Doing Research on a Deployed Spoken Dialogue System:

One Year of Let's Go! Experience

Antoine Raux, Dan Bohus, Brian Langner, Alan W Black, Maxine Eskenazi

Language Technologies Institute
Carnegie Mellon University, Pittsburgh, USA

{antoine, dbohus, blangner, awb, max}@cs.cmu.edu

ABSTRACT

This paper describes our work with Let's Go, apbtne-
based bus schedule information system that hasibeese by
the Pittsburgh population since March 2005. Resfitisn
several studies show that while task success ateeel
strongly with speech recognition accuracy, othereats of
dialogue such as turn-taking, the set of error vegpstrate-
gies, and the initiative style also significantipgact system
performance and user behavior.

Index Terms: spoken dialogue systems, real-world applica-
tions, speech recognition

1 INTRODUCTION

Much has been achieved by the spoken dialogue rsgste
research community in the past decade. Systemdeharie
and more advanced tasks and accept increasinglyleam
natural language input. Unfortunately, such reseascusu-
ally conducted on "toy" systems where users arallysstu-
dents given scenarios to follow. On the other hditite re-
search is published on real world systems catesig user
populations, such as commercial IVR systems.

Fundamental research needs to be carried out g8-a s
tem that has real users in large numbers to beateli. The
Let's Go Bus Information System bridges this ggdpIfiwas
created at Carnegie Mellon, using the RavenClavogiie
manager [2], the Sphinx 2 speech recognition engime a
domain-specific voice built with the Festival/Festvtoolkit
and deployed on the Cepstral Swift engine [3].

Let's Go gives bus schedule information to thesPitt
burgh population at hours when the Port Authorhipipes are
not manned by operators (7pm to 6am on weekday$pmd
to 8am on weekends). Having collected some 20,806 i
the year that it has been up and running (sincly d&arch
2005), it furnishes a great platform for spokenlatjae re-
search.

2 CALL TRAFFIC AND OVERALL
PERFORMANCE

2.1 Call traffic

The average number of calls reaching Let's Go'bisua 40
on weeknights and 60 on weekend nights. Averagy dall

traffic for the past year has oscillated betweenadl 60
(see Figure 1), depending on seasonal variatiodsspa-
cial events such as schedule changes (includingjarm
reorganization in September which boosted calfitrdiér
the next two months) We also found that the average
daily traffic for March 2006 was about 10% highlean for
March 2005, which might indicate a certain proportof
return users

The average length of a dialogue is 14 turns. Hewev
the distribution of dialogue turn lengths, showrFigure 2,
is bi-modal, with a first peak at 0 turns (10% bé tdia-
logues) and a second one around 10 turns. Thexcteftwo
types of user behavior, with part of the populatiardly
trying to use the system at all and the othersdipgrmore
time to attempt to get their information. The minim
number of turns to successfully get schedule inétiom,
given all the necessary confirmations is 6. Thasseoa-
tions lead us to exclude short dialogues (less éhaurns)
from statistics in this paper, since they might betgenu-
ine attempts at using the system.

65 70 _
£, 60 =
2 65 &
g 5
2 50 60 5
T S
o £
45 55 &
% o
@ 40 —— Number of calls N 3
g 15 8
< 35 —=— Dialogue completion rate [| g

30 L L L L L L L L L 45

S N\ Y S
¥ @ YRS @

Figure 1 Average daily call traffic and dialogue
completion rate (for dialogues with 6 turns or
more) from March 2005 to March 2006.

1 In November, technical issues caused the systetrom
some calls, resulting in the observed lower number.

2 prior to the deployment of Let's Go, callers wosithply
get a recorded message telling them to call badkglu
regular business hours.

12

10 |

% of total calls
N N ()] [ee]

il

0 5 10 15 20 25 30 35 40 45 50

o

Dialogue length (turns)
Figure 2 Distribution of dialogue length

2.2 Dialogue completion rate

In order to have a running estimate of success watteout
having to manually label each call, we used théo¥ahg
heuristic: a dialogue is marked as complete ifshstem ob-
tained enough information from the user to eithevjgle a
result (by performing a database look-up) or notifg user
that their request is out of coverage (e.g. itoisd bus route
that we do not deal with yet). We call the ratiocoimplete
calls to the total number of calls “dialogue contiple rate”
(DCR).

By manually labeling task success for a subsethef t
calls (based on recordings), we found that completlogues
have a 79% success rate. By construct, incomplategdies
are necessarily failures (since no information gigen to the
user). Therefore an estimate of task success oatie te de-
rived from DCR. In this paper, we only report taskccess
rate when dialogues were manually labeled. Inthiéiocases,
we report dialogue completion rate. The evolutidnDER
over the past year is shown in Figure 1. OverallRDhas
remained stable, variations being due to chance tanihe
various experiments we conducted during the year.

3 FACTORS AFFECTING
PERFORMANCE

3.1 Speech Recognition Accuracy

The accuracy of the speech recognizer is oftenideresl the
single most important factor in making a successfutech
application. To analyze this aspect of Let's Go,tmascribed
the calls from March 2005, which represent 586adjaes and
9104 utterances. We report the session-average ewot
rate (SA-WER), which is computed by averaging thER\bf
all the turns in a session. The average SA-WER abives
64.3%. Figure 3 shows hand labeled task succes$uation
of SA-WER. Except for the left-most point where tlittle
data was available, it can be noted that theresisomg linear
correlation between the two {80.97 for WER over 10%).

92 R
80 /\
70 /;' —\\

e I -
30 [N
10 \—k :

Success rate (%)

0 10 20 30 40 50 60 70 80 90 100
Session-Average WER (%)

Figure 3 Success rate as a function of WERhe
dotted lines represent 95% confidence intervals.

In an attempt to improve the system’s performance,
we retrained our acoustic models by performing Baum
Welch optimization on the transcribed data (stgrfirom
our original models). Unfortunately, this only bgihi mar-
ginal improvement to the WER (computed on a letttest
set). We suspect that this lack of improvementis & the
fact that the models (semi-continuous HMMs) andoalg
rithms we are using are too simplistic for thiskta® the
near future, we will investigate other recognitiengines
and a fully train model on collected Let's Go data

3.2 Turn-Taking

Let's Go, as most current dialogue systems, rediesan
energy-based endpointer to identify user turn bated.
Although barge-in from the user is allowed at dergoints
in the dialogue, the system does not have rich-tiakimg
management abilities and therefore imposes a faigiv
model of turn-taking to the dialogue. For examgie, user
backchanneling to the system is often misinterprete a
barge-in and leads to the system interruptingfiisbken it
should not. Also, if the user introduces long pauséhin
her utterances, they are likely to be misintergtets turn
boundaries, leading to confusion and misrecogrstidn
order to quantify the amount of turn-taking issaed their
impact on the dialogue, we inspected a subset otails
and manually labeled five types of turn-takingdedls (see
Table 1). Unfortunately, because it is necessatisten to
the whole dialogue, this labeling is a fairly expiere task
and we could only label 102 dialogues.

For each failure, we counted the proportion of dia-
logues in which it occurred. The most frequentufal is
when the system misinterprets a noise or a backehan
from the user as a barge-in and wrongly interritgtgur-
rent turn. While we disabled barge-in on cruciahtu(e.g.
when giving the results of the query), we stilloall the
user to barge in at many points in the dialogueil&\this
allows a swifter interaction for expert users,asta signifi-
cant cost as this failure appeared in more thahdfahe
dialogues (52%). Next in frequency (47%) is theteys
failing to take a turn, usually due to inaccurateointing
(e.g. the system does not endpoint because of taokd
noise). Third is the converse of the first one, aelmnthe

system failing to interrupt itself when the usetuatly at-

tempts to barge in. This generally happens on ptempere
barge-in is intentionally turned off, and showsttthés option
is not optimal either since user can get frustriftélte system
does not respond in a timely fashion. Finally th&t kwo fail-

ures occur when the system starts speaking wigdoitld not,
right after its own turn (“System takes extra tyrnisually
due to a noise misinterpreted as a user turn, theimiddle of
a user turn, usually by misinterpreting a hesitafpause with
a turn boundary.

Table 1 Frequency of occurrence of five turn-taking
failures

. frequency

failure type (% calls)
System wrongly interrupts its turn 52.0%
System fails to take a turn 47.1%

System fails to yield a turn on user barge-in 43.1%
System takes extra turn 39.2%
System wrongly barges in on user 15.7%

Overall, turn-taking failures occurred more fregtlen
than we had anticipated, with 85% of the calls ammng at
least one such failure and, on average 3.8 failpez<call. In
addition, inspection of the dialogues showed tl¥86 bf them
broke down mainly for turn-taking reasons, whicpresents
about 20% of the failed dialogues. While we neederdata
annotation and analysis to draw definitive conduosij this
study shows that there is much room for improvenarthe
turn-taking level. In the short term, we will focoa making
the endpointer more robust by relying on more festuhan
just energy to detect turn boundaries. In the lortgem, our
research endeavor will aim at building a flexiblenttaking
model for dialogue systems; a feature which we ifedladly
needed not only in Let’'s Go but in other systemeaels

3.3 Non-understanding recovery strategies

Another way to improve the performance of a dialgys-
tem is by improving its error handling capabilitielset's Go

is based on the RavenClaw dialogue manager [2]chwhi
among many other features, provides a set of demain
independent dialogue strategies for handling non-
understandings. The initial set of strategies wasighed
based on our intuition and our experience with aege spo-
ken dialogue systems. This original set is desdribheTable 2.

In early 2006, having learned a lot from almostearyof ex-
perience with a real-world system, we modified #e of
non-understanding recovery strategies (see TableTBg
modifications were of three types: rewording of teys
prompts, removal of ineffective strategies, and itémiu of
new strategies.

Our experience with Let's Go suggested that long
prompts were not well received by the users and waostly
ineffective. Consequently, we removed non-criticdbrma-
tional content from prompts, shortened them, andartaem
as specific as possible. For example, many prorsated
with a notification that a non-understanding hadtuoced
(“Sorry, 1 didn't catch that.”).

Table 2 Non-understanding recovery strategies in
the old and new version of Let's Go[*: the prompt
for this strategy was preceded by a notification
prompt)

strategy old new
General help on how to use the system X X
Local help + context-dependent examples Xp
Context-dependent examples X* X
General help + local help + c.-d. examples X¥
Give up question and go on with dialogue X X
Repeat question X* X
Ask user to repeat what they said X X
Ask user to rephrase what they said X X
Ask user to go to a quiet place X
Ask user to speak louder X
Ask user to use short utterances X
Offer to start over X
Give up dialogue and hang up X

During such prompts, users would frequently bargen
the system right after the notification and thus imear the
following utterance, which contained help or exagspbf
expected user utterances. We therefore deciddihtmate
the notification prompt so that the user could Hearmore
informative specific content of each prompt.

We also removed generic help prompts, which explain
what the system is trying to do at a given poimce they
didn't appear to help much. However, we kept thé& he
prompts giving example utterances, which were nodten
picked up by users and were thus more effective.

Finally, we added more specific strategies, aimang
dealing with problems like noisy environments, tood or
too long utterances, etc. The idea was that sugbopited
strategies, if used at the right time, would be ereffective
in addressing the issues hurting communication &etw
the user and the system. Currently we use simplasties
to trigger each of these strategies, based for pkeaaon the
length of the last user utterance or a simple aaliliping
detection algorithm.

To evaluate the impact of these changes, we manuall
labeled the action following each non-understandasy
successful when the next user utterance was clyrnact
derstood by the system or failed when the next utter-
ance led to another non-understanding or to a rdiun
standing. We labeled three days of data beforaribeifi-
cations took place and three days after. We useddime
days of the week (three weeks apart) to mitigageetfiect
of daily variations in performance. The resultsi¢ate that
the modifications significantly improved the succeate of
non-understanding recovery strategies, from 19.8% t
24.1% (p<0.01). The overall dialogue completiore raflso
went up from 49.7% to 55.2% although this resutinfy a
trend (p<0.1).

We are currently performing more analyses to better
understand each strategy’s performance and to rdesig
mechanism to learn from data when to trigger eaetiegy
S0 as to optimize its performance.

4 TOWARDS MIXED INITIATIVE

4.1 Closed vs open prompt

While Let's Go! was originally designed to be sgbnsys-
tem-directed, we wanted to investigate the imp#ataoying
both prompt wording and initiative style. To lintlite variabil-
ity introduced in the system and avoid hurting perfance
too much, we only modified the initial prompt ofetlsystem.
We created three versions of the system, with dfleviing
initial prompts:

1) “Which bus number or departure place do you want in

formation for?”
2) “What bus information are you looking for?”
3) “What can | do for you?”

In version 1, the system only recognized bus number

and places at this point in the dialogue, wheraagersion 2
and 3, the system could understand more generslanties
such as “When is the next bus from CMU to downtdwri?
the system failed to understand anything on the'sudiest
utterance, it gave a help message with examplepmfopri-
ate utterances (the examples were different fasieerl vs 2
an 3). After a second non-understanding, the systemid
always fall back to version 1. Thus the only diéieces be-
tween the versions are in the first turns of tteatdjue.

We let the system run with these three versiorsuigust
and September 2005, collecting around 1000 diakdoe
each condition (see Table 3). No manual transoriptr la-
beling of the data was performed, thus all reporésalilts are
based on automatically extracted measures.

4.2 Difference in user behavior

Our hypothesis in terms of user behavior was tleasion 1
would yield short, specific answers, whereas ver§avould
yield the longest and most diverse responses, wéthion 2
lying in the middle. Table 3 shows the average tilmeof the
first utterance of the dialogue.

As expected, the most “open” prompt (version 3¢t
the longest answers (2.83s on average), whereasntst
“close” leads to the shortest (1.75s). Interesyingte inter-
mediate version yields a behavior very close tesioerl (the
difference is not statistically significant). Aassible expla-
nation for this last similarity, we found that maogers re-
plied to this question by a single bus route numinelicating
that they understood the question not as an opampis but
rather as meaning “which bus route’s informatioe gou
looking for?”

Table 3 Impact of initial prompt’s initiative style on
user behavior and system performance
(DCR=Dialogue Completion Rate, NUR=Non-Underst.€Rat

system # duration NUR DCR avg #
version | calls (ms) (1% utt.) turns
1 1063 1678 32.2% 54.9% 17.9
2 1006 1750 28.9% 52.4% 17.5
3 999 2828 52.9% 51.5% 18.2

4.3 Difference in system performance

We also analyzed the impact of initiative style system
performance, expecting that more open user uttegnc
would be harder to recognize and understand andftre
lead to lower system performance. First we compuotat
understanding rate for the very first user utteeaot the
dialogue, i.e. the proportion of dialogues whereimfor-
mation could be extracted by the system from tist €iser
utterance. These results, shown in Table 3, conforour
expectations, in that the non-understanding ratgsifi-
cantly higher (52.9%) for version 3 than it is feither
version 1 or version 2 (resp. 32.2% and 28.9%).tiGn
other hand, no statistically significant differengas meas-
ured for task success nor for the average lengguodess-
ful dialogues.

5 CONCLUSION

We intend to continue to run the system for thelipudt
large and have started investigating how to uselitiee
system for wide variety of experiments on dialogugue
to the large number of real calls compared to mestarch
systems, we feel Let's Go! is an excellent platféomex-
perimentation and evaluation. We are devising #sl@o
Lab that will provide a well-defined mechanism toet
community for running selected experiments on siyitem.

6 ACKNOWLEDGEMENTS

This work is supported by the US National Scienoerf
dation under grant number 0208835, "LET'S GO: inaptb
speech interfaces for the general public". Any mpis,
findings, and conclusions or recommendations esgi
this material are those of the authors and do ecéssarily
reflect the views of the National Science Foundatibhe
authors would like to thank the Port Authority ofléA
gheny County for providing access to their datalaaskfor
their help in making the Let's Go system accessible
Pittsburghers.

7 REFERENCES

[EnY

Raux, A., Langner, B., Bohus, D., Black, A., Eskana
M. Let's Go Public! Taking a Spoken Dialog System to
the Real World Interspeech 2005 (Eurospeech), Lis-
bon, Portugal, 2005.

2 Bohus, D., and Rudnicky, ARavenClaw: Dialog
Management Using Hierarchical Task Decomposition
and an Expectation Agend&urospeech 2003, Ge-
neva, Switzerland, 2003.

3 Huang, X., Alleva, F., Hon, H.-W., Hwang, M.-Y.,
Lee, K.-F. and Rosenfeld, Rthe SPHINX-II Speech
Recognition System: an overvie@omputer Speech
and Language, 7(2), pp 137-148, 1992.

4 Black, A. and Lenzo, KBuilding Voices in the Festi-
val Speech Systeimtp://festvox.org/bsy/2000.

5 Cepstrall, LLC, SwiftTM: Small Footprint Text-to-

Speech Synthesizéittp://www.cepstral.com2005.

