A Checkpoint Protocol for an Entry Consistent
Shared Memory System

Nuno Neves, Miguel Castro and Paulo Guedes

IST - INESC
R. Alves Redol 9, 1000 Lisboa PORTUGAL
email: (nuno, miguel, pjg) @inesc.pt

ABSTRACT

Workstation clusters are becoming an interesting alter-
nativeto dedicated multiprocessors. In thisenvironment, the
probability of a failure, during an application’s execution,
increases with the execution time and the number of work-
stations used. If no provision is made for handling failures,
it is unlikely that long running applications will terminate
successfully. One solution to this problem is process check-
pointing.

This paper presents a checkpoint protocol for a multi-
threaded distributed shared memory system based on the en-
try consistency memory model. The protocol allows trans-
parent recovery from singlenode failuresand, in some cases,
from multiple node failures. A simple mechanism is used to
determine if the system can be brought to a consistent state
in the event of multiple machine crashes.

The protocol keeps a distributed log of shared data ac-
cesses inthevolatilememory of the processes, taking advan-
tage of theindependent failure characteristics of workstation
clusters. Periodicdly, or whenever the log reaches a high-
water mark, each process checkpointsits state, independently
from the others. The protocol needs no extra messages dur-
ing the failure-free period, since al checkpoint control in-
formationis piggybacked on the memory coherence protocol

Messages.

1 INTRODUCTION

Workstation clusters are becoming an interesting alter-
nativeto dedicated multi processors, dueto theimprovements
in network and processor technology [5,6,25]. Paralle appli-
cations based on the shared memory programming paradigm
can be supported by software running on the workstation

A version of this paper appeared in the 13th ACM
Symposium on Principles of Distributed Computing, August
1994.

cluster. This software implements a distributed shared mem-
ory (DSM) system. Inthese systemstheapplication’ sthreads
of execution see asingle shared memory space, whichiskept
coherent according to agiven memory model. Thefirst DSM
systems used strict models [10,16] resulting in poor perfor-
mance. More recent systems [1,3,8] introduced rel axed con-
sistency memory models, which are capable of delivering
higher performance than strict models.

In workstation clusters, mean time to failure decreases
with increasing number of nodes. Hence, the probability of
afailure during the execution of along running application
can become intolerably high. One solutionto thisproblemis
process checkpointing. Thispaper presentsacheckpoint pro-
tocol for DiSOM [11], a multi-threaded DSM system based
on the entry consistency memory model [3]. The proto-
col alows transparent recovery from single node failures
and, in some cases, from multiple node failures. It uses a
combination of a distributed log of shared data accesses and
uncoordinated checkpointing.

The logging mechanism is tightly integrated with the
entry consistency memory coherence protocol. In the entry
consistency memory model, shared data objects are associ-
ated with synchronization obj ects and all accesses to a shared
dataobject must be enclosed between an acquireand arelease
on its associated synchronization object. Synchronization
objects enforce a concurrent read exclusive write synchro-
nization policy. Therefore, the entry consistency constraints
ensure that a thread only observes updates to a shared data
object when it acquires the associated synchronization ob-
ject. These constraints also ensure that updates, performed
by athread, only become visible after the rel ease.

The logging mechanism creates a log entry with acopy
of the object state, whenever arelease isissued by a thread
that acquired the object for writing. The log entry is stored
inthevolatile memory of the process where the thread is ex-
ecuting. If athread in another process subsequently acquires
the object and later that process fails, the object version can
berecovered from the processwherethelog entry was stored.
This is dways possible if we assume a single process per-
node, asinglenodefailure and that nodesfail independently.
This assumption isusualy verified in workstation clusters.

The logging overhead is minimal because the log is

stored in volatile memory and dl checkpoint control infor-
mation is piggybacked on the memory coherence protocol
messages, avoiding extra messages during the failure-free
period. Contrarily to the sequential consistency memory
model [16], where each update operation must potentially be
logged, our protocol takes advantage of theentry consistency
constraintsto avoid logging individua updates.

The checkpoint mechanism saves the state of each pro-
cess on disk, periodicaly or when the process' 1og reaches a
maximum size. We use an uncoordinated protocol [4,14,23]
where each process checkpointsitself, independently of the
others. Thisway we avoid the overhead of checkpoint coor-
dination and the loss of process autonomy characteristic of
coordinated schemes [7,15,20]. |n uncoordinated checkpoint
protocol s the domino effect [21] must be prevented to avoid
a cascading of roll backs. Our checkpoint protocol prevents
the domino effect by using the distributed log. Furthermore,
the protocol ispessimistic[4,14], i.e. nothreadinasurviving
process hasto berolled back if afailureoccurs. Nevertheless,
it keeps the efficiency of optimistic schemes [23], because
logs are kept in the volatile memory of other processes.

The recovery mechanism starts by loading the failed
process’ last checkpoint in afree processor. Then, therecov-
ering process obtains, from the other processes, all the object
versions acquired by its threads between the checkpoint and
the failure. Next, the recovering process threads re-execute,
acquiring the same versions of the same objects as they did
before the failure. This assumes that threads execute in a
piece-wise deterministic manner [9]. After recovery, in the
event of a single process failure, the system will be in a
consistent state. On the other hand, if multiple process fail-
ures occurred it might be impossible to recover the system
to a consistent state. The recovery mechanism detects this
situation and aborts the application.

The paper is organized as follows. The next section
presentsrelated work. The system model isdescribed in sec-
tion 3. In section 4 the checkpoint protocol and thedistributed
shared data log are explained. We draw our conclusionsin
section 5. In appendix A we present proof sketches of the
theorems mentioned in the paper.

2 RELATED WORK

One way to tolerate faults in a distributed system is
to use process checkpointing. In coordinated checkpoint
schemes [7,15,20], processes coordinate to ensure that the
set of process checkpointsrepresents aconsistent state of the
system. These systems tolerate multiple failures at the ex-
pense of checkpoint coordination. In uncoordinated check-
point schemes [4,14,23], processes take checkpoints inde-
pendently. After afailure a consistent state is reached by
recovering thefailed processes’ checkpointsand possibly by
rolling back some surviving processes. Logging can be used
to prevent roll back propagation.

In a message passing system, message logging can be
made in the receiver [23] or in the sender [14]. Our shared

memory abstraction is implemented using messages, there-
forewe could use amessage | ogging protocol to achieve fault
tolerance. This solution would perform worse than our pro-
tocol because our protocol takes advantage of the memory
model constraintsto avoid logging al the informationin all
the messages.

Most of the previous work in checkpoint protocols for
DSM systems on workstation clusters was based on the se-
guentia consistency memory model [12,24]. The protocols
proposed by Stumm and Zhou [24] only offer a partia so-
lution to the process recovery problem, since only the state
of shared pages is recovered. In their read-replication a-
gorithm a process sends a copy of the dirty pages on every
message send. Richard and Singhal [12] logged al the pages
acquired inthevolatilememory of theacquirer and saved the
log in stable storage whenever a modified paged was trans-
ferred to another process. The only reference we found about
checkpointing in relaxed consistent DSM was by Janssens
and Fuchs [13]. In their protocol a process is checkpointed
exactly before its updates become visible to the other pro-
cesses. They used this characteristic to reduce the number
of checkpoints needed for recovery. They presented results
from trace-driven simulations showing afive- to ten-fold de-
crease in checkpoint overhead over sequential consistency
based techniques.

Our checkpoint protocol isalso based in arelaxed con-
sistency memory model but it uses the releaser’s volatile
memory to log updatesto shared dataobjects. Thelogisused
to avoid roll back propagation. The checkpoint frequency is
independent of the application’sactions. Therefore, it can be
chosen based only on recovery time constraints. Unlikemost
checkpoint protocol s ours supports multiple-threads per pro-
cess. Although the protocol only guarantees recovery from
single failures, a simple detection mechanism is used to de-
termineif the system can be brought to a consistent state, in
the event of multiplefailures.

3 SYSTEM MODEL

DiSOM iscomposed of aset of processes, one on each
workstation in the cluster. Processes communicate only by
message passing. Messages are delivered reliably and in
FIFO order. Each process is viewed as a collection of re-
sources, which provides an execution environment for multi-
plethreads. These resourcesinclude an address space, where
asubset of the shared objectsis mapped.

Threads run in a piece-wise deterministic manner [9],
i.e. the execution of athread is divided into deterministic
intervals started by nondeterministic events. A new interval
startswhen athread acquires an object for reading or writing
and ends at the next acquire. If the piece-wise determinism
assumption holds, a process can be recovered by restoring
its state from a checkpoint, letting its threads re-execute and
ensuring that they re-acquire the same versions of the same
objects. Each thread maintains a counter called logical time,
[t, which is incremented whenever an acquire is issued, the

acquire’slogical timeisthe incremented value. The system
assigns a unique identifier, ¢id, to each thread. The tid is
composed of the process identifier and a local thread identi-
fier. Therefore, the process identifier can be obtained from
the tid. The tuple <tid, lt> identifies a unique execution
point, ep, in the system, i.e. it identifies a thread and a log-
ica instant in its execution. We say that an operation was
executed at ep = <tid, lt> if tid executed the operation at
lt. We adso definetherdations < and < asfollows: ep; <
ep; iff tid; = tad; A1ty < It and ep; < ep; iff tid; = tid;
At <1t

We consider a fail-stop model [22], where a proces-
sor fails by halting and all surviving processors detect the
node failure within bounded time. Network partitions are
not tolerated. We do not rely on specia hardware support,
e.g. non-volatile RAM [2,17] or uninterruptible power sup-

ply [19].

31 MEMORY COHERENCE MODEL

A memory coherence protocol is best described as a
contract between the system and the application program.
If the program setisfies the contract’s requirements the sys-
tem guarantees that the program views a sequentially con-
sistent memory [16], which is the model expected by most
programmers. DiSOM uses the entry consistency memory
coherence protocol introduced by Midway [3]. The contract
imposed by entry consistency on the program is as follows.
Firstly, the program hasto identify the relationshi psbetween
synchronization objects and data objects and explicitly asso-
ciate them. Synchronization objects enforce concurrent read
exclusive write synchronization and data objects are arbi-
trarily sized language-level data items. Secondly, all write
accesses to a shared object must be enclosed between an
acquire-wite operationandarel ease-wite op-
eration, on the synchronization object associated with the
dataobject. The updates only become visiblein another pro-
cess when athread in that process subsequently acquires the
object. A thread acquires an object when it executes either
anacqui re-wite oracquire-read operation. Ac-
quires are synchronous, i.e. athread is blocked until the ac-
quire completes. Thirdly, all read accesses must be enclosed
between either anacqui re-r ead andar el ease-r ead
oranacquire-wite and arel ease-wite. The
programshoulduseacqui r e-readandr el ease-r ead
pairs to maximize concurrency and thus performance.

Theevol ution of an object state can beseen asasequence
of versions V = Vp, V4, Theinitia version, 14, is the
object’s state at creation time. When a thread acquires an
object for writing, acopy of thelast object versioniscreated.
All updates performed by the thread, prior to the release, are
reflected in this copy. A new version, based on the copy, is
produced when the thread releases the object. The thread is
caled the producer of the version. If an object is acquired
for reading and later released, no version is produced. The
last version of an object is the last element in the sequence.

Figure 1: Three system states S1, S2 and S3. System states
S1 and S2 areinconsistent and S3is consistent.

A suffix of the sequence of versions may be lost due to a
falure. A system state is consistent if al threads, holding
objects, hold the last versions of those objects and no thread
has acquired a version of an object that was lost due to a
failure.

During the failure free period, the memory coherence
protocol keeps shared memory in a consistent state. After a
failurethe system must be brought back to a consistent state.
Figure 1 depicts the execution of two threads in different
processes. The notation O is used to represent an acquire
of the version v of object O. The typet of the acquire is
either read, R, or write, W. S1, S2and S3 are system states.
System state S3istheonly consistent state. S1isinconsistent
because the acquire Y, is included in the system state and
thepreviousacquire Y;* isnot. Similarly, S2isinconsistent.

4 THE CHECKPOINT PROTOCOL

The next section describes the data structures used by
the protocol. The use of these structures is explained in
sections 4.2 and 4.3. These sections describe thefailure-free
behavior and therecovery procedure. The garbage collection
procedure applied to the protocol data structuresis presented
in section 4.4. The last section explains the detection of
inconsistenciesin the event of multiplefailures.

4.1 DATA STRUCTURES

objld; /I object identifier
version; /I version number
probOwner; /I probable owner
status; /I object status
copySet; /I list of readers
epDep; /I ep dependency

Figure2: Object data structure.

DiSOM uses a modified version of Li's dynamic dis-
tributed manager protocol [18] to keep the shared mem-
ory coherent and implement synchronization®. The proto-

1DiSOM uses distributed copy sets. In this paper, to clarify the descrip-
tion, we present a simplified version of the algorithm with centralized copy
sets.

col maintains an instance of the data structure presented in
figure 2 for each shared object. The first field, objid, isa
system wide unique identifier. The version field contains
the version number of the local copy of the object. The pro-
tocol associates with each object the notion of ownership.
The owner of an object isthe process that keepsthe last ver-
sion of the object, i.e. the last process from which a thread
has acquired the object for writing. The field probOwner
is a hint to the identity of the object’s owner. The system
guarantees that the true owner of an object can be reached
by following the distributed probOwner chain. The status
field indicates how the object is being used, e.g. held for
writing, reading or not held, and the accesses permitted on
the object’s local copy. Finally, the copySet is a set whose
elements are the identifiers of al the processes with a read-
able copy of the object. Whenever an object is acquired for
reading by athread, a read-only copy is kept in the process
where the thread is executing. Threads in that process can
successively re-acquire the object for reading, without inter-
acting with any other process, until a writer invalidates the
copy. When an object isacquired for writing, the new writer
uses the copySet to invalidate the read-only copies kept in
the other processes.

We call an acquire local when an object is re-acquired
by athread in the same process. Thisloca acquire can occur
when the process has an up-to-date version of the object,
i.e. the process is the owner or has a read-only copy of the
object. The order of local acquires prior to a failure must
be reproduced during recovery. We use the field epDep to
achieve thisgod. It records an execution point.

tid; /I identifier

It; /I logical time
waitObyj; /I requested object
depSet; /I dependencies

Figure3: Thread data structure.

An instance of the data structure in figure 3 is kept
by each thread. The field ¢id uniquely identifies the thread
and It is the thread's logical time. The field waitObj is
used by the protocol during process recovery to re-issue ob-
ject acquires that could have been lost due to the failure.
It has the form <objId, type>. If not null, it means that
the thread has issued an acquire request of type (R/W) for
object objId, which has not completed. The set depSet
is used to record a description of the thread's dependen-
cies. An acquiring thread, tid,.,, depends on a producer
thread, tid,,q, if tid,., acquired an object version produced
by tid,,q. The depSet has an entry per each acquire per-
formed by the thread in the past. Each entry has the form
<objld,type, epacq, €ppra, P>. Thistuple should be read
asfollows: aversion of objId was acquired for type (R/W)
when the acquiring thread’s execution point was ep,., and
the producer thread’'s execution point was ep,,4 and it is
logged in process P. The P field usually stores the process

identifier of the process where the producer thread was run-
ning. The exception occurs with local acquires as will be
explained in the next section.

objld; /I object identifier
version; /I version number
objData; /I object data
tidPrd; /I producer

nextOwner;
threadSet;

/I next owner process
/I threads which accessed the object

Figure4: Log entry data structure.

Each process maintainsalist of log entries, seefigure 4.
A log entry is crested when ar el ease-wri t e isissued.
It records the object’s identifier, its version number, its data,
tid Prd, nextOwner and thethreadSet. Thefied tidPrd
containstheidentifier of the thread that produced the logged
object version. The nexztOwner fiddisinitidly null. When
thisobject version isacquired for writing, it isfilled with the
identifier of thenew owner process. ThethreadSet dements
are pairs of execution points, which represent acquires of
the logged object version. In each pair, <epacq, eppra>,
epacq 1S the execution point of the acquire and ep,,,4 is the
producer thread's execution point when the acquire request
was satisfied.

objld; /I object identifier

epAcq; /I acquire execution point
localDep; /I local dependency

Plog; /I process where it is logged

Figure5: Dummy log entry data structure.

A dummy log entry, seefigure5, is crested whenever a
local acquireisissued. The entries are used to describelocal
acquires in order to reproduce them during recovery. The
dummy entry cannot be stored in the local process’ volatile
memory because if the processfailsit will belost. Therefore
the entry is sent to another process. Each process maintains
alist of dummy log entries received from other processes.
Each entry records the object’s identifier and the execution
point of the loca acquire, epAcq, that produced the dummy
log entry. Thefield local Dep records the execution point of
the local event that precedes thisacquire. The Plog field is
only used during recovery.

We call thelog entries described in figure 4 regular log
entries, to distinguish them from the dummy log entries.

4.2 FAILURE-FREE BEHAVIOR

Duringthefailure-free period, threads executetheir pro-
grams and acquire objects for reading or writing. The mem-
ory coherence protocol keeps shared objects consistent. The
checkpoint protocol |ogs data necessary to recovery and pig-
gybacks its control information on the memory coherence

protocol messages. This section describes the checkpoint
protocol and a simplified version of the memory coherence
protocol 2.

Whenever a non-local acquire is issued the following
steps are executed:

1. When athread tries to acquire an object, a request is
sent to theobject’s probOwner withtheform ([obj I d,
type, Pacq], [epacg]). This request carries the type
of the acquire, type, theloca process identifier, P,.4,
and the execution point of theacquire, ep.,. Thenthe
thread's waitObj isfilled with objId and type. Next,
the requester thread blockswaiting for the reply.

2. Therequest isforwarded along the probOwner chain,
until it reaches the owner process. When the owner
process receives the request, if it is aread request and
the object is currently held for writing, the request is
queued. Similarly, a write request is queued if the
objectisheld for reading or writing. When the request
isallowed to proceed, thepair <epq.q, eppra> iSadded
tothethreadSet, intheobject’slast versioninthelog.
Theep,,q isthecurrent execution point of the producer
thread. Then, a response with the form ([obj Data,
Pyrdl, [eppra, version]) is returned. The response
carriestheidentifier of theowner process, P, 4, andthe
obj ect version obtai ned from object structure, version.
Based on the type of the request, the owner aso does
the following updates to the system data structures:

(8 Read request: P,., isadded to the copySet.

(b) Write request: The ownership is moved to the
new writer, aong with the copySet, and the
probOwner field is updated to point to the new
writer. Thefield nextOwner inthelogis made
equal t0 Pyeq.

3. Therequesting thread receives theresponse. If itisthe
reply to awrite request, it sends a message to al the
processesinthecopySet invalidatingtheir read copies.
In both cases, the tuple <objld, type, epacq, ePprd,
P,.q4> is added to the thread’s depSet, revealing the
dependency from ep,.4 t0 eppra, the version in the
object structure is set to the value of version in the
reply and waitObject isnullified. The epDep in the
object is made equd to ep,., and then the thread is
allowed to resume execution.

4. Thethread eventually releases the object. If the local
process is the owner the epDep fidd in the object
structure is updated with the execution point of the
relesse. If the object was acquired for writing, the
version number in the object structureis incremented

2Throughout the description messages are represented by the tuple ([«],
[B]) , where o and 3 are the information sent by the memory coherence
protocol and the checkpoint protocol, respectively. Symbols with the “acq”
subscript are related to the acquiring thread and symbols with the “prd”
subscript are related to the thread that produced the object version.

and an entry for thisversioniscreated inthelog. This
entry records the object’sidentifier, objId, the object
version, version, the object’s data associated with the
version, obj Data, and the identifier of the producer
thread, tid Prd.

The procedure outlined above assumesthat thereleasing
thread and the acquiring thread executein different processes,
that fail independently. The assumption failswhenever there
isaloca acquire. Whenever a loca acquire is issued the
following steps are executed:

1. When a thread issues a loca acquire a dummy log
entry is created. The fields in the dummy entry are
used in the following way: the identifier of the ob-
ject isstored in the obj Id field, the execution point of
the acquireis saved in ep Acq and the value of ep Dep
from the object structure is recorded in the local Dep
field. Additionaly, the thread inserts a new depen-
dency, <objId,type, epacq, €ppra, P>, inthedepSet.
Thevaueof theentry’sep,,,q isset tothevalueep Dep.

2. The release step is identical to the non-local acquire
rel ease step.

3. Thedummy entry iskept localy until amessage issent
by the memory coherence protocol. Then, theentry is
sent withthemessage, toensurethat it will not belost if
thelocal processfails. The receiver process, P;, saves
theentry initslog and setstheentry’s Plog field equal
toitsidentifier. Thelocal process deletesthe entry and
stores P; inthe P field of the dummy dependency.

From time to time, each process checkpoints itself in
an asynchronous way, independently from the others. The
checkpoint is stored in stable storage. The size of the ob-
ject log and the elapsed time since the last checkpoint are
used to determine the moment to take the checkpoint. The
checkpoint includes each thread’s stack and machine state,
the shared data and al system data structures (e.g. thelog
and per-thread data structures).

4.3 FAILURE RECOVERY

When a machine crash is detected, the process running
on that node has to be recovered. Process recovery restores
the shared objects and the system data structures to a state
consistent with the rest of the system. When recovery is
completed the system is able to recover from subsequent
faults on any process. In the appendix we prove that the
checkpoint protocol brings the system to a consistent state
after asingle process failure.

The first step to recover a process is to get its most
recent checkpoint and reload it in a free processor. Then,
the process state is reconstructed from the checkpoint in two
steps. Inthefirst step, the surviving processes collect al data
necessary to recover the failed process. The entries kept in
the log and dummy log are used to restore the state of the

data objectsin the failed process. The data contained in the
dependenciesis used to recover thelog. In the second step,
the failed threads re-execute their programs, acquiring the
same versions of the objects as they originaly did, until the
recovery is completed.

431 DATA COLLECTION

The failed process, P.r,, logically broadcasts a mes-
sage asking for all information related to its threads. The
request message contains the set C'kpSet, whose eements
arethe execution pointsof P., sthreads at checkpoint time.
When a surviving process receives the message it executes
the following steps, creating the sets LogSet, DependSet
and DummySet:

1. Determine the object versions acquired by the recov-
ering threads which were produced localy. The log
entries are inspected and the ones with ep.ip < €pacq
for each ep.rp, € CkpSet and each <epq.q, eppra>
€ threadSet, are added to the LogSet.

2. Determine which dummy log entries, created in the
failed process, are stored localy. The dummy log
entries are inspected and the oneswith ep.r, < epAcq
for each ep.rp € CkpSet are added to the LogSet.

3. Determinewhich objectsproduced inthefailed process
wereacquired by thelocd threads. ThedepSet of each
local thread is examined, and al entries with ep.z,
=< epprq for each ep., € CkpSet, are added to the
DependSet.

4. Determine if any dummy logged object, created lo-
caly, was saved in the failed process. The depSet
of each thread is examined and entries with ep,;4
from a locd thread and P = P.;, are added to the
DummySet.

5. Pending acquirerequests may have beenlost duetothe
fallure. The waitObj of each blocked thread, in the
surviving process, is used to re-issue pending acquire
requests. Duplicaterequestsaredetected and discarded
by the memory coherence protocol.

The various sets are then sent to the recovering process
and the surviving process has completed its contribution to
the recovery.

432 LOG REPLAY

The recovering process collects al responses, merges
the various DummySet into a single DummySet and or-
ganizesthedatafromthe LogSet and DependSet inagroup
of lists. There are two lists per thread, the Log List and the
DependList, one for each type of set. Additionaly the re-
covering process creates the InvalidSet, which isinitialy
empty.

Each thread's Log List contains regular log entries and
dummy log entries. These entries correspond to acquires
performed by the thread. The recovering process creates the
LogList of thread tid using the elements from the various
LogSet inthefollowing way:

o If the element is a regular log entry and the value of
€Pacq iN ONE Of the pairs in the eement’s threadSet
is an execution point of thread ¢id, then the element is
inserted intid’'s Log List.

o If the dement is a dummy log entry and the value of
theelement’s ep Acq field isan execution point of ¢id,
thentheelement isinserted intid’'s Log List.

The Log List isordered by ascending execution points,
i.e. theregular entries are ordered by the value of ep,., and
dummy entries are ordered by the value of ep Aecq.

The DependList contains the description of the ac-
quires, performed by surviving threads, of object versions
produced by the thread. The DependList of thread tid
containsthe dependency entriesfromthe DependSet where
epprq 1S @n execution point of thread ¢id. Thelist is ordered
by ascending values of ep,4.

Recovering threads begin to re-execute when dl datais
organized. During the log replay, the acquires issued by the
recovering threads are trapped by the system. Instead of the
usual acquire algorithmthethread obtainsthe object versions
locally from the Log List, without exchanging any message
with the other processes. Since the Log List is ordered by
ascending execution points, the object versions are arranged
in the order by which they were originally acquired.

The shared objects state and thethread’s dep Set are re-
covered by executing the foll owing sequence of stepswhen-
ever athread issues an acquire:

1. It removes the first element fromits Log List. If this
element is a regular log entry, the thread waits until
all the previous versions of the object are acquired by
the other threads. When the thread is allowed to pro-
ceed it updates the object state with the logged object
data. Otherwise, if thiselement isadummy log entry,
the thread waits until the event with execution point
local Dep isreproduced. Notethat during recovery no
dummy entries are created.

2. The thread adds a new dependency, <objId, type,
€Pacq, €Pprd, P>, 10 its depSet. In the case of a
regular log entry the value of ep,,4 is retrieved from
the entry’s threadSet and P is the identifier of the
process where the version was produced. Otherwise,
eppra and P areset tothevaluesof local Dep and Plog
from the dummy entry.

3. Inordertorecover theprobOwner and status fieldin
the object structure, every time an object is acquired,
if the nextOwner field in the regular log entry is not
null, the pair <objld, nextOwner> is added to the

InvalidSet. Ontheother hand, if nextOwnerisnull,
the pair is removed from the InvalidSet.

The protocol recovers log entries as follows. When
athread issuesar el ease-writ e it creates aregular log
entry. Theentry’sthreadSet isrecovered using theelements
from the DependList. The nextOwner field in the log
entry isleft null, unless thereis an element in Depend List
representing an acquirefor writing. Inthat case theelement’s
€Pacq 1S Used to update the nextOwner field. If thereisno
such element, then the process was still the object owner
when the failure occured. In thiscase, the object’s copySet
isrecovered using thethreadSet.

When al thread lists are empty, the probOwner and
status fieldsineach object structureare recovered. For each
pairin InvalidSet thelocal object versionisinvalidated, i.e.
status is Set to no-access, and the probOwner is set to the
vaue of nextOwner inthe pair.

The dummy log entriesthat were kept in the failed pro-
cess are recovered using the dements in the DummySet.
For each element inthe DummySet, <objld, type, epacq,
epprd, P>, anew dummy log entry is added to the process
list of dummy log entries. The dummy entry has the fields
objld, epAcq,local Dep and Plog equa tothefieldsobjId,
€Pacq, €Pppra aNd P from the DummySet element. Recov-
ery isfinally complete and requestsrecei ved during recovery,
which were blocked, are replied to and the normal execution
mode is resumed.

The duration of the recovery period grows proportion-
aly to the elapsed time, starting at the last checkpoint and
ending at the failure. In an environment where failures are
rare, checkpoints can be made less frequently, alowing a
more efficient behavior during the failure-free period. Nev-
ertheless, the protocol tries to reduce interference between
the surviving processes and the recovering process. Surviv-
ing threads do not have to roll back and after sending the
information needed for recovery, they only have to wait for
the recovering threads, if they need an object which isbeing
reconstructed.

44 GARBAGE COLLECTION

The log, the dummy log and the depSet data structures
must be garbage collected to avoid memory exhaustion.

We call an object version old if it is not the last object
version and we call the corresponding log entry an old log
entry. Old log entries which were not acquired by remote
threads, are not needed for the recovery of any process. After
aprocess, P.;,, checkpointsits state it del etes these entries,
i.e. old entrieswith an empty threadSet.

The object versionslogged in the other processes which
were accessed by P.p,’'s threads prior to the checkpoint are
no longer needed for itsrecovery. After the checkpoint, P,
createsaset, C'kpSet, withtheexecution pointsof itsthreads
at checkpoint time. Next, it logically broadcaststhe C'kpSet
to the other processes. The receiver processes traverse their
logs and remove pairs, <epacq, eppra>, from the various

threadSet according to the condition ep,.; < ep.xp for
each ep., € CkpSet. Anempty threadSet means that the
logged object version isno longer needed for the recovery of
any thread and, if itisan old object version, it can be del eted.

The dummy log entries created by P.;, before the
checkpoint can be discarded. Those entries which are till
stored in P.j, are simply deleted. An entry which is stored
in another process is deleted when that process receives the
message withthe CkpSet, if it meetsthe conditionep Acq <
ep.kp for each ep., € CkpSet.

After a process checkpoint, dependencies in preceding
intervals are no longer needed to recover that process log.
Therefore, the depSet entries can be garbage collected in
the same way as the log entries. When a process receives a
messagewithaCkpSet, ittraversesthe depSet of itsthreads
and removes entries with ep,,.q < epcr,, for any ep.z, €
CkpSet.

45 MULTIPLE FAILURES

The protocol ensures that the system is brought to a
consistent state after a single node failure. However, if more
than one processor fails, it might be impossible to restore
the system to a consistent state. The protocol detects these
situations with a conservative mechanism. The mechanism
detects all situationsthat can lead to an inconsistent state but
in some circumstances it can be pessimistic. In the appendix
we prove that in the event of multiple failures, either the
system is brought to a consistent state or the application is
aborted.

The detectionisaccomplished after thereceipt of there-
sponsesfrom al the processes, including the recovering ones
(each process knows the identifiers of al the other processes
involved in the computation). A recovering process replies
assoon asitscheckpointisloaded. The detection mechanism
traverses the per-thread Log List searching for a maximum
length prefix, that includes an element for each logica time
since the logical time at checkpoint. If alogged object ver-
sionwas|ost dueto afailurethe prefix will be aproper prefix
and the rest of the list is discarded. It might be impossi-
ble to recover the system to a consistent state when thereis
an element in the thread's DependList with alogica time
larger than the logical time of the last element in the prefix.
This situation occurs when a process has acquired a version
of an object that might not be recovered. In this situation
the application is aborted. Otherwise, recovery proceeds as
described in the previous section.

5 CONCLUSIONS

We presented a checkpoint protocol for parallel appli-
cations, running in a workstation cluster. Applications are
composed of multiple threads of execution that communi-
cate by sharing memory. Shared memory is kept coherent
according to the entry consistency memory model. The pro-
tocol allows transparent recovery from single node failures

and, in some cases, from multiple node failures. In the latter
case, the protocol guarantees that the application is either
brought to a consistent state or an inconsistency is detected
and the application aborted.

The protocol’s main design god is an efficient behav-
ior during the failure-free period. It takes advantage of the
independent failure characteristics of workstation clustersto
log shared memory accesses in the volatile memory of the
cooperating processes. Each process checkpoints its state
periodicaly or when the log reaches a maximum size. The
use of distributed logs permits a choice of checkpoint fre-
guency independent of the application’sactions, considering
only recovery time constraints. Hence, in a cluster where
failures are rare, checkpoints can be made less frequently.
The checkpoint protocol is tightly integrated with the entry
consistency memory coherence protocol. It uses the con-
straintsimposed by the memory model to reduce the number
of shared data accesses that need to be logged. Furthermore,
no extra messages are necessary during the failure-free pe-
riod, since al checkpoint control informationis piggybacked
on the memory coherence protocol messages.

Currently we are studying ways to generalize the pro-
tocol, by applying it to other relaxed consistency memory
models. We are a so exploring ways to integrate other forms
of synchronization with the checkpoint protocol.

ACKNOWLEDGEMENTS

Specia thanksgo to Ellen Siegd for her careful reading
of this manuscript and for her many suggestions that led to
its improvement. We would like to thank Paulo Verissimo,
David Matos, Luis Rodrigues and the anonymous referees
for their comments on early versions of this manuscript. We
would aso like to thank to Paulo Meneses for his work on
DiSOM’s compiler.

REFERENCES

[1] S. V. Adve and M. D. Hill. A unified formalization
of four shared-memory models. |EEE Transactionson
Parallel and Distributed Systems, 4(6):613-624, June
1993.

[2] Mary Baker and Marl Sullivan. The Recovery Box:
Using fast recovery to provide high availability in the
UNIX environment. In Proceedings of the Summer
1992 USENIX Conference, pages 31-44, June 1992.

[3] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon.
The midway distributed shared memory system. In
Proceedings of the 93 COMPCON Conference, pages
528-537, February 1993.

[4] AnitaBorg, JJmBaumbach, and Sam Glazer. A message
system supportingfault tolerance. |n Proceedings of the
9th ACM Symposium on Operating Systems Principles,
pages 9099, October 1983.

(5]

(6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

JB. Carter, JK. Bennett, and W. Zwaenepod. Imple-
mentation and performance of Munin. In Proceedings
of the 13th Symposiumon Operating SystemP rinciples,
pages 152-164, October 1991.

Miguel Castro, Nuno Neves, Pedro Trancoso, and Pedro
Sousa. MIKE: A distributed object-oriented program-
ming platform on top of the Mach micro-kernel. In
Proceedings of the USENIX Mach Conference, pages
253-273, April 1993.

K. Mani Chandy and Leslie Lamport. Distributed snap-
shots: Determining global states of distributed sys-
tems. ACM Transactions on Computer Systems, pages
3(1):63—75, February 1985.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and
event ordering in scalable shared memory multiproces-
sors. In Proceedings of the 16th Annual Symposiumon
Computer Architecture, pages 15-26, May 1989.

A. Goldberg, A. Gopal, K. Li, R. Strom, and D. Ba
con. Transparent recovery of Mach applications. In
Proceedings of the Usenix Mach Workshop, pages 169—
184, July 1990.

J. Goodman and P. Woest. The Wisconsin Multicube: A
new large-scal e cache coherent multiprocessor. In Pro-
ceedings of the 15th Annual Symposium on Computer
Architecture, pages 422—-431, June 1988.

Paulo Guedes and Migud Castro. Distributed shared
object memory. In Proceedings of the 4th Workshop on
Workstation Operating Systems, pages 142-149, Octo-
ber 1993.

Golden G. Richard Il and Mukesh Singhal. Using
logging and asynchronous checkpointing to implement
recoverabl e distributed shared memory. In Proceedings
of the 12th Symposiumon Reliable Distributed Systems,
pages 8695, Princeton, New Jersey, October 1993.

Bob Janssens and W. Kent Fuchs. Relaxing consis-
tency in recoverable distributed shared memory. In
The Twenty-Third Annual International Symposium on
Fault-Tolerant Computing: Digest of Papers, pages
155-163, June 1993.

David B. Johnson and Willy Zwaenepoel . Sender-based
message |ogging. In Proceedings of the Seventeenth In-
ternational Symposium on Fault-Tolerant Computing:
Digest of Papers, pages 14-19, July 1987.

R. Koo and S. Toueg. Checkpointing and roolback-
recovery for distributed systems. |EEE Transactionson
Software Engineering, SE-13(1):23-31, January 1987.

Ledlie Lamport. How to make a multiprocessor com-
puter that correctly executes multiprocess programs.
IEEE Transactions on Computers, C-28(9):241-248,
September 1979.

[17] Eliezer Levy and Avi Silberschatz. Incremental recov-
ery in main memory database systems. Technica Re-
port 01, Dept. of Computer Science, University of Texas
at Austin, January 1992.

[18] Kai Li and Paul Hudak. Memory coherence in shared
virtual memory systems. In Proceedings of the 6th In-
ternational Conference on Distributed Computing Sys-
tems, pages 229-239, August 1986.

[19] BarbaraLiskov, Sanjay Ghemawat, Robert Gruber, Paul
Johnson, Liuba Shrira, and Michagl Williams. Replica-
tionin the Harp file system. In Proceedings of the 13th
Symposium on Operating Systems Principles, pages
226-238, October 1991.

[20] J. S. Plank. Efficient checkpointing on MIMD architec-
tures. PhD thesis, Princeton University, June 1993.

[21] B. Randd. System structure for software fault toler-
ance. |EEE Transactionson Software Engineering, SE-
1(2):220-232, June 1975.

[22] R.D. Schlichting and F.B. Schneider. Fail-stop proces-
sors. An approach to designing fault-tolerant comput-
ing systems. ACM Transactionson Computer Systems,
1(3):222-238, August 1983.

[23] Robert E. Strom and Shaula A. Yemini. Optimistic
recovery in distributed systems. ACM Transactionson
Computer Systems, 3(3):204—226, August 1985.

[24] Michael Stumm and Songnian Zhou. Fault tolerant
distributed shared memory agorithms. In Proceedings
of the Second |EEE Symposium on Parallel and Dis-
tributed Processing, pages 719—-724, December 1990.

[25] V. Sunderam. Pvm: A framework for parale dis
tributed computing. Concurrency: Practice & Expe-
rience, 2(4), October 1991.

A THEOREM PROOFS

Theorem 1 The checkpoint protocol bringsthe system
to a consistent state after a single process failure.

Proof sketch: The system isin a consistent state, after
recovery, if al object versionsacquired by surviving threads
are recovered by the protocol. Consider object version V,
that wasacquired by thread ¢id -, in asurviving process, and
created by thread tid..., in the recovering process. If tid,...
created V,, then it acquired V,,_1 for writing. The version
V-1 was acquired (1) locdly in the failed process or (2)
from aremote process. In either case, alog of thisacquireis
left in asurviving process because we are assuming that only
one process fails. In case (1) adummy log entry is created
in the first process that interacted with the failed process,
through the memory coherence protocol. There is always
one such process, because at least the process running tid .,

interacted with the failed process. Case (2) corresponds to
the usual 1og crestion.

During recovery, thread tid,... will try to re-acquire
version V,,_; of the object and then create version V,,. In
case (1), the thread may have to wait until V,,_; isrecreated
by the other recovering threads. In case (2), it simply uses
the version V,,_1, sent by one of the surviving processes.
Therefore, version V,, isrecovered by the protocol.

O

Theorem 2 In the event of multiplefailures, either the
system is brought to a consistent state or the applicationis
aborted.

Proof sketch: The proof that the system can be brought
to aconsistent state is established by an argument similar to
theoneused in the previoustheorem. Wewill concentrate on
proving that the system conservatively detects inconsisten-
cies. Aninconsistency occurs when athread has acquired an
object version from afailed process, which thefailed process
cannot recover.

Assume that thread ¢id; acquired object version V,,.
An entry describing this access was created in the thread’s
depSet. The entry has thevalue <O1, type, ep1, ep3, Pa>
with epy = <tidy, lt1> and ep3 = <tidy, lt5>. The entry
meansthat thread ¢id; acquired versionV,, at logical timeliy;
version V,, was produced by thread tid, and It isthelogical
time of thread ¢id, when the acquire request was satisfied.
This version was produced by ar el ease-wri t e issued
by thread tid, at logical time /3 and It} < I13.

Assume that the process, P,, where tid;, was executing
fails, then (1) theinformationintidi’'s depSet will betrans-
mitted to P, during recovery, unless (2) the process where
tidy was executing failed before the depSet was saved in a
checkpoint.

Consider case (1). The information from the depSet
will be integrated into tid,'s DependList. During the de-
tection process, thread tid, traverses the Log List, which is
ordered by ascending execution points. The detection mech-
anism finds a maximum length prefix of the sequence of
entriesinthe Log List, that includesan element for each log-
ical timesincethelogical timeat checkpoint. If someversion
were lost due to multiple failures the prefix will be a proper
prefix and it discards the rest of thelist.

Since thread tid; acquired version V,,, thread tid, will
find an entry in the DependList for the acquire that was
satisfied at {t3. If 45 is smaller than the logica time of
the last element in the prefix, version V,, can be recovered
because it was produced a /¢ and It} < It3. Otherwise,
the detection mechanism conservatively considers that V,
cannot be recovered and aborts the application.

In case (2) thread tid, will not find ¢id;’s dependency
on version V,,. Therefore, if no other thread depends on
version V,, the detection mechanism will not consider the
systeminconsistent. Infact ¢id; rolled back to alogical time
previousto the acquire.

O

