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Abstract
Thor is an object-oriented database system designed for use in a
heterogeneous distributed environment. It provides highly-reliable
and highly-available persistent storage for objects, and supports
safe sharing of these objects by applications written in different
programming languages.

Safe heterogeneous sharing of long-lived objects requires
encapsulation: the system must guarantee that applications interact
with objects only by invoking methods. Although safety concerns
are important, most object-oriented databases forgo safety to avoid
paying the associated performance costs.

This paper gives an overview of Thor’s design and implementa-
tion. We focus on two areas that set Thor apart from other object-
oriented databases. First, we discuss safe sharing and techniques for
ensuring it; we also discuss ways of improving application perfor-
mance without sacrificing safety. Second, we describe our approach
to cache management at client machines, including a novel adaptive
prefetching strategy.

The paper presents performance results for Thor, on several OO7
benchmark traversals. The results show that adaptive prefetching
is very effective, improving both the elapsed time of traversals and
the amount of space used in the client cache. The results also show
that the cost of safe sharing can be negligible; thus it is possible to
have both safety and high performance.

1 Introduction

Thor is a new object-oriented database system intended for
use in heterogeneous distributed systems. It provides highly-
reliable and highly-available storage so that persistent objects
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are likely to be accessible despite failures. Thor supports
heterogeneity at the levels of the machine, network, operating
system, and especially the programming language. Programs
written in different programming languages can easily share
objects between different applications, or components of
the same application. Furthermore, even when client code
is written in unsafe languages (such as C or C++), Thor
guarantees the integrity of the persistent store.

This paper describes the interface and implementation of
Thor and focuses on a novel aspect of Thor in each area.
At the interface level, we discuss its type-safe heterogeneous
sharing. At the implementation level, we describe our novel
client-side cache management.

Thor provides a particularly strong safety guarantee:
objects can be used only in accordance with their types. It
thus provides type-safe sharing. Type-safe sharing provides
the important benefit of data abstraction. Users can view
objects abstractly, in terms of their methods; and they can
reason about them behaviorally, using their specifications
rather than their implementations.

Type-safe sharing requires that code uses objects only
by calling their methods. A combination of techniques
ensures type-safe sharing. Thor stores objects with their
methods, and methods are implemented in Theta [LCD � 94],
a new, statically-typed programming language that enforces
strict encapsulation. When client code is written in an
unsafe language, Thor runs it in a separate protection
domain. Finally, Theta and Thor provide automatic memory
management and therefore avoid dangling references. As
discussed in Section 3, we know of no other object-oriented
database that provides safe, heterogeneous sharing.

Safe sharing is not without its potential performance costs,
and other systems have chosen to forgo safety for improved
performance. However, the paper shows how to avoid this
choice by presenting techniques that improve application
performance without losing safety.

Thor has a distributed implementation in which persistent
storage is provided by servers and applications run at client
machines. Clients cache copies of persistent objects (rather
than copies of pages as in most other systems). We use
a new, adaptive prefetching algorithm to bring objects into
the cache. This algorithm allows the system to adapt to
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the application, fetching many objects when clustering is
effective, and fewer objects when it is not. Fetch requests
include a desired prefetch group size; the server attempts
to return that many objects. The prefetch group size varies
according to the usefulness of previous prefetch groups.

Prefetch groups offer several benefits over fetching whole
disk pages. Our approach improves cache utilization and
reduces network load, since we fetch a small group of useful
objects rather than everythingon a disk page (when clustering
is good, we fetch more than a page.) Prefetch groups also
decouple decisions about client cache management from the
properties of server disks and the optimal disk transfer size.

We also present some performance results (and their
analyses) for our initial prototype, Thor0, run on several OO7
benchmark traversals [CDN93]. The results show that Thor
does well on these benchmarks, and that adaptive prefetching
is very effective, reducing both the elapsed time of traversals
and the amount of space used in the client cache. They also
show areas where improvement is needed (we plan to fix the
defects in our next release). Finally, the results show that
techniques for reducing the cost of safe sharing can be very
effective; it is possible to have both safe sharing and high
performance.

The rest of the paper is organized as follows. In
Section 2, describes the application interface of Thor.
Section 3 discusses the issue of type-safe sharing in more
detail. Section 4 describes the architecture of the Thor
implementation. Section 5 covers client cache management,
including related work. Section 6 gives performance results.
Section 7 summarizes our contributions.

2 Thor Interface
Thor provides a universe of objects. Each object has a state
and a set of methods; it also has a type that determines its
methods and their signatures. The universe is similar to the
heap of a strongly-typed language,except that the existence of
its objects is not linked to the running of particular programs.
Instead, applications use Thor objects by starting a Thor
session. Within a session, an application performs a sequence
of transactions; Thor currently starts a new transaction each
time the application ends the previous one. A transaction
consists of one or more calls to methods or to stand-alone
routines; all the called code is stored in Thor. Clients end
a transaction by requesting a commit or abort. A commit
request may fail (causing an abort) because the transaction
has made use of stale data. If a transaction commits, we
guarantee that the transaction is serialized with respect to
all other transactions, and that all its modifications to the
persistent universe are recorded reliably. If a transaction
aborts, any modifications it performed are undone at the client
(and it has no effect on the persistent state of Thor).

Method calls return either values or handles. A value is a
scalar such as an integer or boolean. A handle is a pointer to
a Thor object that is valid only for the current client session;
Thor detects attempts to use it in a different session.

handle 1

handle 2

root

volatile 

get_root, invoke
commit/abort

values, handles

Application Thor

Figure 1: The Thor Interface

The universe has a set of persistent server roots, one
for each server that stores persistent objects. (This is
one way in which distribution shows through to users; the
other is a mechanism for moving objects among servers.)
All objects reachable by some path from a root are
persistent. When an object becomes inaccessible from the
roots, and also inaccessible from the handles of all current
sessions, its storage is reclaimed automatically by the garbage
collector [ML94, ML95].

An application can use volatile Thor objects, such as
newly-created objects, during a session. (Of course, an
application can also have its own volatile objects outside
of Thor.) An initially volatile object may be made persistent
by a transaction that makes a persistent object refer to the
volatile one. Storage for volatile objects continues to exist as
long as they are reachable from a session handle. At the end
of a session, all volatile objects disappear.

Server roots have names that allow users to find their
persistent objects when they start up sessions. Each server
root is a directory object that maps strings to objects, which
allows applications to locate their data. Objects of interest
can be found by navigation or queries. (Thor does not
yet support queries, although we have studied support for
efficient queries [Hwa94].)

Figure 1 illustrates the Thor interface. Note that Thor
objects and code remain inside Thor; this is an important
way in which Thor differs from other systems.

2.1 Defining and Implementing Object Types

Object types are defined and implemented in Theta, a
new, general-purpose object-oriented programming lan-
guage [DGLM95, LCD � 94]. Although Theta can be used
separately from Thor, it was developed to support the type-
safe sharing requirement of Thor.

Theta is a strongly-typed language. It distinguishes be-
tween specifications (which are used to define the interface
and behavior of a new type) and implementations (code to
realize the behavior). An object’s implementation is en-
capsulated, preventing external access to the object’s state.
Theta provides both parametric and subtype polymorphism,
and separates code inheritance from the subtyping mecha-
nism. Theta objects reside in a garbage-collected heap, and
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directory � type [T]

% overview: a directory provides a mapping from strings to
% objects of type T.

size ( ) returns (int)
% returns the size of self (number of mappings)

insert (s: string, o: T)
% adds the mapping from s to o to self, replacing
% any previous mapping for s

lookup (s: string) returns (T) signals (not in)
% if there is no mapping for s in self signals not in
% else returns the object s maps to

elements ( ) yields (string, T)
% yields all the mappings in self

end directory

create directory[T] ( ) returns (directory[T])
% returns a new, empty directory

Figure 2: Part of the type definition for directory

all built-in types do run-time checks to prevent errors, e.g.,
array methods do bounds checking.

A type definition provides only interface information; it
contains no information about implementation details. An
example is given in Figure 2. (The lines headed by % are
comments.) The figure defines a parameterized directory
type and a stand-alone procedure, create directory, which
creates new directory objects. Example instantiations of this
type are directory[int], which maps strings to integers, and
directory[any], which maps strings to objects of different
types (any is the root of the Theta type hierarchy). Note
that methods can be both procedures and iterators (an iterator
yields a sequence of results one at a time [LSAS77]), and
that calls can either return normally or signal an exception.

The information in type definitions and implementations
is stored in Thor, in a schema library that can be used
for browsing, for compilation of Theta programs, and
for producing the programming language veneers that are
discussed in the next section.

2.2 Veneers

Applications that use Thor’s persistent objects can be written
in various programming languages, but Thor objects are
defined in Theta. This section discusses how application
code makes use of Thor objects.

Applications interact with Thor through a thin interface
layer called a veneer. The veneer is customized to the
particular application language used. So far, no veneers have
required compiler support. A veneer provides procedures
that can be called to start a session or commit a transaction,
and it provides translations between scalars stored in Thor

template � class T � class th directory �
int size( );
void insert(th string s, T v);
T lookup(th string s);
th generator � struct � th string s; T v; ��� elements( );

� ;

Figure 3: A veneer class declaration for C++

(e.g., integers) and related types in the application language.
The veneer exposes ordinary (non-scalar) Thor objects

with a stub generator, a program that translates a Theta type
definition into a application-language stub type. We refer to
objects belonging to these stub types as stub objects. Stub
objects are created in response to calls to Thor; when a call
returns a handle, the application program receives a stub
object containing the handle. The operations of the stub type
correspond to methods of the Theta type; when a operation
is called on a stub object, it calls the corresponding Thor
method on the Thor object denoted by the handle in the stub
object, waits for a reply, and returns to the caller.

For example, the stub generator for C++ produces a class
corresponding to a Theta type, with a member function for
each method of that type. The C++ class name is the Theta
type name, prefixed with th . Figure 3 gives part of the C++
class declaration for the directory parameterized class shown
in Figure 2. The size method returns a C++ int. The insert
method takes a th string as an argument, i.e., it takes a stub
object for a Thor string. (A th string can be constructed by
the client from a C++ char*, using a constructor provided
by the veneer.) The lookup method does not signal an
exception, because many C++ compilers do not yet support
exceptions properly. Instead, if the Thor method signals an
exception, the associated stub operation records the exception
in a special exception object. The application is halted if
it does not check for the exception. The elements method
returns a generator object, which has a next member function
used to obtain the next yielded result. An example of code
that uses th directory is

th directory � int � di � th get root(“thor”, “dir”);
di.insert(“three”, 3);
di.insert(“six”, 6);
th commit( );

which retrieves and uses a directory from the root directory
of the server named “thor”.

We have defined veneers for C, C++, Perl, Tcl, and Java,
none of which required compiler modifications. The existing
veneers show that object-oriented features can be mapped
easily to languages lacking objects. More information about
veneers is available [BL94].

3 Type-safe Sharing
Type-safe sharing provides two important properties. First,
because objects can be manipulated only by their methods,
users can focus on how objects behave rather than how
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they are implemented. This allows users to conceptualize
objects at a higher level and to reason about them using their
specifications. Second, safe sharing provides the benefits
of modularity: we can reason about correctness locally, by
just examining the code that implements a type, with the
assurance that no other code can interfere.

These properties have proved very useful in programming,
especially for large programs. We believe that they are at
least as important for object-oriented databases, where the
set of programs that can potentially interact with objects in
the database is always changing; type-safe sharing ensures
that new code cannot cause existing code to stop working
correctly. Of course, type-safe sharing is not the only form
of safety one should provide, since it guarantees only that
individual objects continue to have reasonable abstract states.
A constraint mechanism that expresses predicates over many
objects would be useful, and access control is clearly needed.

The basis of type-safe sharing is the database programming
language. That language must ensure two things: (1) type
correct calls — every method call goes to an object with
the called method, and (2) encapsulation — only code that
implements an object can manipulate its representation. The
first property can be ensured using either compile-time or
runtime type checking, but static, compile-time checking is
better because it rules out runtime errors and reduces runtime
overheads. Static checking ensures that the declared type of
a variable is a supertype of the object that variable refers
to at runtime. This guarantee might be undermined by
explicit memory management (since then a variable might
point to nothing or to an object of some other type), unsafe
casts, or arrays lacking bounds checking. Given type safety,
encapsulation requires only that user code be constrained to
interact with objects by calling their methods.

Implementing database objects in a type-safe language is
not sufficient to provide type-safe sharing, however. The
database also must restrict applications written in unsafe
languages to interact with database objects only by calling
their methods. Thor does this by running user code in a
separate domain from the database and dynamically type
checking user calls. This type checking ensures that the call is
addressed to a legitimate object which has the called method,
and that the call has the right number and types of arguments.
Type checking is needed since stub code can be corrupted
or bypassed. Thor ensures legitimacy of object references
by checking the validity of handles and by managing the
persistent heap with a garbage collector.

Other systems do not provide safe sharing. O2 [D � 90] and
GemStone [BOS91] store methods in the database. However,
the languages provided by O2 for method definition are not
safe (for example, one of these languages is an extension of
C). GemStone does better since programmers use a variant
of Smalltalk to define the methods in the database, and one
can run a GemStone client in a separate domain from the
process that manages its objects, as is done in Thor. However,
GemStone exports an unsafe interface to client applications

that allows direct access to an object’s internal state.
Other object-oriented systems, e.g., SHORE [CDF � 94]

and ObjectStore [LLOW91], do not store methods in the
database. Instead, applications compile or link against
appropriate method code that is stored outside the database
system. This approach is fragile: it works only if the right
version of the method code is linked in. Furthermore, most
systems (e.g., ObjectStore) allow method code to be written
in unsafe languages, and run applications in the same domain
as the persistent objects. In SHORE, the application runs in a
separate domain, but objects are copied into client space, and
modified objects are copied back later without any integrity
checking; thus, SHORE objects can be corrupted by unsafe
clients.

Safe sharing requires that someone write the definitions
and implementations of persistent object types in the database
language (e.g., Theta). Writing type definitions is similar
to what other systems require (for example, we could
translate ODMG descriptions [Cat94] to Theta), but writing
implementations is more work. However, extra work is
needed only when an entire application is written in one
application language and does not share its objects with
applications written in other languages. As soon as there
is inter-language sharing, our approach is less work: other
approaches require writing methods in each application
language whereas we implement them once, in Theta. In
fact, the need to write the methods in various languages
is an impediment to heterogeneous sharing; an approach
with a database language, on the other hand, encourages
heterogeneous sharing.

In CORBA [OMG91], objects implemented in different
programming languages can call one another. Two
differences between Thor and CORBA are that Thor defines a
common implementation language and ensures safe sharing.

3.1 Safe Sharing Techniques

Safe sharing requires running applications written in unsafe
programming languages in a separate domain from the
database and type checking all calls to the database. An
application written in a safe language can avoid these costs.
These requirements add a substantial cost to short calls (but
not to long ones, such as queries). This section briefly
discusses three ways to reduce this cost: batching, code
transfer, and sandboxing; we have performed a more detailed
performance study [LACZ].

Batching reduces total execution time by grouping calls
into batches and making a single domain crossing for each
batch, amortizing the domain-crossing penalty over all calls
in the batch. We have studied batching of straight-line
code [BL94] and loops [Zon95]; the latter is especially
promising since it allows large batches and reduces the
overhead of dynamic type checking: each call in the loop
is checked just once, although the loop body may execute
many times.
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Figure 4: Architecture of Thor Implementation

Code transfer moves a portion of the application into
the database. Typically, an application alternates between
database and non-database computation; the database
computation can be transferred into the database and executed
there. Code transfer effectively increases the granularity of
application calls. Queries are a code transfer technique; here
we are interested in other kinds of code transfers that cannot
be expressed in a query language such as OQL [Cat94] or
extended SQL [SQL92].

We cannot move a procedure written in an unsafe
language into the database. Safe ways of transferring
code include writing the procedure in the database language
(Theta), translating application subroutines into the database
language, and translating application subroutines to type-safe
intermediate code such as Java bytecodes [Sun95]. The latter
approach is particularly promising since translators from
various application languages to Java may be common in
the future. The Java code could either be verified and then
run inside Thor, or it could be compiled to Theta.

In the sandboxing [WLAG93] approach, (unsafe) applica-
tion code/data is placed inside the database but allowed to
access only a restricted range of virtual memory addresses.
The restriction is enforced by inexpensive runtime checks.
However, every call made from the sandboxed code to the
database methods must still be type checked. Since the code
transfer technique reduces the number of type-checked calls,
sandboxing cannot perform as well as code transfer.

Our performance studies indicate that code transfer
techniques [LACZ] offer the best performance. The
performance studies presented in this paper are based on
code transfer; our benchmark code was written in Theta.

4 System Architecture
Thor has the client/server architecture illustrated in Figure 4.
Persistent objects are stored at servers called ORs (object

repositories). Each OR stores a subset of the persistent
objects; at any moment, an object resides at a single OR,
but it can migrate from one OR to another. Objects can
refer to objects at other ORs, although we expect inter-server
references to be relatively rare. If object x refers to y, and both
are created in the same transaction, they are likely to reside
at the same OR at disk locations that are close together.

To achieve high availability, each OR is replicated at a
number of server machines and its objects have copies stored
at these servers. We plan to use a primary/backup replication
scheme as in the Harp file system [LGG � 91], but replication
is not yet implemented.

An application interacts with Thor through a component
called the FE (front end), which is created when an
application starts a session. Although a typical configuration
has an application and its FE running on a client machine that
is distinct from servers, an application and its FE could run
at a server, or an application could use a remote FE that runs
at another client or at a server.

In this architecture, the server and its disk are likely to be
the bottleneck. We address this problem in two ways: we
offload work from ORs to FEs, and manage the server disk
efficiently. We offload work by all application calls at the FE
on cached copies of objects; this speeds up many applications
since communication with ORs is infrequently required. FE
cache management is the subject of Section 5.

We manage the server disk efficiently by a combination
of two techniques. Like other databases, we record
modifications made by committed transactions on a stable
log, and write the new versions back to the database on disk in
the background; however, we manage the log and database on
disk differently from other systems. Our log is not normally
kept on disk; instead, it is kept in primary memory at two
servers, a primary and a backup, as in Harp [LGG � 91].
The primary and backup each have an uninterruptible power
supply that allows them to write the log to disk in the case of
a power failure. This approach provides stability at a lower
cost than writing the log to disk [LGG � 91], and in addition
provides highly-available object storage.

We keep new versions of modified objects in a volatile
modified object cache (mcache) [Ghe95]. This has several
advantages over the modified page cache that is used in other
systems. First, the mcache allows us to ship objects rather
than pages to ORs at transaction commit, making commit
messages smaller. Second, we need not do installation
reads [OS94] at commit time. Third, we can store many
more modified objects in the mcache than modified pages in
a page cache of the same size — the cache can absorb more
writes, reducing the I/O needed to record new object states
onto disk.

Our current prototype, Thor0, is a complete implementa-
tion of the architecture described in Sections 4 and 5, except
that replication has not yet been implemented.
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5 Client Cache Management

We manage the entire FE cache as an object cache: we fetch
objects into the cache, and discard objects when more room is
needed. Object caching is attractive because the cache only
stores objects of interest, without keeping unused objects
from the same disk pages. Most objects in an object-oriented
database are likely to be considerably smaller than disk pages
(e.g., the average in-disk object size for our implementation
of the small OO7 database is 51 bytes). Typically, many
objects are stored on each disk page. Even when objects are
well-clustered on disk pages, no single clustering matches
all uses [TN92]. A page cache works well when clustering
matches usage, but wastes storage when it doesn’t. It also
wastes network bandwidth by sending unwanted objects;
although this cost may not be large for the future LANs,
it will still be significant for WANs (and wireless networks).

Another advantage is that object caching allows us to
decouple disk management from fetching. Disks work well
with large pages, since seeking to a page is expensive relative
to reading it. However, with large pages, few objects per page
may be used by a particular application, leading to wasted
space at the client if there is a page cache, and wasted time
in shipping the page across the network.

We combine an object cache with a new, adaptive
prefetching algorithm, which prefetches many objects when
clustering matches usage, and few objects when it doesn’t.
Thus we adapt minimizing the amount of cache space wasted
and reducing network communication overheads.

Others have developed caching schemes that are similar
to ours in some respects. Some systems (e.g., [Ont92,
D � 90]) fetch and discard objects, but none has an adaptive
prefetching algorithm. Ontos [Ont92] allows the user to
specify at object creation time whether object-based or
page-based fetching should be used for the new object.
Our technique is better: it adapts over time, uses a wide
range of possible prefetch group sizes, and does not require
programmer involvement.

Some systems, such as SHORE [CDF � 94] and a system
described by Kemper/Kossman [KK94], use a dual caching
scheme, in which pages are fetched into a page cache, and
objects are then copied into an object cache. In these systems
a page can be discarded while useful objects from the page
remain in the object cache. (SHORE copies objects on first
use; Kemper/Kossman compare this approach to a lazy copy
approach that copies the useful objects from a page only when
it is about to be removed from the page cache.) However, such
systems cannot get the full benefit of object caching: they
always fetch entire pages, even when many of the objects on
the page are not useful.

Object caches are harder to manage than page caches,
however. In a page cache, available memory is divided into
page-sized slots, allowing a new page to overwrite an old
one. Objects are of variable size and require more complex
memory management. The Thor0 implementation uses a
variant of copying garbage collection [Bak78] to manage

the cache. The FE reads an arriving prefetch group into
the beginning of free space. When free space runs low,
some persistent objects are evicted from the cache, followed
by a copying collection. The collection compacts storage
to provide enough contiguous space for incoming prefetch
groups. The next section describes cache management issues
in more detail, while Section 5.2 discusses our adaptive
prefetching algorithm.

5.1 Details

Swizzling and Fetching. Thor objects refer to one another
using 64-bit location-dependent names called xrefs. An xref
is a pair, containing the id of an OR and some OR-dependent
information. With a location-dependent name, an FE can
easily determine from which OR to fetch an object. The
details of our scheme, including support for object migration,
are available [DLMM94].

Using xrefs for object addressing at the FE cache would
be expensive because each object use would require a table
lookup. Like many other systems [SKW92, C � 89], we
swizzle xrefs, replacing them with local addresses. Swizzling
is accomplished using a resident object table (ROT) that maps
the xrefs of resident objects to their local addresses.

A number of studies have compared various approaches
to swizzling and object fault detection; e.g., see [Day95,
Mos92, HM93, WD92]. Thor0 uses a form of node marking.
All the references in an object are swizzled at once. If the
object refers to an object not present in the cache, we create a
surrogate, a small object that contains the xref of the missing
object; the pointer is swizzled to point to the surrogate, and
an entry is made for the surrogate in the ROT. (Our surrogates
are similar to fault blocks [HM93].)

Fetching occurs when an attempt is made to use a
surrogate; if the object named by the xref in the surrogate
is not yet at the FE, the FE sends a fetch request to the OR
requesting the object identified by the xref. The OR responds
with a prefetch group containing the requested object and
some others. The requested object is swizzled, the surrogate
is modified to point to it (and thus becomes a full surrogate),
and the method whose call led to the fetch is run. We need
the level of indirection provided by the full surrogate because
objects in the cache may have been swizzled to point to
the surrogate. The indirection links are snapped at the next
garbage collection.

The other objects in the prefetch group are entered in the
ROT but are not swizzled; instead, we swizzle them at first
use. This lazy swizzling allows us to minimize the cost for
prefetching an object that is not used and reduce the number
of surrogates.

Transactions. We use an optimistic concurrency control
scheme [AGLM95]. As a transaction runs, the FE keeps
track of which objects it reads and modifies. Our use of
Theta allows us to recognize immutable objects; we don’t
track them, reducing both work while a transaction runs and
the amount of information sent to ORs at commit time.
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When a transaction commits, the FE sends to ORs the xrefs
of all persistent objects the transaction read, and the states
of all persistent objects the transaction modified. Modified
objects are unswizzled before being sent. While doing
unswizzling, the FE may discover pointers to volatile objects
that are being made persistent by the transaction; the FE
sends them to the ORs as well. The ORs then validate the
transaction [AGLM95].

After an OR commits a transaction, it sends invalidation
messages in the background to all FEs that contain cached
copies of objects modified by the transaction. (The tables
recording which objects are cached at FEs are kept at a coarse
granularity and do not take up much space.) The FE discards
invalidated objects by turning them into surrogates and aborts
the current transaction if it used a modified object.

Collection. Objects are discarded from the heap only in
response to invalidation messages, or when room is needed
for new objects. When the heap is almost full, the FE goes
through the prefetch groups in FIFO order, discarding all
objects in a group that have not been modified by the current
transaction, until it reaches a threshold; at present we attempt
to recover 50% of the space in from-space, although this
is an implementation parameter. Objects are discarded by
turning them into empty surrogates. We call this process
shrinking . Then the FE does a copying garbage collection
using the handle table and the modified objects as roots.
The collector snaps pointers to full surrogates to point to the
actual objects; at the end of collection, there will be no full
surrogates in to-space. Since empty surrogates are small, the
collector copies them rather than unswizzling all pointers to
the surrogate, since that would require that we reswizzle the
objects containing the pointer at next use.

In Thor0 we never discard modified objects, which
limits the number of objects a transaction can modify and
sometimes causes us to break up a transaction into smaller
transactions. We will eliminate this restriction in our next
prototype.

5.2 Prefetching

The ORs store objects in segments, which are similar to
large pages. The size of a segment is selected based on
disk characteristics; in our current system they are 28.5 KB,
the track size on our disks. Each segment holds some number
of objects. Objects are not split across segments. (28.5 KB
is the default size, objects larger than this are assigned their
own segment.)

Related objects are clustered in segments. Currently Thor
uses a simple-minded clustering strategy: objects made
persistent by the same transaction are placed in the same
segment. We plan to study smarter policies.

When the FE sends a fetch request to an OR, the OR reads
the segment of the requested object from disk if necessary.
Then the OR picks a prefetch group, a subset of the segment’s
objects that includes the requested object, and sends it to the
FE.

We use a simple sub-segment prefetching policy. We split
each segment up into groups containing k objects each: the
first k objects belong to the first group, the second k objects
belong to the second group, and so on. In response to a fetch
request for a particular object, the OR sends the entire group
that contains the requested object. (Earlier we used a policy
that determined the prefetch group based on the structure of
the object graph [Day95]. This policy was discarded because
it often generated very small prefetch groups near the fringes
of the object graph. Furthermore, the traversal of the object
graph added a non-trivial run-time cost to the OR.)

We vary the requested group size k dynamically to improve
the effectiveness of prefetching. Each time the FE generates
a fetch request, it sends a new value for k to the OR. If
prefetching is performing well, i.e., the application has used
many of the objects prefetched earlier, the FE increases k; if
prefetching is not working well, the FE decreases k.

In order to compute the requested group size, the FE
maintains two counters, fetch, which is an estimate of the
number of fetched objects, weighted toward recent fetches,
and use, which is an estimate of how many objects have been
used, weighted toward recent uses. Every time an object is
swizzled, i.e. used for the first time after being fetched, use
is incremented. When a prefetch group of size N arrives, the
FE recomputes fetch and use using exponential forgetting:

fetch : � fetch/2
�

N
use : � use/2

�
1

The FE also maintains size, the estimate of the right group
size; size is constrained to be between 20 and 700. The upper
limit is a rough estimate of the maximum number of objects
in a segment, and the lower limit is the value of the increment
used to adjust the size. When the FE sends a fetch request it
computes the new size as follows:

if use/fetch � thresh
then size : � max ( size � 20, 20 )
else size : � min ( size

�
20, 700 )

The variable thresh is a threshold whose current value of 0.3
was determined empirically.

The benefit of this adaptive scheme is that it works well
under most conditions. When the clustering of objects into
segments matches the application access pattern, the scheme
quickly increases the prefetch group size until a large fraction
of a segment is sent in response to each fetch request, reducing
the number of network round-trips. When clustering and
the application access pattern do not match very well, the
dynamic scheme quickly reduces the prefetch group size until
only a small number of objects is sent in response to each
fetch request. This reduces the number of useless objects sent
over the wire, avoids the overhead of caching these objects,
and avoids ejecting useful objects to make room for useless
ones.

The implementation of the prefetching algorithm has a few
subtleties. Since the group size varies, the group sent in one
fetch reply may overlap the groups sent in earlier fetch replies.
The OR maintains a per-FE table that keeps track of objects
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sent recently to that FE and uses it to weed out duplicates
before shipping the prefetch group to the FE. The OR also
weeds out objects over some threshold size (at present the
threshold is 800 bytes); such “big” objects are sent only in
response to explicit fetch requests.

6 Performance Studies
This section shows how Thor0 performs on OO7 traversals
[CDN93] for the small and medium databases. We also
present results comparing adaptive prefetching to fixed-size
techniques such as page fetching. Our system does well on
most traversals, and adaptive prefetching outperforms fixed-
size prefetching on both T1 (where clustering works) and T6
(where it does not).

6.1 Experimental Setup

The experiments ran a single client/FE on a DEC 3000/400
workstation, and an OR on another, identical workstation.
Both workstations had 128 MB of memory and ran OSF/1
version 3.2. They were connected by a 10 Mb/s Ethernet
and had DEC LANCE Ethernet interfaces. The database was
stored on a DEC RZ26 disk, with a peak transfer rate of
3.3 MB/s, an average seek time of 10.5 ms, and an average
rotational latency of 5.5 ms. The FE cache was 12 MB. The
OR cache was 36 MB, of which 6 MB were used for the
mcache. We used 28.5 KB segments (one track on our disk).

The experiments ran the single-user OO7 benchmark
[CDN93]. The OO7 database contains a tree of assembly
objects, with leaves pointing to three composite parts chosen
randomly from among 500 such objects. Each composite part
contains a graph of atomic parts linked by connection objects;
each atomic part has 3 outgoing connections. The small
database has 20 atomic parts per composite part; the medium
has 200. The total size is 6.7 MB for the small database
and 62.9 MB for the medium database. We implemented
the database in Theta, following the specification [CDN94]
closely.

We ran traversals T1, T6, T2a, and T2b. (We also ran T2c
but do not report the results since they are identical to those
for T2b.) These traversals perform a depth-first traversal of
the assembly tree and execute an operation on the composite
parts referenced by the leaves of this tree. T1 and T6 are read-
only; T1 reads the entire graph of a composite part, while T6
reads only its root atomic part. Traversals T2a and T2b are
identical to T1 except that T2a modifies only the root atomic
part of the graph, while T2b modifies all the atomic parts.

The traversals of the small database and traversal T6 of the
medium database were completely implemented in Theta,
and consist of a single client method call and transaction.
We had to break the other traversals of the medium database
into several client calls because we can only do garbage
collection between calls. There are a total of 9112 client
calls that introduce a negligible overhead (0.37 seconds). We
also had to break these traversals into several transactions
because we cannot evict modified objects from the FE cache.
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Figure 5: Hot Traversals, Small Database

There are 110 transactions. The overhead introduced by
having multiple transactions is bounded by the total commit
overhead which is less than 10% for these traversals.

The code was compiled with DEC’s CXX and CC
compilers with optimization flag -O2. Our experiments
followed the methodology in [CDN94]. Hot traversals run
five times within a single transaction starting with cold FE
and OR caches; the elapsed time is the average of the middle
runs, so that start up costs and commit times are excluded
(but concurrency control costs are included). Cold traversals
run one traversal on cold FE and OR caches; their elapsed
times include commit time. The traversals were run in an
isolated network; we report the average of the elapsed times
obtained in 10 runs of each traversal. The standard deviation
was always below 2% of the reported value.

To put our performance in perspective, we compare our
results with results for E/EXODUS [RCS93, C � 89]. We
selected this system because it has the best overall perfor-
mance among the database systems evaluated in [CDN94].
E/EXODUS is a page-based client-server system that uses
8 KB pages as the unit of cache management, network trans-
fer and disk transfer. We use results for E/EXODUS taken
from [WD94]; these results were obtained using a Sun IPX
workstation for the server and a Sun ELC workstation for the
client, connected by a 10 MB/s Ethernet. We scaled results
for Thor0 to account for the CPU differences (but not for
the disk differences although our disks are slower); we show
both scaled and unscaled results. We scale up our CPU times
by a factor of 3.0 at the client and 2.5 at the server. We
obtained these factors by running a C++ implementation of
traversal T1 of the small OO7 database on the three machines
of interest. The C++ code was compiled using g++ with opti-
mization level 2 in all three machines, and the scaling factors
were obtained using the average of 10 program runs.

6.2 The Small OO7 Traversals
Figure 5 shows results for the hot small traversals:

traversals where no fetching or cache management is needed,
so that their performance depends primarily on the efficiency
of the traversal code. As pointed out in [WD94], one of the
reasons E/EXODUS does poorly on T1 and T6 is because it
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Figure 6: Cold Traversals, Small Database

spends a significant amount of time executing system code
to dereference unswizzled pointers. In contrast, we do not
incur significant swizzling overheads in this traversal.

Figure 6 shows the cold small traversals. The difference
between our times and those of E/EXODUS is due to our
adaptive prefetching, the slow hot times for E/EXODUS as
discussed above, our use of large disk reads and the fact
that our objects are smaller (our database is 36% smaller
than E/EXODUS’s). We prefetch 24.5 KB groups for T1
(approximately 485.2 objects per fetch); for T6 the average
group size is 25.7 objects (approximately 1434 bytes).

Recall that we achieve stability by keeping the log in
primary memory at two servers, each of which has an
uninterruptible power supply. To account for the cost of
this mechanism (which is not yet implemented), we added
0.1 seconds to the elapsed time for T2a and 0.7 to the elapsed
time for T2b. These are the times needed for the FE to
communicate with the OR to commit the transaction; they
overestimate the time needed for the primary to communicate
with the backup, since smaller messages are sent in this case.

To evaluate the effectiveness of adaptive prefetching, we
compared our approach to fixed-size prefetching. We ran the
cold traversals with a fixed-size prefetch group for several
group sizes. Figure 7 shows that the adaptive scheme does
better than fixed-size schemes in terms of elapsed time.
Figure 8 shows that the adaptive scheme uses much less space
than fixed-size schemes for T6, where clustering isn’t well
matched to the traversal. For T1, where clustering works
well, the adaptive scheme is a little better; the reason is that
our large prefetch groups result in fewer surrogates.

It is interesting to compare the adaptive scheme with a
scheme that always requests 160 objects. For the OO7
database, 160 objects is roughly 8 KB of data, i.e., the amount
of data fetched in E/EXODUS. For T6, the adaptive scheme
is 32% faster than the fixed-size (160 object) scheme, and
uses only 33% of the cache space. The large difference in the
amount of cache space used indicates that in traversals where
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Adaptive Algorithm
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Figure 8: Cache Space: Fixed Size vs. Adaptive Algorithm

there is cache management the performance difference will
increase significantly. For T1, it is 6% faster and uses 97%
of the space.

Traversals T1 and T6 have a homogeneous clustering
behavior. Therefore, the performances of the adaptive
scheme and the best fixed scheme are similar. If the behavior
of a traversal changes slowly the adaptive scheme performs
significantly better than the best fixed scheme. However,
the adaptive scheme may be unable to adapt to fast varying
behaviors. We invented a new traversal to evaluate the
adaptive prefetching scheme in this worst case. This traversal
randomly classifies each composite part as all or root with
uniform probability. It traverses the entire graph of a all
composite part, and it only visits the root atomic part of
a root composite part. The results obtained running this
traversal show that adaptive prefetching exhibits an averaging
behavior. The average prefetch group size is 276.1 which is
only 8% greater than the average of the prefetch group sizes
observed for T1 and T6. The performance is only 8% worse
than the best fixed scheme (100 objects), so the adaptive
prefetching scheme performs well even in the worst case.
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6.3 Cost of Safe Sharing
As mentioned, our experiments use the code transfer
technique. We transfer entire traversals into Thor, and
therefore our results are the best possible for safe sharing,
allowing us to see what costs are unavoidable.

To measure the cost of safe sharing, we coded the small,
hot T1 traversal in C++. This traversal does not incur I/O
costs that could hide the safe sharing overheads. To reduce
the noise due to misses in the code cache, we used cord
and ftoc, two OSF/1 utilities that reorder procedures in an
executable by decreasing density (i.e. ratio of cycles spent
executing the procedure to its static size). We used cord on
both the Theta and C++ executables; as a result the time for
Theta is better than the one given in Figure 5.
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Figure 9: Cost of providing safety in Theta.

The results are presented in Figure 9. The C++ program
does not incur any overhead for concurrency control and
residency checks, but of course it ought to. Therefore, we
break the Theta execution time into overhead that is related to
concurrency control and cache residency checks, versus the
actual cost of running the traversal in Theta. Table 1 presents
a breakdown of the execution time for Theta. The only
cost intrinsic to safe sharing is array bounds checking, since
it prevents violations of encapsulation; this introduces an
overhead of approximately 11%. The remaining Theta cost is
for checking exceptions for things like integer overflow; these
checks improve safety by preventing commits of erroneous
transactions. These results show that safe sharing can be
inexpensive. Since our Theta compiler is an experimental
prototype, we expect overheads to be reduced as it matures.

Concurrency control 120
Residency checks 72

Exception generation/handling 156
Array bounds checking 36

Traversal time 340
Total 724

Table 1: Elapsed Time (in milliseconds): Hot T1 traversal,
small database.
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Figure 10: Cold Traversals, Medium Database

6.4 The Medium OO7 Traversals

Figure 10 shows the results for the traversals of the medium
database. These traversals run on a cold cache. We perform
8% better than E/EXODUS on T6 mainly because of our
efficient adaptive prefetching. This difference is not as
significant as for the small database because systems are
disk bound on this traversal; Table 2 gives the breakdown
for Thor0. Our disks are slow; had we been using the
E/EXODUS disks, our disk time would have been around
8.7 seconds, giving us a total of 11.7 seconds (unscaled) or
13.1 seconds (scaled). Furthermore, in the medium database,
there is at most one root atomic part per 28.5 KB page, and
T6 reads only the root of a composite part graph; thus we
frequently read 28.5 KB to obtain one object. E/EXODUS
suffers less from this problem because it uses 8 KB disk
pages. Of course we are not advocating a switch to 8 KB
pages — quite the contrary. With current disks, the time
required to read 28.5 KB is very little more than the time
required to read 8 KB. Therefore, we do not anticipate that
the time needed to read big pages will be a problem for us in
the future.

Traversal 0.01
Lazy swizzling 0.08

Commit 0.03
Fetch handling FE 0.3

Fetch communication 2.29
Fetch handling OR 0.36

Disk 11.15
Total 14.22

Table 2: Elapsed Time (in seconds): T6 Traversal, Medium
Database.

Thor0 performs 5% and 3% worse than E/EXODUS on
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traversals T1 and T2a for the medium database because we
currently manage the cache using garbage collection. Table
3 gives the breakdown of the elapsed time in traversal T1 for
Thor0 (the breakdown for T2a is very similar). Discarding
objects with shrinking plus garbage collection is expensive. If
only a small number of objects are shrunk, garbage collection
occurs more often, and the amount of live data copied is
greater. Therefore we discard very large numbers of objects
when we shrink, leading to poor cache utilization:

avg. size of from-space before GC 7.7 MB
avg. size of to-space after GC 1.4 MB
avg. cache space used 4.6 MB
number of collections 54

Thus, we can use only 38% of the cache on average, leading
to more misses, and more time in every other part of the
breakdown except for commit. Just eliminating the cost
of GC and shrinking gives us a scaled time 21% better
than E/EXODUS; therefore, with a better cache management
scheme, we will perform significantly better.

Traversal 9.2
Lazy swizzling 14.7

Commit 9.4
Shrinking 19.3

GC 39.5
Fetch handling FE 29.4

Fetch communication 252.2
Fetch handling OR 19.1

Disk 52.1
Total 444.9

Table 3: Elapsed Time (in seconds): T1 Traversal, Medium
Database.

The results for traversals T2a and T2b include estimates
of the time needed for the primary to communicate with the
backup of 3.6 seconds for T2a and 29.9 seconds for T2b.

The good performance for T2b is due to other parts of the
Thor0 implementation: it costs less to write to the backup
as in [LGG � 91] than to force the log to disk at commit, plus
our disk management at the server is very effective [Ghe95].

7 Conclusions
In this paper, we described the interface and implementation
of Thor, a new object-oriented database developed for use
in heterogeneous distributed systems. We presented two
novel aspects of Thor: its support for type-safe heterogeneous
sharing, and its client cache management. Type-safe sharing
is important but places several requirements on a database.
We described techniques for reducing the performance costs
of safe sharing.

Maintaining individual objects in the client cache can
improve cache utilization. We presented a new, adaptive

prefetching algorithm that fetches only a few objects when
clustering is poor and many objects when clustering is good.
When clustering is poor, page-based systems waste space or
network capacity transferring unused objects.

Finally, we presented performance results for several
OO7 benchmark traversals running on Thor0, a prototype
that we plan to make available. The results show that
adaptive prefetching can be very effective; it outperforms
prefetching of fixed-size pages on both well- and poorly-
clustered workloads. These results provide a strong argument
for decoupling the choice of fetch size from the unit of disk
transfer, and for using object-based caching at clients. Our
experiments also show that when the code transfer technique
is used, the cost of safe sharing is negligible; thus it is possible
to have both safety and high performance.
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