using Lemma10(2), we haveP(ρ)
initA(E)−−−−→ C2[P(ρ′)] and finallyQ′ ≡

νE.C2[νVρ′ .(U
′ | P(ρ′))]. 2

We are now ready to prove a privacy lemma that generalizes Lemma5 to arbitrary
user processes with refined control states.

Lemma 19 (Privacy with state) If T1 ≈C T2, thenQ(T1) ≈l Q(T2).

Proof: Our proof relies on the technique detailed in Lemma9: we show that the
relation

R def
= {(Q(T1),Q(T2)) | T1 ≈C T2}

whereTz = ρz :Uz range over processes with refined control states is a weak bisim-
ulation up to context,→d, and strong bisimilarity.

In order to establish the static equivalence requirementQ(T1) ≈s Q(T2), we use

Q(Tz)
def
= νVρz .(Uz | P(ρz))

≈s νVρz .
(
Uz | ν(Nx)x∈D.{x̃ = Ñx}

)
≡ ν(Nx)x∈D.

(
{x̃ = Ñx} | νVρz.Uz

)
whereD def

= dv(P(ρz)) is the (identical) set of variables defined inP(ρ1) andP(ρ2)
andD′ is the subset ofD without the variablesKi—these key variablesKi ap-
pear inVρz. The equivalences above follow from the definition of the translation,
Lemma12, and structural rearrangement. Finally, we use the static equivalence
requirement of our private bisimilarity hypothesis,νVρ1.U1 ≈s νVρ2.U2, in the
common contextν(Nx)x∈D.({x̃ = Ñx} | []).

The proof of the two weak bisimulation properties is by case analysis of the transi-
tionsQ(T1)

α−→ Q′
1 and their relation to the transitions ofT1 (andU1) and those of

P(ρ1), using the cases of Lemma18 then Lemma10.

(1) We detail the caseα 6= τ . (The caseQ1 → Q′
1 is essentially the same.)

By Lemma18, we haveT1
α−→ T ′

1 andQ′
1 ≡ Q(T ′

1).
By private bisimilarity (Definition4(3)), we haveT2 →∗ α−→→∗ T ′

2 with T ′
1 ≈C

T ′
2.

53

Using rule LIFT, we carry over this series of transitions toU2 in the evaluation
contextνVρ2.(| P(ρ2)), and obtainQ(T2) →∗ α−→→∗ Q(T ′

2) with Q(T ′
1) R

Q(T ′
2).

(2) We use the subcases and notations of Lemma18:

(a) By Lemma18, we haveT1
init νi−−−→ T ′

1 andQ′
1 ≡ C1[Q(T ′

1)]. By private

bisimilarity for the transitionT1
init νi−−−→ T ′

1, we haveT2 →∗ init νi−−−→→∗ T ′
2

with T ′
1 ≈C T

′
2, for someT ′

2 = ρ2[i 7→ A2 B2] :U
′
2.

By rules INIT and LIFT, we obtain transitionsU2 →∗ initA2
〈B2〉−−−−−→→∗ U ′

2 and
finally Q(T2) →∗ C1[Q(T ′

2)]. Relying on Lemma9 (bisimulation up to
context), we discard the common evaluation contextC1[] and conclude
with Q(T ′

1) R Q(T ′
2).

(b) By Lemma18, we haveT1
νiE.initA〈i,E〉−−−−−−−→ T ′

1 andQ′
1 ≡ νE.C2[Q(T ′

1)].

We use private bisimilarity for the transitionT1
νiE.initA〈i,E〉−−−−−−−→ T ′

1, apply
rules INIT-E and LIFT to the resulting transitions, discardνE.C2[], and
conclude similarly.

(3) We decompose internal communication steps onc1 or c2 into an output fol-
lowed by an input on that channel, up to a variable restriction. We rely on other
cases (twice) for simulating these transitions, remark that the resulting pair of
labelled transitions can be composed to form an internal step, and conclude
up to context for the variable restriction.

(4) We use the cases of Lemma10 for input onc1:
Case3:
We haveX1 = x1i with ρ1 = ρ′1[i 7→?A1 B1].
Let C3[]

def
= νx2i.(c2〈x2i | []〉). Lemma10 yieldsQ′

1 →+
d C3[Q(T ′

1)] with
two cases
T ′

1 = ρ′1[i 7→?A1 B1 Ki] :U1 | acceptB1
〈A1, Ki〉 or

T ′
1 = ρ′1[i 7→?A1 B1 −] :U1 depending onA1 ∈ SB1 in ρ1.

Rule ACCEPTapplies in both cases and yieldsT1
accepti−−−−→ T ′

1.
By private bisimilarity,ρ2 = ρ′2[i 7→?A2 B2] for someA2, B2 ∈ C, and we

haveT2 →∗ accepti−−−−→→∗ T ′
2 with T ′

1 ≈C T
′
2 and two cases

T ′
2 = ρ′2[i 7→?A2 B2 Ki] :U

′
2 with U2 →∗ U ′

2, or
T ′

2 = ρ′2[i 7→?A2 B2 −] :U ′
2 with U2 | acceptB2

〈A2, Ki〉 →∗ U ′
2 depending

onA2 ∈ SB2 in ρ2 (but not onA1 ∈ SB1 in ρ1).
Using rule ACCEPT, rule LIFT, and Lemma10, we build transitions
Q2 →∗ α−→→∗

d→∗ C3[Q(T ′
2)]. We discardC3[] and conclude.

Case4 whenW = A, and
Case5 with the same hypotheses except thatA 6∈ SB in ρ1:
Let U ′

1 = U1 | νN.acceptB1
〈A1, N〉 if A ∈ SB in ρ1 andU ′

1 = U1 other-

wise. By rule ACCEPT-FAKE, we haveT1
acceptB(A)−−−−−−→ T ′

1
def
= ρ1 :U ′

1.

By private bisimilarity, we obtainT2 →∗ acceptB(A)−−−−−−→→∗ T ′
2 andT ′

1 ≈C T
′
2,

with two cases in the application of ACCEPT-FAKE, depending onA ∈ SB

54

in ρ2.
For z = 1, 2, let T ′

zx be T ′
z with the additional messageX1 in FB. Let

M
def
= νN.c2〈N〉. In case4 (A ∈ SB in ρ1), we have

Q′
1 →+

d νx2, K.(c2〈x2〉 | Q(ρ1x :U1 | acceptB〈A,K〉) | χ(V,A B))

∼l νx2, K.(c2〈x2〉 | Q(ρ1x :U1 | acceptB〈A,K〉) | χ◦)

≡ M | Q(T ′
1x)

using equivalence (A.9) in Lemma13. In case5 (A 6∈ SB in ρ1), we simply
have

Q′
1 →+

d M | Q(ρ1x :U1) = M | Q(T ′
1x)

For each of the two cases ofA ∈ SB in ρ2, we use rules LIFT and ACCEPT-
FAKE to build transitionsQ2 →∗ α−→→+

d∼l→∗ M | Q(T ′
2x), which implies

Q2 →∗ α−→→∗∼l M | Q(T ′
2x).

By Lemma17(1), we obtainT ′
1x ≈C T

′
2x. We discardM to conclude.

Case4 whenW ∈ SB \ C in ρ1: By rule ACCEPT-E, we have

T1
acceptB(W,V)−−−−−−−→ T ′

1 = ρ1 :U1 | acceptB〈W,V 〉

By private bisimilarity,T2 →∗ acceptB(W,V)−−−−−−−→→∗ T ′
2 with T ′

1 ≈C T
′
2. Moreover,

the condition of ACCEPT-E ensures thatW ∈ SB \ C in ρ2.
Let T ′

1x, T
′
2x be obtained fromT ′

1, T
′
2 by adding the messageX1 to FB. By

Lemma17(1), we also haveT ′
1x ≈C T

′
2x.

LetC4[]
def
= νx2K.([] | c2〈x2〉 | χ(V,W V)). By Lemma10, we haveQ′

1 →+
d

C4[Q(T ′
1x)]. Using rule LIFT, rule ACCEPT-E, and Lemma10, we build

transitionsQ(T2) →∗ α−→→∗ C4[Q(T ′
2x)]. We discardC4[] and conclude

usingT ′
1x ≈C T

′
2x.

Case5 except as above: LetT1x, T2x be obtained fromT1, T2 by adding the
messageX1 to FB (with no effect ifX1 ∈ FB already).
By Lemma17(1), we obtainT1x ≈C T2x.
LetCr[]

def
= νNB.c2〈NB〉 | []. By Lemma10, we have

Q′
1 →+

d Cr[Q(T1x)] and Q(T2)
c1(X1)−−−−→→+

d Cr[Q(T2x)]

We discardCr[] and conclude usingT1x ≈C T2x.
(5) We use the cases of Lemma10 for input on c2. Let ρ′z[i 7→ tz] = ρz for

z = 1, 2.
Case6: By rule CONNECT, we haveT1 = ρ′1[i 7→ t1] :U1 andT1

connecti−−−−→
T ′

1 = ρ′1 : νKi.U
′
1, with two cases forU ′

1 depending ont1: either t1 =
A1B1Ki andU ′

1 = U1 | connectAz〈Bz, Ki〉, or t1 = A1B1− andU ′
1 = U1.

By private bisimilarity, we haveT2 →∗ connecti−−−−→→∗ T ′
2 with T ′

1 ≈C T
′
2 and

55

moreoverT2 = ρ′2[i 7→ t2] :U2 andT ′
2 ≡ ρ′2 : νKi.U

′
2.

Let T ′′
z = ρ′z[i 7→ ?tz] :U

′
z. By Lemma17(2), T ′

1 ≈C T
′
2 impliesT ′′

1 ≈C T
′′
2 .

By Lemma10,Q′
1 →d Q(T ′′

1). By rule Lemma10and rules LIFT and CON-
NECT, we obtainQ(T2)→∗ α−→→∗ Q(T ′′

2). We conclude usingT ′′
1 ≈C T

′′
2 .

Case7: LetT ′
z beTz with a? at indexi. We haveQ′

1 →d Q(T ′
1) andQ2

α−→→d

Q(T ′
2). By Lemma17(2), T1 ≈C T2 impliesT ′

1 ≈C T
′
2.

Case8: By rule CONNECT-E, we have

T1 = ρ′1[i 7→ A E] :U1
connectA(i,E,V)−−−−−−−−→ T ′

1 = ρ′1 :U ′
1

with U ′
1 = U1 | connectA〈E, V 〉.

By private bisimilarity and rule CONNECT-E,

T2 = ρ′2[i 7→ A E] :U2 →∗ connectA(i,E,V)−−−−−−−−→→∗ T ′
2 = ρ′2 :U ′

2

andT ′
1 ≈C T

′
2 for someU ′

2. LetT ′′
z

def
= ρ′z[i 7→ ?AE] :U ′

z. By Lemma10, we
haveQ′

1 →d Q(T ′′
1) and we buildQ(T2)→∗ α−→→∗ Q(T ′′

2). By Lemma17(3),
we obtainT ′′

1 ≈C T
′′
2 and conclude.

Case9: Let T ′
z beTz without the session at indexi. We haveQ′

1 →d Q(T ′
1)

andQ2
α−→→d Q(T ′

2). By Lemma17(3), T1 ≈C T2 impliesT ′
1 ≈C T

′
2. 2

Proof of Lemma 5: This is a special case of Lemma19, with initial control
statesεz instead of arbitrary control statesρz in T1 andT2. 2

A.6 Proofs of section8.3

Proof of the basic example: For any process with control stateρ :U such that
A 6∈ SB andi is fresh, we have the blinded transitions

T
def
= ρ :U | initA〈B〉

init νi−−−→ Ti = ρ[i 7→ A B] :U
accepti−−−−→ Tr = ρ[i 7→ A B −] :U

connecti−−−−→ T ′ = ρ :U

For z = 1, 2, assumeAz, Bz ∈ C with Az 6∈ SBz , and letTz be T with Az, Bz

instead ofA,B. In order to show thatT1 ≈C T2, we establish that the relation

R def
=

⋃
ρ : U{(T1, T2), (T1i, T2i), (T1r, T2r)} ∪ ≈C

is a private bisimulation. By construction,R is closed by the transitions detailed
above. Any other transition does not depend on theinit message and leads to related
processes with control state, in the same case of the definition ofR. 2

56

Proof of Theorem 6: Although each user processUj initially attempts a sin-
gle session, the environment can triggeracceptmessages using transition rules
ACCEPT-FAKE or ACCEPT-E. For any given series of transitions derived from these
rules, letUaj be the resulting user subprocess—this subprocess consists ofaccept
messages and depends only on these transitions andεj. For any fresh indexi, we
have

Tj
def
= εj :Uaj | Uj

init νi−−−→ εj[i 7→ Aj Bj] :Uaj | connectAj
(Bj, K).Vj

accepti−−−−→ εj[i 7→ Aj Bj Ki] :Uaj | (acceptBj
〈Aj, Ki〉 | connectAj

(Bj, K).Vj

connecti−−−−→ εj :Ua | νKi.

acceptBj
〈Aj, Ki〉 |

connectAj
〈Bj, Ki〉 | connectAj

(Bj, K).Vj


→ T ′

j
def
= εj :Uaj | U ′

j

We omit other, uniform transitions that extendUaj or lead to the failure of the
session.

LetR relate these extended processes with control state, except(T ′
1, T

′
2).

From the hypothesisε1 :U ′
1 ≈C ε2 :U ′

2, we show thatT ′
1 ≈C←∗ T ′

2 by induction
on the series of transitions that yieldUa1 andUa2. For each transition, we apply
clause 3 in the definition of private bisimilarity and remark that the labelled tran-
sition commutes with any silent step. Similarly, we haveT ′

1 →∗≈C T
′
2, and thus

T ′
1 ≈C T

′
2.

UsingT ′
1 ≈C T

′
2, we easily show thatR ∪ ≈C is a private bisimulation, and con-

clude from the initial stateT1 ≈C T2 whenUa1 = Ua2 = 0. 2

Proof of Theorem7: LetU be a process of the form
∏n

i=1 initAi
〈Xi〉. Since there

is no internal step and rule LIFT does not apply to control messages, anyacceptB
or connectA message in parallel withU is inert. We let range over parallel com-
positions of such messages.

The transitions ofε :U are interleavings of the following transitions:

(1) If Xi = B ∈ C then, independently ofA andB, we have transitions

ε :U ′ | initAi
〈B〉 init νi−−−→ accepti−−−−→ connecti−−−−→ ε :U ′ |

(2) Otherwise, we have transitions

ε :U ′ | initAi
〈Xi〉

νi.initAi
〈Xi〉−−−−−−−→ connect〈i,V 〉−−−−−−→ ε :U ′ |

57

(3) Independently, we have transitionsε :U
acceptB〈E,V 〉−−−−−−−→ ε :U | (if and only if

E ∈ SB) andε :U
acceptA〈B〉−−−−−−→ ε :U | (whether or notA ∈ SB).

Let R be the relation such that (1)(ε1 :U1 | , ε2 :U2 |) ∈ R for all ε1 :U1 and
ε2 :U2 that meet the conditions of Theorem7 and (2)R is closed by application to
both processes of any transitions appearing above in cases 1 and 2. The relationR
is a private bisimulation, soR ⊆ ≈C. We conclude by Lemma5. 2

Proof of Theorem8: In this proof, for all definitions, we use the set of compliant
principalsC] {X} with SX = ∅ (rather thanC). In addition, we letP−(ρ) be
the translation stateP(ρ) with 0 instead ofPX . We use the candidate relationR
defined by

{(ν VX .P(ρ), ν VX .P−(ρ)) | ρ extendsε and has not initiated byX}

We rely on Lemma9 and the case analysis of Lemma10. We conclude withρ = ε.

The processes on the left ofR have extra transitions that use the replicated input
on c1 in PX (transition3 with A 6∈ SB for B = X in Lemma10). These inputs
can be simulated on the right using transitions5 with C ∈ C—since the received
messageX1 meets the condition for transition4 for at most oneB ∈ C and|C| > 1,
we can always choose someC ∈ C \ {B}.

All other transitions are in direct correspondence, and lead to related processes for
an updatedρ in the same evaluation context. The condition onρ is preserved by all
transitions up to context becauseinitX is restricted and appears only in a replicated
input inP(ρ). 2

58

	Privacy, authenticity, and the applied pi calculus
	The problem
	Assumptions
	Communication
	Cryptography

	Two protocols
	First protocol
	Second protocol
	Properties and limitations
	Efficiency considerations
	Groups

	The applied pi calculus (overview)
	Syntax and informal semantics
	Examples
	Operational semantics
	Observational equivalences

	The second protocol in the applied pi calculus
	An equational theory
	The network and the attacker
	The principals
	The protocol
	Configurations of principals

	Authentication and secrecy properties
	Privacy properties
	A labelled transition system
	Private bisimulation
	Applications of the Privacy Lemma

	Related problems and related work
	Conclusions
	Acknowledgements
	References
	Appendix: Proofs
	State translation
	Invariant lemma
	Equational properties
	Proofs of section 7
	Proofs of section 8.2
	Proofs of section 8.3

