
Optasia: A Relational Platform for Eõcient Large-Scale
Video Analytics

Yao Lu, Aakanksha Chowdhery, Srikanth Kandula
Microso� ∗

Abstract
Camera deployments are ubiquitous, but existing methods
to analyze video feeds do not scale and are error-prone. We
describe Optasia, a data�ow system that employs relational
query optimization to eõciently process queries on video
feeds from many cameras. Key gains of Optasia result from
modularizing vision pipelines in such a manner that rela-
tional query optimization can be applied. Speciûcally, Opt-
asia can (i) de-duplicate the work of common modules, (ii)
auto-parallelize the query plans based on the video input
size, number of cameras and operation complexity, (iii) oòers
chunk-level parallelism that allows multiple tasks to process
the feed of a single camera. Evaluation on traõc videos from
a large city on complex vision queries shows high accuracy
with many fold improvements in query completion time and
resource usage relative to existing systems.

Categories and Subject Descriptors D.4.7 [Operating sys-
tems]: Distributed systems; I.2.10 [Artiûcial intelligence]:
Vision and scene understanding - Video analysis

Keywords Video analytics, parallel systems, query optim-
ization, data�ow engines, relational languages

1. Introduction
Recently, there has been a rapid growth in camera deploy-
ments. Many cities have cameras on traõc lights and street
corners [43]; police departments use mounted cameras on
cars and body-cams on personnel [19]. IHS Research [14]
forecasts the video surveillance market to grow over the next
four years to $2.7 billion. A key enabler for this change is the
lower cost of high quality cameras and data storage.

∗_is work was done when the ûrst and second authors were at Microso�.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SoCC ’16, October 05 - 07, 2016, Santa Clara, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-4525-5/16/10. . . $15.00.
DOI: http://dx.doi.org/10.1145/2987550.2987564

Automatic analysis of surveillance videos removes the
human-in-the-loop and has the potential to be more accur-
ate, faster and more comprehensive. Our use cases fall into
twomain bins– (i) real-time analysis to detect anomalies such
as security lapses or tomaintain dashboards such as the num-
ber of cars on a highway [68] and (ii) longitudinal or post-facto
analysis that retroactively examines video streams to look for
a certain person, a car, or a pattern [26, 49].

_e state of the art in surveillance is custom closed solu-
tions. Vendors such as Omnicast [58], ProVigil [60] and
Avigilon [23] deploy and maintain the cameras. O�en, the
video is live streamed to an operations center for manual ob-
servation. _is process is error-prone and expensive. Some
vendors also provide video storage and analytics so�ware
and the larger customers (e.g. cities) have curated in-house
systems [1]. However, such automated analysis is restricted to
speciûc goals such as estimating the traõc congestion. Con-
sequently, the vision pipelines are carefully hand-cra�ed with
the engineers focusing on nitty gritty details such as how to
parallelize, which order to execute the modules in etc. Ex-
isting data�ow systems such as Spark require similar hand-
cra�ing of pipelines because they lack query optimization.
Supporting ad-hoc queries or post facto analysis on stored
video or scaling to a large number of cameras remain key
open problems [67].

In this paper, we ask whether bringing together advances
from two areas—machine vision and big data analytics sys-
tems, can lead to an eõcient query answering system over
many cameras.
A ûrst challenge is to execute basic vision tasks on surveil-

lance videos, such as detecting persons and tracking moving
vehicles, with high precision. Surveillance videos have low
resolution, low frame rate and varying light andweather con-
ditions. More importantly, executing multiple analytic tasks
on dense frames (many objects per frame) is computation-
ally expensive. We build upon some state-of-the-art vision
techniques to address these issues. Further, since surveil-
lance cameras have a ûxed frame of reference, we also use
camera-speciûc information to improve accuracy and eõ-
ciency. We have built several vision modules such as classify-
ing vehicles by color and type, re-identifying vehicles across
cameras, tracking lane changes, identifying license plates etc.

Wemodularize each implementation so that the data�ow sys-
tem can de-duplicate and parallelize the processing. Further
details are in Section 3.1.

Next, to address the challenge of scaling to a rich set of
ad-hoc queries and to many cameras, we cast the problem as
an application of a relational parallel data�ow system. Our
key contribution is to wrap the above-described vision mod-
ules inside somewell-deûned interfaces (processors, reducers
and combiners [28, 72]) – this allows them to be expressed
as a composition of the corresponding relational operators
(select, project, aggregate, and cartesian product). End-users
simply declare their queries over the modules in a modi-
ûed form of SQL. _en, a cost-based query optimizer, built
per the Cascades [40] framework, applies a large family of
transformation rules to translate user queries into appropri-
ate parallel plans [27] over the visionmodules. Various stand-
ard query optimization improvements such as predicate push
down (execute ûlters near input) and choosing appropriate
join orders come to bear automatically [20]. Prior work in
vision community has not leveraged relational operators or
SQL to eòectively run video queries. Further details are in
Section 3.2.

_e primary advantages of this combination are (i) ease-
of-use for end-users; we will show that complex queries such
as amber alerts and traõc dashboards can be declared within
a few lines, (ii) decoupling of roles between end-users and
the vision engineers; the vision engineers can ignore pipeline
construction and need only focus on eõciency and accuracy
of speciûc modules, and (iii) automatic generation of appro-
priate execution plans that among other things de-duplicate
similar work across queries and parallelize appropriately; we
will show examples where the resultant plans are much im-
proved over those literally declared by the user query.

In hindsight, the case for a system such as Optasia, which
casts vision queries as an application for big-data platforms,
seems rather obvious given the possible gains. Along the way,
we also discovered a few simple yet useful tricks. For instance,
for some queries, neither camera-level nor frame-level paral-
lelism is appropriate. Consider counting the traõc volume (#
of vehicles/min/lane) from a highway video. _e query re-
quires context across frames to avoid duplicate counts and
hence frame-level parallelism leads to an incorrect answer.
However, camera-level parallelism leads to skew (if one cam-
era processes a busy road portion) and slow response times,
because a single task has to process all the frames from a
camera. By observing that the context required is bounded
to the duration for which vehicles remain in the frame of ref-
erence, Optasia breaks the feed from each camera into over-
lapping chunks of frames. _is concept of chunk-level paral-
lelism is important to combat skew and speed-up response
times (see Table 7).

We have built an initial version of Optasia on top of Mi-
croso�’s Cosmos system [76]. Optasia supports several com-
mon vision modules (see Table 2) and we describe some ex-

emplar user queries (see Section 3.2.2). We evaluate Optasia
by analyzing the video feeds from tens of cameras from a
highway monitoring company. We also use a variety of video
feeds collected in and around theMicroso� campus (see Fig-
ure 1). Our results show that the combination of vision mod-
ules and data�ow reduces resource requirements by about 3×;
details are in Section 5.

To summarize, the novel contributions of Optasia are:
• Fast and accurate modularized implementation of several
vision modules needed in surveillance scenarios.

• A uniûed and customizable data�ow framework that
computes optimal parallel query plans given any number
of end-user queries for execution on a cluster. Our modu-
larization of vision tasksmakes explicit their analogy with
relational operators which in turn allows relational query
optimization to come to bear.

• A chunk-level parallelism technique that allow queries to
keep context for bounded time across frames.

• Implementation and initial results.

Much work remains; in particular, Optasia will bene-
ût from more principled approaches to privacy (such as
diòerential privacy or taint tracking) and improved video
stores (compression, careful index generation). Neverthe-
less, we believe that Optasia targets a rich space of potential
customers– customers that have a server farm, or can upload
videos to a secure cloud provider [4, 55], can use Optasia
today to beneût from fast, accurate, scalable, and customiz-
able analysis of their videos.

2. Primer on video surveillance analytics
2.1 Example surveillance use-cases

Analytics on intersections and roadways: Surveillance cam-
eras are installed on major intersections and highways in
many cities. One use case is to understand the �ow of vehicles
and pedestrians to improve traõc planning (e.g., determine
the hours for HOV or pay-to-use lanes, estimate the need for
pedestrian or bicycle lanes etc.). Another use-case is to detect
traõc congestion, violations and accidents in realtime [26, 67,
69]. A third use-case is to search over time for vehicles and
license plates associated with an amber alert [64]. In park-
ing structures, surveillance video can help ensure security of
parked vehicles, detect squatters or other anomalies and serve
as evidence for accidents. Figure 1 shows an example from a
Seattle intersection and a Microso� garage.

Enterprises deploy cameras primarily for insurance (evid-
ence) purposes. Some link cameras with the facilities depart-
ment to, for example, react faster to spills or to readily ac-
cess what is going on in response to a ûre alarm. Retail use-
cases revolve around data-driven decisions; it is common to
use videos to determine which hours to staò more and to op-
timally position products.

(a) Intersection. (b) Parking garage.
Figure 1: Examples of traõc surveillance video feeds.

Scenario #cam Feed type Supp. Ingest
rate

Storage

Highway 1,000 mpeg2, 352p/15fps 50% 192Mbps 28 TB
City 1,000 h.264, 360p/24fps 80% 140Mbps 51 TB
Enterprise 100 h.264, 720p/30fps 80% 48Mbps 18 TB

Table 1: Back-of-the-envelope estimation of the problem size in diòerent
surveillance settings: ingest rate in Mbps and storage size for a week of sur-
veillance videos. Supp. denotes the typical average suppression rates achiev-
able in each setting.

Table 1 lists some back-of-the-envelope numbers for a
video surveillance system. _e data volume is aòected by the
application scenario, type of the video feed (e.g. frame rate,
resolution, and video format), and camera speciûcs (some
suppress frames early for example by only emitting frames
that have motion [11]). _e table lists the data ingest rate and
storage required per week. It is easy to see that the ingest rate
is rather small (relative to Youtube [17] or Net�ix [8] which
use up to 2Mbps for HD quality); however, since the video
is continuously acquired, executing complex analysis on the
stored video is a big-data problem.

2.2 Requirements for a surveillance system

_e above use-cases lead to the following requirements.

• Precision and recall: Anomalies should be detected
with a small number of false positives and true negatives;
counts of objects should be approximately correct.

• Timeliness: Quick response time is the primary require-
ment to both realtime and post-facto use-cases.

• Resource eõciency: We are interested primarily in scal-
ing out to a large number of cameras and analyses (quer-
ies) with few machines, that is, frames/sec/$ and quer-
ies/sec/$.

• Customizability: _e video storage and analyses sys-
tem should readily accept new queries- both realtime and
post-facto. Further, the best execution plan for a given set
of queries, in terms of resource eõciency and timeliness,
may change when new queries are added.

• Probabilistic/ conûdence estimates: Vision algorithms
are probabilistic (e.g., what is the license plate? what is the
vehicle type?). A surveillance system should have probab-
ility as a ûrst class entity to simplify the decision making
of end users.

2.3 State-of-the-art in surveillance systems

In the early 2000s, the US government funded a Video Sur-
veillance and Monitoring (VSAM) [5] program that led to
several real-world deployments and research [62]. _e IBM
Smart Surveillance System (S3) [68] was one of the most not-
able. _ey had a pilot deployment in Chicago, developed
middleware that monitors scenes, stored video in a SQL
database, and provided a web interface that reported both
real-time alerts and allowed for long-term pattern mining.
While Optasia has the same overall goals, our key contribu-
tions (improved vision modules and casting vision queries
into a distributed data�ow system with query optimization
and scale-out) substantially improve upon S3. In particular,
each vision query in S3 ran with its own independent hand-
optimized pipeline.

In the commercial space, as already mentioned, several
vendors support video surveillance deployments that have
thousands of cameras. However, these systems rarely use
automated analyses. Nor do they oòer data�ow pipelines for
queries. Typically, contracts consider availability (uptime) of
video feeds and longevity of storage. Even the many simple
use-cases listed above are outside of these contractual agree-
ments. Hence, they remain expensive and cumbersome.

2.4 Challenges

Realizing the requirements in §2.2 for the use-cases in §2.1
leads to the following two challenges.

• Surveillance video ≠ images: Most vision research uses
images as input. _ese images are o�en high-resolution,
collected in ideal light conditions and are from decent
benchmarks [6, 7, 37]. In contrast, typical inputs to a
surveillance system are low resolution videos [13]. _e
lighting conditions can vary continuously; there are of-
ten multiple objects per frame and occlusions [9]. In this
sense, surveillance videos diòer substantially frommovies
or talks. However, surveillance cameras are mostly ûxed
and the data is available continuously._ese aspects allow
some optimizations as we will see shortly.

• Vision queries ≠ SQL queries (e.g., TPC-DS [12]): Dec-
ades of work in relational algebra have codiûed design
patterns to express a data analysis query in a manner that
can be automatically optimized. Recent work also con-
siders the automatic generation of parallel plans [22, 76].
However, a typical vision query consists of multiple al-
gorithmic modules, such as cleaning the input and clas-
sifying the objects. Each module is a user-deûned oper-
ator (UDO), which brings trouble to many query optim-
izers, as their semantic details are not speciûed. Further,
even seemingly diverse queries such as traõc counting
and amber alert can have similar components such as
background subtraction and extracting HOG features.
Ideally, a query optimizer should avoid duplication of
work. Hence, we are interested in a system that optimizes

the execution ofmultiple queries and adapts the execution
gracefully when new queries or more data arrives.

3. Optasia Design
3.1 Vision modules for surveillance

We develop several vision modules to support popular sur-
veillance use-cases. In each case, we emphasize our innova-
tions that (i) improve the accuracy and/or (ii) lower the com-
putational cost on input videos collected from deployments
in the wild. We begin with a simple module.

3.1.1 Automatic license plate recognition (LPR)

_e license plate recognition module takes as input one or
more images of vehicles passing through a gateway and out-
puts a set of possible license plates. _e gateway can be a vir-
tual line on a roadway or inside a garage.

Our goal here is to build a license plate recognition mod-
ule over video that requires no additional hardware (such as
magnetic coils, �ash lights or special-band light [46]). Fur-
thermore, the video resolution is whatever is available from
the wild. We would like to extract for each frame the top few
likely license plate numbers and the conûdence associated
with each number. _e following pipeline is applied:
• License plate localization looks for a bounding box around
the likely location of the license plate. We move a sliding
window over the video frame and apply a linear SVM
classiûer [32, 52] to estimate how likely each window is
to have a license plate; the windows are sized in a camera-
speciûc manner. _e output is a set of potential bounding
boxes per frame.

• Binarization and character segmentation converts each
bounding box into binary and cuts out individual char-
acters of the license, if any. We use standard image pro-
cessing techniques here such as adaptive image threshold-
ing [24], RANSAC baseline detection [39], and blob and
character detection.

• OCR:We apply a pre-trained random forest classiûer [25]
to identify each character; we search for the characters 0–
9, A–Z, and ’-’._is yields, for each character in the image,
several predicted values with so� probabilities for each
value. _e overall license plate is a combination of these
predictions with conûdence equal to their joint probabil-
ity.

• Post-processing: Since license plates have some common
formats (e.g. three numerals followed by three characters
for plates in Washington state predating 2011), we use a
pre-deûned rule database to eliminate predictions that are
unlikely to be valid license plates.

We acknowledge that the LPR module requires a certain
amount of resolution to be applicable. For example, we detect
almost no license plate from the videos in Figure 1(a) but can
ûnd almost every license plate from the videos in Figure 1(b).

Figure 2: Step-by-step process of mapping traõc �ow. Le�: a vehicle en-
tering the entry box. Right: a vehicle entering exit box.

Qualitatively, we outperform existing LPR so�wares due to
the following reasons. (1)We leverage the exemplar SVM [52]
for license plate localization, while prior work [2] applies
keypoint matching, which is less accurate. (2) We train a
diòerent OCR model per state to account for the diòerences
in characters across states; the baseline approach has a single
OCR model which is less accurate.

3.1.2 Real-time traõc �owmapping

On highways and at intersections, understanding the traõc
�ow has a variety of use-cases as described in §2.1, including
planning restricted-use lanes, speed limits, traõc signs and
police deployment. Hence, there has been much interest in
modeling vehicular traõc �ow [34, 42, 53, 70].

_e most widely used method, however, is to deploy a
set of cables (“pneumatic road tubes”) across the roadway;
this enables counting the number of vehicles that cross the
coils and their velocity [15, 54, 56]. Such counts are typically
not available in real-time. Further, the cables cannot capture
information that is visible to the human eye (vehicle types,
aggressive driving, vehicle origin-destination or how many
turn right etc.).

Our goal here is to develop a module that extracts rich in-
formation about traõc �ow from a video feed. Roadway sur-
veillance cameras are typically mounted on towers or cross-
beams; we use their ûxed viewpoint to place labeled entrance
and exit boxes on the roadway. An example is shown in Fig-
ure 2. Such annotation simpliûes our traõc �ow pipeline:
• Using a keypoint detection algorithm [65], we identify and
track a vehicle that passes through the entrance box based
on its keypoints [10, 51].

• If (and when) the keypoints cross the exit box, we gener-
ate a traõc �ow record stating the names of the entrance
and the exit box, the corresponding timestamps, and an
estimate of the vehicle velocity.

• _ese records are processed by our data�ow engine (§3.2)
into real-time estimates of traõc �ow or can be appended
to a persistent store for later use.

Note that the above logic can simultaneously track the
traõc �ow between multiple entrance and exit boxes. In fact,
we can compute a 3x3matrix of traõc �ow between each pair
of entrance and exit boxes shown in Figure 2; the matrix de-
notes volume in each lane and howo�en traõc changes lanes.
Qualitatively, using keypoints to track objects is not new; we

cite the following relevant prior work [65]. However, to the
best of our knowledge applying these ideas in the context of
real-time traõc �ow is novel.

3.1.3 Vehicle type & color recognition

Building on the above pipeline,we do the following to identify
the type and color of each vehicle.

• Once a vehicle is detected as above, we obtain an image
patch for the vehicle by segmenting the image (see §3.1.5).

• Given the image patch of a vehicle, we extract various fea-
tures including RGB histogram, and histogram of gradi-
ents (HOG) [33] and send them to a classiûer.

• Weuse a linear SVM classiûer trained with approximately
2K images belonging to each type and color. _e output
of the SVM is a class label (type or color) and the asso-
ciated conûdence. For vehicle type recognition we clas-
sify the vehicles into ‘bike’, ‘sedan’, ‘van’ , ‘SUV’, or ‘truck’.
For vehicle color recognition we classify the vehicles into
‘white’, ‘black’, ‘silver’, ‘red’, or ‘others’. _ese labels were
chosen based on their frequency of occurrence in the ana-
lyzed videos.

Our takeaway from this portion is that standard feature ex-
traction and classiûers suõce to extract vehicle type and color
from surveillance video; they do not suõce formore complex
tasks such as detecting vehicle make and model. We chose
mature and light-weight features and classiûers (see Table 2
for details) and ûnd that they yield reasonable results.

3.1.4 Object re-identiûcation

_e problem here is to identify an object that may be seen by
diòerent cameras. Potential applications include region-wise
tracking of vehicles and humans.
At a high level, object reidentiûcation involves (1) learning

an eòective image and object representation over features and
(2) learning a feature transform matrix between each pair of
cameras [48]. We do the following:

• We learn a kernel matrix K for each camera pair by train-
ing on images of the same object that are captured at the
two cameras. _is matrix encodes how to “transform” an
image fromone camera’s viewpoint to the viewpoint of the
other camera.

• _en, the objects x seen at one camera are compared with
objects z that appear at the other camera by computing
a similarity score d(x , z) = ϕ(x) ⋅K ⋅ ϕ(z)T where ϕ is a
feature extraction function. Table 2 describes the features
that we use for re-identiûcation.

In practice, both x and z can contain multiple objects and
hence the answer d(x , z) could be interpreted as a pair-wise
similarity matrix.

Figure 3: Background subtraction. Le�: a vehicle entering the camera view.
Right: binary mask indicating moving objects.

3.1.5 Background subtraction and segmentation

Background subtraction is a common practice; it reduces the
redundancy in surveillance videos [36, 77, 78]. _e general
pipeline is below.
• Construct a model of the background (e.g., Mixture of
Gaussians) based on pixels in the past frames.

• Use the model to identify moving pixels in each frame,
and then update the model.

Relative to the other visionmodules described thus far, back-
ground subtraction is lightweight and o�en executes ûrst, as
a pre-processor, in our analysis pipelines. Consider the ex-
ample in Figure 3, we segment the images into portions that
are needed for further analyses as follows:
• Wegroup themoving pixels using a connected-component
algorithm [41] and return each component as a segment.

• _e above approach does not work well with occlusions
and dense frames; it can group cars in adjacent lanes as
one object for example. Hence, we use heuristics based on
the ûxed viewpoint of surveillance cameras (e.g. typical
size of objects of interest, lane annotations etc.) and an
exemplar SVM [52] to further break the segments.

3.1.6 Conclusion on vision pipelines and modules

Table 2 describes a partial list of the techniques used in our
system. Our takeaway is that the described design lets us
perform typical vision tasks with good accuracy and eõ-
ciency. We are unaware of a system that performs all of these
tasks on surveillance videos. Furthermore,Optasia improves
upon point solutions (e.g. OpenALPR [2] for license plate
recognition) because it (i) uses state-of-the-art vision tech-
niques, and (ii) combines them with heuristics based on the
ûxed viewpoint of surveillance cameras. We note however
that some of our video datasets have insuõcient resolution
for some tasks (e.g. inferring vehicle make/model). We next
describe how to eõciently support user queries that use these
vision modules at scale.

3.2 A data�ow platform for vision queries

We build on top of the SCOPE [27] data�ow engine. Besides
general SQL syntax, the data�ow engine oòers some design
patterns for user-deûned operators: extractors, processors,
reducers and combiners. We ûrst describe how Optasia ad-
opts these design patterns for vision modules. Next, we de-
scribe our query optimization over vision queries.

Module Name Description Involving Query
Feature Extraction - RGB Histogram Extract RGB histogram feature given the image patch. Amber Alert, Re-ID
Feature Extraction - HOG Extract Histogram of Gradient feature given the image patch [33]. Amber Alert, Re-ID
Feature Extraction - Raw Pixels Extract raw pixel feature given the image patch. Amber Alert
Feature Extraction - PyramidSILTPHist Extract Pyramid SILTP histogram feature [48] given the image patch. Re-ID
Feature Extraction - PyramidHSVHist Extract Pyramid HSV histogram feature [48] given the image patch. Object Re-ID
Classiûer/regressor - Linear SVM Apply linear SVM classiûer/regressor [38] on the feature vector. Amber Alert, Re-ID
Classiûer/regressor - Random Forest Apply Random forest classiûer/regressor [25] on the feature vector. Amber Alert
Classiûer/regressor - XQDA Object matching algorithm used in [48]. Object Re-ID
Keypoint Extraction - Shi-Tomasi Extract Shi-Tomasi keypoints in the given image region [65]. Traõc Violation
Keypoint Extraction - SIFT Extract SIFT keypoints in the given image region [50]. Amber Alert, Re-ID
Tracker - KLT Tracking keypoints using KLT tracker [51]. Traõc Violation
Tracker - CamShi� Tracking objects using CamShi� tracker [30]. Traõc Violation
Segmentation - MOG Generate Mixture of Gaussian background subtraction [47]. All
Segmentation - Binarization Binarize license plate images. Amber Alert

Table 2: A partial list of vision modules provided in our system.

3.2.1 Data�ow for Vision

Extractors ingest data from outside the system. We support
ingesting data in diòerent video formats. An extractor trans-
lates video into a timestamped group of rows. An example
follows.

. . . ← EXTRACT CameraID, FrameID, Blob
FROM video.mp4
USING VideoExtractor();

_e columns have both native types (ints, �oats, strings)
and blobs (images, matrices). We encode image columns in
the JPEG format to reduce data size and IO costs. _e data-
�ow engine instantiates as many extractor tasks as needed
given the size of input. Extractor tasks run in parallel on dif-
ferent parts of the video input.
Processors are row manipulators. _at is, they produce one
or more output rows per input row. Several vision compon-
ents are frame-local such as extracting various types of fea-
tures (see Table 2), applying classiûers etc. A few examples
follow. As with extractors, processors can be parallelized at a
frame-level; Optasia chooses the degree-of-parallelism based
on the amount of work done by the processor [20] and the
available cluster resources.

. . . ← PROCESS . . .
PRODUCE CameraID, FrameID, HOGFeatures
USING HOGFeatureGenerator();

. . . ← PROCESS . . .
PRODUCE CameraID, FrameID, License, Confidence
USING LPRProcessor();

Reducers are operations over groups of rows that share some
common aspects. Many vision components such as back-
ground subtraction (§3.1.5) and traõc �ow (§3.1.2) use in-
formation across subsequent frames from the same camera.
_ey are implemented using reducers.

Observe that naively, the degree-of-parallelism of a redu-
cer is bounded by the number of cameras. Because, an al-
gorithmmaintains state per camera (e.g. which vehicles were
in the previous frame), randomly distributing frames across
taskswill lead to incorrect output. Furthermore, camera-level

parallelism can lead to skew: tasks corresponding to cameras
with busy views may have much more work than other tasks.

Optasia uses a novel trick that increases the degree of
parallelism many fold and can combat skew. Our intuition
is that the state maintained across frames has a bounded
time horizon. For the traõc �ow example: each vehicle stays
in the camera’s frame-of-view for only a limited period of
time and hence, we can chunk the video into overlapping
groups of frames. If vehicles transit the frame-of-view in δ
frames, then chunk-n may have frames [ns− δ,ns+ s]. _at
is, the reducer processing chunk-n uses the ûrst δ frames
only to warm-up its internal state (e.g., assess the background
for background subtraction or detect keypoints of vehicles
that overlap entrance boxes); it then processes the remaining
s frames. _e number of the frames per chunk s and the
amount of overlap δ are conûguration variables. Note that
δ is bounded above by an installation-speciûc constant: the
camera orientation and minimum speed of vehicles in view
limit the extent of relevant history. In practice, we ûnd that
some reducers use less than this upper-bound. Chunk size s
is calculated by comparing the beneûts from parallelization
(smaller s implies more parallelism) with the overheads (a
fraction δ

s of the overall work is wasted). _e amount of
available resources and the need for fast query completion
may also impact choice of s. Observe that with chunking
the available degree of parallelism is now limited only by
the chunk size (s) and no longer limited by the number of
cameras. An example follows (the net eòect of chunking is
shown in bold; it is an additional group-by column):

. . . ← REDUCE . . .
PRODUCE CameraId, FrameId, VehicleCount
ON {CameraId, ChunkId}
USING TrafficFlowTrackingReducer();

Reducers translate to a partition-shuøe-aggregate._at is,
the input is partitioned on the group and shuøed such that
rows belonging to a group are on one machine. _e number
of reducers and partitions is picked, as before, per the amount
of work to be done. Our underlying data�ow engine supports

1 Func: AmberAlert:
2 Input: search terms: vehicle type vt , vehicle color vc , license l
3 Output:matching {camera, timestamp}
4 State: Real-time tables for $LPR, $VehType and $VehColor

5 SELECT CameraID, FrameID, ($LPR.conf * $VehType.conf *
$VehColor. conf) AS Conûdence

6 FROM $LPR, $VehType, $VehColor
7 ON $LPR.{CamId,FrameId}=$VehType.{CamId,FrameId},
$LPR.{CamId,FrameId}=$VehColor.{CamId,FrameId}

8 WHERE $LPR.licensePlate=l ∧ $VehType.type=vt ∧
$VehColor.color=vc

Figure 4: User query 1: Amber Alert.

both hash partitioning and range partitioning to avoid data
skew [21].
Combiners implement custom join operations; they take as
input two groups of rows that share some common aspects.
Optasia uses combiners for correspondence algorithms, such
as object re-identiûcation (§3.1.4). Recall that re-identiûcation
joins an incoming frame (its features to be precise) with a
reference set and a kernel matrix that encodes the mapping
between the two cameras. An example follows:

. . . ← COMBINE X, Kernel, Z USING ReIDCombiner()
ON X.CamId = Kernel.Cam1, Z.CamId = Kernel.Cam2
PRODUCE Cam1, Cam2, FrameID1, FrameID2, Score;

A combiner and other joins, can be implemented in a few
diòerent ways. If one of the inputs is small, it can be broadcast
in its entirety and joined in place with each portion of the
other input; else, either side is partitioned and shuøed on the
join keys and each pair of partitions are joined in parallel._e
data�ow engine automatically reasons about the various join
implementations.
Notes: We note a few beneûts from this design. First, wrap-
ping a vision module in one of the above design patterns lets
the query optimizer reason about semantics. For example, a
pair of processors is commutative if the columns that one
processor manipulates or creates are pass-through columns
for the other processor. Second, this design allows a vision en-
gineer to focus on eõciently implementing core functional-
ity; they can ignore details about how to parallelize, which or-
der to join etc. Further, we encourage vision modules to per-
form a single role and explicitly declare all conûguration. Not
doing so can prevent reuse. For example, consider a black-
box implementation of the traõc counter pipeline that im-
plements all of the functionality described in §3.1.2 as one re-
ducer. Such a module would preclude reusing intermediate
content generated a�er each of the steps in the traõc counter
pipeline {background subtraction→ segmentation→ vehicle
bounding box identiûcation→ feature extraction→ classiûc-
ation}with another query that may for example be searching
for red cars (§3.1.3). Finally, we ensure that the overhead from
using more statements is negligible. Each operator is imple-
mented as an iterator that pulls from its parent._e operators
are chained in memory and data is written to disk only when

1 Func: Traffic violation alert:
2 Input: Search terms: vehicle type vt , vehicle speed vs , illegal origin
and destination boxes o, d

3 Output:Matching {Camera, Timestamp, VehicleImage}.
4 State: Real-time tables for traõc �ow mapping Traf, VehType

5 SELECT CameraID, FrameID, VehImage
6 FROM Traf, VehType
7 ON Traf.{CameraID,FrameID}=VehType.{CameraID,FrameID}
8 WHERE VehType.vType=vt ∧ (Traf.vSpeed≥vs ∨ (Traf.vOri=o ∧

Traf.vDes=d))

Figure 5: User query 2: Traõc Violation.

1 Func: Re-ID: tracking a vehicle between two cameras:
2 Input: Search term: vehicle type vt
3 Output:Matching {camera1, timestamp1, camera2, timestamp2}.
4 State: Real-time tables for re-identiûcation ReID, VehType{1,2}
5 SELECT cameraId1, frameId1, cameraId2, frameId2
6 FROM ReID, VehType1 as VT1, VehType2 as VT2
7 ON ReID.{camId1,frameId1}={VT1,VT2}.{camId,frameId},
8 WHERE VT1.vType=vt ∧ VT2.vType=vt;

Figure 6: User query 3: Re-identiûcation.

needed such as for the input to a shuøe. _e output of this
part is that each vision task translates to a directed acyclic
graph (DAG) of logical operations; the DAG is used as input
by query optimizer as we will describe shortly.

3.2.2 Example user queries

To ground further discussion, we show three example scripts
that mimic common queries to a video surveillance system.
_e complete data �ow and user scripts can be found at http:
//yao.lu/Optasia.

User query 1: Amber alert
We consider the problem of amber alert– retrieving a vehicle
of certain color, type, and license plate number. _e user
query is shown in Figure 4. Assume that vision engineers
have written their modules in §3.1 using the data�ow in §3.2.1
and that the output of these modules is available as system
tables: $LPR, $VehType, $VehColor corresponding to license
plates, vehicle types and vehicle colors. _e user’s query
shown here is one select statement that joins three tables.
Optasia only materializes the system tables when needed by
user queries.

User query 2: Traõc violation
We consider the problem of detecting traõc law violations–
vehicles that are overspeeding, weaving between lanes, or
making illegal turns. _e user query is shown in Figure 5. It
is a single select statement.

User query 3: Re-identiûcation
We consider the problem of retrieving a vehicle of the same
type across two diòerent cameras._e user query is shown in
Figure 6.

http://yao.lu/Optasia
http://yao.lu/Optasia

3.2.3 Optimizing vision queries

Beyond the ease of specifying queries, we point out a few as-
pects of the above design. First, the end-user only needs to
know the schema of the system tables that have been made
available by the vision engineers. As long as they maintain
the schema, vision engineers can change their pipeline trans-
parent to users.

Second, Optasia substantially optimizes the execution of
these queries. By recognizing that the ûlters are local to each
input, they are pushed ahead of the join. _at is, only rows
matching the ûlters are joined rather than ûltering a�er the
join. _is feature, called predicate push down [40], is stand-
ard in SQL query optimization. Other more novel aspects of
Optasia follow. (1) _e system tables are materialized only
on demand. _at is, if no current query requires license
plate recognition, the DAG of operations associated with
that module do not execute. (2) Optasia exploits commonal-
ity between the various tables. For example, both VehType

and VehColor require similar features from the raw video
frames; and such features are computed only once. (3) When
many queries run simultaneously, Optasia does even bet-
ter. _is is akin to multi query optimization [63] in database
literature._e ûlters coalesce across diòerent queries. For ex-
ample, amber alerts for red SUV and green sedan can be
pushed down on to the VehColor table as the ûlter red ∨

green. A�er join, the individual amber alerts can separate
out the frames that they desire (e.g. red frames). (4) Finally,
a key aspect is that Optasia performs the most expensive op-
erations over video frames exactly once (i.e. de-duplication)
irrespective of the number of queries that may use such sys-
tem tables.

To a reader familiar with relational operators [61], we
note that PROCESS is a user-deûned select and/or a project,
REDUCE is a user-deûned group-by and/or an aggregation
and COMBINE is a user-deûned join. Consequently, express-
ing visual queries with this vocabulary allows the query op-
timizer to reuse optimization rules from the corresponding
relational operators.We believe that this is crucial for the QO
ûnd good plans.

Method: Optasia achieves these advantages by treating all
queries as if they were one large query for the purposes of op-
timization. However, during execution, the jobs correspond-
ing to each query are only loosely coupled. As with other
data-parallel frameworks [16, 21], Optasia stores the output
of “tasks” in persistent storage; each task is a unit of execution
that is idempotent and should ûnish within seconds. Optasia
retries failing tasks. Faults in user-code will cause consistent
failures and hence such queries will fail; queries with defect-
free user code rarely fail in Optasia.

QOdetails: Here, we sketch how the data�ow optimizations
mentioned above are realized in Optasia. We do not claim
contribution for these details, they build upon a large body
of work in relational query optimization [40] and in adapt-

r
#1

#6
σ
p

#4

#5
σ
p

#7
σ
p

pjoin
a

#3

aa

(a)

r
#1

a
p

#4
p

#5
σ
p

#7
σ
p

pjoin

a

a
#6
σ

#3

p

a

(b)

Figure 7: Data�ow and query Plans of Amber alert for (a) 1 GB input and
(b) 100GB video input. Note that 100GB input automatically parallelizes the
tasks to minimize the query plan cost and the query latency. Please refer to
Figure 12 for legend.

ing QO for parallel plans with user-deûned operations [76].
We include them here for completeness. Optasia’s contribu-
tion lies in translating visual queries to a format that makes
relational query optimization eòective.

_e input is a collection of queries, each of which is a
directed acyclic graph (DAGs) of logical operations. _e de-
sired output is an execution plan that can be translated to a
set of loosely coupled jobs. _is plan should have the above-
mentioned properties including appropriate parallelization
and de-duplication of work.

Our QO can be explained with two main constructs. A
memodata structure remembers for each sub-expression (i.e.,
an operator and its descendants) the best possible plan and
the cost of that plan. A large collection of transformation
rules oòer alternatives for sub-expressions. Examples of rules
include predicate push-down:

E1 → S→ Filter→E2 ⇐⇒E1 → Filter→ S→E2 .

Transformations may or may not be useful; for example,
which of the above choices is better depends on the relative
costs of executing Filter and S and their selectivity on in-
put. Hence, we uses data statistics to determine the costs of
various alternatives._e lowest cost plan is picked. Here, cost
is measured in terms of the completion time of the queries
given available cluster resources. _e memo also allows de-
duplication of common sub-expressions across queries. By
applying these transformation rules till ûxed point, Optasia
searches for an eõcient plan for all the queries.

To speed-up the search, we defer a few aspects such as the
choice of appropriate degree-of-parallelism and avoiding re-
partitions till a�er a good logical plan is discovered. Given
a logical plan, the QO costs a variety of serial and parallel
implementations of sub-expressions (e.g., 20 partitions on
column X) and picks the best parallel plan [75].

Stepping back, we highlight with examples two aspects of
the query optimization that we found useful for vision quer-
ies. First,Optasia adapts planswith varying input size. Simply
changing the degree of parallelism (DOP) does not suõce.
When plans transition from serial (DOP = 1) to parallel,

corresponding partition-shuøe-aggregates have to be added
and join implementations change (e.g. from broadcast join to
pair-join). Figure 7 illustrates the plan for amber-alerts (Fig-
ure 4) at two diòerent input sizes. Next, Optasia automat-
ically de-duplicates common vision portions of seemingly
unrelated user queries. We illustrate this in Figure 12 when
diòerent user queries described above run together.We defer
further discussion to §5.2.

4. Optasia System
Data acquisition: To evaluate Optasia on realistic inputs,
we collected video data in two ways. (1) We collected high-
resolution video data ourselves, in and around Microso�
campus, using the IP surveillance camera ACTi B21 with
1920x1080 resolution and 12x zoom. We collected video at
the entrances to a few parking garages (from the windows
of an adjacent building) as well as curb-side videos. (2)
We also gathered publicly available video traces from the
Washington State Department of Transportation (WSDOT).
_ese are typically low res videos (352x258 resolution, 15FPS)
from camerasmounted on crossposts alongWashington state
highways and at traõc intersections.
Core vision modules:We have built several vision modules,
including all those described in Table 2. _e modules are in
C++ with the OpenCV library [10]. _is codebase contains
about 5K lines of code.
Data�ow modules: Each of the vision modules are mapped
to a declarative data�ow system: SCOPE [27] using wrappers.
_ese wrappers are about 700 lines of code in C#.
User queries and query optimization: _e end user writes
vision queries in the SCOPE language, an example of which
is shown in Figure 4. We built several user queries including
every one of the use-cases mentioned in §2. All queries are
within a few tens of lines of code.
QO enhancements: We made a few enhancements to the
coreQO in SCOPE.We add an [OPCOST = . . .] hint to the lan-
guage, usingwhich the user can specify the per-row cost of an
operator. When used appropriately, with PROCESS, REDUCE
and COMBINE, the hint allows the QO to choose appropriate
parallelism (e.g. partition size). A similar [ROWCOUNT =] hint
lets users specify the selectivity of operators (e.g. output

input).
Together, these hints let the QO place inexpensive operators
or those with high selectivity earlier in the plan. Appropriate
values of operator cost and selectivity can be identiûed from
past executions of recurring jobs [20]; doing so for new jobs
remains future work.
Cluster:We built our system on top of Microso�’s Cosmos
system [27], a large shared production cluster. For each case,
we report performance and accuracy with Optasia.
Streaming:While the execution plans output by Optasia can
also be used in a stream engine such as Trill [29], we have
thus far only used them in the batch mode. When new data
arrives online, the plans can be periodically re-executed say
every minute with the outputs shared through memory. _is

1 2 3 4 5 6
N=Number of LPs Returned

0

20

40

60

80

100

A
cc

u
ra

cy
 f
o
r

T
o
p
 N

 R
e
su

lt
s

Optasia
OpenALPR

Figure 8: LPR Accuracy for Top N results.

Method 0 miss ≤ 1 miss ≤ 2 miss rate (fps)
Optasia 0.57 0.75 0.82 4.8

OpenALPR 0.38 0.61 0.67 3.2

Table 3: LPR Evaluation.

is the so-calledmini-batch model [74]. Applying Optasia to a
distributed stream engine, especially one that scales beyond
the total memory size of the cluster, is a key area of future
work.

5. Evaluation
5.1 Microbenchmarks of vision modules

5.1.1 License plate recognition

Methodology: _e dataset for this evaluation is a day-long
video of the cars exiting a Microso� campus garage. _e
video is pre-processed using background subtraction to prune
frames that have no cars. We draw a random sample of 1000
images from the remaining frames and annotate the license
plate area manually to train the localization module. Fur-
thermore, we annotate the license plate characters manually
in 200 images to train the optical character recognitionmod-
ule. We use a test set of 200 diòerent images to evaluate the
License Plate Recognition module, end-to-end.

We benchmark ourmodule against state-of-the-art Open-
ALPR [2], an open source Automatic License Plate Recogni-
tion library. Two metrics are used in the comparison: (i) ac-
curacy, which measures the probability that the top N results
contain the ground truth answer, and (ii)maximum frame in-
gestion rate, which is based on the processing time per frame.
Both our module and OpenALPR run single threaded, and
the average ingestion rate over a batch of video frames is re-
ported.
Results: Figure 8 shows that accuracy (the probability that the
true license plate is output) increases with N (the size of an-
swers returned ordered by conûdence); our method achieves
reasonable results with only one answer. Table 3 demonstrates
the quality of the highest likelihood answer that is output by
the various schemes in terms of the number of wrong char-
acters. _e table shows that our LPR module (i) processes
frames roughly 1.5× faster than the state-of-the-art license
plate recognition so�ware and (ii) achieves better accuracy
on both top-1 and top-N answers.

Seq1 Seq2 Seq3 Seq4 Avg rate(fps)
Optasia 0.87 0.88 0.88 0.89 0.88 77
Baseline 0.46 0.40 0.31 0.58 0.44 42

Table 4: Vehicle counting accuracy and eõciency on four video sequences.

Bike Sedan SUV Truck Van
Optasia 1.00 0.92 0.34 0.70 0.65
Baseline 0.01 0.67 0.17 0.05 0.10

Table 5: Car type classiûcation accuracy. We compare with a simple guess
according to the class distribution as baseline.

Figure 9: Failure case for blob detection.

5.1.2 Real-time traõc �owmapping

Methodology: _e dataset for this evaluation is 10 minute
segments from WSDOT [3]; we picked cameras in the city
of Seattle on both highways and surface roads. _e goal is to
count the vehicles in each lane.

We compare against an open-source module [15], which
does background subtraction and tracks blobs in the video.
We measure the processing speed for each frame and the
accuracy of the traõc volume in each lane.
Results: Table 4 shows that Optasia achieves an accuracy of
85–90% on four diòerent video segments, while the accur-
acy of the car blob detection module is less than 60%. _e
baseline method detects blobs of moving objects and of-
ten fails when diòerent vehicles occlude with each other,
as shown in Figure 9. Unlike this approach, our proposed
method is based on keypoints and leverages per-camera an-
notation (entry and exit boxes in each lane) to protect against
such shortcomings. We also see that our approach is less
computationally complex leading to a 1.8× higher frame pro-
cessing rate compared to the baseline.

5.1.3 Classiûcation of vehicles

Methodology: _e dataset for this evaluation is a one hour
video of the intersection of Fairview avenue and Mercer
street available from WSDOT [3]. We apply the above dis-
cussed traõc �ow module to segment this video into per-
vehicle patches. Our goal here is to classify these patches into
types and colors; that is, assign to each image the labels listed
in §3.1.3. We compare against a baseline that guesses the class
for each image with probability equalling the likelihood of
that class. 1

Results: Table 5 shows that Optasia achieves diòerent accur-
acy levels per class; across all classes Optasia is much bet-
ter than random guesses. _e relatively lower accuracy for
the SUV class is because SUVs are routinely confused with

1 Uniformly random guesses for the class were less accurate.

20 40 60 80 100
Size of input

0

20

40

60

80

100

Q
u
e
ry

 l
a
te

n
cy

 (
m

in
)

(a)

20 40 60 80 100
Size of input

0

200

400

600

C
lu

st
e
r

p
ro

ce
ss

in
g
 t

im
e
 (

m
in

)

Amber Alert

Amber Alert w/o QO

ReID

ReID w/o QO

(b)
Figure 10: Query Optimization reduces the query completion time signi-
ûcantly for both amber alert and Re-ID (a) as the number of input videos
increases for each query. Further, query optimization ensures the most eõ-
cient cluster resource utilization in terms of processing time (b).

sedans on the low-resolution videos in the dataset; the two
classes have a similar size especially with “cross-overs”. Over-
all, we believe that coarse granular categorization of vehicles
is possible with the techniques built into Optasia.

1 GB input 100 GB input
Average Task Duration 18.3 sec 38.6 sec
Cluster Computing Time 37.78 min 4101.75 min
Intermediate data size 1.95 GB 188.95 GB
Cross-rack Network IO 8.9% 8.9%

Table 6: Query optimization ensures eõcient resource usage as the input
video size scales from 1 GB to 100 GB for Amber alert with LPR query.

5.2 Optimizing data�ow

Methodology: Over the video dataset from a Microso� cam-
pus garage, we execute two end-to-end user queries: am-
ber alert and car re-identiûcation across 10-100 sets of input.
For amber alert, each inputset contains a 90MB video from
one camera, while for re-identiûcation, each inputset con-
tains videos from two cameras. All the videos are 1 minute
in length. We experiment by running each amber alert and
car re-id query independently as well as a group of (diòer-
ent) amber alert queries at one time on the input video set.
Recall that an amber alert consists of a triple of (partial) li-
cense plate information, vehicle type and color. Further, for
car re-identiûcation, we ûrst ûlter by vehicle type, and then
use re-identiûcation over the set of matching frames.
Additionally, on a dataset of videos available from Seattle

WSDOT website, we execute two end-to-end user queries:
amber alert, and traõc violations across 50 sets of input. _e
amber-alert query is similar to above, except it does not have
license plate recognition;while for traõc violations, wemeas-
ure the weaving of cars in the traõc �ow from the le�most
lane to the rightmost lane.

We compare Optasia against a version of Optasia without
query optimization._at is, the queries expressed by the end-
user are run literally by the system. We measure the com-
pletion time of the query as well as the total resource usage
across all queries (measured in terms of compute hours on
the cluster). We repeat the experiment with diòerent sizes
of input to examine how Optasia scales. Besides, for amber
alert, we vary the size of the query set (number of amber alert

1 2 3 4 5
Number of queries

0

20

40

60

80

100

C
lu

st
e
r

p
ro

ce
ss

in
g
 t

im
e
 (

m
in

)

Amber Alert w/o QO

Amber Alert + Violation w/o QO

Amber Alert + Violation

Figure 11: As the number of queries scale, query optimization ensures that
the cluster processing time for both sets of queries stays constant by using
auto-parallelization and de-duplication.

of Query latency Cluster Processing
chunks (in min) Time (in min)
1 16.1 20.2
3 7.6 23.4
8 5.2 24.2
10 5.4 25.4

Table 7: For traõc violation query, chunking the videominimizes the query
latency by exploiting higher degree of parallelism.

triples) from one to ûve to see how queries are aòected by the
optimizer.
Results: Figure 10 (a) plots the ratio of the completion time
for Optasia with the version of Optasia that has no query
optimization, for single queries on the garage feed. We see
that, with query optimization, Optasia is roughly 3× faster.
Further, the completion time of Optasia remains constant as
dataset sizes increase, illustrating the fact that theQO sets the
degree-of-parallelism correctly._e large gains arise fromde-
duplicating the work in the vision modules (e.g., generating
HOG features etc.).
Further, Figure 10 (b) demonstrates the amount of cluster

resources used by Optasia and the version of theOptasia that
does not perform query optimization. We observe similar
behavior to Figure 10 (a). _e key diòerence is that the gap
between the two lines in Figure 10 (b) measures the total-
work-done by the query and is directly related to the size
of the inputset; for small inputs the gap is lost in noise but
at large inputs, the gap opens up quite a bit. On the other
hand, the gap in Figure 10 (a) is query completion time; even
a query that does more work can ûnish quickly because our
production cluster, where these experimentswere conducted,
uses a work-conserving scheduler; that is, it oòers queries
more than their share of resources if some other group is not
using their full share.

Next, we evaluate how Optasia scales with diòerent sizes
of videos from the garage feed. Figure 7 shows the query
plans for amber alert with LPR for two input sizes: 1 GB and
100 GB. In Figure 7 (b), the larger circle sizes and darker
circles illustrate that the degree of parallelism is set correctly;
hence, as Table 6 shows, the query completion time is almost
similar even for larger input.
Figure 11 compares the improvement in completion time

due to QO while varying the number of queries on the WS-
DOT feed.We see that the improvements ofOptasia increase
when there are many similar queries; the value of the X axes

here denotes the number of diòerent queries of each type be-
ing executed simultaneously. Due to careful de-duplication
of work, the completion time of Optasia is roughly constant
as the number of queries increase; the latency is only pro-
portional to the amount of video examined. In contrast, the
version of Optasia without QO is unable to de-duplicate the
work, leading to substantially worse completion time as the
number of queries increase.
Figure 12 (a) and (b) show the query plans when the amber

alert and re-identiûcation queries are run individually, while
Figure 12 (c) shows the query plan when the two queries are
run simultaneously. QO ensures de-duplication of the com-
mon modules in (c) thereby minimizing the query latency
and resource usage on the cluster.

It is of course possible to carefully handcra� these vision
pipelines to achieve a similar result. _e key aspect of Opt-
asia, however, is that such de-duplication (and query optim-
ization, in general) occurs automatically even for complex
queries. _us, Optasia can oòer these performance improve-
ments along with substantial ease-of-use and can naturally
extend to future user queries and vision modules.

Table 7 shows the eòectiveness of chunking the videos
with overlap for traõc violation queries on the WSDOT
feed. Query completion times improve by usingmore chunks
and hence leveraging higher degree of parallelism on the
cluster (more cluster processing time). _e optimal number
of chunks in this case is 8; breaking into more chunks is not
advisable because gains from added parallelism are undone
by the overhead in processing the overlapping frames. We
believe chunking to be rather broadly applicable to scenarios
that are otherwise limited to camera-level parallelism.

Overall, we conclude that Optasia’s data�ow engine not
only allows end-users to specify queries in simple SQL-like
syntax but by employing a powerful query optimization en-
gine oòers (i) the ability to run similar queries with nearly
zero additional cost, and (ii) automatically scales the execu-
tion plan appropriately with growing volume of datasets.

6. RelatedWork
To the best of our knowledge, Optasia uniquely shows how
to execute sophisticated vision queries on top of a distributed
data�ow system. Below, we review some prior work.

6.1 Video analytics systems

We already discussed notable systems such as the IBM Smart
Surveillance System and start-ups in this space in §2. Auto-
matic analyses of videos, including that collected from high-
ways and intersections, has a rich literature; the following are
excellent surveys of the latest in this space [26, 49, 67, 73]. Key
diòerences for Optasia are its use of simple camera-speciûc
annotation and state-of-the-art vision techniques such as ex-
emplar SVMs.

Avg. task
duration

3mins

0s

Tasks

1

100
1000

Labels
r read
p partition
#x operation# x
a aggregate
pjoin pair join
σ select

10
r
#1

#2

#3 #4

pjoin

#5
σ

#6
σ

(a)

#2
σ
p

a

#4

r
#1

#3

#6
σ

pjoin

(b)

#2
p

a

#4

r
#1

#3

#6
σ

pjoin

#5
σ

σ σ

(c)

Edges
have to shuffle
broadcast

can be local
1GB 100GB

shuffle at least one side

Process
#1 VideoExtractor

#2 TrackingReducer

#3 FeatureProcessor(‘RGBHist’)

#4 FeatureProcessor(‘HOG’)

#5 SVMClassifierProcessor(‘color.model’)

#6 SVMClassifierProcessor(‘type.model’)

#7 LPRProcessor

Figure 12: Query Plans of (a) Amber alert query, (b) Traõc Violation query, and (c) Amber Alert+Traõc Violation query. Note that the combined query plan
in (c) deduplicates the common modules, thus minimizing the query plan cost and the query latency for both queries.

6.2 Data�ow systems

_ere has been signiûcant recent interest in distributed data-
�ow systems and programming models, e.g., Dryad [44],
Map-Reduce [31, 35, 45], Hive [66], Pig [57], Sawzall [59] and
Spark [22]. At a high level, the recent work is characterized
by a few key aspects: much larger scale as in clusters of tens of
thousands of servers, higher degrees of parallelism, simpler
fault-tolerance and consistencymechanisms, and stylistically
diòerent languages. _e more recent frameworks adopt re-
lational user-interfaces [22, 27, 66]. Most have a rule-based
optimizer [22, 66]; except for SCOPE, which uses a Cascades-
style [40] cost-based optimizer. _e key distinction between
the two is that the latter allows considering alternatives that
need not be strictly better than the original plan; ratherwhich
alternative is better depends on properties of the code (e.g.
the computational or memory cost of an operation) as well
as data properties (e.g. the number of rows that pass through
a ûlter).

Relative to these systems,Optasia oòers a library of vision-
speciûcmodules built in amanner that lets users specify their
queries in a SQL-like language.
For a more direct comparison, we show how to encode

a certain simple vision pipeline in three systems, Optasia,
Spark, and Sun Grid Engine (SGE). Please see http://yao.lu/
Optasia. Sun Grid Engine (SGE) is a platform that manages
and dispatches tasks that in turn can execute arbitrary user-
deûned scripts. Spark is a newer system that allows users to
specify data�ow programs in a functional manner. Table 8
summarizes the key diòerences. As the table shows, SGE is
indicative of earlier parallel systems in that it lacks adequate
support for fault tolerance (one failing task may lead to a job
failure) and is not backed by a distributed ûle system. Spark
and other systems ûx these challenges and oòer more intu-
itive language interfaces; however, as the example shows, the
burden of how exactly to parallelize a query (how many ex-
tractors, howmany partitions etc.) is le� to the user. Further-
more, the lack of a cost-based query optimizer is clearly felt in
the inability to structure plansmore eõciently than the literal
queries that are speciûed by users. Optasia’s key value-add is
a method to modularize vision pipelines so that the result is

System DFS Task Fault Programming Auto Query
scheduler tolerance Language Parallelize Optimizer

SGE × √ × Symbolic × ×
Spark

√ √ √
Symbolic × ×

Optasia
√ √ √

Relational
√ √

Table 8: Comparison of Optasia to existing big-data processing systems
Spark and Sun Grid Engine (SGE). DFS stands for distributed ûle system.

close enough to relational algebra and then adapting existing
query optimization techniques for these pipelines.

Note that our focus in this paper is on query answer-
ing systems over surveillance video. Optasia is orthogonal to
the commendable recent work in training deep neural net-
works [71] on GPUs such as TensorFlow [18]. Our data�ow
system focuses on eõciently executing video queries (that
can use trained DNNs or other modules) on a cluster.

7. Conclusion
We present Optasia, a system that combines state-of-the-art
techniques from the vision anddata-parallel computing com-
munities for a variety of surveillance applications. Optasia
provides a SQL-like declarative language and substantially
simpliûes the job of end-users and vision engineers. Optasia
adapts a cost based query optimizer (QO) to bridge the gap
between end-user queries and low-level vision modules. _e
QO outputs good parallel execution plans, scaling appropri-
ately as the data to be processed increases. Further, the QO
also scales nicely across similar queries; it is able to structure
the work of each query such that the overall work is not du-
plicated. Our evaluation on surveillance videos and experi-
ments on a large production cluster shows that Optasia im-
proves upon prior art by several times on accuracy and per-
formance.

Acknowledgements
We acknowledge fruitful discussions with Paramvir Bahl,
Matthai Philippose, Ganesh Ananthanarayanan, and Peter
Bodik. _is work has also beneûted substantially from the
work of the COSMOS and SCOPE production team at Mi-
croso�.

http://yao.lu/Optasia
http://yao.lu/Optasia

References
[1] Operation virtual shield: a homeland security grid established

in chicago. http://bit.ly/2bb33F7.
[2] OpenALPR: Open automatic license plate recognition library.

https://github.com/openalpr/openalpr.
[3] Seattle department of transportation live traõc videos. http:

//web6.seattle.gov/travelers/.
[4] Amazon Elastic Compute Cloud (Amazon EC2). http://aws.

amazon.com/ec2/.
[5] Defense advanced research projects agency information sys-

tems oõce’s three-year program on video surveillance and
monitoring technology. http://bit.ly/2bQIixs.

[6] ImageNET. http://www.image-net.org.
[7] Microso� COCO: Common objects in context. http://mscoco.

org.
[8] Net�ix tech blog: High quality video encoding at scale. http:

//n�x.it/2bdMceJ.
[9] Earthcam live feeds from NYC. http://bit.ly/1SZgZQv.
[10] OpenCV. http://opencv.org/.
[11] Video surveillance storage: Howmuch is enough? http://bit.ly/

2bb3rDR.
[12] TPC-DS Benchmark. http://bit.ly/1J6uDap.
[13] Traõcland. http://www.traõcland.com.
[14] Supply of video management so�ware remains fragmented.

http://bit.ly/1TiDnVr.
[15] Vehicle counting based on blob detection. http://bit.ly/

2bdjNWA.
[16] Hadoop YARN Project. http://bit.ly/1iS8xvP.
[17] Youtube: Video encoding settings. http://bit.ly/2bygQ8m.
[18] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro,

G. S. Corrado, A. Davis, J. Dean, M. Devin, et al. Tensor�ow:
Large-scale machine learning on heterogeneous systems. http:
//www.tensor�ow.org.

[19] ACLU. Police body-mounted cameras: With right policies in
place, a win for all. http://bit.ly/1RBzI1i.

[20] S. Agarwal, S. Kandula, N. Burno, M.-C. Wu, I. Stoica, and
J. Zhou. Re-optimizing data parallel computing. InNSDI, 2012.

[21] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,
Y. Lu, B. Saha, and E. Harris. Reining in the outliers in map-
reduce clusters using mantri. In OSDI, 2010.

[22] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley,
X. Meng, T. Ka�an, M. J. Franklin, and A. Ghodsi. Spark sql:
Relational data processing in spark. In SIGMOD, 2015.

[23] Avigilon. Video surveillance solutions. http://bit.ly/21EIIr3.
[24] D. Bradley andG. Roth. Adaptive thresholding using the integ-

ral image. Journal of graphics, gpu, and game tools, 12(2):13–21,
2007.

[25] L. Breiman. Random forests. Machine learning, 45(1):5–32,
2001.

[26] N. Buch, S. Velastin, and J. Orwell. A review of computer
vision techniques for the analysis of urban traõc. IEEE T. on
Intelligent Transportation Systems, 12(3):920–939, 2011. .

[27] R. Chaiken, B. Jenkins, P.-Å. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. Scope: easy and eõcient parallel pro-
cessing ofmassive data sets. VLDBEndowment, 1(2):1265–1276,
2008.

[28] C. Chambers, A. Raniwala, F. Perry, S. Adams, R. R. Henry,
R. Bradshaw, and N. Weizenbaum. Flumejava: easy, eõcient
data-parallel pipelines. In PLDI, 2010.

[29] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine,
D. Fisher, J. C. Platt, J. F. Terwilliger, and J. Wernsing. Trill:
A high-performance incremental query processor for diverse
analytics. VLDB Endowment, 8(4):401–412, 2014.

[30] Y. Cheng. Mean shi�,mode seeking, and clustering. IEEE T. on
Pattern Analysis and Machine Intelligence, 17(8):790–799, 1995.

[31] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmel-
eegy, and R. Sears. Mapreduce online. In NSDI, 2010.

[32] N. Cristianini and J. Shawe-Taylor. An Introduction to Sup-
port Vector Machines and Other Kernel-based Learning Meth-
ods. 2000.

[33] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR., 2005.

[34] K. Davidson. A �ow travel time relationship for use in trans-
portation planning. In Australian Road Research Board Con-
ference, 1966, Sydney, 1966.

[35] J. Dean and S. Ghemawat. Mapreduce: Simpliûed data pro-
cessing on large clusters. In OSDI, 2004.

[36] A. Elgammal, D. Harwood, and L. Davis. Non-parametric
model for background subtraction. In ECCV. 2000.

[37] M. Everingham, L. Van Gool, C.Williams, J. Winn, and A. Zis-
serman. _e pascal visual object classes challenge. IJCV, 88(2):
303–338, 2010.

[38] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R.Wang, and C.-J. Lin.
Liblinear: A library for large linear classiûcation. JMLR, 9:1871–
1874, 2008.

[39] M. A. Fischler and R. C. Bolles. Random sample consensus: a
paradigm for model ûtting with applications to image analysis
and automated cartography. Communications of the ACM, 24
(6):381–395, 1981.

[40] G. Graefe. _e cascades framework for query optimization.
IEEE Data Eng. Bull., 18(3):19–29, 1995.

[41] R. M. Haralick and L. G. Shapiro. Image segmentation tech-
niques. Computer vision, graphics, and image processing, 29(1):
100–132, 1985.

[42] S. P. Hoogendoorn and P.H. Bovy. State-of-the-art of vehicular
traõc �ow modelling. Proceedings of the Institution of Mech-
anical Engineers, Part I: Journal of Systems and Control Engin-
eering, 215(4):283–303, 2001.

[43] IIHS. Communities using red light cameras and speed cam-
eras. http://bit.ly/2bb3OOA.

[44] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. In EuroSys, 2007.

[45] D. Jiang, B. Ooi, L. Shi, and S. Wu. _e performance of mapre-
duce: An in-depth study. VLDB Endow., 3(1), 2010.

http://bit.ly/2bb33F7
https://github.com/openalpr/openalpr
http://web6.seattle.gov/travelers/
http://web6.seattle.gov/travelers/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://bit.ly/2bQIixs
http://www.image-net.org
http://mscoco.org
http://mscoco.org
http://nflx.it/2bdMceJ
http://nflx.it/2bdMceJ
http://bit.ly/1SZgZQv
http://opencv.org/
http://bit.ly/2bb3rDR
http://bit.ly/2bb3rDR
http://bit.ly/1J6uDap
http://www.trafficland.com
http://bit.ly/1TiDnVr
http://bit.ly/2bdjNWA
http://bit.ly/2bdjNWA
http://bit.ly/1iS8xvP
http://bit.ly/2bygQ8m
http://www.tensorflow.org
http://www.tensorflow.org
http://bit.ly/1RBzI1i
http://bit.ly/21EIIr3
http://bit.ly/2bb3OOA

[46] J. Juang and Y.-C. Huang. Intelligent Technologies and Engin-
eering Systems. 2013.

[47] P. KaewTraKulPong and R. Bowden. An improved adaptive
backgroundmixturemodel for real-time tracking with shadow
detection. In Video-based surveillance systems, pages 135–144.
Springer, 2002.

[48] S. Liao, Y. Hu, X. Zhu, and S. Z. Li. Person re-identiûcation by
local maximal occurrence representation and metric learning.
In CVPR, 2015.

[49] S. Liu, J. Pu, Q. Luo, H. Qu, L. Ni, and R. Krishnan. Vait: A
visual analytics system for metropolitan transportation. IEEE
T. on Intelligent Transportation Systems, 2013.

[50] D. G. Lowe. Object recognition from local scale-invariant
features. In ICCV, 1999.

[51] B. D. Lucas and T. Kanade. An iterative image registration
technique with an application to stereo vision. In IJCAI, 1981.

[52] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of
exemplar-svms for object detection and beyond. In ICCV, 2011.

[53] A. D. May. Traõc �ow fundamentals. 1990.
[54] P. McGowen and M. Sanderson. Accuracy of pneumatic road

tube counters. In Proceedings of the 2011 Western District An-
nual Meeting, Anchorage, AK, USA, 2011.

[55] Microso�. An Overview of Windows Azure. http://bit.ly/
1Qo6yUg.

[56] L. E. Y.Mimbela and L. A. Klein. Summary of vehicle detection
and surveillance technologies used in intelligent transporta-
tion systems. http://bit.ly/2bEZsgW.

[57] C. Olston et al. Pig Latin: ANot-So-Foreign Language for Data
Processing. In SIGMOD, 2008.

[58] Omnicast. Video Management So�ware. http://bit.ly/
2bIKnYK.

[59] R. Pike, S.Dorward, R.Griesemer, and S.Quinlan. Interpreting
the data: Parallel analysis with sawzall. Scientiûc Prog., 2003.

[60] Pro-Vigil. Video surveillance. http://pro-vigil.com/.
[61] R. Ramakrishnan and J. Gehrke. Database management sys-

tems. 2000.
[62] P. Remagnino. Video-Based Surveillance Systems: Computer

Vision and Distributed Processing. 2001.
[63] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Eõcient and ex-

tensible algorithms for multi query optimization. In SIGMOD,
2000.

[64] M. Satyanarayanan. Mobile computing:_e next decade. SIG-
MOBILE Mob. Comput. Commun. Rev., 2011.

[65] J. Shi and C. Tomasi. Good features to track. In CVPR, 1994.
[66] A. _usoo et al. Hive: A Warehousing Solution Over A Map-

Reduce Framework. VLDB Endow., 2009.
[67] B. Tian, B. Morris, M. Tang, Y. Liu, Y. Yao, C. Gou, D. Shen,

and S. Tang. Hierarchical and networked vehicle surveillance
in its: A survey. IEEE T. on Intelligent Transportation Systems,
16(2):557–580, 2015.

[68] Y.-l. Tian, L. Brown, A. Hampapur, M. Lu, A. Senior, and C.-
f. Shu. Ibm smart surveillance system (s3): Event based video
surveillance system with an open and extensible framework.
Mach. Vision Appl., 19(5-6):315–327, 2008.

[69] H. Vceraraghavan, O. Masoud, and N. Papanikolopoulos.
Vision-based monitoring of intersections. In IEEE Interna-
tional Conference on Intelligent Transportation Systems, pages
7–12, 2002. .

[70] X. Wang, X. Ma, and W. E. L. Grimson. Unsupervised activ-
ity perception in crowded and complicated scenes using hier-
archical bayesian models. IEEE Transactions on PAMI, 31(3):
539–555, 2009.

[71] S. Yeung, O. Russakovsky, G. Mori, and L. Fei-Fei. End-to-end
learning of action detection from frame glimpses in videos. In
CVPR, 2016.

[72] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K.
Gunda, and J. Currey. Dryadlinq: a system for general-purpose
distributed data-parallel computing using a high-level lan-
guage. In OSDI, 2008.

[73] G. Yuan, X. Zhang, Q. Yao, and K. Wang. Hierarchical and
modular surveillance systems in its. IEEE Intelligent Systems,
26(5):10–15, 2011.

[74] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discret-
ized streams: an eõcient and fault-tolerant model for stream
processing on large clusters. In HotCloud, 2012.

[75] J. Zhou, N. Bruno, and W. Lin. Advanced partitioning tech-
niques for massively distributed computation. In SIGMOD,
2012.

[76] J. Zhou, N. Bruno, M.-C. Wu, P.-A. Larson, R. Chaiken, and
D. Shakib. Scope: parallel databases meet mapreduce. VLDB
Endowment, 21(5):611–636, 2012.

[77] Z. Zivkovic. Improved adaptive gaussian mixture model for
background subtraction. In ICPR, 2004.

[78] Z. Zivkovic and F. van der Heijden. Eõcient adaptive density
estimation per image pixel for the task of background subtrac-
tion. Pattern recognition letters, 27(7):773–780, 2006.

http://bit.ly/1Qo6yUg
http://bit.ly/1Qo6yUg
http://bit.ly/2bEZsgW
http://bit.ly/2bIKnYK
http://bit.ly/2bIKnYK
http://pro-vigil.com/

	Introduction
	Primer on video surveillance analytics
	Example surveillance use-cases
	Requirements for a surveillance system
	State-of-the-art in surveillance systems
	Challenges

	Optasia Design
	Vision modules for surveillance
	Automatic license plate recognition (LPR)
	Real-time traffic flow mapping
	Vehicle type & color recognition
	Object re-identification
	Background subtraction and segmentation
	Conclusion on vision pipelines and modules

	A dataflow platform for vision queries
	Dataflow for Vision
	Example user queries
	Optimizing vision queries

	Optasia System
	Evaluation
	Microbenchmarks of vision modules
	License plate recognition
	Real-time traffic flow mapping
	Classification of vehicles

	Optimizing dataflow

	Related Work
	Video analytics systems
	Dataflow systems

	Conclusion

