
¢ Computer Graphics, Volume 21, Number 4, July "t987
I I i i i

Ray Tracing Complex Models
Containing Surface Tessellations

J o h n M. Sn y d e r
A l a n H. B a r r

Ca l i fo rn ia I n s t i t u t e of Techno logy
P a s a d e n a , CA 91125

Abstract

An approach to ray tracing complex models containing math-
ematically defined surfaces is presented. Parametric and implicit
surfaces, and boolean combinations of these, are first tessellated
into triangles. The resulting triangles from many such surfaces
are organized in a hierachy of lists and 3D grids, allowing efficient
calcu]atlon of ray/model intersections.

The technique has been used to ray trace models containing
billions of triangles and surfaces never before ray traced. The orga-
nizing scheme developed is also independently useful for efficiently
ray tracing any complex model, whether or not it contains surface
tessellations.

KEYWORDS: Ray tracing, parametric surface, tessellation, trian-
gle, llst, 3D grid

1 Introduction
In the past, models suitable for ray tracing have contained too

few and too simple primitives. Much work has been focused on
solving these two problems independently.

To extend the set of aray-traceable ~ surfaces beyond polygons
and qnadric surfaces, several schemes for intersecting rays with
surfaces have been developed. Kajiya [Kajiya 82] has described an
algorithm for ray tracing bicubic patches. Toth [Toth 85], Barr
[Barr 86], and Joy and Bhetanabhotla I Joy 86] have studied al-
gorithms for intersecting rays with general parameteric surfaces.
These schemes axe slow, require expensive evaluation of surface
parameterizations, and axe hard to robustly implement.

Alternatively, mathematically defined surfaces can be broken
down into simple pieces. The resulting tessellation is an approxi-
mation to the real surface which can be made arbitrarily close to
it by using tiny enough pieces. This approach has been avoided
because ray tracers were unable to handle the vast numbers of
primitives needed to approximate a surface.

Recently, organizing structures for large and complex collec-
tions of primitives have been proposed which make feasible ray
tracing of models containing many fine tessellations. These struc-
tures fall into three categories -- lists, octrees, and 3D grids. Each
organizes a collection of objects into a single unit which may later
be incorporated into a higher level structure. Each allows the ray
tracing algorithm to determine which objects in the collection can
potentially be intersected by a ray.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

Lists were used in early ray tracers such as developed by Rubin
and Whitted [Rubin 80]. A list is simply a grouping of objects.
Hierarchies are built by grouping lists into higher level lists. Kay
aztd Kajiya [Kay 86] investigated an algorithm to traverse the list
hierarchy so that objects are considered in the order that they occur
along the ray. This requires sorting of objects that can potentially
be intersected by the ray.

Octrees and 3D grids partition space rather than objects and
thus avoid object sorting. In these structures, each cell, a rectan-
gular volume in sp~ce, contains all the objects that occur within
it. The difference between the two structures is that octrees are
hierarchical with variable sized cells, while 3D grids are nonhierar-
chical with cells of uniform size. Glassner [Glassner 84] and Kaplan
[Kapian 85] investigated octrees. Fujimoto, et al. [Fujimoto 86] de-
veloped 3D grids and compared their efficiency with octrees.

Fujimoto found the 3D grid structure superior to an octree for
ray tracing models containing large numbers of primitives homoge-
nously scattered through space. This finding can be explained in
light of two 3D grid properties. First, because grid cells are of
uniform size, tracing a ray from one grid cell to the next is an
extremely fast, incremental calculation. Second, because grids are
nonhierarchical, determining which cell contains the ray origin can
be done in constant time, while the same operation is logarithmic
in the number leaf cells in an octree. In fact, both lists and octrees
require hierarchy traversal; lists through a hierarchy of bounding
volumes around objects, and octrees through a hierarchy of octree
celia. Set up time for a ray/grid intersection is large, however,
making it impractical for collections of a few objects. A single grid
is also impractical for organizing objects at widely varying lengths
of scale.

The proposed algorithm uses a hybrid, hierarchical approach to
organizing a complex model. In it, both lists and 3D grids are used
to organize model elements, which are primitives~ or themselves
lists or 3D grids. Grids axe used to organize large collections that
axe evenly distributed through space. Lists axe used to organize
small collections that are sparsely distributed through space. This
scheme can adapt to complexity in a model at many scales; in fact,
a hierarchy of 3D grids can be viewed as a generalization of an
octree, in which arbitrary branching ratios are possible instead of
a fixed branching ratio of eight.

Using this technique, we have ray traced a model containing
400 billion triangles, more primitives than have previously been
rendered into a single image. We have generated complex images
containing such shapes a~ teapots, grass blades, clover leaves, flower
petals, and bumpy, twisted, and self-intersecting parametric sur-
faces. In short, this technique has established a new state of the
art in the complexity of ray traced images.

2 Surface Tessellation
A surface tessellation is a connected mesh of pieces which ap-

proximates the surface. A triangle is the tessellation piece; a sur-
face is thus approximated by a polyhedron with triangular faces.
Triangles were chosen because their simplicity allowed fast con-

© 1987 ACM-0-89791-227-6/87/007/0119 $00.75

119

~ , , , ~ SIGGRAPH '87, Anaheim, July 27-31, 1987

>u >u

a) Uniform Subdivision b) Adaptive Subdivision

Figure 1: Parameter Space Tessellated Into Triangles

struction of surface tesseRations and fast ray intersection with the
mesh pieces (see Appendix).

Tessellation of surfaces is accomplished in a program separate
from the ray tracer. Currently, this program tessellates several
types of parametric surfaces B(u, v): R 2 ---, R s by uniformly sam-
piing a rectangular region of parameter space using a specified num-
ber of divisions in u and v (see Figure la}. Each set of four adjacent
samples is then used to create two triangles. Surfaces can also be
tessellated using adaptive sampling techniques (see Figure lb} in
which the fineness of the subdivision can vary over the parameter
space. A technique for adaptive subdivision of parametric surfaces
and boolean combinations of parametric surfaces is discussed in
[Von Herzen 85]. In addition, a technique to tessellate implicit
surfaces is currently being developed at Caltech IKalra 86].

2.1 Tessellation Artifacts And Solutions

Experimentation has shown that surface tessellations can be ray
traced without noticeable artifact. The organizational scheme can
easily handle tessellations which are fine enough so that no silhou-
ette or shadow polygonal segmentation is visible. Moreover, as the
number of triangles in a tessellation is increased, the time to ray
trace the tesselation grows slowly {see Section 6). In practice, while
the algorithm had the capability to ray trace tessellations contain-
ing many more triangles in an allotted rendering time, some sur-
faces in very complex models remained inadequately tessellated be-
cause of memory limitations (typically about 16 megabytes). Vis-
ible artifacts were the result.

Artifacts take the form of polygonal shading facets, siLhouettes,
and shadows. Polygonal shading facets are largely controlled by
using normal interpolation across triangles. SiLhouette and shadow
artifacts are most pronounced in regions where the surface has high
curvature, and in regions where triangles in the tessellation have
long edges. One solution is to tessellate the surface adaptively
using variation in normal vector, and linear length of triangle edge
as criteria for subdivision. In this way, parts of the surface requiring
further sampling may be more finely tessellated without increasing
the overall number of triangles.

Information concerning how the surface is positioned with re-
spect to the camera, the lights, and other surfaces can also be used
in a subdivision scheme to reduce artifacts. For example, given an
eye position, surfaces can be subdivided more in regions where the
normal to the surface is nearly perpendicular to the direction to
the eye. Silhouette edges of objects will then appear less choppy.
This approach has not been pursued because it depends on prop-
erties not inherent in the surface, creating tessellations which are

D

ray

N

Figure 2: The Surface Sidedness Problem - - The triangle normal
vector N faces slightly toward the ray origin (N - D < 0 implies
outside intersection) but the interpolated normal vector ~r faces
away (~r . D > 0 implies inside intersection). The vector A is the
normal to the surface at the intersection of the ray with the surface;
it clearly indicates that the ray intersects the outside of the surface.

only good in a particular scene. Also, determining the location of
silhouettes and shadows is complicated by ray tracing effects such
as reflections, refractions, diffuse shadows, and depth of field.

Artifacts can also be reduced by intelligent shading and ray
ca.sting techniques as well as by intelligent subdivision. The fol-
lowing sections describe two examples.

The Surface Sidedness]Problem

When a ray intersects a triangle, the triangle's interpolated
normal, ~r is passed to the shader as the actual normal to the
surface at the point of intersection. Let the ray be parametrized
by O + Dt where t is a scalar greater than 0 and O and D are
vectors; O is the ray origin, and D, the ray direction. The vector
~r is used to determine whether the inside or outside of the surface
was hit according to the sided intersection test:

~r. D < 0 ===> outside intersection

~r . D > 0 ~ inside intersection

For an inside intersection, ~r is flipped {scaled by -1), since the
intersection algorithm always returns outward facing normais. The
final]V~ flipped or unflipped, is used by the shader to compute
diffuse (Lambert) shading, specular highlights, and directions for
recnrsively generated reflection and refraction rays.

Let N be the normal to the plane embedding the triangle. It
is the normal of the polyhedral tessellation of the surface at the
point of intersection, whereas ~r is an approximation to the actual
(pre-tessellated} surfaceSs normal. A problem arises if the result

of the sided intersection test is different when applied to ~r and
N, as in Figure 2. Large shading discontinuities result when ~r
is erroneously flipped in this situation since it indicates an inside
intersection. As Figure 2 shows, the nnfiipped N is also a bad
approximation to the actual surface normal.

Experimentation has shown that this problem can be made less
severe by using the actual triangle normal N instead of ~r when-
ever the sign of N- L) is not equal to the sign of N- D. For outside
intersections (as in Figure 2}, the normal must have some compo-
nent toward the ray origin,~rather t h a n away from it. Thus N is
closer to A than is either N or - N . Although not a completely

120

(~ ¢ Computer Graphics, Volume 21, Number 4, July 1987

ray ~ light ~x0s.

L ~ ~

j ./"~ shadow ray ~ ray

Figure 3: The Terminator Problem -- Although ~r indicates that
a surface point is not self-shadowed, (i.e. N • L < 0 where L is
opposite to the shadow ray direction} the shadow ray is launched
starting from inside the surface. The point is therefore found to
be in shadow when the shadow ray intersects the surface on its
way out. This problem manifests itself in a polygonal, segmented
terminator, particularly evident with point light sources.

satisfactory solution, this technique restored the brightness of a few
unnaturally dark pixeis along silhouettes of highly curved surfaces
in experimental pictures. It is expected that adaptive surface tes-
sellation which samples more highly in regions where the surface
normals vary largely, coupled with this technique, will be an effec-
tive solution to surface sldedness artifacts. Such adaptive sampling
wiLl limit the maximum angular difference between N and A.

The T e r m i n a t o r P r o b l e m

A terminator is an area on a surface separating lit and self-
shadowed areas. Let L be the direction of the light from a point on
the surface. Whether or not a point on a surface is self-shadowed
is determined according to the serf-shadowing test:

~r. L _~ 0 ==~ potentially lit

~r. L < 0 ~ serf-shadowing

As in the previous case, artifacts occur in regions where the
result of the sell-shadowlng test is different when applied to the
actual triangle normal N and the interpolated normal ~r. In the
case that N indicates that an intersection point is lit, and N indi-
cates that it is in shadow, we can use the solution discussed for the
surface sidedness problem. Merely substituting the actual triangle
normal N for the interpolated normal ~r in subsequent shading cal-
culations reduces terminator artifacts. In the case that N indicates
that a surface point is in shadow and N indicates that it is lit, as
in Figure 3, a different solution is required. Here, the problem is
that the shadow ray is launched from inside the surface so that the
point is always in shadow, even though the actual surface point
may be lit.

To solve this problem, the shadow ray is launched further from
the point of intersection so that it can ~escape ~ to the outside of the
surface. Ray tracing algorithms incorporate a tolerance, called the
shadow tolerance, which controls how far from the point of inter-
section to shoot the shadow ray. For most surfaces, simply making
this number a parameter of the surface instead of a global constant
eliminates terminator artifacts. When the shadow tolerance can
not be made large enough over the whole surface to eliminate ter-
minator artifacts without simultaneously creating other artifacts,

Figure 4: Solving The Terminator Problem Using Variable Shadow
Tolerance -- To allow the shadow ray to escape from inside the
surface, we can shoot the shadow ray starting from its intersection
with a plane c from the point of intersection along the interpolated
normal direction ~r.

a variable shadow tolerance can be used. Figure 4 shows one such
scheme.

3 O r g a n i z a t i o n O f T h e M o d e l

Once the modeler has tessellated surfaces in the model into
triangles~ he must organize these triangles and other model com-
ponents using lists and 3D grids. This organization takes place
during the preprocessing phase. When preprocessing is complete,
the model may be ray traced to generate an image. This section
describes the structure of lists and 3D grids, and their use in orga-
nizing complex models. Section 4 describes how model components
are inserted into lists and grids during preprocessing. Section 5 de-
scribes how the preprocessed model is ray traced.

A component of a model is called an object. The following is
the C language definition of an object:

s t r u c t u r e o b j e c t {
d o u b l e bounding_box [3] [2] ;
structure transformation *trans;
char *root_obj ect ;
int object_type:

)

Each object can be transformed using an 3 × 3 transformation
matrix and a 3 × I translation vector, pointed to by the trans
field. Each object is also bounded by a simple box formed by three
pairs of extents in the x, y, and z directions in the bounding_box
field. The root_object field is a pointer to a structure containing
parameters of a specific object, called the root object. Examples of
root objects are polygons, spheres, cylinders, triangles~ lists, and
3D grids. The object_type field indicates the type of the root
object.

3 . 1 S t r u c t u r e O f L i s t s A n d 3 D G r i d s

A list is a linked list of objects. Its C language definition is

s t r u c t u r e l i s t {
s t r u c t u r e o b j e c t * l i s t _ o b j e c t :
s t r u c t u r e l i s t *next ;

}

121

" ~ . ~ SIGGRAPH '87, Anaheirn, July 27-31, 1987

A 81) grid is a three dimensional array of rectangular volumes,
called cells, formed by regularly dividing a larger rectangular solid
along the coordinate axes. Each cell contains a pointer to an object
that is bounded by the cell extents. It is defined as:

structure grid {
double grid_extent[3] [2] ;
int x_divlslons, y_dlvisions, z_divisions;
s t r u c t u r e o b j e c t * c e l l s [] ;

}

Since many objects can occupy space within a cell extent, the
object pointed to by a uonempty celt is always a list. This llst
has its own bounding box which bounds all the objects inside the
grid cell. Its transformation pointer is always null. Empty cells
axe indicated by a null object pointer. Cells in the grid are stored
in the cells field. The grid_extent field stores the extent of the
volume that was divided into cells using x_divisions z divisions,
y divisions y divisions, and z_divisions z divisions.

3 . 2 B u i l d i n g t h e M o d e l w i t h L i s t s a n d G r i d s

The modeler specifies lists and 3D grids by opening a list or
3D grid and inserting a series of objects into it. Only one list or
grid can be open at a time. When a grid is opened, the modeler
specifies the number of z, y, and z divisions in the grid, and the =,
y, and z extent of the grid. Opening a list requires no parameters.
The specification of a list or grid also includes a unique name so
that lists or grids built by the modeler can later be instantiated
into other lists and grids. The entire model is hierarchically built
in a bot tom-up fashion using instantiation.

Triangles in a single surface tessellation are usually inserted into
a single grid. This grid can then be instantiated many times in the
model, and can be separately tranformed in each instance. This is
accomplished by creating several objects whose root_obj ec t fields
all point to a single copy of the grid, but whose truss field point to
different transformation structures. In the same way, the modeler
can also replicate lists by multiple instantiation.

Model building is currently a heuristic, modeller directed pro-
cess. More work still remains to develop fully automatic algorithms
that can organize complex models for efficient ray tracing. On the
other hand, lists and 3D grids often naturally tit the model's or-
ganizational structure. For example, our model of a grassy plain
{see image in Section 6} is a list containing a plain polygon and
a grass field grid. The grass field was hierarchically constructed
using two different grass blade surface tessellations. First, a grass
patch was built by replicating these two blades many times with
various rotations, scales, and translations and inserting them into
a grid. Two of these patches were then replicated and inserted into
a larger grid to form a field of grass. Fields were then replicated
into a grass plain. In this way, without much modeler effort, we
constructed a very complex model (4 x 1011 triangles) which could
be ray traced quite quickly (12 hours on an IBM 4381).

4 Preprocessing Algorithm

Figure 5 describes the ageneric" algorithm to insert a object into
a llst. The term agenericS is used because the algorithm works for
any object that can be bounded in a simple zyz extent bounding
box. Figure 5 refers to transforming and enlarging bounding boxes.
A bounding box is transformed by transforming each vertex of the
original bounding box, and bounding the result in x, y, and z. A
bounding box is enlarged by another bounding box with simple
maximum/minimum operations to produce a bounding box that

Let 0 be an object to be inserted into list L
Let B be O's bounding box
Let T be the current transformation

Transform B by T to give

Create an object () whose
r o o t _ o b j e c t and o b j e c t _ t y p e fields are equal to O's
bounding_box field is B
t r a n s field points to T

Enlarge L's bounding box by
Add a pointer to 6 to L "S Jlnked list o£ objects

Figure 5: Generic Object Enlist Algorithm

Let 0 be an object to be inserted into grid G
Let B be O's bounding box
Let T be the current transformation

• ransYorm B by T to give

For each ceil in G within or intersecting B Do
clip 13 to this grM ce//yielding a bounding box
create an object () whose

root_obj ec t and obj e c t_ type fields equal O's
bounding_box 6eId is B
trans field points to T

add ~) to the cell's objec# list, creating this
list f f the eeL/ was previously empty

Eudfor

Figure 6: Generic Object Eugrid Algorithm

bounds both. Figure 6 describes the generic algorithm for inserting
an object into a grid.

The generic algorithms work for any primitive. Several opti-
mlsatious can be made, however, to speed ray tracing of trian-
gle and polygon primitives. First, instead of transforming objects
by inverse transforming the ray (see Section 5), we coat transform
the primitives directly during preprocessing. This avoids many
ray transformations and yields tighter bounding boxes around the
primitives, allowing the ray tracing algorithm to cull more objects
from ray intersection consideration.

Second, instead of clipping the primitive's bounding box to each
grid cell, the primitive itself can be clipped as in Figure 7 i. This
yields tight bounding boxes around the triangles and polygons in-
side of every grid cell, and appropriately ignores grid cells which in-
tersect the bounding box but not the primitive inside. The bound-
ing box of the primitive inside a grid cell becomes its bounding
box after clipping to the grid cell's extents. On the other ha~d,
the object inserted into the grid cell's list is still the original us-
clipped triangle or polygon. The unclipped primitive is inserted to
conserve memory since only one copy of a triangle or polygon is
stored instead of several clipped versions of the same thing. It is
also more efficient to intersect a ray with a triangle than to inter-
sect with the many-sided polygon that may result from clipping a
triangle to a volume.

5 Ray/Model Intersection Algorithm
To intersect a ray with an object, the algorithm first determines

if the ray intersects the object's bounding box (see Figure 8) 2. If

1[Cyrus 78] discusses clipping polygons to convex volurnes.

2The ray/bounding box intersection algorithm is adapted from that found in
[Kay 86] to avoid intersections with planes behind the ray origin.

122

(~ @ Computer Graphics, Volume 21, Number 4, July 1987

cell

bounding box
. =y;

' .:~,,:.i t rian gleii!i'!!i!!:ii~: '
. i~i~i!!!!i!iii~i~i . : : :,::y~!,,!..

.

Figure 7: Clipping a Triangle to a Grid Cell ~ Clipping the triangle
yields a bounding box that is smaller {by the diagonally shaded
areas) than intersecting the triangle bounding box (dashed lines)
with the cell extent.

it does, and the object's t r a n s field is non-null, then it transforms
the ray. Let A be a 3 × 3 matrix and B a 3 × 1 vector that trans-
forms a point P to ps v i a / w = A P + B . Intersecting a ray O-{-Dt
with an object so transformed is equivalent to intersecting the un-
transformed object with a transformed ray O' + D ' t where s

O' = A-*(O- B)

D' = A-~(D)

The transformed ray and the root object pointed to by the object's
root_object field axe then passed to the intersection routine for
the specific type of root object. If the root object is a primitive
(e.g. a triangle) then this routine computes the ray#oot object
intersection directly. If the object is a list or 3D grid, then the
routine traces the ray through the structure, recursively calling the
ray/object intersection routine for individual objects it contains.

5 .1 T r a c i n g A R a y T h r o u g h A L i s t

Computing the intersection of a ray with a list can be accom-
plished by performing a ray/object intersection {defined in Section
5) on each object in the lint. The intersection that occurs at the
minimum t parameter of the ray is the desired frontmost intersec-
tion.

Alternatively, ray/bounding box intersections can be computed
on each object first, so that objects whose bounding box is inter-
sected by the ray can be sorted in increasing order of the ray's t rain

intersection with the object's bounding box (see [Kay g61). Then,
when a ray/root object intersection is computed at some t, the
algorithm can eliminate any root objects whose t mr" > t.

The imphmentat ion allows the modeler to specify whether sort-
hag takes place in any list. The sort algorithm used is a simple
linear insertion sort; [Kay 86] notes that a heap sort is faster for
large lists.

5 .2 T r a c i n g A R a y T h r o u g h A 3 D G r i d

The algorithm to trace a ray through a 3D grid is described in
Figure 9. It visits each grid cell intersected by the ray in the order
of intersection, and intersects the ray with the cell list in each grid
cell visited. At the start of the while loop, tx, ty, and tz are the

n T h e t r a n l f o r m a t i o n i t r u c t u r e i h o u l d the re fo re s to re t h e m a t r i x A - l a n d the
vec to r B .

Le t the ray be O + D t
Le t t be b o u n d e d b y t r a in __< t ____ t max
Le t the b o u n d i n g b o x be Bmin,B max where

B mi" (B max) ~ a vector containing the m i n i m u m
(m a x i m u m) zyz extents o f the b o x

For i +-- z-index to z . i n d e x Do
I f D~ > 0 T h e n b rain +-- n rain , b ma-x 4-- B max
E/se b rain ~ B~ ~ , b m ~ ~- B~ i"

l i b m~x - Oi < 0 T h e n R e t u r n no h i t
t +"- {bm~x -- O~)/D,

lit < t m~x Then
l i t < t mi" Then R e t u r n no hi t
t max ~-~ t

E n d f f

l i ~ m i n -- O i > 0 Then
t ~- {b ~ i" - O i) /D~
l i t __> t min Then

I f t > t max T h e n R e t u r n no h i t
t rain ~'- t

E n d f f
E n d i f

End for
Return hi t (in tersect ion at t = t rain ~lld t : t m a x)

Figure 8: Ray/Bounding Box Intersection Algorithm

Let the ray be pararaeter ized by 0 + D t
Le t t be h o u n d e d b y t rain <7 t < t m~x
Le t the grid v o l u m e origin he M
Let the ce/ /extent he C ie . each grid cell has e x t e n t

Cffi ln x, C~ in y, and C, in z

Compute t o -- the ray's minimum intersection
wi th the whole grid volume

C o m p u t e the pos i t ion P o f this in tersec t ion
C o m p u t e the grid cell g where this in tersect ion occurs

For ~ ~-- z - l n d e x to z - i n d e x Do
Ini t ial ize t~ such t h a t

M~ + i C , < P~ < M~ + (i + 1)C, and

A , .-- C , / D ,

End£or

While t ° <_ t m ~ and g is in grid Do
Le t ~b be the i n d e x such tha t t~ : min(t= , t~ , t=)
t l 4-- t,l ,

If g is nonempty T h e n
Intersect ray w i t h the list at cell g (t o < t < t 1)
If intersects Then R e t u r n in tersect ion

E n d i f
t o 4-- ~t

t¢ .-- t¢~ + A¢~
Update g d e p e n d i n g on ~ and the sign o f D~

Endwhi/e

R e t u r n no intersection

Figure 9: Ray/3D Grid Intersection Algorithm

123

•
SIGGRAPH '87, Anaheim, July 27-31, 1987

I ~ , ~ [

ray ~ / ~ y

cell A cell B

.

t = t o t = t l t = t 2 t = t 3

Figure I0: Tracing a Ray Through a Grid -- The minimum t¢ oc-
curs when ~b = x, so the next grid cell intersected is adjacent in the
increasing ~ direction. In this case, the algorithm will increment
tz by A= after intersecting the ray with the list in grid cell g.

t values of the ray's maximum (second) intersection with the s, 9,
and z bounding extents of the current grid cell, 9 (see Figure 10).
The next grid cell may be computed incrementally by finding the
minimum of these (re). This gives the t value of the ray's second
intersection with 9. It is also the t value of the ray's minimum
(first) intersection with the next grid cell intersected. The index
~b indicates which grid cell is intersected next -- if De is positive~
the next cell is adjacent in the increasing ~ direction; otherwise, it
is adjacent in the decreasing ~b direction.

This grid traversal algorithm is different than the 3DDDA al-
gorithm described in [gujimoto 86]. Like 3DDDA, no multiply
operations are used in the inner loop. Also, the algorithm can be
performed nsing integer arithmetic by scaling the t variables by
1/(tmax _ train). Double precision arithmetic was actually used
in the implementation~ however, to eliminate inaccuracies in trac-
ing the ray th rough the grid. Unlike 3DDDA, for each grid cell
visited this a lgor i thm computes t ° and t 1 ~ the t extents of the
ray through the grid cell. This is useful to check tha t root object
intersections actually occur within the cell extent, and in further
processing to cull objects in the grid ceLl llst.

Checking ~tereectlons in n ~D Grid Cell

Since a single object may occupy several grid cells, the ray's
intersection with the object inside a grid cell should be checked to
ensure it is actually within the grid cell. A ray/object intersection
should occur in the cell where the ray actually intersects the object,
not in the first grid cell visited which contains the primitive. The
check for this situation is illustrated in Figure 11.

C u l l i n g I .uside a 3 D G r i d Cel l

The grid intersection algori thm mus t intersect the ray with the
list in each grid cell the ray intersects. Two optimizat ions to the
algorithm in Section 5.1 can be made for this list intersection.

The first concerns de termining whether any object in the cell
list is hit by the ray. A simple optimizat ion speeds up detection of
s i tuat ions in which a ray intersects a nonempty grid cell, bu t misses
the cell list bounding box, as in Figure 12. Many times, most of the
extents of the cell list bounding box are identical to the cell extent .
Since the grid traversa[a lgori thm has ~lready computed the ray 's
intersection with the cell extent, the a lgori thm need only process
the cell list bounding planes tha t are different from the cell extent .

Figure 11: Intersecting a Ray with an Object in Multiple Grid
Ceils -- A ray intersects a triangle in cell B at t = t2. The ray also
intersects the bounding box (dashed tines) of the triangle in cell A,
but not the triangle itself. When it processes cell A, the algorithm
checks that the ray intersection with the triangle is between to and
tl- Since it is not (t2 > tl), it correctly returns the intersection
of the ray with the triangle only after processing cell B, where

tl < t2 < t3.

/
¸

cell

s ~ f ~ e

Figure 12: Bounding Box Inside a Grid Cell -- The bounding box
around the surface inside a grid cell differs from the cell extent in
only one extent, identified with an arrow. We need only check one
extent to see that the ray misses the bounding box inside this cell.

This is accomplished by stor ing six flags along with the cell list
bounding box extents, which indicate whether or not the extent
differs from the cell extent . These flags are trivially computed
during preprocessing. The a lgor i thm in Figure 8 is modified to
disregard extents whose flag is false.

A second opt imizat ion concerns de termining which objects in
the list are intersected by the ray. A simple cull called the ray

boz cull, shown in Figure 13, de termines if a ray misses an object 's
bounding box using only six comparison operations. The ray box
cull is much faster t han the bounding box intersection algori thm,
bu t is less strict (note Object B, whose bound ing box is not inter-
sected by the ray, bu t whose bounding box does intersect the ray
box). In practice, for very simple primit ives like triangles, it has
been effective enough to replace the bounding box test, since the
bounding box tes t has complexi ty on the order of a r a y / t r i a n g h
intersection.

124

(~ ~ Computer Graphics, Volume 21, Number 4, July 1987

ray ! ~ ')

bounding box

Figure 13: The Ray Box Cull - - The t extents of the ray (t ~i~ and
t m~x) through the cell list bounding box are used to construct a
box, called the ray box, with corners at the ray's two intersections
with the bounding box. If an object inside the cell extent is inter-
sected by the ray, then its bounding box must overlap the ray box.
By computing the ray box once for all the objects in the cell llst,
any object whose bounding box does not overlap the ray box can
be cuUed, like Object A.

6 Results

Figures 14 and 15 show how time to render a tessellation of
a single surface depends on the number of triangles in the tes-
sellation. Times for both graphs are given in seconds to render
a non-antialiased (one ray per pixel)]28 by 128 pixe] resolution
picture. Reported times are for an IBM 4381/Group 12 running
Amdahl UTS. An example picture produced is shown in upper left
corner of the graph. The dashed line is the time to render the non-
tessellated surface using an analytic algorithm in the case of the
sphere 4 , and an iterative algorithm in the case of the superquadric
(see [Barr 84] for an explanation of superquadrics). The solid lines
represent graphs of time vs. number of triangles for grids of various
cell sizes.

The graphs demonstrate that the time to render a tessellated
surface grows quite slowly with increasing number of triangles. Fur-
ther, in the case of superquadrics~ the iteratlve approach is slower
than tessellating and rendering. Only about 2000 triangles were
required to produce an image of the superquadric which was indis-
tinguishable from that produced by the iteratlve algorithm, while
the rendering time for this tessellation was half that for the itera-
tive algorithm. Tessellations containing up to 50,000 triangles were
still faster than the iterative algorithm.

Yet, superquadrics are very simple parametric surfaces. Tes-
sellation is even more advantageous for complex surfaces whose
evaluation can cost hundreds of time~ more than a superquadric.
In experiments, rendering time for tesselations del~ended on the
number of triangles, surface area, and projected screen area of the
tessellation. It was relatively independent of the mathematical def-
inition and shape of the parametric surface. Numerical techniques,
in contrast, depend on the complexity of the parameterization of
the surface.

For example, the grass blade rendered in several included pic-
tures is a parametric surface defined by an integral of a specified
Jacobian function that governs how the surface normals behave.

4The sphere graph ie included for comparieon purposes only; tessellation is not
necessary for qnadric surfaces for which ray intersections may be computed
analytically.

100

S 8O

e

C
6O

O
n
d 4O

s

2O ~x4flx40

......... -I 1 F l
I0000 20000 30000 40000

Number of Triangles

Figure 14: Time to Render Sphere Tessellation

30

10

I
0 I0000 20000 30000 40000

Number of Triangles

Figure 15: Time to Render Superquadric Tessellation

Evaluation of surface points requires numerical integration and is
veFy expensive. After tessellating once, this surface was incorpo-
rated into many models at a rendering cost roughly equal to a
tessellated sphere or superquadric of equal slz% surface area, and
number of triangles. Use of a numerical technique to ray trace the
blades would be prohibitively slow, if it can be made to work at
all.

The algorithm has been effective for fast rendering of mod-
els. For simple pictures (< 100~000 primitives)~ it consistently
performed about twice as fast as the current implementation of
the algorithm developed in [Kay 86], which claimed to out-perform
competing algorithms such as octrees.]t was also able to render
complex models that have never been attempted using conventional
ray tracers. Table 1 shows the rendering time in CPU hours and
number of primitives for pictures included in this paper. All pic-
tures were computed at 512 by 512 pixel resolution.

The times for ray tracing these images are comparable to times
for conventional ray tracers to generate images containing a few
hundred polygons and spheres. In this same rendering time, our
ray tracer has generated pictures containing huge numbers of prim-
itives, and surfaces that would require much greater rendering time
using other published techniques.

"/ Acknowledgements
Tim Kay and :Jim Kajiya provided advice on ray tracing; Brian

Von Herzen on tessellation of surfaces. Figures and monochrome

125

~ SIGGRAPH '87, Anaheim, July 27-31, 1987

Title
graphics lab
teapot museum piece
reflective bristles
statue of liberty
brass ornament
flowers, grass, clovers
glass museum piece
grass and trees
field of grass

Primitives Rays/Pixel
100 16

10,000 16
15,000 16

I00,000 16
100,000 16
200,000 16
400,000 16

2x109 16
4x1011 16

Table I: Rendering Time For Pictures

Hours
12

8
12
14
9

3.5
8.5
16
12

raster images in this paper were incorporated using software writ-
ten by Wen King Su and Brian Von Herzen.

8 References

[Burr 811 Burr, Alan H., "Superquadrics and Angle Preserving
Transformations," Computer Graphics and Appffcations,
1(1}.

[Baxr 86] Burr, Alan H., aRay Tracing Deformed Surfaces," Com-
puter Graphics, 20(4}, August 1986, pp. 287-296.

[Cyrus 78] Cyrus, Iv[. and J. Beck, ~Generalized two and three di-
mensional Clipping~" Computers and Graphics, 3(1)~ 1978,
pp. 23-28.

[Pujimoto 86 t Fujlmoto, Aklra, Takayuki Tanaka, and Kansel
Iwata, "ARTS: Accelerated Ray-Tracing System ~, IEEE
Computer Graphics and Applications, 6(4), April 1986, 16-
26.

[Glassner 84] Glassner, Andrew S., ~Space Subdivision for Fast
Ray Tracing, ~ IEEE Computer Graphics and Applications,
4(10), October, 1984, pp. 15-22.

[Kalra 86] Kalra, Devendra, M.S. dissertation in preparation.

[Kaplan 85] Kaplan, Michael R., ~The Uses of Spatial Coherence
in Ray Tracing," ACM SIGGRAPH '85 Course Notes 11,
July 22-26 1985.

[Kajiya 82] Kajiya, James T., ~Ray Tracing Parametric Patches,"
Computer Graphics, 16{3), July 1983, pp. 245-254.

[Kay 86] Kay, Timothy L., James T. Kajiya, "Ray Tracing Com-
plex Scenes, ~ Computer Graphics, 20(4), August 1986, pp.
269-278.

[Joy 86} Joy, Kenneth I., Murthy N. Bhetanabhotla, "Ray Tracing
Parametric Surface Patches Utilizing Numerical Techniques
and Ray Coherence, ~ Computer Graphics, 20(4}, August
1986, pp. 279-286.

[Rubin 80] Rubin, Steve M. and T. Whitted., ~A Three-Dimensional
Representation for Fast Rendering of Complex Scenes, ~
Computer Graphics 14(3), July 1980, pp. 110-116.

[Toth 85] Toth, Daniel L., uOn Ray Tracing Parametric Surfaces, ~
Computer Graphics 19(3), July 1985, pp. 171-179.

[Von Hersen 85] Von Hersen, Brian P.,"Sampling Deformed, In-
tersecting Surfaces with Quadtrees," Caltech CS Technical
Report 5179:TR:85, pp. t-40.

[Vou Herzen 87] Von Herzen, Brian P.,gAccurate Sampling of De-
formed, Intersecting Surfaces," to appear in Computer
Graphics, 1987.

[Whirred 80] Whltted, Turner, "An Improved II]umlnation Model
for Shaded Display, ~ Communications of the ACM, 23(6),
June 1980, pp. 343-349.

Appendix - - Ray/Trlangle Intersection
This appendix describes an efficient algorithm to compute

ray/triangle intersections.
Let]~ for i E 0, 1,2 be the coordinates of the three vertices of

the triangle. Let R/ be the corresponding normal vectors at these
vertices which axe to be used for normal interpolation across the
triangle.

During the preprocessing stage, the above information is used to
construct a triangle structure, the tessellation unit root object. We
first compute and store the normal vector to the plane containing
the triangle, N, by

N = (P I - P o) x (P 2 - P o) .

We also compute and store a scalar d such that any point, P, in
the triangle's plane satisfies P. N + d = 0. This scalar is computed
by

d = - P o . N .

Lastly, we compute and store an index ~o such that

0 if [Nx [is ma~ximum
io = 1 if [Nu] is maximum

2 if [N=[is maximum

The triangle structure also stores the three vertices and normals,
P/and R/. To conserve memory, the triangle structure should store
pointers to these since, on average, each vertex in a tessellation is
shared by six triangles.

To intersect a ray parametrized by O+ Dt with a triangle, first
compute the t parameter of the ray's intersection with the triangle
plane:

d - N , O
t N - D (1)

Let it and £2 {ii,i2 E {0, 1, 2)) he two unequal indices different
from io. Using the t value obtained from Equation 1, compute the
il and i2 components of the point of intersection, Q, by

Q~s = Oi~ + Di, t.

A point enclosure test can then be performed by computing
scalars ~o, ill, and flz according to s

p, = [(P,+~ -- e,+l) × (0, - e,+dl~0 (2)

[~ho

where a~ldltion in subscripts is modulo 3. Note that these ~'s are
the barycentric coordinates of the point where the ray intersects
the triangle plane. Only the io component of the cross product is
computed; the value of Qi0 is therefore unnecessary. Q is inside
the triangle if and only if0 < /~i -< 1 for i E {0,1,2}. Division
by Nio can be eliminated by appropriate rearrangement of the test
implied by Equation 2. The interpolated normal ~r is given by

~r = ~0Ro + ~iR1 + f12R2.

S[X]# denotes the ith component of the vector X.

126

(~ ~ Computer Graphics, Volume 21, Number 4, July 1987

Figure 15: Graphics Lab - - The carpet t ex ture map in this
image was created by ray t rac ing a s imulated carpet containing
roughly 125,000 triangles. Note the diffuse shadows from three
extended light sources.

Figure 16: Field of Grass - - This image was rendered from a
model descript ion containing more th~n 400 billion primitives.

Figure 17: St atue of Liber ty - - The s ta tue da tabase was created
using I -DEAS Geomod from SDRC~ and contained about 12,000
triangles after processing, Each tree contains roughly 10,000 prim-
itives.

127

•
SIGGRAPH '87, Anaheim, July 27-31, 1987

I ~ ~ 1

Figure 18: Flowers, Grass, and Clovers Figure 21: Teapot Museum Piece

Fisure 19: Brass Ornament Figure 22: Glass Musettm Piece

Figure 20: Reflective Bristles Figure 23: Trees and Grass

128

