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Abstract

This document describes Stanford Univer-
sity’s first entry into a NIST Arabic-English
MT evaluation. We describe two main im-
provements over a previous Chinese-English
submission (Galley et al., 2008): a hierarchi-
cal lexicalized reordering model (Galley and
Manning, 2008) and a technique for perform-
ing minimum error rate training (Cer et al.,
2008) that outperforms the standard Powell
method.

1 System Description

1.1 Phrase-based translation system

The core engine of our system is Phrasal, a phrase-
based decoder similar to Moses (Koehn et al., 2007).
In its baseline configuration and basic set of features,
Phrasal replicates Moses almost exactly, and differs
only in the way the decoder breaks ties between
translation hypotheses that have the same score. Un-
less otherwise indicated, we use the same default pa-
rameters as Moses (e.g., same recombination heuris-
tic, same maximum number of translation options
for each input phrase).

Phrasal uses a log-linear approach common to
many state-of-the-art statistical machine translation
(SMT) systems (Och and Ney, 2004). Given an in-
put Arabic sentence f, which is to be translated into
an English sentence e, the decoder searches for the
most probable translation € according to the follow-
ing decision rule:

M
= argmax{P(e|f)} = argmax{ ) Anhn(fe)}
e e m=1

where h,,(f, e) are M arbitrary feature functions over
sentence pairs, such as translation probabilities. Our
system incorporates the following 17 feature func-
tions:

e Two phrase translation probabilities
n1(e|f) and Py (fle), computed using the
(unsmoothed) relative frequency estimate

(2] f) = count(e, 7)/(2 count(¢’, f)),

where f and e constitute a pair of aligned
phrases.

e Two lexical translation probabilities
P.(e|f,a) and P, (f|e,a), similar to those
presented in (Koehn et al., 2003):

Pex e\f, HH ‘ i ] 6a}| Z (Ei|?j)a

where n is the length of the phrase e, and a is
the internal word alignment between € and f.!

e Eight hierarchical lexicalized phrase re-
ordering scores for each phrase pair. We se-
lect from four types of orientations (monotone,

I Distinct instances of a given phrase pair (2,f) may be ob-
served with different internal alignments. In these cases, we se-
lect the most frequent alignment (like Moses but in contrast to
(Koehn et al., 2003)). About 0.3% of our phrases have lexical
translation probabilities that differ from Moses since our fea-
ture extraction implementation breaks ties between alignment
counts differently. However, we observe no impact on MT per-
formance.



swap, left discontinuous, and right discontin-
uous) and model both left-to-right and right-
to-left re-orderings. Laplace smoothing with
A =0.5is applied to the lexicalized re-ordering
probabilities. More details about this model
can be found in (Galley and Manning, 2008).

e Two language models, from Gigaword and
Google n-grams.

e Word penalty as in (Koehn et al., 2007).
o Phrase penalty as in (Koehn et al., 2007).

e Linear reordering penalty as defined in
(Koehn et al., 2007).

The weights of these feature functions were set
using an improved version of minimum error rate
training (MERT) (Och, 2003). Specifically, we used
a stochastic method and two regularization strate-
gies that are described in (Cer et al., 2008), which
shows that this approach is superior to both Powell’s
method and the variant of coordinate descent found
in the Moses MERT utility. Our system was tuned
using MT06 (LDC2007E59). We did not tune dif-
ferent systems for different genres.

The decoder used a distortion limit of 5. Stack
size and n-best list sizes were set to 500 (Moses’s de-
faults are respectively 200 and 100, which we found
less effective). After decoding, hypotheses are se-
lected using the minimum Bayes risk criterion (Ku-
mar and Byrne, 2004).

1.1.1 Phrase tables

This section describes the computation of phrase
translation and lexicalized re-ordering probabilities,
which we computed for all observed phrases of up
to ten words on either side. We used all the paral-
lel Arabic-English (A-E) training data permissible
in the constrained track, including ISI’s automat-
ically extracted A-E parallel text (LDC2007T0S).
This parallel data was pre-processed by IBM Re-
search. Pre-processing of the Arabic side involved
two steps: normalization and segmentation. Nor-
malization involved, e.g., removing all diacritics and
reverting orthographic changes to stems caused by
segmented affixes. Arabic words were segmented

according to the Penn Arabic treebank (ATB) stan-
dard.”

We performed word alignment using a cross-EM
word aligner (Liang et al., 2006). For this, we ran
two iterations of IBM Model 1 (Brown et al., 1993)
and two iterations of the homogeneous HMM model
described in (Vogel et al., 1996). To increase the
weight of good-quality data, we also used the align-
ment technique presented by BBN during the 2008
Open MT Evaluation. Like BBN, we found that this
technique yields systematic performance gains rang-
ing from 0.2 to 0.4 BLEU point. Finally, we gen-
erated a symmetric word alignment from cross-EM
Viterbi alignment using the Moses grow heuristic.

To construct phrase tables we used an imple-
mentation of phrase-extract (Och, 2002), which, un-
like Moses, builds phrase tables directly tailored
to specific development and test sets. This con-
siderably reduces the burden of computing normal-
ization counts, since the phrase extraction module
can usually fit all relevant phrase pairs into mem-
ory (as opposed to, e.g., Moses, which sorts large
collections of phrases on disk to compute normal-
ization counts). This enabled us to quickly exper-
iment with many phrase extraction heuristics. On
a 6.5M million English word subset of the paral-
lel data, we found that the grow alignment sym-
metrization heuristic (Koehn et al., 2007) worked
best. We pruned phrase tables produced with this
heuristic by deleting all phrases that did not sat-
isfy P, (e|f) > .0001. This filtering typically yields
phrase tables 2 to 3 times smaller, with little observ-
able impact on MT performance (0.1-0.2% BLEU
reduction in the worst case). Since we filter the lan-
guage models against the target side of our phrase
tables, deleting very unlikely translations allowed us
to considerably reduce n-gram count thresholds—
i.e., the number of times each n-gram must be ob-
served to be included in the language model—and
to incidentally capitalize more on n-grams that are
likely to be seen at decoding time.

1.1.2 Language models

Our system uses two language models built using
the SRI language modeling toolkit (SRILM) (Stol-
cke, 2002). The first model was trained using sto-

2LDC  A-E catalog numbers LDC2008E61
LDC2008E62 (p2), and LDC2008E22 (p3).
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ries from Xinhua News and AFP, as well as the en-
tire target-language side of the parallel data (Sec-
tion 1.1.1), which represent a total of about 824
million English tokens, including punctuation. We
built a back-off 5-gram language model smoothed
with the modified Kneser-Ney algorithm (Chen and
Goodman, 1996). Due to memory constraints, we
discarded all 4-grams and 5-grams that occurred less
than three times.

We built a second language model using Google
n-grams. Since the Google collection does not con-
tain n-grams with counts lower than 40, it is imprac-
tical to utilize smoothing techniques (such as Good-
Turning or Kneser-Ney) that rely on “counts-of-
counts” statistics to estimate the probability of rare
events. We relied instead on Jelinek-Mercer smooth-
ing (Bahl et al., 1983) (known as a “count-based”
language model in SRILM), which implements a
mixture of count-based maximum-likelihood esti-
mators. In our experiments, the n-grams of each
order were partitioned by counts into 15 buckets
(each bearing a unique interpolation weight), and
maximum-likelihood estimates typically converged
after 3 to 5 iterations of expectation-maximization
(EM) (Dempster et al., 1977). Since SRILM falls
short of explicitly enumerating all n-grams of count-
based language models—the model only contains
a few distinct interpolation weights—we converted
our count-based language model into the kind of
back-off language model expected by our decoder
(an ARPA file).> Since building a back-off lan-
guage model requires loading all n-grams at once
into memory, we limited our use to n-grams up to or-
der 3 and removed trigrams that appeared less than
200 times in the Google collection.

1.2 Post-Processing

We trained a linear chain conditional random field
(CRF) truecaser that uses various NER features de-
scribed in (Finkel et al., 2005), among them cur-
rent and contextual words, word-shape features, etc.
This truecaser makes four types of predictions: all
lowercase (LC), first letter uppercase (UC), all let-

30ne way to achieve this is to create an intermediate back-
off ARPA language model containing all n-grams of interest
(e.g., those that may be applicable at decoding time), then
rescore this model with our count-based language model using
ngram -rescore-ngramin SRILM.

ters uppercase (CA), and mixed case word (MC)
(cf. (Lita et al., 2003)). The truecaser was trained
on the target side of the parallel data, though we
had to exclude the UN Arabic English parallel text
(LDC2004E13) due to memory constraints imposed
by our very large feature set. As it is typically done
with CRFs, our truecaser was trained to maximize
the conditional log-likelihood of the training data.
Since this objective function may not necessarily
correlate with BLEU, we manually adjusted class
priors after training in order to maximize BLEU on
MTO6 (this is similar to the technique described in
(Minkov et al., 2006), though Minkov et al. op-
timized F-measure instead of BLEU). After run-
ning this truecaser, we applied two different post-
processing steps. First, we disambiguate the mixed
case words by looking up a list we extracted from a
larger set of training data. Second, we made the first
non-punctuation word of every sentence in the UC
category.

We also trained an LM truecaser, which uses the
scores of a 5-gram case-sensitive language model as
its sole feature. Since this truecaser is much more
scalable, we could train it with much more data:
the entire target side of the parallel data, plus the
AFP and Xinhua sections of the Gigaword corpus,
3rd edition. Both truecasers take as input the sin-
gle best hypothesis generated by our decoder. We
finally trained a product-of-experts truecaser (a lo-
gistic classifier), which combines the predictions of
the CRF and LM truecasers.

Finally, we applied a rule-based post-processing
module to transform dates and numbers, capitalize
headlines (if applicable), and transform any British
English spelling into American English.

1.3 Contrastive System

Our single contrastive submission was trained and
tested using a discriminative lexicalized reordering
model (Zens and Ney, 2006), which came in addi-
tion to our hierarchical reordering model. Since this
extra component caused a small decrease in perfor-
mance on a blind test set (see Section 2), we did not
incorporate it into our primary submission.



Reordering Models | BLEU[%]
Moses 43.79
phrase-based 43.97
hierarchical 44.22

Table 1: Comparison of lexicalized reordering models.

Language Models BLEU[%]
Gigaword 43.57
Gigaword + Google 44.50

Table 2: Performance with and without a Google LM.

2 Results

We report experimental results using MTOS
(LDC2009EO08) as a blind test set. All scores are
cased BLEU (Papineni et al., 2001) as computed by
the official scoring script (mteval-v13.pl).

Table 1 compares three types of lexicalized re-
ordering models: the one implemented in Moses, a
phrase-based reordering similar to (Tillman, 2004),
and our hierarchical reordering model (Galley and
Manning, 2008). The models are similar in that
they predict one of the following three orientations
for each phrase: monotone, swap, and discontinu-
ous. The hierarchical model improves our results
by 0.25 BLEU, though the difference is not statis-
tically significant.* We got an additional improve-
ment of 0.28 BLEU by distinguishing between two
types of discontinuities (i.e., left and right discontin-
uous), which yields 44.50 as our final BLEU score
on MTOS.

The critical value of the Google LM is shown in
Table 2. Finally, Table 3 shows results for our pri-
mary and contrastive submissions. While the system
incorporating the discriminative reordering model of
(Zens and Ney, 2006) performed slightly worse on
MTO8, it was slightly more effective on MT09. Re-
sults on MTQ9 are those reported by NIST.
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