
Tolerating and Correcting

Memory Errors in C and C++

Ben Zorn
Microsoft Research

In collaboration with:

Emery Berger and Gene Novark, UMass - Amherst

Karthik Pattabiraman, UIUC

Vinod Grover and Ted Hart, Microsoft Research

Ben Zorn, Microsoft Research 1Tolerating and Correcting Memory Errors in C and C++

 Buffer overflow

char *c = malloc(100);

c[100] = ‘a’;

 Dangling reference

char *p1 = malloc(100);

char *p2 = p1;

free(p1);

p2[0] = ‘x’;

a

Focus on Heap Memory Errors

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 2

c

0 99

p1

0 99

p2

x

Ben Zorn, Microsoft Research

Approaches to Memory Corruptions

 Rewrite in a safe language

 Static analysis / safe subset of C or C++

 SAFECode [Adve], PREfix, SAL, etc.

 Runtime detection, fail fast

 Jones & Lin, CRED [Lam], CCured [Necula], etc.

 Tolerate Corruption and Continue

 Failure oblivious [Rinard] (unsound)

 Rx, Boundless Memory Blocks, ECC memory

DieHard / Exterminator, Samurai

3Tolerating and Correcting Memory Errors in C and C++

Fault Tolerance and Platforms

 Platforms necessary in computing ecosystem

 Extensible frameworks provide lattice for 3rd parties

 Tremendously successful business model

 Examples: Window, iPod, browser, etc.

 Platform power derives from extensibility

 Tension between isolation for fault tolerance,

integration for functionality

 Platform only as reliable as weakest plug-in

 Tolerating bad plug-ins necessary by design

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 4

Research Vision

 Increase robustness of installed code base

 Potentially improve millions of lines of code

 Minimize effort – ideally no source mods, no

recompilation

 Reduce requirement to patch

 Patches are expensive (detect, write, deploy)

 Patches may introduce new errors

 Enable trading resources for robustness

 E.g., more memory implies higher reliability

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 5

Ben Zorn, Microsoft Research

Outline

 Motivation

 Exterminator
 Collaboration with Emery Berger, Gene Novark

 Automatically corrects memory errors

 Suitable for large scale deployment

 Critical Memory / Samurai
 Collaboration with Karthik Pattabiraman, Vinod Grover

 New memory semantics

 Source changes to explicitly identify and protect
critical data

 Conclusion

6Tolerating and Correcting Memory Errors in C and C++

DieHard Allocator in a Nutshell

 With Emery Berger (PLDI’06)

 Existing heaps are packed
tightly to minimize space
 Tight packing increases

likelihood of corruption

 Predictable layout is easier for
attacker to exploit

 Randomize and overprovision
the heap
 Expansion factor determines how

much empty space

 Does not change semantics

 Replication increases benefits

 Enables analytic reasoning

7

Normal Heap

DieHard Heap

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++

DieHard in Practice

 DieHard (non-replicated)
 Windows, Linux version implemented by Emery Berger

 Try it right now! (http://www.diehard-software.org/)

 Adaptive, automatically sizes heap

 Mechanism automatically redirects malloc calls to DieHard DLL

 Application: Firefox & Mozilla
 Known buffer in version 1.7.3 overflow crashes browser

 Experience
 Usable in practice – no perceived slowdown

 Roughly doubles memory consumption with 2x expansion

 FireFox: 20.3 Mbytes vs. 44.3 Mbytes with DieHard

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 8

http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.diehard-software.org/

Ben Zorn, Microsoft Research

DieHard Caveats

 Primary focus is on protecting heap

 Techniques applicable to stack data, but requires

recompilation and format changes

 Trades space, processors for memory safety

 Not applicable to applications with large footprint

 Applicability to server apps likely to increase

 In replicated mode, DieHard requires determinism

 Replicas see same input, shared state, etc.

 DieHard is a brute force approach
 Improvements possible (efficiency, safety, coverage, etc.)

9Tolerating and Correcting Memory Errors in C and C++

Exterminator Motivation

 DieHard limitations
 Tolerates errors probabilistically, doesn’t fix them

 Memory and CPU overhead

 Provides no information about source of errors

 “Ideal” solution addresses the limitations
 Program automatically detects and fixes memory errors

 Corrected program has no memory, CPU overhead

 Sources of errors are pinpointed, easier for human to fix

 Exterminator = correcting allocator
 Joint work with Emery Berger, Gene Novark

 Plan: isolate / patch bugs while tolerating them

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 10

Exterminator Components

 Architecture of Exterminator dictated by solving

specific problems

 How to detect heap corruptions effectively?

 DieFast allocator

 How to isolate the cause of a heap corruption

precisely?

 Heap differencing algorithms

 How to automatically fix buggy C code without

breaking it?

 Correcting allocator + hot allocator patches

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 11

DieFast Allocator
 Randomized, over-provisioned heap

 Canary = random bit pattern fixed at startup

 Leverage extra free space by inserting canaries

 Inserting canaries

 Initialization – all cells have canaries

 On allocation – no new canaries

 On free – put canary in the freed object with prob. P

 Checking canaries

 On allocation – check cell returned

 On free – check adjacent cells

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 12

100101011110

1 2

Installing and Checking Canaries

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++ 13

Allocate Allocate

Install canaries

with probability P
Check canary Check canary

Free

Initially, heap full of canaries

1

Heap Differencing

 Strategy

 Run program multiple times with different randomized

heaps

 If detect canary corruption, dump contents of heap

 Identify objects across runs using allocation order

 Insight: Relation between corruption and object

causing corruption is invariant across heaps

 Detect invariant across random heaps

 More heaps => higher confidence of invariant

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 14

1 2

Attributing Buffer Overflows

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++ 15

One candidate!

4 3

corrupted

canary

Which object caused?

delta is constant but unknown
?

12 4 3

Run 2

Run 1

Now only 2 candidates

2 4

41 3

Run 3

2 44

Precision increases exponentially with number of runs

Detecting Dangling Pointers (2 cases)

 Dangling pointer read/written (easy)

 Invariant = canary in freed object X has same

corruption in all runs

 Dangling pointer only read (harder)

 Sketch of approach (paper explains details)

 Only fill freed object X with canary with probability P

 Requires multiple trials: ≈ log2(number of callsites)

 Look for correlations, i.e., X filled with canary => crash

 Establish conditional probabilities

 Have: P(callsite X filled with canary | program crashes)

 Need: P(crash | filled with canary), guess “prior” to compute

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 16

Correcting Allocator

 Group objects by allocation site

 Patch object groups at allocate/free time

 Associate patches with group

 Buffer overrun => add padding to size request

 malloc(32) becomes malloc(32 + delta)

 Dangling pointer => defer free

 free(p) becomes defer_free(p, delta_allocations)

 Fixes preserve semantics, no new bugs created

 Correcting allocation may != DieFast or DieHard

 Correction allocator can be space, CPU efficient

 “Patches” created separately, installed on-the-fly

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 17

Deploying Exterminator

 Exterminator can be deployed in different modes

 Iterative – suitable for test environment

 Different random heaps, identical inputs

 Complements automatic methods that cause crashes

 Replicated mode

 Suitable in a multi/many core environment

 Like DieHard replication, except auto-corrects, hot patches

 Cumulative mode – partial or complete deployment

 Aggregates results across different inputs

 Enables automatic root cause analysis from Watson dumps

 Suitable for wide deployment, perfect for beta release

 Likely to catch many bugs not seen in testing lab

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 18

0

0.5

1

1.5

2

2.5

N
o

rm
a
li
z
e
d

 E
x
e
cu

ti
o

n
 T

im
e

GNU libc Exterminator

allocation-intensive SPECint2000

DieFast Overhead

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++ 19

Exterminator Effectiveness

 Squid web cache buffer overflow

 Crashes glibc 2.8.0 malloc

 3 runs sufficient to isolate 6-byte overflow

 Mozilla 1.7.3 buffer overflow (recall demo)

 Testing scenario - repeated load of buggy page

 23 runs to isolate overflow

 Deployed scenario – bug happens in middle of

different browsing sessions

 34 runs to isolate overflow

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 20

Ben Zorn, Microsoft Research

Outline

 Motivation

 Exterminator
 Collaboration with Emery Berger, Gene Novark

 Automatically corrects memory errors

 Suitable for large scale deployment

 Critical Memory / Samurai
 Collaboration with Karthik Pattabiraman, Vinod Grover

 New memory semantics

 Source changes to explicitly identify and protect
critical data

 Conclusion

21Tolerating and Correcting Memory Errors in C and C++

The Problem: A Dangerous Mix

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++ 22

Danger 1:

Flat, uniform

address space

0xFE00

0xADE0

int *p = 0xFE00;

*p = 555;

int A[1]; // at 0xADE0

A[1] = 777; // off by 1

My Code
Danger 2:

Unsafe

programming

languages

Danger 3:

Unrestricted

3rd party code

int *p = 0x8000;

*p = 888;

// forge pointer

// to my data

int *q = 0xADE0;

*q= 999;

Library Code

0x8000
555

777

888

999
Result: corrupt data, crashes

security risks

Critical Memory

 Approach

 Identify critical program data

 Protect it with isolation & replication

 Goals:

 Harden programs from both SW and HW errors

 Unify existing ad hoc solutions

 Enable local reasoning about memory state

 Leverage powerful static analysis tools

 Allow selective, incremental hardening of apps

 Provide compatibility with existing libraries, apps

Ben Zorn, Microsoft Research 23Tolerating and Correcting Memory Errors in C and C++

Critical Memory: Idea

 Identify and mark some

data as “critical

 Type specifier like const

 Shadow critical data in

parallel address space

(critical memory)

 New operations on

critical data

 cload – read

 cstore - write

24

critical int balance;

balance += 100;

if (balance < 0) {

chargeCredit();

} else {

// use x, y, etc.

}

balance

Data
x, y,

other

non-critical

data critical

data

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++

Code

Critical Memory: Example

25

int buffer[10];

critical int balance ;
map_critical(&balance);

temp1 = 100;

cstore(&balance, temp1);

temp = load ((buffer+40));

store((buffer+40), temp+200);

temp2 = cload(&balance);

if (temp2 > 0) { … }

balance = 100;

buffer[10] += 200;

…..

if (balance < 0) {

…

0

0

100

100

100

100

300

100

100

100

Normal

Mem

Critical

Mem

balance

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++

buffer

overflow

into

balance

Third-party Libraries/Untrusted Code

 Library code does not
need to be critical memory
aware
 If library does not update

critical data, no changes
required

 If library needs to modify
critical data
 Allow normal stores to

critical memory in library

 Explicitly “promote” on
return

 Copy-in, copy-out semantics

critical int balance = 100;

…

library_foo(&balance);

promote balance;

…

// arg is not critical int *

void library_foo(int *arg)

{

*arg = 10000;

return;

}

Ben Zorn, Microsoft Research 26

Tolerating and Correcting Memory Errors in C and

C++

Samurai: Heap-based Critical Memory

 Software critical memory for heap objects

 Critical objects allocated with crit_malloc, crit_free

 Approach

 Replication – base copy + 2 shadow copies

 Redundant metadata

 Stored with base copy, copy in hash table

 Checksum, size data for overflow detection

 Robust allocator as foundation

 DieHard, unreplicated

 Randomizes locations of shadow copies

Ben Zorn, Microsoft Research 27Tolerating and Correcting Memory Errors in C and C++

Samurai Implementation

28

base
Base

Object

Replica 1

Replica 2

shadow pointer 2

shadow pointer 1

Heap
regular store causes

memory error !

Vote

Critical load

checks 2 copies,

detects/repairs on

mismatch

•Two replicas

•Shadow pointers in

metadata

•Randomized to reduce

correlated errors

Update

Critical store writes

to all copies

Metadata

•Metadata protected

with checksums/backup

•Protection is only

probabilistic

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++

Samurai Experimental Results

 Implementation

 Automated Phoenix pass to instrument loads and stores

 Runtime library for critical data allocation/de-allocation (C++)

 Protected critical data in 5 applications (mostly SPEC)

 Chose data that is crucial for end-to-end correctness of program

 Evaluation of performance overhead by instrumentation

 Fault-injections into critical and non-critical data (for propagation)

 Protected critical data in libraries

 STL List Class: Backbone of list structure (link pointers)

 Memory allocator: Heap meta-data (object size + free list)

Ben Zorn, Microsoft Research 29Tolerating and Correcting Memory Errors in C and C++

Samurai Performance Overheads

30

1.03 1.08 1.01 1.08

2.73

0

0.5

1

1.5

2

2.5

3

vpr crafty parser rayshade gzip

S
lo

w
d

o
w

n

Benchmark

Performance Overhead

Baseline Samurai

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++

Samurai: STL Class + WebServer

 STL List Class

 Modified memory

allocator for class

 Modified member

functions insert, erase

 Modified custom

iterators for list objects

 Added a new call-back

function for direct

modifications to list

data

 Webserver

 Used STL list class for

maintaining client

connection information

 Made list critical – one

thread/connection

 Evaluated across

multiple threads and

connections

 Max performance

overhead = 9%

31Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++

Samurai: Protecting Allocator Metadata

32

0

20

40

60

80

100

120

140

espresso cfrac p2c Lindsay Boxed-Sim Mudlle Average

Performance Overheads

Kingsley Samurai

Ben Zorn, Microsoft Research

Tolerating and Correcting Memory Errors in

C and C++

Average = 10%

Ben Zorn, Microsoft Research

Conclusion

 Programs written in C / C++ can execute safely

and correctly despite memory errors

 Research vision

 Improve existing code without source modifications

 Reduce human generated patches required

 Increase reliability, security by order of magnitude

 Current projects

 DieHard / Exterminator: automatically detect and

correct memory errors (with high probability)

 Critical Memory / Samurai: enable local reasoning,

allow selective hardening, compatibility

 ToleRace: replication to hide data races

33Tolerating and Correcting Memory Errors in C and C++

Ben Zorn, Microsoft Research

Hardware Trends (1) Reliability

 Hardware transient faults are increasing

 Even type-safe programs can be subverted in
presence of HW errors
 Academic demonstrations in Java, OCaml

 Soft error workshop (SELSE) conclusions
 Intel, AMD now more carefully measuring

 “Not practical to protect everything”

 Faults need to be handled at all levels from HW up the
software stack

 Measurement is difficult
 How to determine soft HW error vs. software error?

 Early measurement papers appearing

34Tolerating and Correcting Memory Errors in C and C++

Ben Zorn, Microsoft Research

Hardware Trends (2) Multicore

 DRAM prices dropping
 2Gb, Dual Channel PC 6400 DDR2

800 MHz $85

 Multicore CPUs
 Quad-core Intel Core 2 Quad, AMD

Quad-core Opteron

 Eight core Intel by 2008?

 Challenge:

How should we use all this

hardware?

35Tolerating and Correcting Memory Errors in C and C++

Additional Information

 Web sites:
 Ben Zorn: http://research.microsoft.com/~zorn

 DieHard: http://www.diehard-software.org/

 Exterminator: http://www.cs.umass.edu/~gnovark/

 Publications
 Emery D. Berger and Benjamin G. Zorn, "DieHard:

Probabilistic Memory Safety for Unsafe Languages", PLDI’06.

 Karthik Pattabiraman, Vinod Grover, and Benjamin G. Zorn,
"Samurai: Protecting Critical Data in Unsafe Languages",
Eurosys 2008.

 Gene Novark, Emery D. Berger and Benjamin G.
Zorn, “Exterminator: Correcting Memory Errors with High
Probability", PLDI’07.

 Lvin, Novark, Berger, and Zorn, "Archipelago: Trading Address

Space for Reliability and Security", ASPLOS 2008.

Ben Zorn, Microsoft Research 36Tolerating and Correcting Memory Errors in C and C++

http://research.microsoft.com/~zorn
http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.cs.umass.edu/~gnovark/

Backup Slides

Ben Zorn, Microsoft Research 37Tolerating and Correcting Memory Errors in C and C++

Ben Zorn, Microsoft Research

DieHard: Probabilistic Memory Safety

 Collaboration with Emery Berger

 Plug-compatible replacement for malloc/free in C lib

 We define “infinite heap semantics”

 Programs execute as if each object allocated with

unbounded memory

 All frees ignored

 Approximating infinite heaps – 3 key ideas

 Overprovisioning

 Randomization

 Replication

 Allows analytic reasoning about safety

38Tolerating and Correcting Memory Errors in C and C++

Overprovisioning, Randomization

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 39

Expand size requests by a factor of M (e.g., M=2)

1 2 3 4 5

1 2 3 4 5

Randomize object placement

12 34 5

Pr(write corrupts) = ½ ?

Pr(write corrupts) = ½ !

Replication (optional)

Ben Zorn, Microsoft Research Tolerating and Correcting Memory Errors in C and C++ 40

Replicate process with different randomization seeds

1 234 5

P2

12 345

P3

input

Broadcast input to all replicas

Compare outputs of replicas, kill when replica disagrees

1 23 45

P1

Voter

Ben Zorn, Microsoft Research

DieHard Implementation Details

 Multiply allocated memory by factor of M

 Allocation

 Segregate objects by size (log2), bitmap allocator

 Within size class, place objects randomly in address

space

 Randomly re-probe if conflicts (expansion limits probing)

 Separate metadata from user data

 Fill objects with random values – for detecting uninit reads

 Deallocation

 Expansion factor => frees deferred

 Extra checks for illegal free

41Tolerating and Correcting Memory Errors in C and C++

Segregated size classes

- Static strategy pre-allocates size classes

- Adaptive strategy grows each size class incrementally

Ben Zorn, Microsoft Research

Over-provisioned, Randomized Heap

2

H = max heap
size, class i

L = max live size ≤

H/2
F = free = H-L

4 5 3 1 6

object size = 16object size = 8

…

42Tolerating and Correcting Memory Errors in C and C++

Ben Zorn, Microsoft Research

Randomness enables Analytic Reasoning

Example: Buffer Overflows

 k = # of replicas, Obj = size of overflow

 With no replication, Obj = 1, heap no more

than 1/8 full:

Pr(Mask buffer overflow), = 87.5%

 3 replicas: Pr(ibid) = 99.8%

43Tolerating and Correcting Memory Errors in C and C++

Ben Zorn, Microsoft Research

DieHard CPU Performance (no replication)

Runtime on Windows

0

0.2

0.4

0.6

0.8

1

1.2

1.4

cfrac espresso lindsay p2c roboop Geo. Mean

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e

malloc DieHard

44Tolerating and Correcting Memory Errors in C and C++

Ben Zorn, Microsoft Research

DieHard CPU Performance (Linux)

45Tolerating and Correcting Memory Errors in C and C++

0

0.5

1

1.5

2

2.5
c
fr

a
c

e
s
p

re
s
s
o

lin
d

s
a

y

ro
b

o
o

p

G
e

o
.
M

e
a

n

1
6

4
.g

z
ip

1
7

5
.v

p
r

1
7

6
.g

c
c

1
8

1
.m

c
f

1
8

6
.c

ra
ft

y

1
9

7
.p

a
rs

e
r

2
5

2
.e

o
n

2
5

3
.p

e
rl
b

m
k

2
5

4
.g

a
p

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

2

3
0

0
.t

w
o

lf

G
e

o
.
M

e
a

n

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e

malloc GC DieHard (static) DieHard (adaptive)

alloc-intensive general-purpose

Ben Zorn, Microsoft Research

Correctness Results

 Tolerates high rate of synthetically injected
errors in SPEC programs

 Detected two previously unreported benign
bugs (197.parser and espresso)

 Successfully hides buffer overflow error in
Squid web cache server (v 2.3s5)

 But don’t take my word for it…

46Tolerating and Correcting Memory Errors in C and C++

Experiments / Benchmarks

 vpr: Does place and route on FPGAs from netlist
 Made routing-resource graph critical

 crafty: Plays a game of chess with the user
 Made cache of previously-seen board positions critical

 gzip: Compress/Decompresses a file
 Made Huffman decoding table critical

 parser: Checks syntactic correctness of English
sentences based on a dictionary
 Made the dictionary data structures critical

 rayshade: Renders a scene file
 Made the list of objects to be rendered critical

Ben Zorn, Microsoft Research 47Tolerating and Correcting Memory Errors in C and C++

Ben Zorn, Microsoft Research

Related Work
 Conservative GC (Boehm / Demers / Weiser)

 Time-space tradeoff (typically >3X)

 Provably avoids certain errors

 Safe-C compilers
 Jones & Kelley, Necula, Lam, Rinard, Adve, …

 Often built on BDW GC

 Up to 10X performance hit

 N-version programming
 Replicas truly statistically independent

 Address space randomization (as in Vista)

 Failure-oblivious computing [Rinard]
 Hope that program will continue after memory error with no

untoward effects

48Tolerating and Correcting Memory Errors in C and C++

