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ABSTRACT

We describe a data-driven approach that allows us to qyantif
the costs of various types of errors made by the utteranes-le
confidence annotator in the Carnegie Mellon Communicatsf sy
tem. Knowing these costs we can determine the optimal tfadeo

point between these errors, and tune the confidence annatato
cordingly. We describe several models, based on conceystria-
sion efficiency. The models fit our data quite well and thetieda
costs of errors are in accordance with our intuition. We &z,
surprisingly, that for a mixed-initiative system such as @MU
Communicator, false positive and false negative erromdetiatf
equally over a wide operating range.

1. INTRODUCTION

Misunderstanding of user input, often precipitated by geition
errors, can be a major source of user frustration in dialstesys.
More concretely, when a system misunderstands the usethand
acts erroneously on the misunderstanding, the user isfoodake
corrective action, either by explicitly invoking a repairtsdialog
(for example, through speaking a correction keyword) ordsyat-
ing the input. It follows that if the system is capable of ntoring
its performance and identifying situations in which theslikood
of misunderstanding is high, then it can choose the mosiexttic
response (i.e., one least damaging to the progress of tleglia
In general, the ability to monitor one’s own performance &md

"know that you don’t know” can contribute to a more fluent and

intelligent dialog, at the very least one that minimizes itfteo-
duction of incorrect information.
Effective performance monitoring requires a solution t@éh

problems: 1) misunderstandings need to be detected, 2)ta cos

needs to be assigned to action alternatives in a given dpatek3)
an appropriate recovery strategy needs to be selected.rében
paper focuses on the second of these issues.

The work described in this paper makes use of an utterance

level confidence annotator which we have previously desdrib
[1]. The annotator employs features from different souingbe

dialog system (decoder, parser, and dialog manager) tsifslas

an utterance as understood or misunderstood, and achi®a8s a
relative reduction in error rate from the baseline systemcept
error.

We have since integrated this classifier into the CMU Commu-

nicator system [2] and have continued to improve its acgurBice
greatest gains were obtained by a cleaner re-annotatibe tftin-
ing corpus, and by differentiating the binaypected_slot feature
into a three-level feature: expected, accepted and unteztep/e

further investigated classification approaches, conatng on the
AdaBoost classifier, and on a logistic regression modehaigh
the two classifiers produce similar error rates (around 14%6)
10-fold cross-validation on a new dataset, the logisticasgjon
model performs better on a soft-metric: the average logitibod
of the test data is -0.52, while for AdaBoost is -0.88. These e
periments confirm that a density estimator model (e.g. tagis-
gression) is more appropriate if one intends to use the cemdiel
rating as a probability (rather than make hard decision)erdi-
alog management process.

2. MODELING THE COST OF MISUNDERSTANDINGS

An issue not addressed in our work so far is that of modelirg th
costs of the various types of errors made by the confidenagtann
tor. When training a classifier, we typically minimize theatcer-
ror rate, i.e. the sum of the false-positives (false acce@s) and
false-negatives (false rejections). The classificatiothéefore
optimized under the implicit assumption that the costs fase
two types of errors are the same.

However, intuition tells us that this assumption is prolpai
olated in most spoken dialog systems: a false-positiver shrauld
generally cost more than a false-negative, as the systdraca#pt
and possibly use incorrect information. This will requikarec-
tion and will thereby slow down the progress of the dialog- Al
though the cost clearly depends on details of the system and o
the dialog strategy chosen, we generally believe that giccein-
correct information is likely to lead to greater costs thanmy
rejecting a correct user input.

We describe a data-driven investigation of the costs ofethes
various types of errors. We propose the following approaxch f
computing the costs: first, identify a suitable performamestric
(e.g. efficiency, completion, user satisfaction), whichimtend to
optimize. Next, create a statistical regression mbdelating this
performance metric to the counts of the various types ofetat
occur in a dialog. Obtaining a good fit will give us a robustmjua
titative assessment of the (negative) contribution ofetdifferent
types of errors to our metric. Finally, use the costs deteechin
the regression to optimally tune the classifier, so that tiesen
performance metric is maximized.

There are several advantages in keeping the model for the cos
of errors decoupled from the confidence annotator: firstlatna
us to obtain a quantitative assessment of the costs. Mareibve
allows us to target global performance metrics, and thusucap
the effects of the confidence errors across an entire sessioer

lusing whole dialogs as datapoints



than within any single utterance. We currently assume tirat e
cost is constant throughout the dialog. Given a sufficielatige
corpus this assumption could be relaxed.

Smith and Hipp [3] propose the use of dialog work analysis to
determine the optimal tradeoff point between these typesrofs.
Compared to their approach, ours is entirely data-drivesgre&s-
sion models have been used previously to evaluate dialdgrper
mance in the PARADISE framework [4, 5]. Our work is different
in that it is targeted at assessing the cost of several grégies
of errors with the final goal of optimizing the performancettoé
confidence annotator for a particular spoken dialogue sysi®
our knowledge, this is the first empirical investigation lo€ tosts
of misunderstanding errors in spoken dialog systems.

3. EXPERIMENTS AND RESULTS

In this section we detail the experiments performed anddhbelts
obtained. After a brief description of the corpus used, usitate
the incremental development of three successively moraleet
models that use dialog efficiency as the targeted responisdbiea
Next, we briefly describe two additional models which taaenh-
pletion and user satisfaction as performance metrics.|lizinee
show how to use the obtained cost model to determine the aptim
tradeoff point between various types of errors committedhy
confidence annotator.

3.1. Dataset

Atotal of 134 dialogs (2561 utterances) were used, coltbetestly
using 4 different scenarios. The scenarios varied acrosgrdi
sions such as number of legs, and hotel and car requirements.
User satisfaction scores (on a scale from 1 to 5) were olutaine
for 35 of these dialogs. A human annotator manually labdied t
dialogs for task completion. Each utterance was also mbnual
labeled at the concept level, and whole-utterance labels ago-
matically generated. The annotation scheme provided fabd!$,
applied to each concept identified in the user input. Corscept-
responded to slots in the semantic grammar used in the Commun
cator system, which in turn was based on an ontology of tiveltra
domain. The labels used were: OK, RBAD (recognition-based
error), PBAD (parse-based error) and OOD (out-of-domaterut
ance). The generated aggregate utterance fatvelee compared
with the logged decisions of the confidence annotator ryniin
the system, and the counts for each type of error were compute

Dataset statistics| Total Mean Std.Dev.

per dialog | per dialog
# of dialogs 134 - -
# of utterances 2561 19.11 9.34
#CTC 1983 14.80 7.64
#ITC 166 1.24 1.61
# REC 2373 17.71 9.25
CTC/Turn - 0.77 0.23
CTC-ITC/ Turn - 0.71 0.28

Table 1. Dataset statistics

2For the present investigation, mixtures of OK and BAD labetse
considered BAD at the utterance level

3.2. Optimizing dialogue efficiency

The primary objective metric used was the efficiency of tladat),

as measured by the rate at which the system obtained acawrate
formation from the user. This is a reasonable choice, asrtat
completion of the Communicator task requires the systenotto ¢
rectly acquire flight constraints and to efficiently navigpbssible
solutions.

3.2.1. Mode 1. CTC = FP+FN+TN

The response variable for this model is the number of cdyrect
transferred conceptC{TC) per turn. For example, in the utter-
ance below, there is only one correctly transferred condé-
partLoc]. Although the label for [lwant] is OK, we count only
those concepts that the system uses. Note that if the conéden
annotator’s decision had been to reject this utterancey GEC
would be 0, as no transfer of information from the user to ffee s
tem would have occurred.

User says: | want to fly from Pittsburgh to Boston
Sys. recognizes: | want to fly from Pittsburgh to Austin
Concepts: [lwant/OK] [DepartLoc/OK]

[Arrive _Loc/BAD]
Decision: Accept

The predictor variables are the proportion of false poséiv
(FP), false negativesHN), and true negativeg (\) in the session.
Although the true-negatives are not errors per se, thelusian
provides a better fit for the model.

We constructed a linear regression model and the results are
illustrated on the first line in Table 2. ThR? value of 0.81 indi-
cates a good fit. The robustness of the model was verified asing
10-fold cross-validation experiment. The means of Rfefor the
10 runs on the training and testing set are also shown in Rable

3.2.2. Mode 2: CTC-ITC=(REC+)FP+FN+TN

We can refine the first model by also minimizing the number of
incorrect concepts transmitted (e.g. in the utterance gbiere

is one incorrectly transferred concept: [Arrikec]). To do this,
we extend the response variable to take into account the euofib
incorrectly transferred concept§ C) per turn . UsingCTC-ITC

for the response variable improves the fit.

Furthermore, we can add another predictor variable: the num
ber of relevantly expressed concepREC) per turn, regardless
of whether the system perceives them correctly or not (erg. i
the utterance above, there are 2 relevantly expressed jsnce
[Arrive _Loc] and [Depart_Loc]). This variable contributes to the
model by capturing the user’s verbosity (a user who expsesse
more relevant concepts in an utterance is likely to have hemig
CTC).

This model provides a better fitR*> = 0.89 (Table 2, third
line). An inspection of the coefficients computed in the esgr
sion shows that the costs for the false-positives and fofalse-
negatives were very similar (-1.46 and -1.44 respectivelfn
analysis of this somewhat counterintuitive result sugegesin ad-
ditional refinement to the model.

3.2.3. Moded 3: CTC-ITC=REC+FPNC+FPC+FN+TN

An important observation is that there are two conceptudilfy
ferent types of false-positive errors in the Communicaystesm.



Model R? Mean R? Mean R>
on entire dataset | on training set | on testing set
CTC =FP+FN+TN 0.8160 0.8169 0.7336
CTC-ITC = FP+FN+TN 0.8650 0.8657 0.7866
CTC-ITC = REC+FP+FN+TN 0.8910 0.8912 0.8325
CTC-ITC = REC+FPNC+FPC+FN+TN 0.9436 0.9439 0.9014

Table 2. Models for cost of confidence errors. See text for meanirgyotbols.

If the utterance contains relevant concepts, and the cortfidan-
notator commits a false-positive, the system will accept ase
invalid information (e.g. using Austin as the arrival city the
example above). We call this type of errofaise-positive with
concepts (FPC). If there are no relevant concepts in the utterance,
then the system will inform the user that it misunderstoating
exactly the same as on a true-negative. We call this last arro
false-positive with no concepts (FPNC).

The impact of these two types of false-positives on the dialo
is clearly different. Therefore, in the third model we rejdd the
FP predictor variable wittFPC andFPNC. This model provides
an even better fitR* = 0.94). The resulting coefficients and their
95% confidence intervals are listed in Table 3.

Coef. | Confidence interval |

Constantterm{ 0.4188| 0.3075 - 0.5302
REC 0.6254 | 0.5269 - 0.7239
FPNC -0.4820| -0.6934 — -0.2707|
FPC -2.1222| -2.2894 — -1.9550
FN -1.3302 | -1.5429 - -1.1175
TN -0.5588 | -0.7025 — -0.4151

Table 3. Regression coefficients

The relative costs confirm the intuition: false-positiveshw
concepts are most expensive, while false-positives witltoro
cepts cost about the same as true negatives.

3.3. Other models

While a model of net concept transmission is of immediaterint
est in determining how to effectively use a confidence ananta
we can also consider other response variables that appder to
correlated with "good” dialogs, such as task completionnc8i
completion is defined as a binary variable, we can use lagisti
gression rather than linear regression for the model. Thdefrdid
not provide a very good fit, which is not very surprising gitbat
factors other than utterance rejection will likely alsoeaff task
completion.

We also constructed a linear regression model with uses-sati
faction as the response variable. Following the PARADI|Sike-
work [4, 5], we used completion and accuracy as the predietor
ables. As we are interested in the individual contributiohthe
various types of errors that the confidence annotator cosnmui
decomposed accuracy into tR€, FN andTN factors.

Unfortunately, we were able to obtain user satisfactiomesco
for only 35 dialogs. The fit for the model constructed usingsth
datapoints -R? = 0.61 — is comparable with results reported in
the literature [4]. Since user satisfaction is probably uhamate

performance metric for a dialog system, we intend to cobelcti-
tional data, with the goal of understanding whether theofacof
interest in this paper have significant impact on user satiign.

3.4. Tuning the confidence annotator

Now we illustrate how to optimally tune the confidence annota
tion classifier with regard to the costs determined by theipos
models.

In order to make a hard decision, most classifiers compare the
output of the classification process with a threshold. Byngiteg
the threshold, we can bias the classifier towards more fadséive
or more false-negative errors. Figure 1 illustrates theremnates
for the different types of error=PNC, FPC, FN, TN) that the
logistic regression confidence annotator makes, as a &mai
the classification threshold.
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Fig. 1. Errors tradeoff and Total Cost as a function of classifarati
threshold

To determine the optimal tradeoff between false positives a
false negatives, we identify the threshold value that m&émthe
regression expression, and thus implicitly the responsabla —
dialog efficiency. Since th®EC factor (user’s verbosity) is in-
dependent of the chosen threshold, and since the constdat fa
does not influence the location of the maximum, we only need to
minimize the following cost:

TotalCost = 048FPNC + 2.12FPC + 1.33FN + 0.56T N



We plotted this function (Figure 1), but no minimum could be

clearly identified. This is a surprising, somewhat counteitive,
and very interesting result. The fact that the cost funcisoal-

most constant across a wide range [0-0.5] of the threshdle:sa

indicates that, to a large extent, the efficiency of the djidtays

5. CONCLUSION

It is generally believed that tracking confidence of underding
and having dialog strategies take confidence into accoadsl®
better dialogs. In this paper we present a data-driven apprto

about the same (at least in terms of the metric we have chosenquantitatively assess the costs of the various types ofsecam-

to investigate), regardless of the ratio of false-positisad false-

negatives that the system makes. Even when the threshatitis s

zero, which is equivalent to completely eliminating theetaihce
level confidence annotator, the degradation in efficiencgsueed

asCTC-ITC would be insignificant. A very similar result was

obtained for the AdaBoost-based confidence annotator.

4. FURTHER ANALYSIS

In trying to better understand this unexpected result, wipeed
several additional experiments and checks.

First, we questioned the appropriatenes€dC-ITC as are-
sponse variable. An analysis of the distribution of thisialale
showed a rather large variance across dialogs (see Tabkeut.).

thermore, the mean values for the completed and the unctedple

dialogs were 0.82 and 0.57 respectively. A t-test showetdhiese
means are statistically different with a very high level ohfi-

dence p = 7.23-107?). These results, together with the robust fit
suggest that indee@TC-ITC is an appropriate response variable.

mitted by an utterance-level confidence annotator. We fahad
models based on net concept transfer efficiency fit our dédta qu
well and that the relative cost of false positive and falsgatige
confidence decisions are in accordance with our intuitioms, (
false positives being on the whole more costly that falsatiees).
For the classifier used in our work, however, we found that
across a wide range of the receiver operating charactecstie,
the total cost stays the same. Moreover, the result indidhta,
even without an utterance level confidence annotator, flodesfcy
of the dialog (as measured by the net correctly transmitted c
cepts per turn) would be the same. In a sense, this resukésfiep
to the classifier we have developed and to the repair stestsgip-
ported by the Communicator system.
Given the counterintuitive nature of this result, we are-con
ducting further experiments (for example, running theeystvith
a very low confidence annotation threshold) to empiricabgak
and further explore the predictions made by the cost model.

6. ACKNOWLEDGEMENTS

The next issue we addressed was the coverage for the model in

terms of predictor variable values. Since the training datahe

cost model was collected from the system running the cordiglen

annotator with a threshold of 0.5 (which implies on averagera
tain proportion between FP- and FN-errors), it could be edghat

the data does not allow us to construct a model which extatpol

correctly to other ratios between FP- and FN-errors (e. teexa
treme threshold values). However, an analysis of the Higidn

of the number of these errors in the dialogs showed that this w

not the case.

We also evaluated the impact of the baseline error rate. A
plot of the cost function determined based only on the dialog [1]

with a low error rate, indicated that in this setting, theimat
threshold for the classifier is at zero (equivalent with @tiating
the classifier). This observation, corroborated our previesults,

and seems to indicate that for spoken dialog systems in whih

user can easily override incorrectly captured informatthe con-
fidence annotator does not improve efficiency if the baseiner
rate is low.

We can perhaps understand this result in the following way: [3]

in a mixed-initiative system, the user is able to correcorrby
simple re-statement of the input which if now correctly urstieod
can overwrite the incorrect previous entry. Thus the effeatost
of a false-positive is essentially equal to that of a falegative
(for which restatement is naturally indicated). At low etrates

the likelihood of repeated misrecognition is low enough fsat t

simple repetition will be able to move the dialog forwards #ame
strategy works of course for the false negative condition.
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