
A Checkpoint Protocol for an Entry Consistent
Shared Memory System

Nuno Neves, Miguel Castro and Paulo Guedes

IST - INESC

R. Alves Redol 9, 1000 Lisboa PORTUGAL

email: (nuno, miguel, pjg)@inesc.pt

ABSTRACT

Workstation clusters are becoming an interesting alter-
native to dedicated multiprocessors. In this environment, the
probability of a failure, during an application’s execution,
increases with the execution time and the number of work-
stations used. If no provision is made for handling failures,
it is unlikely that long running applications will terminate
successfully. One solution to this problem is process check-
pointing.

This paper presents a checkpoint protocol for a multi-
threaded distributed shared memory system based on the en-
try consistency memory model. The protocol allows trans-
parent recovery from single node failures and, in some cases,
from multiple node failures. A simple mechanism is used to
determine if the system can be brought to a consistent state
in the event of multiple machine crashes.

The protocol keeps a distributed log of shared data ac-
cesses in the volatile memory of the processes, taking advan-
tage of the independent failure characteristics of workstation
clusters. Periodically, or whenever the log reaches a high-
water mark, each process checkpoints its state, independently
from the others. The protocol needs no extra messages dur-
ing the failure-free period, since all checkpoint control in-
formation is piggybacked on the memory coherence protocol
messages.

1 INTRODUCTION

Workstation clusters are becoming an interesting alter-
native to dedicated multiprocessors, due to the improvements
in network and processor technology [5,6,25]. Parallel appli-
cations based on the shared memory programming paradigm
can be supported by software running on the workstation

A version of this paper appeared in the 13th ACM
Symposium on Principles of Distributed Computing, August
1994.

cluster. This software implements a distributed shared mem-
ory (DSM) system. In these systems the application’s threads
of execution see a single shared memory space, which is kept
coherent according to a given memory model. The first DSM
systems used strict models [10,16] resulting in poor perfor-
mance. More recent systems [1,3,8] introduced relaxed con-
sistency memory models, which are capable of delivering
higher performance than strict models.

In workstation clusters, mean time to failure decreases
with increasing number of nodes. Hence, the probability of
a failure during the execution of a long running application
can become intolerably high. One solution to this problem is
process checkpointing. This paper presents a checkpoint pro-
tocol for DiSOM [11], a multi-threaded DSM system based
on the entry consistency memory model [3]. The proto-
col allows transparent recovery from single node failures
and, in some cases, from multiple node failures. It uses a
combination of a distributed log of shared data accesses and
uncoordinated checkpointing.

The logging mechanism is tightly integrated with the
entry consistency memory coherence protocol. In the entry
consistency memory model, shared data objects are associ-
ated with synchronization objects and all accesses to a shared
data object must be enclosed between an acquire and a release
on its associated synchronization object. Synchronization
objects enforce a concurrent read exclusive write synchro-
nization policy. Therefore, the entry consistency constraints
ensure that a thread only observes updates to a shared data
object when it acquires the associated synchronization ob-
ject. These constraints also ensure that updates, performed
by a thread, only become visible after the release.

The logging mechanism creates a log entry with a copy
of the object state, whenever a release is issued by a thread
that acquired the object for writing. The log entry is stored
in the volatile memory of the process where the thread is ex-
ecuting. If a thread in another process subsequently acquires
the object and later that process fails, the object version can
be recovered from the process where the log entry was stored.
This is always possible if we assume a single process per-
node, a single node failure and that nodes fail independently.
This assumption is usually verified in workstation clusters.

The logging overhead is minimal because the log is

stored in volatile memory and all checkpoint control infor-
mation is piggybacked on the memory coherence protocol
messages, avoiding extra messages during the failure-free
period. Contrarily to the sequential consistency memory
model [16], where each update operation must potentially be
logged, our protocol takes advantage of the entry consistency
constraints to avoid logging individual updates.

The checkpoint mechanism saves the state of each pro-
cess on disk, periodically or when the process’ log reaches a
maximum size. We use an uncoordinated protocol [4,14,23]
where each process checkpoints itself, independently of the
others. This way we avoid the overhead of checkpoint coor-
dination and the loss of process autonomy characteristic of
coordinated schemes [7,15,20]. In uncoordinated checkpoint
protocols the domino effect [21] must be prevented to avoid
a cascading of roll backs. Our checkpoint protocol prevents
the domino effect by using the distributed log. Furthermore,
the protocol is pessimistic [4,14], i.e. no thread in a surviving
process has to be rolled back if a failure occurs. Nevertheless,
it keeps the efficiency of optimistic schemes [23], because
logs are kept in the volatile memory of other processes.

The recovery mechanism starts by loading the failed
process’ last checkpoint in a free processor. Then, the recov-
ering process obtains, from the other processes, all the object
versions acquired by its threads between the checkpoint and
the failure. Next, the recovering process threads re-execute,
acquiring the same versions of the same objects as they did
before the failure. This assumes that threads execute in a
piece-wise deterministic manner [9]. After recovery, in the
event of a single process failure, the system will be in a
consistent state. On the other hand, if multiple process fail-
ures occurred it might be impossible to recover the system
to a consistent state. The recovery mechanism detects this
situation and aborts the application.

The paper is organized as follows. The next section
presents related work. The system model is described in sec-
tion 3. In section 4 the checkpoint protocol and the distributed
shared data log are explained. We draw our conclusions in
section 5. In appendix A we present proof sketches of the
theorems mentioned in the paper.

2 RELATED WORK

One way to tolerate faults in a distributed system is
to use process checkpointing. In coordinated checkpoint
schemes [7,15,20], processes coordinate to ensure that the
set of process checkpoints represents a consistent state of the
system. These systems tolerate multiple failures at the ex-
pense of checkpoint coordination. In uncoordinated check-
point schemes [4,14,23], processes take checkpoints inde-
pendently. After a failure a consistent state is reached by
recovering the failed processes’ checkpoints and possibly by
rolling back some surviving processes. Logging can be used
to prevent roll back propagation.

In a message passing system, message logging can be
made in the receiver [23] or in the sender [14]. Our shared

memory abstraction is implemented using messages, there-
fore we could use a message logging protocol to achieve fault
tolerance. This solution would perform worse than our pro-
tocol because our protocol takes advantage of the memory
model constraints to avoid logging all the information in all
the messages.

Most of the previous work in checkpoint protocols for
DSM systems on workstation clusters was based on the se-
quential consistency memory model [12,24]. The protocols
proposed by Stumm and Zhou [24] only offer a partial so-
lution to the process recovery problem, since only the state
of shared pages is recovered. In their read-replication al-
gorithm a process sends a copy of the dirty pages on every
message send. Richard and Singhal [12] logged all the pages
acquired in the volatile memory of the acquirer and saved the
log in stable storage whenever a modified paged was trans-
ferred to another process. The only reference we found about
checkpointing in relaxed consistent DSM was by Janssens
and Fuchs [13]. In their protocol a process is checkpointed
exactly before its updates become visible to the other pro-
cesses. They used this characteristic to reduce the number
of checkpoints needed for recovery. They presented results
from trace-driven simulations showing a five- to ten-fold de-
crease in checkpoint overhead over sequential consistency
based techniques.

Our checkpoint protocol is also based in a relaxed con-
sistency memory model but it uses the releaser’s volatile
memory to log updates to shared data objects. The log is used
to avoid roll back propagation. The checkpoint frequency is
independent of the application’s actions. Therefore, it can be
chosen based only on recovery time constraints. Unlike most
checkpoint protocols ours supports multiple-threads per pro-
cess. Although the protocol only guarantees recovery from
single failures, a simple detection mechanism is used to de-
termine if the system can be brought to a consistent state, in
the event of multiple failures.

3 SYSTEM MODEL

DiSOM is composed of a set of processes, one on each
workstation in the cluster. Processes communicate only by
message passing. Messages are delivered reliably and in
FIFO order. Each process is viewed as a collection of re-
sources, which provides an execution environment for multi-
ple threads. These resources include an address space, where
a subset of the shared objects is mapped.

Threads run in a piece-wise deterministic manner [9],
i.e. the execution of a thread is divided into deterministic
intervals started by nondeterministic events. A new interval
starts when a thread acquires an object for reading or writing
and ends at the next acquire. If the piece-wise determinism
assumption holds, a process can be recovered by restoring
its state from a checkpoint, letting its threads re-execute and
ensuring that they re-acquire the same versions of the same
objects. Each thread maintains a counter called logical time,

� �
, which is incremented whenever an acquire is issued, the

2

acquire’s logical time is the incremented value. The system
assigns a unique identifier,

�����
, to each thread. The

�����
is

composed of the process identifier and a local thread identi-
fier. Therefore, the process identifier can be obtained from
the

�����
. The tuple � ������� � ���

identifies a unique execution
point, 	�
 , in the system, i.e. it identifies a thread and a log-
ical instant in its execution. We say that an operation was
executed at 	�
��
� ������� � ���

if
�����

executed the operation at
� �

. We also define the relations � and � as follows : 	�
����
	�
�� iff

����� ��� ����� ��� � � ��� � � � and 	�
�����	�
�� iff
����� ��� ����� �

� � � ��� � � � .
We consider a fail-stop model [22], where a proces-

sor fails by halting and all surviving processors detect the
node failure within bounded time. Network partitions are
not tolerated. We do not rely on special hardware support,
e.g. non-volatile RAM [2,17] or uninterruptible power sup-
ply [19].

3.1 MEMORY COHERENCE MODEL

A memory coherence protocol is best described as a
contract between the system and the application program.
If the program satisfies the contract’s requirements the sys-
tem guarantees that the program views a sequentially con-
sistent memory [16], which is the model expected by most
programmers. DiSOM uses the entry consistency memory
coherence protocol introduced by Midway [3]. The contract
imposed by entry consistency on the program is as follows.
Firstly, the program has to identify the relationships between
synchronization objects and data objects and explicitly asso-
ciate them. Synchronization objects enforce concurrent read
exclusive write synchronization and data objects are arbi-
trarily sized language-level data items. Secondly, all write
accesses to a shared object must be enclosed between an
acquire-write operation and a release-write op-
eration, on the synchronization object associated with the
data object. The updates only become visible in another pro-
cess when a thread in that process subsequently acquires the
object. A thread acquires an object when it executes either
an acquire-write or acquire-read operation. Ac-
quires are synchronous, i.e. a thread is blocked until the ac-
quire completes. Thirdly, all read accesses must be enclosed
between either an acquire-read and a release-read
or an acquire-write and a release-write. The
program should useacquire-read and release-read
pairs to maximize concurrency and thus performance.

The evolution of an object state can be seen as a sequence
of versions ����� 0

� � 1
�! " "

. The initial version, � 0, is the
object’s state at creation time. When a thread acquires an
object for writing, a copy of the last object version is created.
All updates performed by the thread, prior to the release, are
reflected in this copy. A new version, based on the copy, is
produced when the thread releases the object. The thread is
called the producer of the version. If an object is acquired
for reading and later released, no version is produced. The
last version of an object is the last element in the sequence.

i

j

X

X Z

ZYY

Y Y

2

13

2

1

1

2

2

S1 S2 S3

w

w w

r

w w

rw

Figure 1: Three system states S1, S2 and S3. System states
S1 and S2 are inconsistent and S3 is consistent.

A suffix of the sequence of versions may be lost due to a
failure. A system state is consistent if all threads, holding
objects, hold the last versions of those objects and no thread
has acquired a version of an object that was lost due to a
failure.

During the failure free period, the memory coherence
protocol keeps shared memory in a consistent state. After a
failure the system must be brought back to a consistent state.
Figure 1 depicts the execution of two threads in different
processes. The notation #%$& is used to represent an acquire
of the version ' of object # . The type

�
of the acquire is

either read, (, or write,) . S1, S2 and S3 are system states.
System state S3 is the only consistent state. S1 is inconsistent
because the acquire *,+2 is included in the system state and
the previous acquire *,-1 is not. Similarly, S2 is inconsistent.

4 THE CHECKPOINT PROTOCOL

The next section describes the data structures used by
the protocol. The use of these structures is explained in
sections 4.2 and 4.3. These sections describe the failure-free
behavior and the recovery procedure. The garbage collection
procedure applied to the protocol data structures is presented
in section 4.4. The last section explains the detection of
inconsistencies in the event of multiple failures.

4.1 DATA STRUCTURES

probOwner; // probable owner
status; // object status
copySet; // list of readers

objId; // object identifier

epDep; // ep dependency

version; // version number

Figure 2: Object data structure.

DiSOM uses a modified version of Li’s dynamic dis-
tributed manager protocol [18] to keep the shared mem-
ory coherent and implement synchronization1. The proto-

1DiSOM uses distributed copy sets. In this paper, to clarify the descrip-
tion, we present a simplified version of the algorithm with centralized copy
sets.

3

col maintains an instance of the data structure presented in
figure 2 for each shared object. The first field, � ������� , is a
system wide unique identifier. The '�	��	� � �	
 field contains
the version number of the local copy of the object. The pro-
tocol associates with each object the notion of ownership.
The �	��
 	�� of an object is the process that keeps the last ver-
sion of the object, i.e. the last process from which a thread
has acquired the object for writing. The field

�	� � #���
 	��
is a hint to the identity of the object’s owner. The system
guarantees that the true owner of an object can be reached
by following the distributed

�	� � #���
 	�� chain. The � ��� ��� �
field indicates how the object is being used, e.g. held for
writing, reading or not held, and the accesses permitted on
the object’s local copy. Finally, the ����

����	 �

is a set whose
elements are the identifiers of all the processes with a read-
able copy of the object. Whenever an object is acquired for
reading by a thread, a read-only copy is kept in the process
where the thread is executing. Threads in that process can
successively re-acquire the object for reading, without inter-
acting with any other process, until a writer invalidates the
copy. When an object is acquired for writing, the new writer
uses the ����

����	 �

to invalidate the read-only copies kept in
the other processes.

We call an acquire
� �	� � �

when an object is re-acquired
by a thread in the same process. This local acquire can occur
when the process has an up-to-date version of the object,
i.e. the process is the owner or has a read-only copy of the
object. The order of local acquires prior to a failure must
be reproduced during recovery. We use the field 	�

� 	�
 to
achieve this goal. It records an execution point.

tid; // identifier
lt; // logical time

depSet; // dependencies
waitObj; // requested object

Figure 3: Thread data structure.

An instance of the data structure in figure 3 is kept
by each thread. The field

�����
uniquely identifies the thread

and
� �

is the thread’s logical time. The field � � � � # ��� is
used by the protocol during process recovery to re-issue ob-
ject acquires that could have been lost due to the failure.
It has the form ��� ��������� � �
�	 � . If not null, it means that
the thread has issued an acquire request of

� �
�	 ((��)) for
object � ������� , which has not completed. The set

� 	�

��	 �

is used to record a description of the thread’s dependen-
cies. An acquiring thread,

�����������
, depends on a producer

thread,
�������

+! , if
�����"�����

acquired an object version produced
by

�������
+! . The

� 	�

��	 �
has an entry per each acquire per-

formed by the thread in the past. Each entry has the form
��� ��������� � �
�	 � 	�
 ������� 	�
 � +!

�!# �
. This tuple should be read

as follows: a version of � ������� was acquired for
� �
�	 ((��))

when the acquiring thread’s execution point was 	�
 ����� and
the producer thread’s execution point was 	�
 � +! and it is
logged in process

#
. The

#
field usually stores the process

identifier of the process where the producer thread was run-
ning. The exception occurs with local acquires as will be
explained in the next section.

tidPrd; // producer

threadSet; // threads which accessed the object

objData; // object data

objId; // object identifier

nextOwner; // next owner process

version; // version number

Figure 4: Log entry data structure.

Each process maintains a list of log entries, see figure 4.
A log entry is created when a release-write is issued.
It records the object’s identifier, its version number, its data,
�����"# � � ,
 	�$ � #���
 	�� and the

��% � 	 � � ��	 �
. The field

�����"# � �
contains the identifier of the thread that produced the logged
object version. The
 	�$ � #���
 	�� field is initially null. When
this object version is acquired for writing, it is filled with the
identifier of the new owner process. The

��% � 	 � � ��	 �
elements

are pairs of execution points, which represent acquires of
the logged object version. In each pair, � 	�
 ������� 	�
 � +!

�
,

	�
 ����� is the execution point of the acquire and 	�
 � +! is the
producer thread’s execution point when the acquire request
was satisfied.

localDep; // local dependency

objId; // object identifier
epAcq; // acquire execution point

Plog; // process where it is logged

Figure 5: Dummy log entry data structure.

A dummy log entry, see figure 5, is created whenever a
local acquire is issued. The entries are used to describe local
acquires in order to reproduce them during recovery. The
dummy entry cannot be stored in the local process’ volatile
memory because if the process fails it will be lost. Therefore
the entry is sent to another process. Each process maintains
a list of dummy log entries received from other processes.
Each entry records the object’s identifier and the execution
point of the local acquire, 	�
�&���' , that produced the dummy
log entry. The field

� �	� � � � 	�
 records the execution point of
the local event that precedes this acquire. The

� ��(field is
only used during recovery.

We call the log entries described in figure 4 regular log
entries, to distinguish them from the dummy log entries.

4.2 FAILURE-FREE BEHAVIOR

During the failure-free period, threads execute their pro-
grams and acquire objects for reading or writing. The mem-
ory coherence protocol keeps shared objects consistent. The
checkpoint protocol logs data necessary to recovery and pig-
gybacks its control information on the memory coherence

4

protocol messages. This section describes the checkpoint
protocol and a simplified version of the memory coherence
protocol2.

Whenever a non-local acquire is issued the following
steps are executed:

1. When a thread tries to acquire an object, a request is
sent to the object’s

�	� � #���
 	�� with the form ([� ������� ,
� �
�	 , # �����

], [�
 �����]). This request carries the type
of the acquire,

� �
�	 , the local process identifier,
�����

,
and the execution point of the acquire, 	�
 ����� . Then the
thread’s � � � � # ��� is filled with � ������� and

� �
�	 . Next,
the requester thread blocks waiting for the reply.

2. The request is forwarded along the

�	� � #���
 	�� chain,
until it reaches the owner process. When the owner
process receives the request, if it is a read request and
the object is currently held for writing, the request is
queued. Similarly, a write request is queued if the
object is held for reading or writing. When the request
is allowed to proceed, the pair � 	�
 ����� , 	�
 � +!

�
is added

to the
��% � 	 � � ��	 �

, in the object’s last version in the log.
The 	�
 � +! is the current execution point of the producer
thread. Then, a response with the form ([� ��� � � ���

,# �
+!], [�
 � +! , '�	��	� � �	
]) is returned. The response

carries the identifier of the owner process,
�
+! , and the

object version obtained from object structure, '�	��	� � �	
 .
Based on the type of the request, the owner also does
the following updates to the system data structures:

(a) Read request:
�����

is added to the ����

����	 �
.

(b) Write request: The ownership is moved to the
new writer, along with the ����

����	 �

, and the

�	� � #���
 	�� field is updated to point to the new
writer. The field
 	�$ � #���
 	�� in the log is made
equal to

�����
.

3. The requesting thread receives the response. If it is the
reply to a write request, it sends a message to all the
processes in the ����

����	 �

invalidatingtheir read copies.
In both cases, the tuple ��� ��������� � �
�	 � 	�
 ����� � 	�
 � +!

�
�
+!
�

is added to the thread’s
� 	�

��	 �

, revealing the
dependency from 	�
 ����� to 	�
 � +! , the '�	��	� � �	
 in the
object structure is set to the value of '�	��	� � �	
 in the
reply and � � � � # ��� 	�� �

is nullified. The 	�

� 	�
 in the
object is made equal to 	�
 ����� and then the thread is
allowed to resume execution.

4. The thread eventually releases the object. If the local
process is the owner the 	�

� 	�
 field in the object
structure is updated with the execution point of the
release. If the object was acquired for writing, the
version number in the object structure is incremented

2Throughout the description messages are represented by the tuple ([�],
[

�
]) , where � and

�
are the information sent by the memory coherence

protocol and the checkpoint protocol, respectively. Symbols with the “acq”
subscript are related to the acquiring thread and symbols with the “prd”
subscript are related to the thread that produced the object version.

and an entry for this version is created in the log. This
entry records the object’s identifier, � ������� , the object
version, '�	��	� � �	
 , the object’s data associated with the
version, � ��� � � ���

, and the identifier of the producer
thread,

�����"# � � .

The procedure outlined above assumes that the releasing
thread and the acquiring thread execute in different processes,
that fail independently. The assumption fails whenever there
is a local acquire. Whenever a local acquire is issued the
following steps are executed:

1. When a thread issues a local acquire a dummy log
entry is created. The fields in the dummy entry are
used in the following way: the identifier of the ob-
ject is stored in the � ������� field, the execution point of
the acquire is saved in 	�
�&���' and the value of 	�

� 	�

from the object structure is recorded in the

� �	� � � � 	�

field. Additionally, the thread inserts a new depen-
dency, ��� ��������� � �
�	 � 	�
 ������� 	�
 � +!

�!# �
, in the

� 	�

��	 �
.

The value of the entry’s 	�
 � +! is set to the value 	�

� 	�
 .

2. The release step is identical to the non-local acquire
release step.

3. The dummy entry is kept locally until a message is sent
by the memory coherence protocol. Then, the entry is
sent with the message, to ensure that it will not be lost if
the local process fails. The receiver process,

� , saves
the entry in its log and sets the entry’s

� ��(field equal
to its identifier. The local process deletes the entry and
stores

� in the
#

field of the dummy dependency.

From time to time, each process checkpoints itself in
an asynchronous way, independently from the others. The
checkpoint is stored in stable storage. The size of the ob-
ject log and the elapsed time since the last checkpoint are
used to determine the moment to take the checkpoint. The
checkpoint includes each thread’s stack and machine state,
the shared data and all system data structures (e.g. the log
and per-thread data structures).

4.3 FAILURE RECOVERY

When a machine crash is detected, the process running
on that node has to be recovered. Process recovery restores
the shared objects and the system data structures to a state
consistent with the rest of the system. When recovery is
completed the system is able to recover from subsequent
faults on any process. In the appendix we prove that the
checkpoint protocol brings the system to a consistent state
after a single process failure.

The first step to recover a process is to get its most
recent checkpoint and reload it in a free processor. Then,
the process state is reconstructed from the checkpoint in two
steps. In the first step, the surviving processes collect all data
necessary to recover the failed process. The entries kept in
the log and dummy log are used to restore the state of the

5

data objects in the failed process. The data contained in the
dependencies is used to recover the log. In the second step,
the failed threads re-execute their programs, acquiring the
same versions of the objects as they originally did, until the
recovery is completed.

4.3.1 DATA COLLECTION

The failed process,
�����

, logically broadcasts a mes-
sage asking for all information related to its threads. The
request message contains the set

���

��	 �
, whose elements

are the execution points of
�����

’s threads at checkpoint time.
When a surviving process receives the message it executes
the following steps, creating the sets � ��("��	 �

, � 	�
�	�
 � ��	 �

and � ����� ����	 �
:

1. Determine the object versions acquired by the recov-
ering threads which were produced locally. The log
entries are inspected and the ones with 	�
 ����� � 	�
 �����
for each 	�
 �����
	����

��	 �

and each � 	�
 ����� , 	�
 � +!
�

	 ��% � 	 � � ��	 �
, are added to the � ��("��	 �

.

2. Determine which dummy log entries, created in the
failed process, are stored locally. The dummy log
entries are inspected and the ones with 	�
 ����� � 	�
�&���'
for each 	�
 ������	
���

��	 �

are added to the � ��("��	 �
.

3. Determine which objects produced in the failed process
were acquired by the local threads. The

� 	�

��	 �
of each

local thread is examined, and all entries with 	�
 �����
��	�
 � +! for each 	�
 ������	����

��	 �

, are added to the
� 	�
�	�
 � ��	 �

.

4. Determine if any dummy logged object, created lo-
cally, was saved in the failed process. The

� 	�

��	 �

of each thread is examined and entries with 	�
 � +!
from a local thread and

� # �����
are added to the

� ����� ����	 �
.

5. Pending acquire requests may have been lost due to the
failure. The � � � � # ��� of each blocked thread, in the
surviving process, is used to re-issue pending acquire
requests. Duplicate requests are detected and discarded
by the memory coherence protocol.

The various sets are then sent to the recovering process
and the surviving process has completed its contribution to
the recovery.

4.3.2 LOG REPLAY

The recovering process collects all responses, merges
the various � ����� ����	 �

into a single � ����� ����	 �
and or-

ganizes the data from the � ��("��	 �
and � 	�
�	�
 � ��	 �

in a group
of lists. There are two lists per thread, the � ��(�� � � �

and the
� 	�
�	�
 � � � � �

, one for each type of set. Additionally the re-
covering process creates the

�
 ' � � ��� ��	 �
, which is initially

empty.

Each thread’s � ��(�� � � �
contains regular log entries and

dummy log entries. These entries correspond to acquires
performed by the thread. The recovering process creates the
� ��(�� � � �

of thread
�����

using the elements from the various
� ��("��	 �

in the following way:

� If the element is a regular log entry and the value of
	�
 ����� in one of the pairs in the element’s

��% � 	 � � ��	 �

is an execution point of thread
�����

, then the element is
inserted in

�����
’s � ��(�� � � �

.

� If the element is a dummy log entry and the value of
the element’s 	�
�&���' field is an execution point of

�����
,

then the element is inserted in
�����

’s � ��(�� � � �
.

The � ��(�� � � �
is ordered by ascending execution points,

i.e. the regular entries are ordered by the value of 	�
 ����� and
dummy entries are ordered by the value of 	�
�&���' .

The � 	�
�	�
 � � � � �
contains the description of the ac-

quires, performed by surviving threads, of object versions
produced by the thread. The � 	�
�	�
 � � � � �

of thread
�����

contains the dependency entries from the � 	�
�	�
 � ��	 �
where

	�
 � +! is an execution point of thread
�����

. The list is ordered
by ascending values of 	�
 � +! .

Recovering threads begin to re-execute when all data is
organized. During the log replay, the acquires issued by the
recovering threads are trapped by the system. Instead of the
usual acquire algorithm the thread obtains the object versions
locally from the � ��(�� � � �

, without exchanging any message
with the other processes. Since the � ��(�� � � �

is ordered by
ascending execution points, the object versions are arranged
in the order by which they were originally acquired.

The shared objects state and the thread’s
� 	�

��	 �

are re-
covered by executing the following sequence of steps when-
ever a thread issues an acquire:

1. It removes the first element from its � ��(�� � � �
. If this

element is a regular log entry, the thread waits until
all the previous versions of the object are acquired by
the other threads. When the thread is allowed to pro-
ceed it updates the object state with the logged object
data. Otherwise, if this element is a dummy log entry,
the thread waits until the event with execution point

� �	� � � � 	�
 is reproduced. Note that during recovery no
dummy entries are created.

2. The thread adds a new dependency, ��� ��������� � �
�	 �
	�
 ������� 	�
 � +!

� # �
, to its

� 	�

��	 �
. In the case of a

regular log entry the value of 	�
 � +! is retrieved from
the entry’s

��% � 	 � � ��	 �
and

#
is the identifier of the

process where the version was produced. Otherwise,
	�
 � +! and

#
are set to the values of

� �	� � � � 	�
 and
� ��(

from the dummy entry.

3. In order to recover the

�	� � #���
 	�� and � ��� ��� � field in
the object structure, every time an object is acquired,
if the
 	�$ � #���
 	�� field in the regular log entry is not
null, the pair ��� ���������
 	�$ � #���
 	�� � is added to the

6

�
 ' � � ��� ��	 �
. On the other hand, if
 	�$ � #���
 	�� is null,

the pair is removed from the
�
 ' � � ��� ��	 �

.

The protocol recovers log entries as follows. When
a thread issues a release-write it creates a regular log
entry. The entry’s

��% � 	 � � ��	 �
is recovered using the elements

from the � 	�
�	�
 � � � � �
. The
 	�$ � #���
 	�� field in the log

entry is left null, unless there is an element in � 	�
�	�
 � � � � �

representing an acquire for writing. In that case the element’s
	�
 ����� is used to update the
 	�$ � #���
 	�� field. If there is no
such element, then the process was still the object owner
when the failure occured. In this case, the object’s ����

����	 �

is recovered using the
��% � 	 � � ��	 �

.
When all thread lists are empty, the

�	� � #���
 	�� and

� ��� ��� � fields in each object structure are recovered. For each
pair in

�
 ' � � ��� ��	 �
the local object version is invalidated, i.e.

� ��� ��� � is set to no-access, and the

�	� � #���
 	�� is set to the
value of
 	�$ � #���
 	�� in the pair.

The dummy log entries that were kept in the failed pro-
cess are recovered using the elements in the � ����� ����	 �

.
For each element in the � ����� ����	 �

, ��� ��������� � �
�	 � 	�
 ����� �
	�
 � +!

�	# �
, a new dummy log entry is added to the process’

list of dummy log entries. The dummy entry has the fields
� ������� , 	�
�&���' ,

� �	� � � � 	�
 and
� ��(equal to the fields � ������� ,

	�
 ����� , 	�
 � +! and
#

from the � ����� ����	 �
element. Recov-

ery is finally complete and requests received during recovery,
which were blocked, are replied to and the normal execution
mode is resumed.

The duration of the recovery period grows proportion-
ally to the elapsed time, starting at the last checkpoint and
ending at the failure. In an environment where failures are
rare, checkpoints can be made less frequently, allowing a
more efficient behavior during the failure-free period. Nev-
ertheless, the protocol tries to reduce interference between
the surviving processes and the recovering process. Surviv-
ing threads do not have to roll back and after sending the
information needed for recovery, they only have to wait for
the recovering threads, if they need an object which is being
reconstructed.

4.4 GARBAGE COLLECTION

The log, the dummy log and the
� 	�

��	 �

data structures
must be garbage collected to avoid memory exhaustion.

We call an object version old if it is not the last object
version and we call the corresponding log entry an old log
entry. Old log entries which were not acquired by remote
threads, are not needed for the recovery of any process. After
a process,

�����
, checkpoints its state it deletes these entries,

i.e. old entries with an empty
��% � 	 � � ��	 �

.
The object versions logged in the other processes which

were accessed by
�����

’s threads prior to the checkpoint are
no longer needed for its recovery. After the checkpoint,

�����
creates a set,

���

��	 �
, with the execution points of its threads

at checkpoint time. Next, it logically broadcasts the
���

��	 �

to the other processes. The receiver processes traverse their
logs and remove pairs, � 	�
 ����� � 	�
 � +!

�
, from the various

��% � 	 � � ��	 �
according to the condition 	�
 ����� ��	�
 ����� for

each 	�
 ������	
���

��	 �
. An empty

��% � 	 � � ��	 �
means that the

logged object version is no longer needed for the recovery of
any thread and, if it is an old object version, it can be deleted.

The dummy log entries created by
�����

before the
checkpoint can be discarded. Those entries which are still
stored in

�����
are simply deleted. An entry which is stored

in another process is deleted when that process receives the
message with the

���

��	 �
, if it meets the condition 	�
�&���' �

	�
 ����� for each 	�
 ������	
���

��	 �
.

After a process checkpoint, dependencies in preceding
intervals are no longer needed to recover that process’ log.
Therefore, the

� 	�

��	 �
entries can be garbage collected in

the same way as the log entries. When a process receives a
message with a

���

��	 �
, it traverses the

� 	�

��	 �
of its threads

and removes entries with 	�
 � +! � 	�
 ����� , for any 	�
 �����
	���

��	 �
.

4.5 MULTIPLE FAILURES

The protocol ensures that the system is brought to a
consistent state after a single node failure. However, if more
than one processor fails, it might be impossible to restore
the system to a consistent state. The protocol detects these
situations with a conservative mechanism. The mechanism
detects all situations that can lead to an inconsistent state but
in some circumstances it can be pessimistic. In the appendix
we prove that in the event of multiple failures, either the
system is brought to a consistent state or the application is
aborted.

The detection is accomplished after the receipt of the re-
sponses from all the processes, including the recovering ones
(each process knows the identifiers of all the other processes
involved in the computation). A recovering process replies
as soon as its checkpoint is loaded. The detection mechanism
traverses the per-thread � ��(�� � � �

searching for a maximum
length prefix, that includes an element for each logical time
since the logical time at checkpoint. If a logged object ver-
sion was lost due to a failure the prefix will be a proper prefix
and the rest of the list is discarded. It might be impossi-
ble to recover the system to a consistent state when there is
an element in the thread’s � 	�
�	�
 � � � � �

with a logical time
larger than the logical time of the last element in the prefix.
This situation occurs when a process has acquired a version
of an object that might not be recovered. In this situation
the application is aborted. Otherwise, recovery proceeds as
described in the previous section.

5 CONCLUSIONS

We presented a checkpoint protocol for parallel appli-
cations, running in a workstation cluster. Applications are
composed of multiple threads of execution that communi-
cate by sharing memory. Shared memory is kept coherent
according to the entry consistency memory model. The pro-
tocol allows transparent recovery from single node failures

7

and, in some cases, from multiple node failures. In the latter
case, the protocol guarantees that the application is either
brought to a consistent state or an inconsistency is detected
and the application aborted.

The protocol’s main design goal is an efficient behav-
ior during the failure-free period. It takes advantage of the
independent failure characteristics of workstation clusters to
log shared memory accesses in the volatile memory of the
cooperating processes. Each process checkpoints its state
periodically or when the log reaches a maximum size. The
use of distributed logs permits a choice of checkpoint fre-
quency independent of the application’s actions, considering
only recovery time constraints. Hence, in a cluster where
failures are rare, checkpoints can be made less frequently.
The checkpoint protocol is tightly integrated with the entry
consistency memory coherence protocol. It uses the con-
straints imposed by the memory model to reduce the number
of shared data accesses that need to be logged. Furthermore,
no extra messages are necessary during the failure-free pe-
riod, since all checkpoint control information is piggybacked
on the memory coherence protocol messages.

Currently we are studying ways to generalize the pro-
tocol, by applying it to other relaxed consistency memory
models. We are also exploring ways to integrate other forms
of synchronization with the checkpoint protocol.

ACKNOWLEDGEMENTS

Special thanks go to Ellen Siegel for her careful reading
of this manuscript and for her many suggestions that led to
its improvement. We would like to thank Paulo Verissimo,
David Matos, Luis Rodrigues and the anonymous referees
for their comments on early versions of this manuscript. We
would also like to thank to Paulo Meneses for his work on
DiSOM’s compiler.

REFERENCES

[1] S. V. Adve and M. D. Hill. A unified formalization
of four shared-memory models. IEEE Transactions on
Parallel and Distributed Systems, 4(6):613–624, June
1993.

[2] Mary Baker and Marl Sullivan. The Recovery Box:
Using fast recovery to provide high availability in the
UNIX environment. In Proceedings of the Summer
1992 USENIX Conference, pages 31–44, June 1992.

[3] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon.
The midway distributed shared memory system. In
Proceedings of the 93 COMPCON Conference, pages
528–537, February 1993.

[4] Anita Borg, Jim Baumbach, and Sam Glazer. A message
system supporting fault tolerance. In Proceedings of the
9th ACM Symposium on Operating Systems Principles,
pages 90–99, October 1983.

[5] J.B. Carter, J.K. Bennett, and W. Zwaenepoel. Imple-
mentation and performance of Munin. In Proceedings
of the 13th Symposium on Operating System P rinciples,
pages 152–164, October 1991.

[6] Miguel Castro, Nuno Neves, Pedro Trancoso, and Pedro
Sousa. MIKE: A distributed object-oriented program-
ming platform on top of the Mach micro-kernel. In
Proceedings of the USENIX Mach Conference, pages
253–273, April 1993.

[7] K. Mani Chandy and Leslie Lamport. Distributed snap-
shots: Determining global states of distributed sys-
tems. ACM Transactions on Computer Systems, pages
3(1):63–75, February 1985.

[8] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory consistency and
event ordering in scalable shared memory multiproces-
sors. In Proceedings of the 16th Annual Symposium on
Computer Architecture, pages 15–26, May 1989.

[9] A. Goldberg, A. Gopal, K. Li, R. Strom, and D. Ba-
con. Transparent recovery of Mach applications. In
Proceedings of the Usenix Mach Workshop, pages 169–
184, July 1990.

[10] J. Goodman and P. Woest. The Wisconsin Multicube: A
new large-scale cache coherent multiprocessor. In Pro-
ceedings of the 15th Annual Symposium on Computer
Architecture, pages 422–431, June 1988.

[11] Paulo Guedes and Miguel Castro. Distributed shared
object memory. In Proceedings of the 4th Workshop on
Workstation Operating Systems, pages 142–149, Octo-
ber 1993.

[12] Golden G. Richard III and Mukesh Singhal. Using
logging and asynchronous checkpointing to implement
recoverable distributed shared memory. In Proceedings
of the 12th Symposium on Reliable Distributed Systems,
pages 86–95, Princeton, New Jersey, October 1993.

[13] Bob Janssens and W. Kent Fuchs. Relaxing consis-
tency in recoverable distributed shared memory. In
The Twenty-Third Annual International Symposium on
Fault-Tolerant Computing: Digest of Papers, pages
155–163, June 1993.

[14] David B. Johnson and Willy Zwaenepoel. Sender-based
message logging. In Proceedings of the Seventeenth In-
ternational Symposium on Fault-Tolerant Computing:
Digest of Papers, pages 14–19, July 1987.

[15] R. Koo and S. Toueg. Checkpointing and roolback-
recovery for distributed systems. IEEE Transactions on
Software Engineering, SE-13(1):23–31, January 1987.

[16] Leslie Lamport. How to make a multiprocessor com-
puter that correctly executes multiprocess programs.
IEEE Transactions on Computers, C-28(9):241–248,
September 1979.

8

[17] Eliezer Levy and Avi Silberschatz. Incremental recov-
ery in main memory database systems. Technical Re-
port 01, Dept. of Computer Science, University of Texas
at Austin, January 1992.

[18] Kai Li and Paul Hudak. Memory coherence in shared
virtual memory systems. In Proceedings of the 6th In-
ternational Conference on Distributed Computing Sys-
tems, pages 229–239, August 1986.

[19] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul
Johnson, Liuba Shrira, and Michael Williams. Replica-
tion in the Harp file system. In Proceedings of the 13th
Symposium on Operating Systems Principles, pages
226–238, October 1991.

[20] J. S. Plank. Efficient checkpointing on MIMD architec-
tures. PhD thesis, Princeton University, June 1993.

[21] B. Randel. System structure for software fault toler-
ance. IEEE Transactions on Software Engineering, SE-
1(2):220–232, June 1975.

[22] R.D. Schlichting and F.B. Schneider. Fail-stop proces-
sors: An approach to designing fault-tolerant comput-
ing systems. ACM Transactions on Computer Systems,
1(3):222–238, August 1983.

[23] Robert E. Strom and Shaula A. Yemini. Optimistic
recovery in distributed systems. ACM Transactions on
Computer Systems, 3(3):204–226, August 1985.

[24] Michael Stumm and Songnian Zhou. Fault tolerant
distributed shared memory algorithms. In Proceedings
of the Second IEEE Symposium on Parallel and Dis-
tributed Processing, pages 719–724, December 1990.

[25] V. Sunderam. Pvm: A framework for parallel dis-
tributed computing. Concurrency: Practice & Expe-
rience, 2(4), October 1991.

A THEOREM PROOFS

Theorem 1 The checkpoint protocol brings the system
to a consistent state after a single process failure.

Proof sketch: The system is in a consistent state, after
recovery, if all object versions acquired by surviving threads
are recovered by the protocol. Consider object version ���
that was acquired by thread

�����
��� + , in a surviving process, and

created by thread
�����
+ �
�
, in the recovering process. If

�����
+ �
�

created ��� , then it acquired ����� 1 for writing. The version
����� 1 was acquired (1) locally in the failed process or (2)
from a remote process. In either case, a log of this acquire is
left in a surviving process because we are assuming that only
one process fails. In case (1) a dummy log entry is created
in the first process that interacted with the failed process,
through the memory coherence protocol. There is always
one such process, because at least the process running

�����
��� +

interacted with the failed process. Case (2) corresponds to
the usual log creation.

During recovery, thread
�����
+ �
�

will try to re-acquire
version ����� 1 of the object and then create version ��� . In
case (1), the thread may have to wait until ����� 1 is recreated
by the other recovering threads. In case (2), it simply uses
the version ����� 1, sent by one of the surviving processes.
Therefore, version ��� is recovered by the protocol.

	

Theorem 2 In the event of multiple failures, either the
system is brought to a consistent state or the application is
aborted.

Proof sketch: The proof that the system can be brought
to a consistent state is established by an argument similar to
the one used in the previous theorem. We will concentrate on
proving that the system conservatively detects inconsisten-
cies. An inconsistency occurs when a thread has acquired an
object version from a failed process, which the failed process
cannot recover.

Assume that thread
�����

1 acquired object version ��� .
An entry describing this access was created in the thread’s� 	�

��	 �

. The entry has the value � # 1
� � �
�	 � 	�
 1

� 	�
 2
2
��#

2
�

with 	�
 1 � � �����
1
� � �

1
�

and 	�
 2
2 � � �����

2
� � � 2

2
�

. The entry
means that thread

�����
1 acquired version ��� at logical time

� �
1;

version ��� was produced by thread
�����

2 and
� � 2

2 is the logical
time of thread

�����
2 when the acquire request was satisfied.

This version was produced by a release-write issued
by thread

�����
2 at logical time

� � 1
2 and

� � 1
2 � � � 2

2.
Assume that the process,

#
2, where

�����
2 was executing

fails, then (1) the information in
�����

1’s
� 	�

��	 �

will be trans-
mitted to

#
2 during recovery, unless (2) the process where

�����
1 was executing failed before the

� 	�

��	 �
was saved in a

checkpoint.
Consider case (1). The information from the

� 	�

��	 �

will be integrated into
�����

2’s � 	�
�	�
 � � � � �
. During the de-

tection process, thread
�����

2 traverses the � ��(�� � � �
, which is

ordered by ascending execution points. The detection mech-
anism finds a maximum length prefix of the sequence of
entries in the � ��(�� � � �

, that includes an element for each log-
ical time since the logical time at checkpoint. If some version
were lost due to multiple failures the prefix will be a proper
prefix and it discards the rest of the list.

Since thread
�����

1 acquired version ��� , thread
�����

2 will
find an entry in the � 	�
�	�
 � � � � �

for the acquire that was
satisfied at

� � 2
2. If

� � 2
2 is smaller than the logical time of

the last element in the prefix, version ��� can be recovered
because it was produced at

� � 1
2 and

� � 1
2 � � � 2

2. Otherwise,
the detection mechanism conservatively considers that ���
cannot be recovered and aborts the application.

In case (2) thread
�����

2 will not find
�����

1’s dependency
on version ��� . Therefore, if no other thread depends on
version ��� the detection mechanism will not consider the
system inconsistent. In fact

�����
1 rolled back to a logical time

previous to the acquire.
	

9

