Tolerating and Correcting
Memory Errors in C and C++

Ben Zorn
Microsoft Research

In collaboration with:
Emery Berger and Gene Novark, UMass - Amherst
Karthik Pattabiraman, UIUC
Vinod Grover and Ted Hart, Microsoft Research

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

Focus on Heap Memory Errors

= Buffer overflow

char *c¢c = malloc(100) ;

c[100] = ta’;

= Dangling reference

char *pl

= malloc(100) ;
char *p2 = pl; \T;//

free (pl);
p2[0] = ‘x’;

99

99

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in C and C++

Approaches to Memory Corruptions

Rewrite in a safe language

Static analysis / safe subset of C or C++
o SAFECode [Adve], PREfix, SAL, etc.

Runtime detection, fail fast
o Jones & Lin, CRED [Lam], CCured [Necula], etc.

Tolerate Corruption and Continue
o Failure oblivious [Rinard] (unsound)

o RX, Boundless Memory Blocks, ECC memory
DieHard / Exterminator, Samurail

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

Fault Tolerance and Platforms

Platforms necessary in computing ecosystem
o Extensible frameworks provide lattice for 39 parties
o Tremendously successful business model

o Examples: Window, iPod, browser, etc.

Platform power derives from extensibility

o Tension between isolation for fault tolerance,
Integration for functionality

o Platform only as reliable as weakest plug-in
o Tolerating bad plug-ins necessary by design

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

Research Vision

Increase robustness of installed code base
o Potentially improve millions of lines of code

a2 Minimize effort — ideally no source mods, no
recompilation

Reduce requirement to patch
o Patches are expensive (detect, write, deploy)
o Patches may introduce new errors

Enable trading resources for robustness
o E.g., more memory implies higher reliability

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

Outline

Exterminator

o Collaboration with Emery Berger, Gene Novark
o Automatically corrects memory errors

o Suitable for large scale deployment

Critical Memory / Samurai
o Collaboration with Karthik Pattabiraman, Vinod Grover
2 New memory semantics

o Source changes to explicitly identify and protect
critical data

Conclusion

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 6

DieHard Allocator in a Nutshell

With Emery Berger (PLDI'06)

Existing heaps are packed

tightly to minimize space

o Tight packing increases
likelihood of corruption

o Predictable layout is easier for
attacker to exploit

Randomize and overprovision DieHard Heap
the heap 1 —

Normal Heap

o Expansion factor determines how C—1 1
much empty space S - 1

o Does not change semantics —]

Replication increases benefits s I I —
Enables analytic reasoning

Tolerating and Correcting Memory Errors in
Ben Zorn, Microsoft Research C and C++

DieHard in Practice

DieHard (non-replicated)

o Windows, Linux version implemented by Emery Berger
o Try it right now! (http://www.diehard-software.org/)
a
a

Adaptive, automatically sizes heap
Mechanism automatically redirects malloc calls to DieHard DLL

Application: Firefox & Mozilla

o Known buffer in version 1.7.3 overflow crashes browser

Experience

o Usable in practice — no perceived slowdown
o Roughly doubles memory consumption with 2x expansion
FireFox: 20.3 Mbytes vs. 44.3 Mbytes with DieHard

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.diehard-software.org/

DieHard Caveats

Primary focus Is on protecting heap

o Techniques applicable to stack data, but requires
recompilation and format changes

Trades space, processors for memory safety
o Not applicable to applications with large footprint
o Applicability to server apps likely to increase

In replicated mode, DieHard requires determinism
o Replicas see same input, shared state, etc.

DieHard is a brute force approach
o Improvements possible (efficiency, safety, coverage, etc.)

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

Exterminator Motivation

DieHard limitations

o Tolerates errors probabilistically, doesn’t fix them
o Memory and CPU overhead
a Provides no information about source of errors

“Ideal”’ solution addresses the limitations

o Program automatically detects and fixes memory errors
o Corrected program has no memory, CPU overhead
o Sources of errors are pinpointed, easier for human to fix

Exterminator = correcting allocator
o Joint work with Emery Berger, Gene Novark

o Plan: isolate / patch bugs while tolerating them

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

10

Exterminator Components

Architecture of Exterminator dictated by solving
specific problems

How to detect heap corruptions effectively?
o DieFast allocator

How to isolate the cause of a heap corruption
precisely?

o Heap differencing algorithms

How to automatically fix buggy C code without
breaking it?

o Correcting allocator + hot allocator patches

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 11

DieFast Allocator

Randomized, over-provisioned heap

o Canary = random bit pattern fixed at startup
o Leverage extra free space by inserting canaries
Inserting canaries

o Initialization — all cells have canaries

2 On allocation — no new canaries
o On free — put canary in the freed object with prob. P

Checking canaries
2 On allocation — check cell returned
o On free — check adjacent cells

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 12

‘ Installing and Checking Canaries

Initially, heap full of canaries

Free
Allocate Allocate

*

\I/C|§1R§F a%%rﬂi%s,\’p Check canary

Tolerating and Correcting Memory Errors in
Ben Zorn, Microsoft Research Cand C++

13

Heap Ditterencing
Strategy

o Run program multiple times with different randomized
heaps

o If detect canary corruption, dump contents of heap
o ldentify objects across runs using allocation order

Insight: Relation between corruption and object
causing corruption Is invariant across heaps

o Detect invariant across random heaps

o More heaps => higher confidence of invariant

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

14

‘ Attributing Butfer Overtlows

corrupted
delta is constant but W#KHGWN

Now only 2 candidates

One candidate!

Precision increases exponentially with number of runs

Tolerating and Correcting Memory Errors in
Ben Zorn, Microsoft Research C and C++ 15

Detecting Dangling Pointers (2 cases)

Dangling pointer read/written (easy)

o Invariant = canary in freed object X has same
corruption in all runs

Dangling pointer only read (harder)

o Sketch of approach (paper explains details)
Only fill freed object X with canary with probability P
Requires multiple trials: = log,(number of callsites)
Look for correlations, i.e., X filled with canary => crash

Establish conditional probabilities
0 Have: P(callsite X filled with canary | program crashes)

0 Need: P(crash | filled with canary), guess “prior” to compute

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

16

Correcting Allocator

Group objects by allocation site
Patch object groups at allocate/free time

Associate patches with group

o Buffer overrun => add padding to size request
malloc(32) becomes malloc(32 + delta)

o Dangling pointer => defer free
free(p) becomes defer_free(p, delta_allocations)

o Fixes preserve semantics, no new bugs created

Correcting allocation may != DieFast or DieHard
o Correction allocator can be space, CPU efficient
o “Patches” created separately, installed on-the-fly

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 17

Deploying Exterminator

Exterminator can be deployed in different modes

Iterative — suitable for test environment
o Different random heaps, identical inputs
o Complements automatic methods that cause crashes

Replicated mode
o Suitable in a multi/many core environment
o Like DieHard replication, except auto-corrects, hot patches

Cumulative mode — partial or complete deployment
o Aggregates results across different inputs

o Enables automatic root cause analysis from Watson dumps
o Suitable for wide deployment, perfect for beta release

o Likely to catch many bugs not seen in testing lab

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

18

Normalized Execution Time

DieFast Overhead

B GNU libc O Exterminator
2.5 - - -
allocation-intensive SPECint2000
2 —
15 |_ [
1 a - - ||
0.5 A — | | ||
0 - ||
< C & ¢ o) < Q N + 2 X N
& @""’ 8"& <& ~00°Q & ¢ c)\\Q (09(, \5& «';’&\ 'a“’e N 9?& & o S &
X & O RS N A) o° < & &S o S o° o° \c@
D &
S
Tolerating and Correcting Memory Errors in
Ben Zorn, Microsoft Research C and C++ 19

Exterminator Effectiveness

Squid web cache buffer overflow
o Crashes glibc 2.8.0 malloc
o 3 runs sufficient to isolate 6-byte overflow

Mozilla 1.7.3 buffer overflow (recall demo)
o Testing scenario - repeated load of buggy page
23 runs to isolate overflow

o Deployed scenario — bug happens in middle of
different browsing sessions

34 runs to I1solate overflow

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

20

Outline

Q
Q

Q

Critical Memory / Samurai
o Collaboration with Karthik Pattabiraman, Vinod Grover
2 New memory semantics

o Source changes to explicitly identify and protect
critical data

Conclusion

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 21

The Problem: A Dangerous Mix

Danger 1:
Flat, uniform
address space

Danger 2:
Unsafe
programming
languages

Danger 3:
Unrestricted
3'd party code

security risks

Ben Zorn, Microsoft Research

My Code

OXFE00
995

/

int *p =
*p = 555;

int A[1];

-

O/éEOO;

// at OxADEO

A[l] = 777; 4(off by 1

J

Tolerating and Correcting Memory Errors in

Cand C++

0x8000
888

Library Code

/‘int *p =\Px8000;\\

*p = 888;

// forge pointer
// to my data
int *q = OxADEO;

*gq= 999; 4,/

22

Critical Memory

Approach
o ldentify critical program data
o Protect it with isolation & replication

Goals:

o Harden programs from both SW and HW errors
Unify existing ad hoc solutions

o Enable local reasoning about memory state
Leverage powerful static analysis tools

o Allow selective, incremental hardening of apps
o Provide compatibility with existing libraries, apps

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 23

Critical Memory: Idea

“ode | critical int balance; = |dentify and mark some
balance += 100: data as crl.tl.cal.
if (balance < 0) { o Type specifier like const
chargeCredit(); = Shadow critical data in
} else { parallel address space

Il use X, y, etc. (critical memory)

= New operations on
critical data

X Yy

other balance o cload — read

0 cstore - write

}

non-critical

data critical
data

Tolerating and Correcting Memory Errors in
Ben Zorn, Microsoft Research C and C++ 24

Critical Memory: Example

int buffer[10]; map_critical(&balance);
critical int balance : —

templ = 100;
cstore(&balance, templ);

buffer balance = 100:;

nto — temp = load ((buffer+40));

balance
temp2 = cload(&balance);

if (balance < 0) { if (temp2 > 0) { ... }

Normal
1
Mem 00
Critical
1
Mem 00

balance l

Tolerating and Correcting Memory Errors in
Ben Zorn, Microsoft Research Cand C++

25

Third-party Libraries/Untrusted Code

Library code does not

need to be critical memory critical int balance = 100;
aware library _foo(&balance);
o If library does not update promote balance;
critical data, no changes
required
If library needs to modify /I arg is not critical int *
critical data void library foo(int *arg)
o Allow normal stores to { “arg = 10000;
critical memory in library ST
o Explicitly “promote” on }
return

Copy-in, copy-out semantics

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in C and
C++

26

Samurat: Heap-based Critical Memory

Software critical memory for heap objects
o Critical objects allocated with crit_malloc, crit_free

Approach
o Replication — base copy + 2 shadow copies

o Redundant metadata
Stored with base copy, copy in hash table
Checksum, size data for overflow detection

o Robust allocator as foundation
DieHard, unreplicated
Randomizes locations of shadow copies

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 27

' Samurai Implementation

*Two replicas
*Shadow pointers in Replica 1
metadata

*Randomized to reduce
correlated errors

Critical load
checks 2 copies,
detects/repairs on
mismatch

Metadata

shadow pointer 1

shadow pointer 2

Critical store writes
to all copies

e

*Metadata protected
with checksums/backup
*Protection is only

regular store causes Hea probabilistic
memory error ! P

Replica 2

Tolerating and Correcting Memory Errors in
Ben Zorn, Microsoft Research C and C++ 28

Samurat Experimental Results

Implementation
o Automated Phoenix pass to instrument loads and stores
o Runtime library for critical data allocation/de-allocation (C++)

Protected critical data in 5 applications (mostly SPEC)

o Chose data that is crucial for end-to-end correctness of program
o Evaluation of performance overhead by instrumentation

o Fault-injections into critical and non-critical data (for propagation)

Protected critical data in libraries
o STL List Class: Backbone of list structure (link pointers)
o Memory allocator: Heap meta-data (object size + free list)

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 29

‘ Samurail Performance Overheads

Performance Overhead

m Baseline B Samurai
3 2.73
2.5
S 2
3
=1.5
S 1.03 1.08 1.01 1.08

vpr crafty parser rayshade gzip

Benchmark

Tolerating and Correcting Memory Errors in
Ben Zorn, Microsoft Research Cand C++

Samurai: STL Class + WebServer

STL List Class

o Modified memory
allocator for class

o Modifled member
functions insert, erase

o Modified custom
iterators for list objects

o Added a new call-back
function for direct
modifications to list
data

Webserver
o Used STL list class for

maintaining client
connection information

Made list critical — one
thread/connection

Evaluated across
multiple threads and
connections

Max performance
overhead = 9%

Tolerating and Correcting Memory Errors in

Ben Zorn, Microsoft Research C and C++

31

Samurai: Protecting Allocator Metadata

Performance Overheads
140

120

Average = 10%

100

80

60

40

20

espresso cfrac p2c Lindsay Boxed-Sim Mudlle Average

® Kingsley B Samurai

Tolerating and Correcting Memory Errors in
Ben Zorn, Microsoft Research C and C++ 32

Conclusion

Programs written in C / C++ can execute safely
and correctly despite memory errors

Research vision

o Improve existing code without source modifications
o Reduce human generated patches required

o Increase reliability, security by order of magnitude

Current projects

o DieHard / Exterminator: automatically detect and
correct memory errors (with high probability)

o Critical Memory / Samurai: enable local reasoning,
allow selective hardening, compatibility

o ToleRace: replication to hide data races

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

33

Hardware Trends (1) Reliability

Hardware transient faults are increasing

o Even type-safe programs can be subverted in
presence of HW errors
Academic demonstrations in Java, OCaml|

o Soft error workshop (SELSE) conclusions
Intel, AMD now more carefully measuring
“Not practical to protect everything”

Faults need to be handled at all levels from HW up the
software stack

o Measurement is difficult
How to determine soft HW error vs. software error?
Early measurement papers appearing

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

‘ Hardware Trends (2) Multicore

= DRAM prices dropping

o 2Gb, Dual Channel PC 6400 DDR2
800 MHz $85

= Multicore CPUs

o Quad-core Intel Core 2 Quad, AMD
Quad-core Opteron

o Eight core Intel by 20087

= Challenge:
How should we use all this
hardware?

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

35

Additional Information
Web sites:

o Ben Zorn: http://research.microsoft.com/~zorn
o DieHard: http://www.diehard-software.orqg/
o Exterminator: hitp://www.cs.umass.edu/~gnovark/

Publications

o Emery D. Berger and Benjamin G. Zorn, "DieHard.:
Probabilistic Memory Safety for Unsafe Languages", PLDI’06.

o Karthik Pattabiraman, Vinod Grover, and Benjamin G. Zorn,
"Samurai: Protecting Critical Data in Unsafe Languages",
Eurosys 2008.

o Gene Novark, Emery D. Berger and Benjamin G.
Zorn, “Exterminator: Correcting Memory Errors with High
Probability", PLDI07.

o Lvin, Novark, Berger, and Zorn, "Archipelago: Trading Address

Space for Reliability and Security", ASPLOS 2008.

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 36

http://research.microsoft.com/~zorn
http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.cs.umass.edu/~gnovark/

‘ Backup Slides

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

37

DieHard: Probabilistic Memory Safety

Collaboration with Emery Berger
Plug-compatible replacement for malloc/free in C lib

We define “infinite heap semantics”

o Programs execute as if each object allocated with
unbounded memory

o All frees ignored

Approximating infinite heaps — 3 key ideas
o Overprovisioning

o Randomization

o Replication

Allows analytic reasoning about safety

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

‘ Overprovisioning, Randomization

Expand size requests by a factor of M (e.g., M=2)

_ TR | prwite comupts) = 2

Randomize object placement

B BN B E O,

Pr(write corrupts) = %2 !

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

39

‘ Replication (optional)

Replicate process with different randomization seeds

P1

input

Broadcast input to all replicas Voter

Compare outputs of replicas, kill when replica disagrees

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 40

DieHard Implementation Details

Multiply allocated memory by factor of M

Allocation
o Segregate objects by size (log2), bitmap allocator

o Within size class, place objects randomly in address
Space
Randomly re-probe if conflicts (expansion limits probing)

o Separate metadata from user data
o Fill objects with random values — for detecting uninit reads

Deallocation
o Expansion factor => frees deferred
o Extra checks for illegal free

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 41

Over-provisioned, Randomized Heap

Segregated size classes

L = max live size < F = free = H-L
H/2 A A
4 Y N
2 |4 5 3 1 6
iject size =8 / object size = 16

\

H = max heap
size, class i

- Static strategy pre-allocates size classes
- Adaptive strategy grows each size class incrementally

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

Randomness enables Analytic Reasoning
Example: Butfer Overtlows

r k

Obj
Pr(Mask Buffer Overflow) = 1 — [1 _ (E)

k = # of replicas, Obj = size of overflow

With no replication, Obj = 1, heap no more
than 1/8 full:
Pr(Mask buffer overflow), = 87.5%

3 replicas: Pr(ibid) = 99.8%

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

43

DieHard CPU Performance (no replication)

Runtime on Windows

O malloc @ DieHard

»

-
N

-

0.8

0.6

Normalized runtime

0.4

0.2

cfrac

espresso lindsay p2c

roboop

Geo. Mean

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in C and C++

44

‘ DieHard CPU Performance (ILinux)

Emalloc ®GC mDieHard (static) ™ DieHard (adaptive)

2.5
alloc-intensive general-purpose

Normalized runtime

cfrac
espresso
lindsay
roboop
Geo. Mean
164.gzip
175.vpr
176.gcc
181.mcf
186.crafty
197.parser
252.eon
253.perlbmk
254.gap
255.vortex
256.bzip2
300.twolf

c
@
[
=
o
3]
o

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

45

Correctness Results

Tolerates high rate of synthetically injected
errors in SPEC programs

Detected two previously unreported benign
bugs (197.parser and espresso)

Successfully hides buffer overflow error in
Squid web cache server (v 2.3s5)

But don’t take my word for it...

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

46

Experiments / Benchmarks

vpr: Does place and route on FPGAs from netlist
o Made routing-resource graph critical

crafty: Plays a game of chess with the user
o Made cache of previously-seen board positions critical

gzip: Compress/Decompresses a file
o Made Huffman decoding table critical

parser. Checks syntactic correctness of English
sentences based on a dictionary

o Made the dictionary data structures critical

rayshade: Renders a scene file
o Made the list of objects to be rendered critical

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

47

Related Work

Conservative GC (Boehm / Demers / Weiser)
o Time-space tradeoff (typically >3X)
o Provably avoids certain errors

Safe-C compilers

o Jones & Kelley, Necula, Lam, Rinard, Adve, ...
o Often built on BDW GC

o Up to 10X performance hit

N-version programming

o Replicas truly statistically independent
Address space randomization (as in Vista)

Failure-oblivious computing [Rinard]

o Hope that program will continue after memory error with no
untoward effects

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++

