
Atomic In-place Updates for Non-volatile Main Memories with Kamino-Tx
Amirsaman Memaripour† Anirudh Badam‡ Amar Phanishayee‡

Yanqi Zhou? Ramnatthan Alagappan+ Karin Strauss‡ Steven Swanson†

UC San Diego† Microsoft‡ Princeton University? Univ. of Wisconsin-Madison+

Abstract
Data structures for non-volatile memories have to be de-
signed such that they can be atomically modified using
transactions. Existing atomicity methods require data to be
copied in the critical path which significantly increases the
latency of transactions. These overheads are further ampli-
fied for transactions on byte-addressable persistent memo-
ries where often the byte ranges modified for data structure
updates are significantly smaller compared to the granu-
larity at which data can be efficiently copied and logged.
We propose Kamino-Tx that provides a new way to per-
form transactional updates on non-volatile byte-addressable
memories (NVM) without requiring any copying of data in
the critical path. Kamino-Tx maintains an additional copy of
data off the critical path to achieve atomicity. But in doing
so Kamino-Tx has to overcome two important challenges of
safety and minimizing NVM storage overhead. We propose
a more dynamic approach to maintaining the additional copy
of data to reduce storage overheads. To further mitigate the
storage overhead of using Kamino-Tx in a replicated setting,
we develop Kamino-Tx-Chain, a variant of Chain Replica-
tion where replicas perform in-place updates and do not
maintain data copies locally; replicas in Kamino-Tx-Chain
leverage other replicas as copies to roll back or forward for
atomicity. Our results show that using Kamino-Tx increases
throughput by up to 9.5x for unreplicated systems and up to
2.2x for replicated settings.

1. Introduction
Designers of persistent data structures, storage systems, and
databases have consistently used fast volatile memories, like
processor caches and main memory, to mask the access
latencies of durable media like SSDs and hard disks. The
need to ensure that all changes are atomic and durable,
even in the face of failures, has dominated their design.
Traditionally, these systems have used either write-ahead
logging [15, 23] or copy-on-write [18] to achieve atomicity
and durability.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17, April 23-26, 2017, Belgrade, Serbia

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064215

YCSB-A YCSB-B YCSB-C YCSB-D YCSB-F TPC-C

0

10

20

30

K
.o

ps
/s

ec

No Logging Undo-Logging

Figure 1: Avg. throughput for running YCSB workloads (A-F) and
TPCC benchmark suite against MySQL. YCSB workloads B-D are
over 90% reads and hence have lower logging overheads overall.

With Non-Volatile Memory (NVM) the dream of persis-
tent storage, addressed at a byte granularity directly by the
CPU, and accessed roughly at the latency of main mem-
ory, is on the horizon. It can be used to obtain durability
at speeds that are two to three orders of magnitude faster
than SSDs. Battery-Backed DRAM (BBRAM), Intel/Mi-
cron’s 3D-Xpoint (3DXP) and HP’s memristors are a few
examples of such a technology. Since these memory tech-
nologies are durable, data must be modified atomically when
moving from one consistent state to another. However, ex-
isting atomicity mechanisms have a high overhead as they
require old data to first be copied in the critical path before
it can be modified. Such copying increases the latency of
transactions and decreases throughput.

When atomicity is obtained using undo logging, old data
is copied to a different location on NVM called the undo-log
before the transaction can edit data in place. If the transac-
tion aborts then the transaction coordinator restores the old
state using the copy in the undo-log. Likewise, in copy-on-
write (CoW) based schemes, all modifications are made to
a copy of data in NVM. If the transaction has to abort then
simply deleting the copy is enough.

In either case, however, a copy of the data has to be cre-
ated in the critical path which increases memory bandwidth
usage and more importantly increases the latency of transac-
tions due to instruction overhead in allocating space for the
copies, indexing the copies, performing the actual copying
of the data, and ultimately for deallocating them. An exam-
ple is the logging scheme used by MySQL to offer atomicity
for SQL transactions [26] on an NVMM (non-volatile main
memory) based disk. Figure 1 shows how logging can im-
pact MySQL throughput for a client with four threads run-
ning YCSB workloads, and for transaction throughput using
TPCC benchmark suite, showing typical overheads of 50–
250%.

Undo-like Techniques (Edit Original)

{ //lock_data
tx_init
….
….

tx_edit
….
….

tx_commit
} //unlock_data

Heap

D F

E

A B C

2. Edit Original

{ //lock_data
tx_init
….
….

tx_edit
….
….

tx_commit
} //unlock_data

{ //lock_data
tx_init
….

tx_edit
….

tx_commit
}

1. Edit
Original

CoW-like Techniques (Edit Copy) AlphaTx: Edit Original & Copy Later

3. Discard Undo Data

1. Copy Data

Copy

A B

Heap

D F

E

A B C

2. Edit Copy

Heap

D F

E

A B C

3. Apply Copy
to Original

Heap

D F

E

A B C

Backup Heap

D F

E

A B C
2. [Async]

Apply Changes to
Heap Copy and
//unlock_data

Copy

A B

1. Copy Data

Undo Copy

A B

Heap

D F

E

A B C

Backup Heap

D F

E

A B C

Figure 2: Comparison of the three atomicity mechanisms when a transaction modifies three objects A and B that are part of a larger persistent
heap: First approach creates a copy of the objects and edits the original heap in place. In case of an abort, the copies are used to restore the
heap. The copies are deleted and locks released after committing. In the second approach, the copies are edited and are later applied to the
original heap after a successful commit; locks are also released at this point. In case of an abort, the copies are simply deleted. In Kamino-Tx,
two copies of the entire heap are maintained. Transactions edit original data without any copying. In case of an abort, data is restored from
the copy. After a commit, edited data is first applied to the copy and then the locks are released.

These overheads are especially magnified if the granu-
larity at which data is logged is larger than the actual byte-
ranges that the transaction modifies. For example, in a doc-
ument store such as MongoDB [24], an entire document is
typically logged though each operation might only change
a few byte-ranges within the document. Likewise, in Intel’s
NVML, an entire C structure is typically logged in trans-
actional updates to data structures even though only a few
fields are typically modified as part of the transaction. While
memory bandwidth can be reduced by fine-granularity log-
ging, the overhead of CPU instructions for allocating, index-
ing and deallocating the copies remains high.

Motivated by these problems, we propose Kamino-Tx to
address the following challenge for NVM-based systems: In
the common case, can we achieve atomicity in transactions
without requiring any copying of data in the critical path?
We start with the observation that we can eliminate copy-
ing in the critical path by maintaining an additional copy
(backup) of all the data and using that copy to recover from
failures and aborts. All transactions are processed in-place
on the main copy – no copying is performed in the critical
path of the transaction. All successful transactions are also
asynchronously applied in-place to the backup once they are
committed to the main copy. If the transaction on the main
copy has to abort then the state in the backup is used to undo
the changes back to a consistent state. Thus, Kamino-Tx also
removes the overhead of log and buffer management which
is necessary for traditional logging-based techniques.

Kamino-Tx addresses two important challenges for in-
place updates to work efficiently: Safety and high storage

requirement. First, Kamino-Tx should be safe for all work-
loads and not just the common case. In the case of dependent
transactions, where the write-set of a transaction intersects
with the read- or write-set of a subsequent transaction, the
latter transaction has to wait for the main and backup copies
to be replicas of each other with respect to the write-set.
Second, Kamino-Tx minimizes storage requirement by in-
telligently tracking the most frequently written objects and
maintains copies only for those objects to strike a balance
between latency and storage requirement.

Furthermore, we address the challenge of minimizing
the storage footprint when using Kamino-Tx in a replicated
setup. If used naively, where each replica maintains a backup
copy, Kamino-Tx can double the cluster-wide NVM stor-
age requirement. Driven by the observation that replicas can
be used as copies for rolling back or forward for atomic-
ity, we present Kamino-Tx-Chain, a new way to perform
chain replication where replicas avoid maintaining individ-
ual backup copies and perform in-place updates.

This paper makes the following contributions:

• A new mechanism to obtain atomicity for transactions on
NVMM is proposed by using an additional copy of data
that is updated off the critical path to reduce transactional
latency.

• A mechanism to maintain copies of only the most fre-
quently modified objects is proposed to reduce the cost
of such a copy.

• A new replication mechanism is proposed that leverages
replicas as copies for both availability and to provide
transactional atomicity.

Heap

D F

E

A
B C

Backup Heap

D F

E

A
B C

{
tx_init

tx_lock(A)
tx_lock(B)

tx_edit(A)
tx_edit(B)

tx_commit

tx_unlock(A)
tx_unlock(B)

tx_end
}

A
p

p
lic

at
io

n

Tx
C

o
o

rd
in

at
o

r Log Manager

A, B edited

In-place
edits

Stores pointers to
main & backup

Figure 3: Architecture of the Kamino-Tx transactional system for
managing a persistent object heap in non-volatile memory. The
Transaction Coordinator uses the Log Manager to efficiently track
the changes being made by the application. These changes are
tracked only in terms of addresses of the persistent objects being
modified. Transaction Coordinator uses this information to abort
changes made to the main version by copying data from the backup
version when necessary.

The rest of this paper is organized as follows: We first
discuss related work to improve atomic updates on NVMs in
Section 2. We then describe the architecture of Kamino-Tx
in Section 3. Section 4 presents the optimization to reduce
the storage requirement of the backup and Section 5 extends
these optimizations to chain replication. The implementation
details of Kamino-Tx are presented in Section 6. Finally,
we present the evaluation results from experimenting with
Kamino-Tx in Section 7 before concluding in Section 8.

2. Related Work
Persistent heap management systems [6, 8, 20, 31, 32] al-
low safe, transactional and user-level access to non-volatile
memories. Such systems enable applications to allocate
and free objects from persistent memory, to have persis-
tent pointers between such objects to help build rich data
structures, and to perform transactions spanning multiple
persistent objects in an atomic and consistent fashion.

Some such systems use a undo-based approach [6, 8,
20] while others have proposed using a copy-on-write ap-
proach [31, 32]. Both these categories of systems still require
creating copies of modified objects/data in the critical path
of the transaction before it is committed to the application.
In this paper, we present a new way to implement transac-
tions for persistent heap managers on non-volatile memories
that can provide atomicity without having to perform any
copying in the critical path of the transactions. Figure 2 il-
lustrates how the commit operation is delayed because of the
copying of the data in the critical path for undo and CoW
approaches. In comparison, Kamino-Tx commits faster be-
cause the copying is performed off the critical path.

Several mechanisms have been proposed to optimize the
implementation of the atomicity mechanisms for transac-
tions on NVMs [4, 33]. For instance, Arulraj et al [4] com-
pare three different optimized implementations of DBMS

{
int type;
int key;
double value;
p_list_ptr next;
p_list_ptr prev;

}

{
int type;
int key;
double value;
p_list_ptr next;
p_list_ptr prev;

}

{
int type;
int key;
double value;
p_list_ptr next;
p_list_ptr prev;

}

H
ea

p
R

o
o

t

NULL NULL

{tx_init
… //lock new, current, prev
new->next = current;
new->prev = prev;
prev->next = new;
current->prev = new;
…//unlock

}tx_end

Tx
In

se
rt

{tx_init
…
…

}tx_end

Tx
D

el
et

e

{tx_init
…
…

}tx_end

Tx
Lo

o
ku

p {tx_init
…
…

}tx_end

Tx
U

p
d

at
e

…
List

Code

Figure 4: Structure of the heap and the format of transactions in
Kamino-Tx. Kamino-Tx’s heap is a collection of persistent objects
in non-volatile memory. They have native types and pointers to
other objects. Transactions in Kamino-Tx atomically modify sev-
eral objects at a time.

transactions for NVM that they refer to as NVM-InP, NVM-
CoW and NVM-Log. The three approaches differ in the or-
der in which copies are created, whether the original or the
copy is modified and finally on how the database is updated
with the new data. In all these three implementations, how-
ever, data is first copied in the critical path before it is modi-
fied which we aim to eliminate in Kamino-Tx.

NVM-Aware Storage. A wide range of applications use
file systems and databases to access and manage persistent
storage. Since block-based systems cannot fully exploit the
byte-addressable potential of NVMs, NVM-aware file sys-
tems [1, 9, 12, 22, 34], databases [4, 14, 19] and replicated
storage systems [11, 21, 35] are being proposed. There are
also techniques which simply add failure consistency to the
mmap() interface [27]. However, like traditional file systems
and database systems, they provide atomicity by creating
copies of modified data in the critical path. With Kamino-Tx,
we propose improving the performance for these systems by
providing atomicity more efficiently.

Hardware Support. Persistent processor caches [17, 36]
and system-level persistence [25] would guarantee pending
writes to NVM can be recovered after failures. It also elim-
inates the overhead of flushing caches for persistence [5].
However, atomicity is still necessary to protect such systems
against bugs, deadlocks or live-locks in the OS which can
leave the data in an irrecoverable state. Kamino-Tx does not
require but can reap the same benefits from such novel hard-
ware support.

3. Kamino-Tx
Kamino-Tx introduces a new atomicity mechanism that al-
lows an application to modify multiple persistent objects in-
side a transaction without having to create copies of them
in the critical path. In this section, we begin by presenting
Kamino-Tx-Simple, a simpler version of the new atomic-
ity mechanism that highlights the technique, and the safety
challenges it has to overcome. We use a running example
application of a transactional heap manager for non-volatile

AlphaTx: Edit Original & Copy Later
Application

Timeline
Heap

Timeline
Log

Timeline

tx_init

tx_edit

tx_commit

lock_data copy_data

edit_orig.

unlock_data

delete_copy

tx_end

Application
Timeline

Heap
Timeline

Log
Timeline

tx_init

tx_edit

tx_commit

lock_data copy_data

edit_copy

unlock_data

copy_to_orig.

tx_end delete_copy

Application
Timeline

Heap
Timeline

Backup
Timeline

tx_init

tx_edit

tx_commit

lock_data

unlock_data

copy_to_
backuptx_end

edit_orig.

Undo-like Techniques (Edit Original) CoW-like Techniques (Edit Copy)

Figure 5: Existing methods spend significant amount of time in the critical path for creating copies of data. Kamino-Tx on the contrary moves
this latency off the critical path.

memory. In the next section we present optimizations to re-
duce some of the storage overheads of this simple scheme.

Figure 3 shows the four high-level components in Kamino-
Tx: (1) A persistent heap manager that allows applications
to allocate and deallocate persistent objects, and allows such
objects to store data and pointers to other objects, (2) a
Transaction Coordinator interface that allows applications
to atomically modify multiple persistent objects at a time
within a transaction such that the heap always remains con-
sistent, (3) a Log Manager that helps the Transaction Coordi-
nator track the persistent objects modified by a transaction,
and (4) a backup version of the entire heap manager that
the Transaction Coordinator and the Log Manager use for
enforcing atomicity on the main version of the heap.

Data in Kamino-Tx’s heap is organized as a collection
of persistent objects in non-volatile memory. These objects
store native types such as integers, floats, doubles, strings
and also persistent pointers to other persistent objects. Trans-
actions in Kamino-Tx involve reading and editing a few
such persistent objects atomically. Object edits can take the
form of changing a field such as a native type or a persis-
tent pointer as well as a whole object edit without reading
it apriori. To enforce isolation, Kamino-Tx transactions de-
clare write intent at an object granularity when the Trans-
action Coordinator grabs an object level lock. This model of
managing persistent memory is more or less identical to pro-
posed systems in the past [6, 8, 20, 31, 32]. Figure 4 shows
how an operation in a persistent doubly linked list is imple-
mented using Kamino-Tx.

Kamino-Tx-Simple: The main idea of Kamino-Tx is to
provide transactional updates without the overhead of creat-
ing copies of modified objects or fields in the critical path –
transactions are allowed to directly modify persistent objects
without having to make any copies first. However, a consis-
tent version of the heap is still needed to recover from fail-
ures or transaction aborts. Kamino-Tx-Simple always main-
tains a backup version of the entire heap at a separate lo-
cation within the same machine, but in most cases avoids

copying of data in the critical path of transaction execution.
Copying of data to and from the backup is performed asyn-
chronously.

Transactions in Kamino-Tx-Simple work as follows:
First, the transaction is applied to the main version of the
data in place without creating any copies of the objects in-
volved. Second, if the transaction has aborted then the un-
modified objects in the backup version are used to roll the
main version back to a consistent state before the transac-
tion started. If the transaction commits then the modified
persistent objects are copied to the backup version of the
data in-place.

Figure 5 contrasts existing methods of providing atomic-
ity for transactions in non-volatile memory against Kamino-
Tx. Kamino-Tx has the potential to complete transactions
faster because it copies data off the critical path rather than
during the execution of the transaction.

Kamino-Tx has to ensure the following important prop-
erties for safety, even in the presence of failures and reboots:
Safety 1: When a transaction commits successfully, its
changes need to be propagated to the backup before a de-
pendent transaction executes.
Safety 2: When a transaction aborts, its changes need to be
rolled-back from the backup before a dependent transaction
executes.
We define a dependent transaction as one whose read- or
write-set intersects with any prior transaction’s write-set.
We call this intersection the set of pending objects. De-
pendent transactions have to wait for the main and backup
copies to be consistent with each other (only for pending
objects), and are the only transactions in Kamino-Tx for
which data is copied in the critical path if not already copied
asynchronously before they start.

To ensure the safety properties listed above, Kamino-
Tx’s Transaction Coordinator first acquires read-write locks
for the objects in the working set of the transaction it is
executing. The Transaction Coordinator releases these locks
only after the main and backup are consistent with respect

AlphaTx:	Abort	Timeline AlphaTx:	Independent	Transaction	Timeline AlphaTx:	Dependent	Transaction	Timeline
Application	
Timeline

Heap	
Timeline

Backup
Timeline

tx_init

tx_edit

lock_data

unlock_data

copy_from
_backuptx_end

edit_orig.

tx_abort

Application	
Timeline

Heap	
Timeline

Backup
Timeline

tx1_init lock_data1

unlock_data1

copy1_to_
backuptx1_end

tx2_init lock_data2

unlock_data2

copy2_to_
backuptx2_end

Application	
Timeline

Heap	
Timeline

Backup
Timeline

tx1_init lock_data1

unlock_data1

copy1_to_
backuptx1_end

tx1’_init

lock_data1

unlock_data1

copy1’_to_
backuptx1’_end

blocked

Figure 6: Kamino-Tx aborts by fetching the original data back from backup version and updating the main version back to a consistent state.
In Kamino-Tx, a transaction that does read or write objects locked by other transactions proceeds immediately without having to wait for
the backup version to catch-up. However, transactions that read or write objects locked by other transactions need to wait until the backup
version catches up and the locks are released.

to the pending objects. Holding onto locks, however, delay
dependent transactions as shown in Figure 6. This implies
that the worst case performance of Kamino-Tx would be
that of traditional transactional systems. However, we find in
our evaluation with several real world workloads that only a
small percentage of transactions are dependent and therefore
the overall throughput benefits are significant.

Kamino-Tx ensures existence of a consistent copy of each
persistent object before allowing a program to modify it. If
the backup copy of an object is outdated, Kamino-Tx would
not allow any transaction to acquire its lock until the backup
is up-to-date. Moreover, Kamino-Tx replicates updates of
an object to its backup copy only at transaction commit
and once its main copy is durably stored on NVMM. Thus,
Kamino-Tx provides the same semantics as undo-logging by
maintaining a consistent durable copy of objects.

For the atomicity mechanism to work efficiently, Kamino-
Tx needs to know the differences between the main version
of the data and the backup version at all points of time.
This information is needed for rolling back the changes
to the main version on aborts and also for rolling forward
the backup version for committed transactions. We design
a simple mechanism called Log Manager to maintain this
difference in an efficient manner by remembering only the
addresses of the objects that are modified in each transaction.

Log Manager: The Kamino-Tx Log Manager maintains
a persistent and temporally ordered log of transaction write
intents and transaction outcomes of commit or abort. Before
the user program starts modifying a persistent memory re-
gion, the Log Manager creates a reliable record of the write
intent, comprising of the persistent object’s address. This
record should be accessible by the Transaction Coordina-
tor regardless of a node reboot. The Log Manager leverages
Intel’s NVML interfaces to detect write intents which are
recorded through space-efficient NVM-optimized logging.

Furthermore, the Log Manager also records whether a com-
mit or abort was called by the application.

The information stored by the Log Manager is used by
the Transaction Coordinatorfor three reasons: (1) Once the
transaction commits on the main version of data, the Trans-
action Coordinator uses the write intents to copy the cor-
responding persistent objects from the main version to the
backup version, (2) If the transaction is aborted for any rea-
son then the Transaction Coordinator uses the write intents
to copy the corresponding persistent objects from the backup
version to the main version, and (3) After a crash, during the
recovery process, the Transaction Coordinator uses the Log
Manager’s information by performing the appropriate action
((1) or (2)) depending on whether each transaction was com-
mitted, aborted, or left incomplete due the crash (incomplete
transactions are treated the same as aborted transactions).
Figure 6 shows how aborts roll back to a previous consis-
tent state by fetching objects from the backup of the heap.

As alluded to earlier, for each write intent, the Transaction
Coordinator holds a lock on the corresponding data item and
does not release the lock until: (a) the transaction is either
committed or aborted, and (b) both the main and backup
versions of data are identical. Such locks are maintained in
volatile memory to speed up the system: write intents are
enough to recover the lock information needed as we show
in Section 6.2.

Once the Transaction Coordinator is done with commit-
ting the transaction on the main version and copying the
modified objects to the backup version, Log Manager is
free to remove all corresponding write intents. Although
Kamino-Tx removes copying from the critical path for non-
dependent transactions, it still needs to make Log Manager
records durable before allowing transactions to proceed with
writes. However, our experiments show that our implemen-
tation of Log Manager, which is based on fine-grained log-
ging of fixed-size write intents with minimum number of

cache flushes, provides orders of magnitude better perfor-
mance than copying data in the critical path.

Despite getting rid of data copies from the critical path of
transactions in the common case, Kamino-Tx-Simple suf-
fers from one disadvantage: having a full copy of the data
can be expensive for some applications. In the next section,
we present an optimization to reduce this storage overhead
while retaining most of the benefits of Kamino-Tx-Simple.

4. Reducing Cost of Kamino-Tx
Since Kamino-Tx maintains an additional copy of the entire
data in the form of a backup, the cost of maintaining a
transactional heap would increase by the amount needed for
the additional NVM. In this section, we propose techniques
to reduce the storage overhead of Kamino-Tx-Simple.

Kamino-Tx-Simple has a storage requirement of 2 ×
dataSize where dataSize is the size of a single application
heap. We present an optimization to Kamino-Tx such that
the storage requirement reduces to (1+α)×dataSize where
α is a tunable parameter (positive real number less than 1).

For single server systems, we make the observation that
most application working set sizes are skewed and contain
a small percentage of the entire data set. For such appli-
cations, we propose using a dynamic backup region to re-
duce storage requirement by only maintaining copies of fre-
quently modified objects in the backup. Although some ap-
plications might experience higher write latency, applica-
tions with skewed access patterns can achieve access laten-
cies close to that of a full backup with smaller storage re-
quirement.

Applications with high levels of spatial locality for writes
benefit the most from using a dynamic backup region. For
example, our experiments show that, simply maintaining
the internal nodes (nodes closer to the root) of a persistent
B+Tree in the backup region significantly improves the la-
tency of insert and delete operations on the B+Tree.

Kamino-Tx-Dynamic extends Kamino-Tx-Simple by us-
ing a partial backup. Its architecture is shown in Figure 7.
There are two ways in which Kamino-Tx-Dynamic differs
from Kamino-Tx-Simple. First, the backup version of the
heap now contains only a few objects (configurable size).
More specifically, it contains the most frequently modified
objects. Second, it contains a new look-up table that helps
the log manager identify objects whose copies exist.

The look-up table is a persistent concurrent hash-table [13]
and an LRU queue in volatile memory. The hash-table is a
mapping between persistent objects and their offsets in the
partial backup region. Since the partial backup cannot hold
all persistent objects, we use an LRU queue to replace least
recently updated objects with those which are about to get
updated and do not have a copy. When the Log Manager en-
counters an object whose copy does not exist in the dynamic
backup region, it creates an entry for it by booting out the
least recently used object as reported by the look-up table.

Heap

D F

E

A
B C

Dynamic
Backup

A
B C

{
tx_init

tx_lock(A)
tx_lock(B)

tx_edit(A)
tx_edit(B)

tx_commit

tx_unlock(A)
tx_unlock(B)

tx_end
}

A
p

p
lic

at
io

n

Tx
C

o
o

rd
in

at
o

r

Log Manager

A, B edited

In-place
edits

B
ac

ku
p

Lo

o
ku

p

Figure 7: Architecture of Kamino-Tx-Dynamic. Only a partial
backup is maintained where copies of only the most frequently
modified objects are stored. A backup look-up table helps the log
manager look up objects whose copies exist. If not, the log man-
ager creates the copies on demand and inserts them in the dynamic
backup region which is maintained in an LRU manner.

This enables keeping frequently modified objects inside the
partial backup.

The storage requirement of the dynamic backup regions
can be tuned by the application. For instance, if the applica-
tion expects a write working set size to be 20% of the en-
tire data set then setting the α parameter to 0.2 is adequate.
The storage requirement of Kamino-Tx-Dynamic is there-
fore (1+α)×dataSize.

Note that the skew in data accesses at this level is not to
be confused with dependency between transactions. These
are orthogonal features of an application. Applications with
skewed access patterns may not have any dependent trans-
actions if the inter-arrival time of transactions working with
the same set of objects is sufficiently large.

5. Replicated Kamino-Tx
Primary-Backup replication across multiple machines is
a common technique used for fault-tolerance and high-
performance. For example, Chain Replication [30] and its
variants are used extensively in research and large-scale in-
dustrial systems [3, 7, 16, 28, 29].

Such systems need f +1 replicas to tolerate f failures. In
Chain Replication, replicas are organized on a chain where
the head of the chain receives all the write requests while the
tail of the chain receives all reads. Writes propagate through
the chain via each replica all the way to the tail where it is
committed to the client.

Each replica performs an operation and then forwards it
downstream. Such operations are received by the replicas in
persistent operation queues. Forwarded operations are stored
in an in-flight queue. Garbage collection messages propagate
up the chain from the tail once they have been committed and
are used to cleanup operations buffered by in-flight queues
on the replicas. The tail also directly notifies the client when
an operation completes. Furthermore, the first replica which
is the head of the chain determines the global ordering of
operations for all the replicas downstream. Finally, read op-

Replication Method #Servers Storage Requirement Dependent Transaction
Latency

Independent Transaction
Latency

Traditional Chain f +1 (f +1)×dataSize (f +1)× (lc + ln + lt) (f +1)× (lc + ln + lt)
Kamino-Tx-Simple Chain f +1 2× (f +1)×dataSize (f +1)× (ln + lt) (f +1)× (ln + lt)
Kamino-Tx-Dynamic Chain f +1 (1+α)× (f +1)×dataSize (f +1)× (ln + lt) (f +1)× (ln + lt)
Kamino-Tx-Amortized Chain f +2 (f +2+α)×dataSize 2× (f +1)× (ln + lt) (f +1)× (ln + lt)

Table 1: Comparison between different Kamino-Tx schemes and traditional chain replication for transactions. f = the number of failures to
tolerate. α = the proportion of the total heap that the dynamic backup can hold. dataSize is the size of the heap. lt , lc and ln are the transaction
execution, copying and network hop latencies respectively.

erations are always performed only on the tail. Due to this
strict ordering, Chain Replication provides applications with
the strong guarantee of Linearizability.

Replicating an NVM based persistent object store for
fault-tolerance will only increase the latency of transactions,
with copies created on the critical path on each node only
adding to this latency. Furthermore, the undo/CoW copies
created for each transaction can only be deleted by the
garbage collection messages that are propagated upstream.

While naively applying Kamino-Tx-Simple or Kamino-
Tx-Dynamic at each replica can avoid copying data on the
critical path of transactions, they will unfortunately result
in large storage requirement of 2 × (f + 1)× dataSize or
(f +1)× (1+α)×dataSize respectively. Table 1 compares
the number of servers needed and the storage requirement
for various chain replication mechanisms.

This motivates our question: How can we minimize stor-
age requirement in a Chain Replicated NVM-based object
store while avoiding the runtime overhead of copying data
in the critical path at each replica for transactional opera-
tions?

We start with the observation that the head node in a chain
determines the ordering of transactions. Hence, the head
node can decide if a transaction should commit or abort.
In the case of an aborted transaction, maintaining a local
backup copy at the head will enable the head node to roll
back locally, respond to an aborted transaction immediately,
and admit only committed transactions to the chain. Given
this advantage of maintaining a backup at the head, we ask if
we can get away with no backup copies at the other replicas?

The backup copy in Kamino-Tx-Dynamic is used to roll
back in-place updates for aborted and incomplete transac-
tions. Given that transactions that abort at the head are not
admitted downstream in the chain, a backup copy at any
non-head replica may only help with rolling back an incom-
plete transaction. A local ongoing transaction is considered
incomplete when a replica reboots and recovers before its
failure is detected thereby potentially causing torn or incom-
plete writes to leave data in an inconsistent state. We observe
that replicas are backup copies after all. Downstream nodes
in a chain (i.e., nodes closer to the tail) have older data com-
pared to upstream nodes in the chain. So we can potentially
use the immediate downstream node in the chain as a backup
copy. Likewise, we can potentially use the immediate up-
stream node in a chain to roll forward.

The approach above mandates that replicas in a chain
should never process dependent transactions concurrently, a
property easily enforceable at the head of the chain; for every
transaction processed, the head node holds appropriate locks
until the tail commits and sends an unlock message to head,
thus never allowing a dependent transaction to be admitted
into the chain until the locks are released.

Unfortunately, safely tolerating f failures with f + 1
nodes is impossible when we avoid maintaining a backup
at non-head nodes. Consider the scenario where f replicas
fail and stop, while one non-head replica reboots and recov-
ers before its failure is detected. This replica might have an
incomplete transaction and it has no way of rolling back to a
consistent state. To use replicas in a chain as backup copies
to roll back incomplete transactions, we always need at least
two nodes in a chain. We propose Kamino-Tx-Chain, an ex-
tension to Chain Replication, that uses f + 2 replicas that
perform in-place transactional updates to tolerate f failures.
Kamino-Tx-Chain has a modest total storage requirement of
(f +2+α)×dataSize (αε(0,1]) (details shown in Table 1).

5.1 The Kamino-Tx-Chain Protocol
The goals of Kamino-Tx-Chain protocol are the following:
(1) Tolerate f replica failures, including transient reboots
that recover before failures are detected, (2) Maintain the
strong consistency guarantees that Chain Replication pro-
vides and (3) Avoid copying of data in the critical path. At
a high level, Kamino-Tx-Chain contains f + 2 replicas, a
Transaction Coordinator and a backup copy at the head, and
a Log Manager at every replica node as shown in Figure 8.

Specifically, the head replica uses either a Kamino-Tx-
Simple technique (α = 1) or a Kamino-Tx-Dynamic tech-
nique with smaller α . All the other replicas modify the ob-
jects in place without creating any copies of data or main-
taining backup versions of data. At a high level, Kamino-Tx-
Chain works similar to the basic Chain Replication protocol
except some modifications that we discus next.

Transactions in Kamino-Tx-Chain are executed as fol-
lows: All transactions arrive at the head node. Head performs
admission control of dependent transactions. Locks for ad-
mitted transactions are acquired and held until the head re-
ceives an acknowledgment for it from the tail. The Transac-
tion Coordinator starts executing the transaction on the head.
If the transaction commits then the Transaction Coordinator
forwards the transaction down the chain. That is, only those

Head

Traditional Chain Replicated Heaps

Head
Heap

Application

TxCoordinator

1

2

3

5

4

6

Middle

Undo Copy

Heap

Undo Copy

AlphaTx Chain Transaction Commit

Head
Heap

Application

TxCoordinator

3

6

Backup

Locks

9

7 1

2

7

8

AlphaTx Chain Transaction Abort

Heap

Application

TxCoordinator

1

2

4

5

3

Commit

Abort

ACK

ACK
Intent-Log

Middle 1
Heap

Intent-Log

Locks

Backup

Locks

Intent-Log

Locks

Tail

Heap

Undo Copy

Locks

Middle 2
Heap

Intent-Log

Tail
Heap

Intent-Log

4

5

Middle 1
Heap

Intent-Log

Middle 2
Heap

Intent-Log

Tail
Heap

Intent-Log

Figure 8: Kamino-Tx-Chain uses one additional replica to eliminate copying in the critical path for tolerating f failures. Traditional chain
replicas lock and copy data in the critical path where are Kamino-Tx chain replicas other than the head do not need to copy data at all. Also,
the head copies data off the critical path for committed transactions while aborts are performed without the rest of the chain’s involvement
(dashed arrows are local function calls on the head node while the solid arrows are remote calls).

transactions that have been prepared for commit by the ap-
plication are sent down the chain. Each replica receives the
transaction in the form of a remote procedure call with a
named function and the arguments to the function. This is
same local function call the client makes on the head replica.

The replicas buffer such calls in an input queue in non-
volatile memory before the receipt is acknowledged up-
stream. Each replica executes transactions in its input queue
by modifying objects in place without creating any copies.
It then forwards the transaction downstream and moves the
transaction from its input queue to a buffered queue of in-
flight transactions. The transaction completes when the tail
replica commits and notifies the Transaction Coordinator.

In Chain Replication, the tail sends the client a final ac-
knowledgment for a write. In Kamino-Tx-Chain, the tail
sends the final acknowledgment to the head instead of the
client, before sending clean-up acknowledgments up the
chain as before. The client in Kamino-Tx resides on the
head, so the final call to the client is a local up-call on the
head. The clean-up acknowledgments travel upstream in the
chain and serve to remove corresponding entries from the
buffered queue of in-flight transactions.

The head node releases locks of a transaction when two
conditions are met: (1) On receiving a transaction comple-
tion acknowledgment from the tail, and (2) the Transaction
Coordinator copies modified data to the backup region. As
aborted transaction are never admitted downstream in the
chain, they can be performed by the Transaction Coordinator
similar to the un-replicated case (Figure 8 abort case).

All replicas maintain a Log Manager with write intents.
These intent logs are needed for recovering from failures;
they are used to determine the set of items corresponding
to incomplete transactions that need to be rolled back or

forward as the case may be. The intent-logs are also deleted
when clean-up acknowledgments show up.

5.2 Handling Fail-Stop Failures
Fail-stop failures in Kamino-Tx-Chain are handled similar
to traditional Chain Replication. The chain is repaired, the
membership view of the chain changes, and any new replica
joins as the tail of the chain (with appropriate state transfer
from its predecessor).

On a tail failure, similar to Chain Replication, the new tail
sends the head completion acknowledgments for all in-flight
transactions, i.e., transactions the new tail forwarded but did
not receive a clean-up acknowledgment for.

Head node failures require special care since the backup
and the locks need to be recovered. The new head goes
through its Log Manager’s intent logs, creates a local backup,
and constructs a lock set corresponding to all in-flight trans-
actions. This is a conservative set, as the tail might have
already committed some of these transactions and alerted
the old head. Instead of waiting for the clean-up acknowl-
edgments to update the lock set, the new head queries the
tail to determine the last transaction t acknowledged by the
tail. The head can unlock data for all in-flight transactions
that came before t, but still hold locks for all the objects in
the write-set of every other in-flight transaction.

5.3 Handling Quick Reboots
In Chain Replication, if a replica reboots and recovers, but
has been offline for longer than the failure detection period,
then it is considered a fail stop failure. But if a replica
reboots and recovers before it is considered failed, it has
to follow a protocol to safely rejoin the chain. Kamino-Tx-
Chain needs to guard against incomplete transactions for
such quick reboots.

1. Roll Back Tx

2. Tx Data

2. Tx Data

1. Roll Forward Tx

RP

SSR New
Head

Old
Head

Rollback From
Local Backup

R

Figure 9: Data integrity for incomplete transactions on reboots. (R
is the rebooting replica, P is predecessor and S is successor.)

The rebooted replica first contacts the membership man-
ager (Zookeeper instance) requesting to rejoin the chain with
the viewID it believes is current. viewID is maintained by the
membership manager and represents a concrete instance of a
chain. All messages carry a viewID and replicas reject mes-
sages with an older viewID. The membership manger replies
to the replica with its predecessor and successor information.
The membership view might have changed and more impor-
tantly the replica’s previous successor or predecessor might
have changed, causing the chain to follow a chain repair pro-
tocol for fail-stop failures described earlier, but this is done
only after fixing incomplete transactions first.

A recovering replica first identifies data items in the write
set of incomplete transactions using its intent logs. For these
data items, the replica does one of three things: (1) If it is
a non-head node, it rolls forward changes from its assigned
predecessor, (2) If it is still the head of the chain, it rolls back
from its local backup, or (3) If it is a new head of the chain,
it rolls back changes from its assigned successor (Figure 9).
As the head of a chain never admits dependent transactions it
is always safe to roll forward from a predecessor or roll back
from a successor in the recovery protocol described above.

As an aside, the data integrity protocol, used when all
nodes of a chain are offline long enough to be marked as
failed and some of them reboot, is identical to the recovery
protocol described above and needs at least two replicas
from the last know version of the chain to work.

6. Implementation
In this section, we describe the implementation of Kamino-
Tx’s components. We start with describing the programming
interface and continue this section with implementation de-
tails of Kamino-Tx-Simple and Kamino-Tx-Dynamic.

6.1 Programming Interface
Kamino-Tx does not mandate using specific APIs and can be
integrated with any programming interface which provides
information about transaction boundaries and write intents.
However, it is most suited for transactional heaps for NVM
where each transaction modifies small byte ranges in several
objects at a time. In this paper, we take Intel’s non-volatile
memory library [20] as an example and replace its atomicity

s t r u c t Objec tType1 { char a t t r [2 5 5] ; } ;
s t r u c t Objec tType2 { i n t a t t r ; } ;
TX BEGIN (pop) {

/ / d e c l a r e w r i t e i n t e n t s
TX ADD(ob j1) ;
TX ADD(ob j2) ;
/ / c a s t & g e t v i r t u a l memory p o i n t e r s
Objec tType1 ∗ o b j 1 p = D RW(ob j1) ;
Objec tType2 ∗ o b j 2 p = D RW(ob j2) ;
/ / mo d i f y o b j e c t s as needed
s t r c p y (ob j1 p−>a t t r , ” NewValue ”) ;
ob j2 p−>a t t r = s t r l e n (ob j1 p−>a t t r) ;

}
TX END { } / / f l u s h changes t o NVM f o r commits
/ / or r o l l back o b j e c t s f o r a b o r t s

Figure 10: Using Intel’s NVML to write a sample transaction. In
the unmodified library, TX ADD calls would add the objects to an
undo log by creating copies. In Kamino-Tx’s version of the library,
data is not copied in the critical path.

scheme with Kamino-Tx’s. We use Intel’s NVML library
which provides low level persistent memory support as well
as transactional object store semantics. Figure 10 shows a
sample transaction using NVML.

Kamino-Tx is implemented as a user-level library imple-
mented in C and can be compiled with any program which
uses Intel’s NVML. It basically redefines the functionality
of a set of interfaces defined by NVML to extract trans-
action boundaries and write intents. Table 2 shows the list
of functions that we redefine to feed Kamino-Tx with the
necessary information. This implies that any application that
works with NVML just needs to be re-linked to work with
Kamino-Tx. The API for the replicated system is also ex-
actly the same. The library abstracts the replicas from the
application that runs on the head node of the chain.

The programming interface interacts with the Log Man-
ager by requesting a new transaction to be created, declaring
an intent to write, demanding a flush operation on persis-
tent memory regions modified by a transaction, requesting
an object to be transactionally freed, issuing a transaction
abort or initiating a transaction commit. Based on these inter-
actions, Log Manager maintains necessary information for
each transaction which the Transaction Coordinator will use
to transfer data between the main and the backup versions.

Memory allocator is implemented in Kamino-Tx as a
part of the persistent heap using persistent memory objects.
Therefore, allocations and deallocations are simply treated
as modifications to persistent metadata objects that the ap-
plication atomically modifies indirectly via the object allo-
cation and deallocation calls made within transactions.

6.2 Implementation of the Log Manager
We implement the Log Manager as a software module in
our modification to NVML. Log Manager maintains a global
lock-free persistent intent log along with per thread private
NVM region. During the first execution of the program, a
region of the persistent memory called intent-log is allocated

Function signature NVML Kamino-Tx

TX ZALLOC(s) Allocates an object of size s. Allocates the object & reports the allocation to Log Manager.
TX ADD(obj) Creates an undo-log entry for obj. Notifies the Log Manager about an intent to write to obj with a lock.
TX FREE(obj) Transactionally deallocates an object Reports the deallocation to Log Manager.
TX COMMIT() Undo log deleted. Backup rolled forward using main version and Log Manager. Locks released.
TX ABORT() Aborted using the undo log. Main version rolled back using backup and Log Manager. Locks released.

Table 2: Semantics of NVML interfaces before and after integration with Kamino-Tx

checksum

max_user_threads

max_tx_size

max_log_size

state

reserved

64
 b

yt
es

Header Log DataLog Thread
Scratchpad

max_user_threads x 64 bytesmax_log_size x 8 bytes

Thread1

Thread2

Thread3

Threadmax_user_threads

…

Figure 11: The storage layout of Log Manager

to Log Manager which is split across the threads and reused
for transactions.

Figure 11 shows the layout of this region. The header sec-
tion contains the following information: maximum number
of supported threads, the maximum object size, maximum
number of log entries, the state of the region and a check-
sum field which is used for ensuring consistency. There are
three different values for the state field: Running, Commit-
ted and Aborted. Based on the state, Log Manager detects
failures and starts the recovery process.

At the beginning of each transaction, Log Manager ini-
tializes an intent-log and gives it to the thread executing
the transaction. Once the transaction is either committed or
aborted, this intent-log is appended to a global intent-chain
and stays there until consumed by Transaction Coordinator.
Transaction Coordinator can read from this log and decide
on the proper action based on the state of each transaction.

Log Manager must know in advance three types of op-
erations a program performs: allocation of a new persistent
memory region, deallocation of an existing region and modi-
fication of a persistent object. We modify the TX ZALLOC,
TX FREE and TX ADD primitives in NVML to detect such
intents without any additional programming overhead for the
developer designing transactions. Each intent-log entry is an
object address that fits within a cache line such that they can
be persisted without being torn. The addresses are generated
by the unmodified library and we use the same addressing
mechanism for storing in the intent-logs. The Log Manager
calls one flush instruction after all the write intents are de-
clared while the Transaction Coordinator calls one flush in-
struction for persisting the changes.

6.3 Transaction Coordinator
Transaction Coordinator is implemented as a combination
of stub code in commit and abort calls, and also a back-

ground thread which utilizes the information maintained by
Log Manager to keep backup version consistent with the
main version. During normal operation, Transaction Coordi-
nator waits for the first active transaction to commit or abort.
Based on the state of the transaction, Transaction Coordina-
tor will either re-execute the transaction on the backup re-
gion or undo it by copying the data regions back to the main
copy. All the information required for this process, including
the list of modified memory regions and the state of transac-
tions, is provided by the intent-logs.

Once Transaction Coordinator ensures durability of the
backup, it releases locks held on modified objects. This
allows other transactions trying to modify those objects to
proceed. Finally, Transaction Coordinator will remove the
intent-log corresponding to the processed transaction from
Log Manager and reads the record for next transaction.

6.4 Dynamic Backup
We extend the Kamino-Tx implementation with a LRU
queue and a persistent hash table to enable dynamic backup
regions. For every attempt to update a persistent object,
Transaction Coordinator first checks if the object is present
in the LRU queue. If it exists, then Log Manager is used
to enable atomic in-place updates. The coordinator uses the
persistent hash table later to synchronize the copy with the
actual object. Otherwise, the least recently used object in the
dynamic backup region is replaced with a copy of the object
which is going to be modified. However, locked objects are
never evicted to ensure safety, that is pending objects are
never candidates for eviction.

The hash table is also updated accordingly to record the
mapping between the persistent data object and the location
of its copy. All the objects currently part of transactions are
locked in the hash table so they are not replaced.

7. Evaluation
We evaluate Kamino-Tx to demonstrate that the latency
of transactions decreases and transactional throughput in-
creases. In order to evaluate Kamino-Tx, we have designed
and implemented a key-value store that uses a NVML based
persistent B+Tree that we implement. YCSB [10] workloads
are used to evaluate latency and throughput of various con-

YCSB Workload A B C D F
Read 50 95 100 95 50

Update 50 5 - - -
Insert - - - 5 -

Read & Update - - - - 50
Table 3: The % of different operations in YCSB workloads.

A B DC F

0
0.5

1
1.5

2
2.5

M
.o

ps
/s

ec

Kamino-Tx (2 threads) Undo-Logging (2) Kamino-Tx (4) Undo-Logging (4) Kamino-Tx (8) Undo-Logging (8)

Figure 12: YCSB throughput with Kamino-Tx-Simple and undo-logging (Intel’s NVML) as the number of threads vary from two to eight.

A B C D F TPC-C
0

5

10

15

20

L
at

en
cy

(µ
s) Kamino-Tx Undo-Logging

Figure 13: YCSB latency with Kamino-Tx-Simple and undo-
logging (Intel’s NVML).

figurations of the key-value store. Table 3 describes each
workload in terms of the set of operations performed on
10M key-value pairs, each of size 1KB.

Our baseline implementation utilizes unmodified Intel’s
NVML library, which provides atomicity through undo-
logging [20]. We compare this undo-logging against the
Kamino-Tx atomicity implementation in our modified ver-
sion of NVML library.

For our experiments, we use five different deployments of
the key-value store to measure latency and throughput:
• Undo-Logging: baseline version with Intel’s NVML.
• Kamino-Tx-Simple: in-place update using a full copy.
• Kamino-Tx-Dynamic: in-place update using only (100×

α)% more storage for backup.
• Traditional Chain and Kamino-Tx-Chain: each tolerating

two failures.
All experiments are performed on Microsoft Azure A9

instances each with 16 cores, 112 GB of memory and Mi-
crosoft Azure RDMA networking with a 32Gbps Infiniband
network. We use DRAM to emulate NVM since NVDIMM
is the only available NVM technology today. Thus, our re-
sults will hold for NVDIMM which is the fastest NVM avail-
able today. For other slower NVMs, the benefits of Kamino-
Tx would only be larger since the copying would take longer.

7.1 Kamino-Tx’s Performance
The main goal of Kamino-Tx is removing logging overhead
from the critical path. Figure 13 shows the performance ben-
efit of using Kamino-Tx-Simple over our baseline imple-
mentation using Intel’s NVML. For write-intensive work-
loads, Kamino-Tx performs up to 2.33x faster than the base-
line system. Cache flushes, transactional allocation and soft-
ware needed for maintaining undo-logs comprises most of
the overhead for the baseline system. Both systems provide
similar latency for workload C which is 100% read.

A B D F

1.5
2

2.5
3

3.5

L
at

en
cy

(µ
s) 10% 30% 50% 70% 90% Full-Copy

Figure 14: YCSB latency with full and partial backups.

Figure 12 shows throughput numbers for Kamino-Tx-
Simple and the baseline system. Except for workload C,
which only includes read operations, Kamino-Tx offers
higher throughput compared to the undo-logging counter-
part for up to 9.5x. Moreover, Kamino-Tx-Simple offers up
to 40% better throughput for the TPC-C workload.

Dependent transactions. To measure the impact of lock-
ing on dependent transactions we performed specialized
key-value transactions where we synthetically controlled the
keys in requests. We perform the experiment with 80% look-
up operations and 20% insert operations. We compare two
settings where all the insert operations are performed on
the same key. In the first setting the insert operations are
spaced out uniformly between look-up operations while in
the second setting insert operations are performed in bursts
on the same key. We find that for undo-logging the average
latency of the operations was unaffected (within the margin
of error). However, for Kamino-Tx we find that the average
latency increases by 8% with substantial increase in average
latency for the insert operations of over 30%.

Worst-case performance. The benefit of Kamino-Tx is
greatest when the distance between dependant transactions
is big enough to allow copying to the backup off the critical
path. Therefore, the worst-case scenario for Kamino-Tx is
continuously executing a transaction that updates the same
object. We compare the worst-case performance of Kamino-
Tx-Simple against NVML’s undo-logging using a bench-
mark that creates 1 to 8 threads, each creating an object
(varying in size between 64 and 4,096 bytes) and transac-
tionally updating it for 100 K times. For objects smaller than
1 KB, Kamino-Tx-Simple offers lower latency compared to
undo-logging by obviating log allocation. Both techniques
offer similar latency for larger objects since the majority of
the transaction time is spent on copying. Also, they offer
similar throughput as they hit the memory bandwidth limit.

A B D F
0.5

0.75

1

1.25

1.5

M
.o

ps
/s

ec

10% 30% 50% 70% 90% Full-Copy

Figure 15: YCSB throughput with full and partial backups.

Und
o-L

og
gin

g

Dyn
am

ic-
10

Dyn
am

ic-
30

Dyn
am

ic-
50

Dyn
am

ic-
70

Dyn
am

ic-
90

Full
-C

op
y

0

2

4

6

8

10

12

N
or

m
.o

ps
/s

ec
/d

ol
la

r

Write-Heavy Workload Read-Only Workload

Figure 16: Normalized performance per dollar for different backup
configurations and undo-logging.

7.2 Kamino-Tx-Dynamic’s Performance
Figures 14 and 15 compare Kamino-Tx-Dynamic to Kamino-
Tx-Simple in terms of latency and throughput, respec-
tively. We use five different storage budgets for Kamino-Tx-
Dynamic, ranging from 10% to 90% of the size of original
data. Although Kamino-Tx-Simple outperforms Kamino-
Tx-Dynamic by up to 1.5x for write-intensive workloads,
Kamino-Tx-Dynamic can reduce storage cost by 50% for
a 5% decrease in average throughput for read-heavy work-
loads. The latency values are higher than we expected be-
cause of a coarse-granularity lock on the hash table needed
for the backup look-up. We expect the latencies to fall fur-
ther with a more fine granularity locking approach.

We compare Kamino-Tx against undo-logging in terms of
attainable throughput per dollars spent. Here, we use average
throughput numbers for YCSB workloads A and B as well as
estimated TCO numbers from AWS Total Cost of Ownership
(TCO) Calculator [2]. TCO numbers are calculated based
on Microsoft Azure A9 VMs with 16 cores and 112 GB of
memory.

Figure 16 shows normalized values for our B+Tree im-
plementation with undo-logging, Kamino-Tx-Simple and
Kamino-Tx-Dynamic. The blue and red bars show num-
bers for write-intensive and mostly read workloads, respec-
tively. Kamino-Tx-Simple offers up to 8.6x more throughput
for each dollar spent in presence of write-intensive work-
loads. Although Kamino-Tx-Simple is more cost-efficient
for write-intensive workloads, Kamino-Tx-Dynamic could
be a better choice for read-heavy workloads, specially for
those with high levels of data locality for writes.

A B D F

20

30

40

L
at

en
cy

(µ
s) Kamino-Tx-Chain Chain-Replication

Figure 17: YCSB latency for Kamino-Tx-Chain and traditional
chain replication each tolerating two failures.

A B D F

20

30

40

50

60

70

K
.o

ps
/s

ec

Kamino-Tx-Chain Chain-Replication

Figure 18: YCSB throughput for Kamino-Tx-Chain and traditional
chain replication configured to survive two failures.

7.3 Kamino-Tx-Chain’s Performance
Figure 17 shows the latency numbers for replicated schemes.
For write-intensive workloads, Kamino-Tx-Chain is up to
2.2X faster than the traditional chain. Kamino-Tx obtains
these benefits because it does not create any copies of the
data (including keys and values) in the critical path.

Figure 18 shows throughput numbers for Kamino-Tx-
Chain and our implementation of traditional chain replica-
tion. By requiring 33% extra storage space compared to the
vanilla version, Kamino-Tx-Chain can offer up to 2.2x better
throughput for write-intensive workloads.

8. Conclusion
We present Kamino-Tx which provides lightweight transac-
tion support for NVMM. Kamino-Tx offers atomic in-place
updates and obviates creating copies of data items in the crit-
ical path while providing crash consistency using a copy of
data items maintained asynchronously. We study an alternate
approach to reduce the cost of Kamino-Tx by only maintain-
ing copies of only hot data items. Evaluation results show
this provides close-to-optimal performance with small stor-
age overheads. Furthermore, we also present a new variant
of chain replication that exploits the copies of data at repli-
cas for providing crash consistency. Kamino-Tx increases
throughput by up to 9.5x for unreplicated systems and up to
2.2x for replicated settings with an additional copy of data.

Acknowledgments
We would like to thank to our shepherd, Pascal Felber, as
well as the anonymous Eurosys reviewers for their helpful
comments and feedback.

References
[1] System Support for NVMs in Linux. http://nvdimm.

wiki.kernel.org.

[2] Amazon Web Services, Inc. AWS Total Cost of Owner-
ship (TCO) Calculator, May 2016. Available at https:
//awstcocalculator.com.

[3] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee,
L. Tan, and V. Vasudevan. FAWN: A Fast Array of Wimpy
Nodes. In Proceedings of the ACM SIGOPS 22nd Sympo-
sium on Operating Systems Principles, SOSP’09, pages 1–14.
ACM, 2009.

[4] J. Arulraj, A. Pavlo, and S. R. Dulloor. Let’s Talk About
Storage and Recovery Methods for Non-volatile Memory
Database Systems. In Proceedings of ACM SIGMOD 2015,
2015.

[5] K. Bhandari, D. R. Chakrabarti, and H. Boehm. Implications
of CPU Caching on Byte-addressable Non-volatile Memory
Programming, 2012.

[6] B. Bridge. NVM Support for C Applications, 2015. Avail-
able at http://www.snia.org/sites/default/
files/BillBridgeNVMSummit2015Slides.pdf.

[7] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold,
S. McKelvie, Y. Xu, S. Srivastav, J. Wu, H. Simitci, J. Haridas,
C. Uddaraju, H. Khatri, A. Edwards, V. Bedekar, S. Mainali,
R. Abbasi, A. Agarwal, M. F. u. Haq, M. I. u. Haq, D. Bhard-
waj, S. Dayanand, A. Adusumilli, M. McNett, S. Sankaran,
K. Manivannan, and L. Rigas. Windows Azure Storage: A
Highly Available Cloud Storage Service with Strong Consis-
tency. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP’11, pages 143–157,
New York, NY, USA, 2011. ACM.

[8] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.
Gupta, R. Jhala, and S. Swanson. NV-Heaps: Making Persis-
tent Objects Fast and Safe with Next-generation, Non-volatile
Memories. In Proceedings of the Sixteenth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS XVI, pages 105–118, New
York, NY, USA, 2011. ACM.

[9] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, D. Burger,
B. Lee, and D. Coetzee. Better I/O Through Byte-addressable,
Persistent Memory. In Proceedings of ACM SOSP 2009,
2009.

[10] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking Cloud Serving Systems with YCSB.
In Proceedings of the 1st ACM Symposium on Cloud Comput-
ing, SoCC’10, pages 143–154, New York, NY, USA, 2010.
ACM.

[11] A. Dragojević, D. Narayanan, E. B. Nightingale, M. Renzel-
mann, A. Shamis, A. Badam, and M. Castro. No Compro-
mises: Distributed Transactions with Consistency, Availabil-
ity, and Performance. In Proceedings of the 25th Sympo-
sium on Operating Systems Principles, SOSP’15, pages 54–
70, New York, NY, USA, 2015. ACM.

[12] S. R. Duloor, S. Kumar, A. Keshavamurthy, D. Reddy,
R. Sankaran, and J. Jackson. System Software for Persistent

Memory. In Proceedings of the Ninth European Conference
of Computer Systems, 2014.

[13] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3:
Compact and Concurrent MemCache with Dumber Caching
and Smarter Hashing. In Presented as part of the 10th
USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI’13), pages 371–384, Lombard, IL, 2013.
USENIX.

[14] R. Fang, H.-I. Hsiao, B. He, C. Mohan, and Y. Wang. High
Performance Database Logging Using Storage Class Memory.
In Proc. 27th IEEE ICDE’11, Hanover, Germany, 2011.

[15] M. J. Franklin. Concurrency Control and Recovery. The
Computer Science and Engineering Handbook, pages 1058–
1077, 1997.

[16] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File
System. In Proc. 19th ACM Symposium on Operating Systems
Principles (SOSP), Lake George, NY, Oct. 2003.

[17] E. Giles, K. Doshi, and P. Varman. Bridging the Programming
Gap Between Persistent and Volatile Memory Using WrAP.
In Proceedings of the ACM International Conference on Com-
puting Frontiers, CF’13, pages 30:1–30:10, New York, NY,
USA, 2013. ACM.

[18] J. Gray, P. McJones, M. Blasgen, B. Lindsay, R. Lorie,
T. Price, F. Putzolu, and I. Traiger. The Recovery Manager
of the System R Database Manager. ACM Comput. Surv., 13
(2):223–242, June 1981.

[19] J. Huang, K. Schwan, and M. K. Qureshi. NVRAM-aware
Logging in Transaction Systems. In Proceedings of the Forty
First International Conference on Very Large Data Bases,
Aug. 2015.

[20] Intel Corporation. Persistent Memory Programming, 2015.
Available at http://pmem.io/nvml/.

[21] A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST: Fast,
Scalable and Simple Distributed Transactions with Two-sided
(RDMA) Datagram RPCs. In Proc. USENIX OSDI’16, Sa-
vannah, GA, 2016.

[22] E. Lee, H. Bahn, and S. H. Noh. Unioning of the Buffer Cache
and Journaling Layers with Non-volatile Memory. In Proc.
FAST’13, San Jose, CA, Feb. 2013.

[23] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. ARIES: A Transaction Recovery Method Sup-
porting Fine-granularity Locking and Partial Rollbacks Using
Write-ahead Logging. ACM Trans. Database Syst., 17(1):94–
162, Mar. 1992.

[24] MongoDB. http://mongodb.com.

[25] D. Narayanan and O. Hodson. Whole-system Persistence. In
Proceedings of the Seventeenth International Conference on
Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS XVII, pages 401–410, New York,
NY, USA, 2012. ACM.

[26] Oracle Corporation. The InnoDB Recovery Process,
2016. Available at https://dev.mysql.com/doc/
refman/5.1/en/innodb-recovery.html.

[27] S. Park, T. Kelly, and K. Shen. Failure-atomic Msync(): A
Simple and Efficient Mechanism for Preserving the Integrity
of Durable Data. In Proceedings of the 8th ACM European

http://nvdimm.wiki.kernel.org
http://nvdimm.wiki.kernel.org
https://awstcocalculator.com
https://awstcocalculator.com
http://www.snia.org/sites/default/files/BillBridgeNVMSummit2015Slides.pdf
http://www.snia.org/sites/default/files/BillBridgeNVMSummit2015Slides.pdf
http://pmem.io/nvml/
http://mongodb.com
https://dev.mysql.com/doc/refman/5.1/en/innodb-recovery.html
https://dev.mysql.com/doc/refman/5.1/en/innodb-recovery.html

Conference on Computer Systems, EuroSys’13, pages 225–
238, New York, NY, USA, 2013. ACM.

[28] A. Phanishayee, D. G. Andersen, H. Pucha, A. Povzner, and
W. Belluomini. Flex-KV: Enabling High-performance and
Flexible KV Systems. In Proceedings of the 2012 Workshop
on Management of Big Data Systems, MBDS’12, pages 19–
24, New York, NY, USA, 2012. ACM.

[29] J. Terrace and M. J. Freedman. Object Storage on CRAQ:
High-throughput Chain Replication for Read-mostly Work-
loads. In Proceedings of the 2009 Conference on USENIX An-
nual Technical Conference, USENIX’09, Berkeley, CA, USA,
2009. USENIX Association.

[30] R. van Renesse and F. B. Schneider. Chain Replication for
Supporting High Throughput and Availability. In Proceedings
of the 6th Conference on Symposium on Operating Systems
Design & Implementation - Volume 6, OSDI’04, Berkeley,
CA, USA, 2004. USENIX Association.

[31] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Camp-
bell. Consistent and Durable Data Structures for Non-volatile
Byte-addressable Memory. In Proceedings of the Ninth
USENIX Conference on File and Storage Technologies, 2011.

[32] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:
Lightweight Persistent Memory. In Proceedings of the Six-

teenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
XVI, pages 91–104, New York, NY, USA, 2011. ACM.

[33] T. Wang and R. Johnson. Scalable Logging Through Emerg-
ing Non-volatile Memory. Proceedings of the VLDB Endow-
ment, 7(10):865–876, June 2014.

[34] J. Xu and S. Swanson. NOVA: A Log-structured File Sys-
tem for Hybrid Volatile/Non-volatile Main Memories. In
14th USENIX Conference on File and Storage Technolo-
gies (FAST’16), pages 323–338, Santa Clara, CA, Feb. 2016.
USENIX Association.

[35] Y. Zhang, J. Yang, A. Memaripour, and S. Swanson. Mojim:
A Reliable and Highly-available Non-volatile Memory Sys-
tem. In Proceedings of the Twentieth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, ASPLOS’15, pages 3–18, New York,
NY, USA, 2015. ACM.

[36] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. Kiln:
Closing the Performance Gap Between Systems with and
without Persistence Support. In Proceedings of the 46th An-
nual IEEE/ACM International Symposium on Microarchitec-
ture, MICRO-46, pages 421–432, New York, NY, USA, 2013.
ACM.

	Introduction
	Related Work
	Kamino-Tx
	Reducing Cost of Kamino-Tx
	Replicated Kamino-Tx
	The Kamino-Tx-Chain Protocol
	Handling Fail-Stop Failures
	Handling Quick Reboots

	Implementation
	Programming Interface
	Implementation of the Log Manager
	Transaction Coordinator
	Dynamic Backup

	Evaluation
	Kamino-Tx's Performance
	Kamino-Tx-Dynamic's Performance
	Kamino-Tx-Chain's Performance

	Conclusion

