
Software Fault Tolerance for

Type-unsafe Languages

Ben Zorn

Microsoft Research

In collaboration with

Emery Berger, Univ. of Massachusetts

Karthik Pattabiraman, Univ. of Illinois, UC

Vinod Grover, Darko Kirovski, Microsoft Research

Ben Zorn, Microsoft Research 1Software Fault Tolerance in C/C++

C/C++

Ben Zorn, Microsoft Research

Motivation

 Consider a shipped C program with a

memory error (e.g., buffer overflow)

 By language definition, “undefined”

 In practice, assertions turned off – mostly works

 I.e., data remains consistent

 What if you know it has executed an illegal

operation?

 Raise an exception?

 Continue unsoundly (failure oblivious computing)

 Continue with well-defined semantics (Ndure)

2Software Fault Tolerance in C/C++

Ndure Project Vision

 Increase robustness of installed code base

 Potentially improve billions of lines of code

 Minimize effort – ideally no source mods, no

recompilation

 Reduce requirement to patch

 Patches are expensive (detect, write, install)

 Patches may introduce new errors

 Enable trading resources for robustness

 More memory implies higher reliability

Ben Zorn, Microsoft Research Software Fault Tolerance in C/C++ 3

 Buffer overflow

char *c = malloc(100);

c[101] = ‘a’;

 Dangling reference

char *p1 = malloc(100);

char *p2 = p1;

free(p1);

p2[0] = ‘x’;

a

Focus on Heap Memory Errors

Ben Zorn, Microsoft Research Software Fault Tolerance in C/C++ 4

c

0 99

p1

0 99

p2

x

Ben Zorn, Microsoft Research

Ndure Project Themes

 Make existing programs more fault tolerant

 Define semantics of programs with errors

 Programs complete with correct result despite errors

 Go beyond all-or-nothing guarantees

 Type checking, verification rarely a 100% solution

 C#, Java both call to C/C++ libraries

 Traditional engineering allows for errors by design

 Leverage flexibility in implementation semantics

 Different runtime implementations are semantically

equivalent

5Software Fault Tolerance in C/C++

Ben Zorn, Microsoft Research

Approaches to Protecting Programs

 Unsound, may work or abort

 Windows, GNU libc, etc.

 Unsound, might continue

 Failure oblivious (keep going) [Rinard]

 Invalid read => manufacture value

 Illegal write => ignore

 Sound, definitely aborts (fail-safe)

 CCured [Necula], others

 Sound and continues

 DieHard, Samurai, Rx, Boundless Memory Blocks

6Software Fault Tolerance in C/C++

Ben Zorn, Microsoft Research

Exploiting Implementation Flexibility

 Runtimes are allowed to pad
the allocation size request

 Consider a program with an
off-by-2 buffer overflow:

char *c = (char*) malloc(100);

c[101] = ‘a’;

 Runtimes that pad by 2 or
more will tolerate this error

More

efficient

More

fault tolerant

7Software Fault Tolerance in C/C++

No padding

Infinite padding

= padding

Ben Zorn, Microsoft Research

Outline

 Motivation

 DieHard
 Collaboration with Emery Berger

 Replacement for malloc/free heap allocation

 No source changes, recompile, or patching, required

 Critical Memory / Samurai
 Collaboration with Karthik Pattabiraman, Vinod Grover

 New memory semantics

 Source changes to explicitly identify and protect
critical data

 Conclusion

8Software Fault Tolerance in C/C++

Ben Zorn, Microsoft Research

DieHard: Probabilistic Memory Safety

 Collaboration with Emery Berger

 Plug-compatible replacement for malloc/free in C lib

 We define “infinite heap semantics”

 Programs execute as if each object allocated with

unbounded memory

 All frees ignored

 Approximating infinite heaps – 3 key ideas

 Overprovisioning

 Randomization

 Replication

 Allows analytic reasoning about safety

9Software Fault Tolerance in C/C++

Overprovisioning, Randomization

Ben Zorn, Microsoft Research Software Fault Tolerance in C/C++ 10

Expand size requests by a factor of M (e.g., M=2)

1 2 3 4 5

1 2 3 4 5

Randomize object placement

12 34 5

Pr(write corrupts) = ½ ?

Pr(write corrupts) = ½ !

Replication

Ben Zorn, Microsoft Research Software Fault Tolerance in C/C++ 11

Replicate process with different randomization seeds

1 234 5

P2

12 345

P3

input

Broadcast input to all replicas

Compare outputs of replicas, kill when replica disagrees

1 23 45

P1

Voter

Ben Zorn, Microsoft Research

DieHard Implementation Details

 Multiply allocated memory by factor of M

 Allocation

 Segregate objects by size (log2), bitmap allocator

 Within size class, place objects randomly in address

space

 Randomly re-probe if conflicts (expansion limits probing)

 Separate metadata from user data

 Fill objects with random values – for detecting uninit reads

 Deallocation

 Expansion factor => frees deferred

 Extra checks for illegal free

12Software Fault Tolerance in C/C++

Ben Zorn, Microsoft Research

11 6 3 2 5 4 …

Over-provisioned, Randomized Heap

 Segregated size classes

2

H = max heap size,

class i

L = max live size ≤

H/2

F = free = H-L

34 5 3 1 6

object size = 2i+4object size = 2i+3

…

13Software Fault Tolerance in C/C++

Ben Zorn, Microsoft Research

Randomness allows Analytic Reasoning

Example: Buffer Overflows

 k = # of replicas, Obj = size of overflow

 With no replication, Obj = 1, heap no more

than 1/8 full:

Pr(Mask buffer overflow), = 87.5%

 3 replicas: Pr(ibid) = 99.8%

14Software Fault Tolerance in C/C++

Ben Zorn, Microsoft Research

DieHard CPU Performance (no replication)

Runt ime on Windows

0

0.2

0.4

0.6

0.8

1

1.2

1.4

cfrac espresso lindsay p2c roboop Geo. Mean

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e

malloc DieHard

15Software Fault Tolerance in C/C++

Ben Zorn, Microsoft Research

DieHard CPU Performance (Linux)

Runtime on Linux

0

0.5

1

1.5

2

2.5

cf
ra

c

e
sp

re
ss

o

lin
d

sa
y

p
2

c

ro
b

o
o

p

G
e

o
. M

e
a

n

1
6

4
.g

zi
p

1
7

5
.v

p
r

1
7

6
.g

cc

1
8

1
.m

cf

1
8

6
.c

ra
fty

1
9

7
.p

a
rs

e
r

2
5

2
.e

o
n

2
5

3
.p

e
rl

b
m

k

2
5

4
.g

a
p

2
5

5
.v

o
rt

e
x

2
5

6
.b

zi
p

2

3
0

0
.tw

o
lf

G
e

o
. M

e
a

n

N
o

rm
a

li
ze

d
 r

u
n

ti
m

e

malloc GC DieHard

alloc-intensive general-purpose

16Software Fault Tolerance in C/C++

Ben Zorn, Microsoft Research

Other Results

 Correctness

 Tolerates high rate of synthetically injected
errors in SPEC programs

 Detected two previously unreported bugs
(197.parser and espresso)
 Uninitialized reads

 Successfully hides buffer overflow error in
Squid web cache server (v 2.3s5)

 Tolerates crashing errors in FireFox browser

 Performance

 With 16-way replication on Sun multiproc,
execution takes 50% longer than single replica

17Software Fault Tolerance in C/C++

Ben Zorn, Microsoft Research

Caveats

 Primary focus is on protecting heap

 Techniques applicable to stack data, but requires

recompilation and format changes

 DieHard trades space, extra processors for memory

safety

 Not applicable to applications with large footprint

 Applicability to server apps likely to increase

 DieHard requires non-deterministic behavior to be

made deterministic (on input, gettimeofday(), etc.)

 DieHard is a brute force approach
 Improvements possible (efficiency, safety, coverage, etc.)

18Software Fault Tolerance in C/C++

DieHard Summary

 DieHard exists, is available for download

 Implemented by Emery Berger, UMass.

 http://www.cs.umass.edu/~emery/diehard/

 You can try DieHard right now

 Possible to replace Windows / Linux allocators

 Requires no changes to original program

 Non-replicated version

 Applied to FireFox browser

 Video on the web site

 Hardens against heap-based exploits

 Biggest perf impact is memory usage

Ben Zorn, Microsoft Research Software Fault Tolerance in C/C++ 19

http://www.cs.umass.edu/~emery/diehard/

Ben Zorn, Microsoft Research

Outline

 Motivation

 DieHard
 Collaboration with Emery Berger

 Replacement for malloc/free heap allocation

 No source changes, recompile, or patching, required

 Critical Memory / Samurai
 Collaboration with Karthik Pattabiraman, Vinod Grover

 New memory semantics

 Source changes to explicitly identify and protect
critical data

 Conclusion

20Software Fault Tolerance in C/C++

Critical Memory Motivation

 C/C++ programs vulnerable to memory errors

 Software errors: buffer overflows, etc.

 Hardware transient errors: bit flips, etc.

 Increasingly a problem due to process shrinking, power

 Critical memory goals:

 Harden programs from both SW and HW errors

 Allow local reasoning about memory state

 Allow selective, incremental hardening of apps

 Provide compatibility with existing libraries,

applications

Ben Zorn, Microsoft Research 21Software Fault Tolerance in C/C++

Main Idea: Data-centric Robustness

 Critical memory
 Some data is more important than other data

 Selectively protect that data from corruption

 Examples

 Account data, document contents are critical
// UI data is not

 Game score information, player stats, critical
// rendering data structures are not

health

Data Code
health += 100;

if (health < 0) {

die();

} else {

x += 10;

y += 10;

}

x, y

critical data

code that

references

critical data

Ben Zorn, Microsoft Research 22Software Fault Tolerance in C/C++

Critical Memory Semantics

 Conceptually, critical memory is parallel and

independent of normal memory

 Critical memory requires special allocate/deallocate

and read/write operations

 critical_store (cstore) – only way to consistently update

critical memory

 critical_load (cload) – only way to consistently read critical

memory

 Critical load/store have priority over normal

load/store

 Normal loads still see the value of critical memory

Ben Zorn, Microsoft Research 23Software Fault Tolerance in C/C++

int x, y, buffer[10];

critical int health = 100;

third_party_lib(&x, &y);

buffer[10] = 10000;

// health still == 100

if (health < 0) {

die();

} else {

x += 10;

y += 10;

}

Critical Memory Benefits

 Associate critical property with
types:
 Easy to use, minimal source

mods

 Allows local reasoning
 External libraries, code cannot

modify critical data

 Tolerates memory errors
 Non-critical overflows cannot

corrupt critical values

 Alllows static analysis of program
subset
 Critical subset of program can be

statically checked independently

 Additional checking on critical
data possible

Ben Zorn, Microsoft Research 24Software Fault Tolerance in C/C++

Examples

cstore health, 100

…

cload health returns 100

load health returns 100

100

100
normal

memory

critical

memory

cstore100

cstore health, 100

store health, 10000

(applications should not do this)

…

load health returns 10000

(depends on semantics)

cload health returns 100

(possibly triggers exception)

100

10000
normal

memory

critical

memory

cstore 100

store 10000
cload

load
load

Ben Zorn, Microsoft Research 25Software Fault Tolerance in C/C++

Which Loads/Stores are Critical?

 All references that can
read/write critical data
 Needs to be “may-alias” for

correctness

 Must be close to the set of “must-
alias” for coverage

 One approach – critical types
 Marks an entire type as critical

 Type-safety of subset of program
that manipulates critical data

 Rest of program can be type-
unsafe

Must-alias

May-alias

All references

Critical Type

Pointers

All references

Critical type

references

Ben Zorn, Microsoft Research 26Software Fault Tolerance in C/C++

Third-party Libraries/Untrusted Code

 Library code does not
need to be critical
memory aware
 If library does not mod

critical data, no changes
required

 If library modifies
critical data
 Allow normal stores to

critical memory in library

 Follow by a “promote”

 Makes normal memory
value critical

critical int health = 100;

…

library_foo(&health);

promote health;

…

// arg is not critical int *

void library_foo(int *arg)

{

*arg = 10000;

return;

}

Ben Zorn, Microsoft Research 27Software Fault Tolerance in C/C++

Samurai: SCM Implementation

 Software critical memory for heap objects

 Critical objects allocated with crit_malloc, crit_free

 Approach

 Replication – base copy + 2 shadow copies

 Redundant metadata

 Stored with base copy, copy in hash table

 Checksum, size data for overflow detection

 Robust allocator as foundation

 DieHard, unreplicated

 Maps address to size class

 Randomizes locations of shadow copies

Ben Zorn, Microsoft Research 28Software Fault Tolerance in C/C++

Implementation

cstore health, 100

…

cload health returns 100

load health returns 100

100

100
base

copy

shadow

copies

cstore100

cstore health, 100

store health, 10000…

load health returns 10000

cload health returns 100

100

cload

metadata

cs

=?

100

10000
base

copy

shadow

copies

100

metadata

cs

load
=?

cload

=?store 10000

Ben Zorn, Microsoft Research 29Software Fault Tolerance in C/C++

Samurai Experimental Results

 Prototype implementation of critical memory

 Fault-tolerant runtime system for C/C++

 Applied to heap objects

 Automated Phoenix compiler pass

 Identified critical data for five SPECint applications

 Low overheads for most applications (less than 10%)

 Conducted fault-injection experiments

 Fault tolerance significantly improved over based code

 Low probability of fault-propagation from non-critical data to

critical data for most applications

 No new assertions or consistency checks added

Ben Zorn, Microsoft Research 30Software Fault Tolerance in C/C++

Experiments / Benchmarks

 vpr: Does place and route on FPGAs from netlist
 Made routing-resource graph critical

 crafty: Plays a game of chess with the user
 Made cache of previously-seen board positions critical

 gzip: Compress/Decompresses a file
 Made Huffman decoding table critical

 parser: Checks syntactic correctness of English
sentences based on a dictionary
 Made the dictionary data structures critical

 rayshade: Renders a scene file
 Made the list of objects to be rendered critical

Results (Performance)
Performance Overhead

1.03 1.08 1.01 1.08

2.73

0

0.5

1

1.5

2

2.5

3

vpr crafty parser rayshade gzip

Benchmark

S
lo

w
d

o
w

n

Baseline Samurai

Fault Injection Methodology

 Injections into critical data

 Corrupted objects on DieHard heap, one at a time

 Injected more faults into more populated heap
regions (Weighted fault-injection policy)

 Outcome: success, failure, false-positive

 Injections into non-critical data

 Measure propagation to critical data

 Corrupted results of random store instructions

 Compared memory traces of verified stores

 Outcomes: control error, data error, pointer error

Fault Injection into Critical Data (vpr)

Fault Injections into vpr (with Samurai)

0%

20%

40%

60%

80%

100%

1
0
0
0
0

2
0
0
0
0

3
0
0
0
0

4
0
0
0
0

5
0
0
0
0

6
0
0
0
0

7
0
0
0
0

8
0
0
0
0

9
0
0
0
0

1
E

+
0
6

Fault Period (number of accesses)

P
e
rc

e
n

ta
g

e
 o

f
T

ri
a
ls

Successes Failures False-Positives

Fault Injections into vpr (without Samurai)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10
00

00

20
00

00

30
00

00

40
00

00

50
00

00

60
00

00

70
00

00

80
00

00

90
00

00

10
00

00
0

Fault Period (number of accesses)

P
e
rc

e
n

ta
g

e
 o

f
T

ri
a
ls

Successes Failures False-Positives

Fault Injection into Non-Critical Data

App Number

of Trials

Control

Errors

Data

Errors

Pointer

Errors

Assertion

Violations

Total

Errors

vpr 550 (199) 0 203 (0) 1 (0) 2 (2) 203 (0)

crafty 55 (18) 12 (7) 9 (3) 4 (3) 0 25 (13)

parser 500 (380) 0 3 (1) 0 0 3 (1)

rayshade 500 (68) 0 5 (1) 0 1 (1) 5 (1)

gzip 500 (239) 0 1 (1) 2 (2) 157 (157) 3 (3)

Samurai Summary
 Critical memory

 Local reasoning about data consistency

 Selective protection of application data

 Compatible with existing libraries

 Samurai runtime
 CM for heap-allocated data

 Fault tolerance for C/C++ programs

 Future work
 Uses for concurrency (integration with STM)

 Applications to security, performance optimizations, static
analysis, etc.

 Better language integration

Ben Zorn, Microsoft Research 36Software Fault Tolerance in C/C++

Ben Zorn, Microsoft Research

Conclusion

 Programs written in C can execute safely, despite

memory errors with little or no source changes

 Vision

 Improve existing code with little or no change

 Reduce number of patches required

 More memory => more reliable

 Ndure project investigates possible approaches

 DieHard: overprovisioning + randomization + replicas =

probabilistic memory safety

 Critical Memory / Samurai: protect important data

 Hardware trends

 More processors, more memory, more transient errors

37Software Fault Tolerance in C/C++

Ben Zorn, Microsoft Research

Hardware Trends

 Hardware transient faults are increasing

 Even type-safe programs can be subverted in
presence of HW errors
 Academic demonstrations in Java, OCaml

 Soft error workshop (SELSE) conclusions
 Intel, AMD now more carefully measuring

 “Not practical to protect everything”

 Faults need to be handled at all levels from HW up the
software stack

 Measurement is difficult
 How to determine soft HW error vs. software error?

 Early measurement papers appearing

38Software Fault Tolerance in C/C++

Ben Zorn, Microsoft Research

Power to Spare

 DRAM prices dropping

 1GB < $160

 SMT & multi-core CPUs

 Dual-core – Intel Pentium D &

Xeons, Sun UltraSparc IV, IBM

PowerPC 970MP (G5)

 Quad-core Sparcs (2006),

Intels and AMD Opterons

(2007); more coming

 Challenge:

How should we use all this

hardware?

39Software Fault Tolerance in C/C++

Additional Information

 Publications

 Karthik Pattabiraman, Vinod Grover, and Benjamin G. Zorn,
"Samurai - Protecting Critical Heap Data in Unsafe
Languages", Microsoft Research, Tech Report MSR-TR-2006-
127, September 2006.

 Karthik Pattabiraman, Vinod Grover, and Benjamin G. Zorn,
"Software Critical Memory - All Memory is Not Created
Equal", Microsoft Research, Tech Report MSR-TR-2006-128,
September 2006.

 Emery D. Berger and Benjamin G. Zorn, "DieHard:
Probabilistic Memory Safety for Unsafe Languages", to
appear, ACM SIGPLAN 2006 Conference on Programming
Language Design and Implementation (PLDI'06), Ottawa,
Canada, June 2006.

 Acknowledgements

 Emery Berger, Mike Hicks, Pramod Joisha, and Shaz Quadeer

Ben Zorn, Microsoft Research 40Software Fault Tolerance in C/C++

http://research.microsoft.com/research/pubs/view.aspx?type=Technical Report&id=1173
http://research.microsoft.com/research/pubs/view.aspx?type=Technical Report&id=1174
http://www.cs.umass.edu/~emery/pubs/05-65.pdf

Backup Slides

Ben Zorn, Microsoft Research 41Software Fault Tolerance in C/C++

Ben Zorn, Microsoft Research

DieHard Related Work
 Conservative GC (Boehm / Demers / Weiser)

 Time-space tradeoff (typically >3X)

 Provably avoids certain errors

 Safe-C compilers
 Jones & Kelley, Necula, Lam, Rinard, Adve, …

 Often built on BDW GC

 Up to 10X performance hit

 N-version programming
 Replicas truly statistically independent

 Address space randomization

 Failure-oblivious computing [Rinard]
 Hope that program will continue after memory error with no

untoward effects

42Software Fault Tolerance in C/C++

Samurai Related Work

 Address-Space Protection
 Virtual memory, Mondrian Memory Protection

 Kernel extensions [SPIN, Vino], Software Fault Isolation

 STM [Herlihy, Harris, Adl-Tabatabi]
 Strong atomicity for Java programs [Hindman, Grossman]

 Memory Safety
 C-Cured, Cyclone, Jones-Kelley, CRED, Dhurjati-Adve

 Singularity approach, Pittsfield

 Error-Tolerance
 Rx, Failure-oblivious computing, Diehard

 N-version programming, Recovery Blocks

 Rio File Cache, Application-specific recovery

Ben Zorn, Microsoft Research 43Software Fault Tolerance in C/C++

How to Decide What is Critical?

 Data that is important for correct execution of
application or data that is required to restart the
application after a crash
 Banking application: Account data critical; GUI, networking

data not critical

 Web-server: Table of connections critical; connection state
data may not be critical

 Word-processor/Spreadsheet: Document contents critical;
internal data structures not critical

 E-Commerce application: Credit card data/shopping cart
contents more critical than user-preferences

 Game: User state such as score, level critical; state of
game world not critical

Ben Zorn, Microsoft Research 44Software Fault Tolerance in C/C++

Critical Memory Advantages

 Requires only accesses to critical-data to be type-

safe/annotated

 No runtime checks on non-critical accesses

 Can be deployed in an incremental fashion

 Versus all-or-nothing approach of systems such as CCured

 Protection even in presence of unsafe/third-party

library code, without requiring changes to library

function or aborting upon an error

 SFI requires modifications to library source/binary

 Amenable to possible hardware implementation

Ben Zorn, Microsoft Research 45Software Fault Tolerance in C/C++

Critical Memory Limitations

 Errors in non-critical data can propagate to critical

data

 Control-flow errors (does not replace control-flow checking)

 Data-consistency errors (assumes existence of executable

assertions and consistency checks)

 Occurred rarely in random fault-injection experiments

 Malicious attackers

 No attempt made to hide location of shadow copies

 Protection from adversary requires more mechanisms

 Can exploit memory errors in non-critical data

Ben Zorn, Microsoft Research 46Software Fault Tolerance in C/C++

Samurai Operations

 Critical store
 Compute base address of

object

 Check if object is valid

 Follow shadow pointers in
metadata

 Update replicas with stored
contents

 Critical load
 Compute base address of

object

 Check if object is valid

 Follow shadow pointers in
metadata

 Check object with replicas

 Fix any errors found by voting
on a per-byte basis

base

Object

Contents

corrupted

Replica 1

Replica 2

Shadow pointer 2

Shadow pointer 1

Samurai

Heap

base

V

error

Ben Zorn, Microsoft Research 47Software Fault Tolerance in C/C++

Samurai Operations (continued)

 Critical malloc
 Allocates 3 objects with

diehard

 Initializes metadata of
parent object with shadow
pointers

 Set valid bits of object

 Return base pointer to
user

 Critical free
 Free all 3 copies on

diehard heap

 Reset metadata of object

 Reset valid bits of object

base

Object

contents

Replica 1

Replica 2

Shadow pointer 2

Shadow pointer 1

Samurai

Heap

base

Ben Zorn, Microsoft Research 48Software Fault Tolerance in C/C++

Heap Organization (BiBOP)

 Used in DieHard,
PHKmalloc

 Allows maping internal
pointer to base object

 Heap partitioned into
pages of fixed size

 Size classes of size 2^n

 Address computation to
recover base pointer

Base = ((Ptr – Start_8) / 8) * 8

 Useful for checking
overflow as well

4 44 4 4 44

8 8 8 8

16 16

allocated

PtrStart_8

Samurai Heap

Ben Zorn, Microsoft Research 49Software Fault Tolerance in C/C++

Considerations and Optimizations

 Considerations

 Metadata itself protected from memory errors using
checksums (backup copy in protected hash table)

 Consistency checks in implementation
 Bounds checking critical accesses

 Optimizations

 Cache frequent metadata lookups for speed

 Compare with only one shadow on critical loads
 Periodically switch pointers to prevent error accumulation

 Adaptive voting strategy for repairing errors
 Exponential back-off based on object size

 Mainly used for errors in large objects

Ben Zorn, Microsoft Research 50Software Fault Tolerance in C/C++

