
Example 1: Explicit confirmation  
 

1 S:  Starting at what time do you need the room? 

2 U: [STARTING AT TEN A_M / 0.45] 
 Starting at ten a.m. 

3 S: Did you say you wanted the room starting at ten a.m.? 

4 U: [GUEST UNTIL ONE / 0.89]  

 Yes until noon 

Example 2: Implicit confirmation  
 

1 S:  How may I help you? 

2 U: [THREE TO RESERVE A ROOM / 0.65] 
 I’d like to reserve a room 
3 S: starting at three p.m. … For which day do you need the  confer-
ence room? 

4 U: [CAN YOU DETAILS TIME] - NONU/0.00 
 I need a different time 

Figure 1. Sample explicit and implicit confirmations.  
System turns are prefixed by (S); user turns are prefixed by (U); 
the speech recognition results and associated confidence scores  

are represented [in between brackets]  
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Abstract 
Spoken dialog systems typically rely on recognition confi-
dence scores to guard against potential misunderstandings. 
While confidence scores can provide an initial assessment 
for the reliability of the information obtained from the user, 
ideally systems should leverage information that is available 
in subsequent user responses to update and improve the ac-
curacy of their beliefs. We present a machine-learning 
based solution for this problem. We use a compressed repre-
sentation of beliefs that tracks up to k hypotheses for each 
concept at any given time. We train a generalized linear 
model to perform the updates. Experimental results show 
that the proposed approach significantly outperforms heuris-
tic rules used for this task in current systems. Furthermore, a 
user study with a mixed-initiative spoken dialog system 
shows that the approach leads to significant gains in task 
success and in the efficiency of the interaction, across a 
wide range of recognition error-rates.  

Introduction  

Today’s spoken language interfaces are still very brittle 
when faced with understanding-errors. The problem is pre-
sent in all domains and interaction types and stems mostly 
from the speech recognition process. The recognition diffi-
culties are further exacerbated by the conditions under 
which spoken dialog systems typically operate: spontane-
ous speech, large vocabularies and user populations, and 
large variability in input line quality. Under these circum-
stances, average word-error-rates of 20-30% (and up to 
50% for non-native speakers) are quite common.  
 To guard against potential misunderstandings, spoken 
dialog systems rely on recognition confidence scores. 
Typically, the confidence score of the current hypothesis is 
compared to a set of predetermined thresholds. Based on 
the result of this comparison, the system will decide 
whether to accept the input, reject it, or engage in a con-
firmation action, such as explicit or implicit confirmation 
(see Figure 1). After the user provides a response to the 
confirmation action, the system has to update its belief 
about the concept that was confirmed. Very simple heuris-
tic update rules are generally used for this task. For in-
stance most systems consider a hypothesis grounded if they 
hear a yes response (e.g. yes, that’s right, etc) to an explicit 
confirmation; alternatively, if the response contains a nega-
tive marker (e.g. no, incorrect, etc), the hypothesis will be 
deleted. For implicit confirmations, most systems rely on 

the user to overwrite the concept if the confirmed value is 
incorrect.  

We believe these heuristic approaches are suboptimal 
for a number of reasons. As example 2 in Figure 1 illus-
trates, users do not always overwrite slots. Previous studies 
(Krahmer et al, 2001; Bohus and Rudnicky, 2005a) have 
shown that user responses following implicit confirmations 
cover a wide language spectrum, and simple heuristic rules 
fall short on that account. Recognition errors can further 
complicate the problem (see example 2 in Figure 1). Last 
but not least, heuristic rules generally construct polarized 
beliefs (e.g. trust the value / don’t trust the value) that do 
not capture the degree of uncertainty the system should 
have, and therefore do not provide a robust basis for intel-
ligent decision making. 
 While confidence scores can provide an initial assess-
ment of reliability, we believe that spoken dialog systems 
should better leverage information from subsequent user 
turns and continuously update and improve the accuracy of 
their beliefs. Because corrections can appear at any point in 
the conversation, spoken dialog systems should update 
their beliefs not only after confirmation actions, but after 
each user turn, throughout the whole interaction.  
 In previous work (Bohus and Rudnicky, 2005a) we in-
troduced and addressed a restricted version of this belief 
updating problem. We developed learning-based models 
for updating the confidence of the current top hypothesis 



for a concept, in light of the user responses to system con-
firmation actions. The models significantly outperformed 
the heuristic rules used in current spoken dialog systems.  
 In this paper we generalize the previous models in sev-
eral ways. First, we extend the models to use a more com-
prehensive, but still compact representation of beliefs: k 
hypotheses + other, where k is a small integer. Second, we 
extend the models to perform updates after all system ac-
tions (as opposed to only after confirmation actions). Fi-
nally, we include information in the models about the prior 
likelihood, as well as the confusability of various concept 
values.  
 Experimental results show that extended belief updating 
models significantly outperform heuristic update rules. 
Furthermore, the proposed models induce significant gains 
on several dialog performance metrics. Experiments with a 
mixed-initiative spoken dialog system show that the pro-
posed models lead to significant gains in task success and 
to a significant reduction in the number of turns-to-
completion for successful tasks.  
 We start by formalizing the problem. 

The Belief Updating Problem 

The belief updating problem introduced in the previous 
section can be formalized as follows.  
• Let C denote a concept (or slot) that the system acquires 
from the user (e.g. date, start_time, end_time. etc); 
• Let Bt(C) denote the system’s belief over the concept C at 
time t, i.e. a representation of the system’s uncertainty in 
the value of the concept C (e.g. start_time = {10 p.m. / 0.8 ; 2 
p.m. / 0.2}); 
• Let SA(C) denote the system action at time t, with respect 
to concept C. Note that in a single turn the system might 
take different actions with respect to different concepts 
(e.g. in example 2 from Figure 1 the system engages in an 
implicit confirmation w.r.t. the date concept and a request 
w.r.t. the time concept); 
• Finally, let R denote the user response to the system ac-
tion, as this response is perceived by the system. 
 Then, the belief updating problem is stated as follows: 

given an initial belief over a concept Bt(C), a system 
action SA(C), and a user response R, construct an up-
dated belief Bt+1(C) 

Bt+1(C) ← f ( Bt(C), SA(C), R ) 

Approach 

We propose a data-driven approach for addressing this 
problem. We treat each concept independently, we use a 
compressed belief representation (described in detail be-
low), and we induce the function f from training data using 
simple machine learning techniques.  
 In previous work (Bohus and Rudnicky, 2005a) we have 
addressed a simplified version of the belief updating prob-
lem. A first simplification concerned the belief representa-

tion. Ideally, the system’s belief over a concept would be 
represented by a probability distribution over the full set of 
possible values for that concept. However, from a practical 
perspective, it is very improbable that a spoken dialog sys-
tem would “hear” more than 3 or 4 conflicting values for a 
concept throughout a conversation (this observation is sup-
ported by empirical evidence – see Bohus and Rudnicky, 
2005a). Under these circumstances, a compressed belief 
representation has the potential of greatly simplifying the 
problem without causing a significant degradation in per-
formance. We therefore developed a belief updating ap-
proach where the system’s belief over a concept was repre-
sented simply by the confidence score of the current top 
hypothesis for that concept (all other hypotheses were ig-
nored; the remaining probability mass was accumulated in 
an other category). Secondly, we only focused our atten-
tion on updating beliefs after system confirmation actions. 
The restricted version of the belief updating problem was 
therefore stated as follows: 

given an initial confidence score for the top hypothe-
sis h for a concept C, construct an updated confidence 
score for h, in light of the system confirmation action 
SA(C), and the follow-up user response R. 

 We addressed this problem using a simple machine 
learning approach. As training data, we used a manually-
labeled corpus of 449 dialogs. We identified a large num-
ber of potentially relevant features from different knowl-
edge sources in the system. For each system confirmation 
action we trained a model tree with stepwise logistic re-
gression models at the leaves. The models were evaluated 
using a 10-fold cross-validation process. The results, de-
scribed in more detail in (Bohus and Rudnicky, 2005a) 
show that the learned models significantly outperform the 
heuristic update rules previous used in our system.  
 Encouraged by the positive results on the simpler ver-
sion of the problem, we decided to remove the restrictions 
and generalize the models in several important ways. 

1st extension: “k hypotheses + other” belief representa-
tion. First, we use a more comprehensive, but still com-
pressed representation of beliefs – k hypotheses + other. In 
this representation, the system tracks up to k potential val-
ues for each concept (k is a small fixed integer). During 
each update, the system retains only the m highest scoring 
hypotheses from the initial set of k hypotheses, and ac-
quires up to n new hypotheses from the user response (m, 
n are small fixed integers, with m+n=k). At each update, 
the system therefore constructs a new belief over the space 
of m initial hypotheses, n new ones and other. The ap-
proach allows for new hypotheses to be dynamically inte-
grated into the compressed belief as they appear in subse-
quent user responses.  

 We illustrate this process in Figure 2. Two consecutive 
updates of the start_time concept are shown. Assume k=3, 
m=2, n=1. Also assume that at time t the system already 
has 3 conflicting hypotheses for the start_time concept: 10 
a.m., 2 p.m. and 2 a.m. The bars in the figure reflect the sys-
tem’s confidence in each of these values. The remaining 



probability mass is assigned to the other category. The 
system engages in an explicit confirmation of the top hy-
pothesis (2 p.m.) and updates the concept in light of the 
user response. During the update the system retains the top 
two (m=2) initial hypotheses (in this case 10 a.m. and 2 
p.m.), and acquires one (n=1) new hypothesis from the user 
input – 10 p.m. The system therefore constructs a new be-
lief over the space of m=2 initial hypotheses, n=1 new hy-
pothesis, and other: {10 a.m., 2 p.m, 10 p.m., other}.  

 Next, the system engages in an implicit confirmation on 
the new top scoring hypothesis (10 p.m.). During this sec-
ond update the system again retains the top 2 scoring hy-
potheses (this time 10 a.m. and 10 p.m.). Since no new hy-
pothesis is present in the user response, we introduce a 
fictitious Ø hypothesis. The system will therefore construct 
an updated belief over the {10 a.m., 10 p.m., Ø, other} 
space. The probability mass assigned to the Ø hypothesis 
by the belief updating process will be automatically moved 
to the other category, as a post-processing step. 

 The system’s belief in a concept is therefore modeled as 
a multinomial variable of degree k+1: B=<pi1, …, pim, pn1, 
…, pnn, pother>, where pia is the probability for the initial 
hypothesis a, pnb is the probability for the new hypothesis 
b, and pi1 + … +  pim + pn1 + …+  pnn + pother = 1. The 
representation abstracts over the actual values (e.g. 10 a.m., 
10 p.m., etc), and allows for hypotheses to be dynamically 
added and dropped from the compressed belief representa-
tion. The actual values are stored separately, and they do 
not directly enter the belief (confidence) updating process. 
Using this representation, the belief updating problem can 
be cast a multinomial regression problem:  

Bt+1 ← Bt + SA(C) + R 

 Note that the top hypothesis + other representation used 

in our previous work is equivalent to setting k to 1. In that 
case the target variable was binomial, and a logistic regres-
sion model sufficed.  

2nd extension: updates after all system actions. In our 
previous work, we focused on updates after system con-
firmation actions. However, user corrections (either actual 
or false ones introduced by noisy recognition) can appear 
at any point in the dialog. We therefore extended the mod-
els to perform updates after all system actions.  

 We identified five types of actions that can be performed 
on any given concept C (note that multiple such actions 
can be coupled in a single system turn): 

• explicit confirmation : the system asks a question to 
explicitly confirm a hypothesis for the concept C; 

• implicit confirmation : the system implicitly confirms a 
hypothesis for C and moves on to the next question; 

• unplanned implicit confirmation : the system prompt 
includes the value for the concept C. For instance, the 
system might respond “I found 10 rooms this Friday be-
tween 2 and 4 p.m. Would you like a small room or a large 
one?” While the main purpose of this turn is to provide 
information to the user, the turn also includes the values 
for the date, start_time and end_time concepts, and there-
fore constitutes an implicit confirmation. However, this 
is not a planned error handling action; rather, it occurs as 
a side-effect of the prompt design; 

• request: the system requests the concept C; 

• other: the system does not perform any action with re-
spect to concept C, but nevertheless a value is heard for 
this concept and an update is needed. 

3rd extension: new features. Finally, we expanded the 
feature set to include information about the prior likelihood 
as well as the confusability of various concept values.  

Experiments 

Training Data 
The data used for training the belief updating models was 
collected via a user study with the RoomLine system 
(RoomLine, 2003). RoomLine is a telephone-based, 
mixed-initiative, task-oriented spoken dialog system that 
can assist users in making conference room reservations. 
The system has information about the schedules and char-
acteristics of 13 conference rooms in two buildings on 
campus and can engage in a negotiation dialog to identify 
the room that best matches the user’s needs. During the 
data collection experiment 46 participants engaged in a 
maximum of 10 scenario-based conversations with the 
system. Sample interactions, as well as the 10 scenarios are 
available in (Bohus, 2006).  
 The collected corpus contains 449 dialogs, 8278 user 
turns and 11332 concept updates. The user utterances were 
orthographically transcribed and checked by a second an-
notator. Based on the transcriptions, we labeled the correct 
(user specified) concept values at each turn in the dialog. 

S: Did you say you wanted a room at 2 p.m.? 
U: [NO TEN P_M]  

S: starting at ten p.m. … until what time? 
U: [NO NO I DIDN’T WANT THAT]  

k=3, m=2, n=1 
  10 a.m.    2 p.m.     2 a.m.      other 

  m = 2 

  10 a.m.    2 p.m.     10 p.m.     other 

  10 a.m.         Ø       10 p.m.     other 

Figure 2. Two consecutive belief updates of start_time 

                  k = 3                   +   other 



Features 
We identified a large number of potentially relevant fea-
tures from different knowledge sources in the system. 
Given space constraints, we briefly summarize the feature 
set below. A more detailed description is available in (Bo-
hus, 2006).  

• Initial belief features: confidence scores for the m ini-
tial hypotheses, the identity of the updated concept;  

• Acoustic and prosodic features of the user response:  
duration, pitch, speech rate, initial pause, etc.; 

• Lexical features of the user response: number of 
words, the presence/absence of lexical terms highly cor-
related with user corrections; 

• Grammatical features of the user response: number 
of grammar slots contained in the parse, the number of 
new and repeated slots, goodness-of-parse scores, etc.; 

• Dialog level features of the user response: how well 
the response matches the current system expectation, the 
turn number, the current dialog state, etc.;  

• Priors: features capturing the prior likelihood of various 
concept hypotheses. The RoomLine system operates 
with a set of 29 concepts. A domain expert (who did not 
have access to the corpus) manually constructed priors 
for 3 of the most important concepts in the system: the 
start_time, the end_time and the date for the reservation. 
For all other concepts, we assumed uniform priors; 

• Confusability scores: features describing the confus-
ability between various concept hypotheses. These con-
fusability scores were determined empirically from the 
collected data.  

Results 
We trained and evaluated models in three different setups: 
<k=2,m=1,n=1>, <k=3,m=2,n=1> and <k=4,m=3,n=1>. 
We report results from the simpler model <k=2,m=1,n=1>. 
The larger models generated very similar results, and no 
significant performance improvements were observed. 
 For each system action, we trained a separate multino-
mial generalized linear (regression) model (Fahrmeir and 
Tutz, 2001). We trained the models in a stepwise approach: 
the next most informative feature (as measured by the im-
provement in the average log likelihood over the training 
set) was added to the model at each step. We used the 
Bayesian Information Criterion to prevent over-fitting.  
 We evaluated the models using a 10-fold cross-valida-
tion procedure. Figure 3 shows the error-rates for 3 differ-
ent models. Given the multinomial nature of the target 
variable (k=2 + other), the error-rate is computed as for a 
3-class classification problem; results using different met-
rics such as average (log)-likelihood of the correct hy-
pothesis are omitted here, but are available in (Bohus, 
2006). The basic model (BM) uses all features except for 
the priors and confusability scores. In contrast, the full 
model (FM) uses the full set of features. Finally, the run-
time model (RM) uses only the features available at run-
time, i.e. all features except the prosodic ones.  

 We compared each model’s performance against 3 base-
lines: initial, heuristic and correction. The initial baseline 
reflects the error in the initial system belief, before the up-
date is performed. The heuristic baseline reflects the error 
rate for the heuristic update rule currently used by the sys-
tem. Finally, we also report a correction baseline. A corpus 
analysis (Bohus and Rudnicky, 2005a) has revealed that 
users do not always correct system errors. As a result, even 
if we knew precisely when the user is correcting the sys-
tem, we would not be able to construct perfectly accurate 
beliefs in one time-step. The correction baseline assumes 
that the hypothesis undergoing the confirmation is correct, 
unless the user attempts to correct the system (note that this 
baseline is defined only for system confirmation actions).  
 As Figure 3 illustrates, the data-driven models signifi-
cantly outperform the heuristic rules previously used in the 
system (h). For updates after system confirmation actions 
the performance surpasses even the correction baseline (c); 
this is possible because the models use information that is 
not available to the correction baseline, such as the pros-
ody of the user response, barge-in, as well as priors and 
confusability for the various concept hypotheses.  
 For all actions, the full models (FM), which include the 
priors and confusability information, perform better than 
the basic models (BM). No significant degradation of per-
formance is observed for the runtime models (RM). An-
other interesting observation is that the basic model (BM) 
does not produce statistically significant improvements 
over the heuristic baseline for the request action. For this 
action, the heuristic rule simply constructs a belief based 
on the confidence score of the recognized hypothesis. The 
fact that our basic belief updating model is not able to per-
form better implies that the confidence annotation model is 

5.65.7

8.6
9.5

98.2

0 %

4 %

8 %

12 %

i h B M FM RM

 

6.25.25.06.1

30.8

16.1

0 %

10 %

20 %

30 %

i h B M FM RM c

explicit confirmation 

30.3

26.0

18.3
15.0 15.8

21.5

0%

1 0%

2 0%

3 0%

i  h  B M  FM  RM c

 

14.1

9.29.2

11.7

14.915.2

0 %

5 %

10 %

15 %

i h B M FM RM c

14.814.8
19.3

44.8

79.7

0%

1 5%

3 0%

4 5%

i h B M F M RM

implicit confirmation 

request other 

initial baseline (i) 
 heuristic baseline (h) 
 basic model (BM) 
 full model (FM) 
 runtime model (RM) 
 correction baseline (c) 
 

unplanned implicit confirmation 

Figure 3. Error-rates for belief updating models 



well calibrated in our system (no further improvements are 
feasible). However, adding confusability and prior infor-
mation (the full model – FM), leads to a significant de-
crease in error (from 8.6% to 5.7%). We believe these re-
sults highlight the importance of using high-level, domain-
specific information such as priors and confusability.  
 In order to gain a better understanding of the relative 
contributions and predictive power our features, we in-
spected the set of selected features and their corresponding 
weights in each regression model. The following features 
were generally found to be very informative: priors and 
confusability features, confidence of the initial top hy-
pothesis before the update, concept identity, barge-in, dia-
log expectation match, and the presence of repeated gram-
mar slots. More details about the constructed models are 
available in (Bohus, 2006).  

Impact on Global Dialog Performance 
So far, we have shown that the proposed models signifi-
cantly outperform the heuristic rules typically encountered 
in current spoken dialog systems. While these results are 
encouraging, our ultimate goal is to improve global dialog 
performance in a real, practical spoken dialog system. An 
important question therefore remains: do improvements on 
the local (one-step) belief updating task translate into im-
provements in global dialog performance?  
 To address this question, we implemented the runtime 
models in the RavenClaw dialog management framework 
(Bohus and Rudnicky, 2003) and conducted a new user 
study to assess their impact on dialog performance. 
 During this experiment 40 participants interacted with 
the RoomLine system (each performed up to 10 scenario-
driven interactions during a time period of 40 minutes). 
The participants were randomly assigned into 2 groups: the 
control group interacted with a version of the RoomLine 
system that used heuristic update rules: after each yes-type  
answer to an explicit confirmation, the system would boost 
the top hypothesis to 0.95; after each no-type answer, the 
system erased the hypothesis. Whenever a new value for a 
concept appeared, the system performed a naïve probabilis-
tic update (e.g. multiplying the distributions and renormal-
izing). Participants in the treatment group interacted with a 
version of the system that used the runtime belief updating 
models. In all other respects, the systems were identical.  
 Our previous data analysis indicated that improvements 
in belief updating performance are likely to translate in 
global performance improvements especially when the 
word-error-rate (WER) is high. At low WER, simply trust-
ing the inputs leads to generally accurate beliefs and not 
many opportunities for improvement exist; however, as 
recognition performance degrades, it becomes more and 
more important for the system to accurately assess its be-
liefs. In light of this observation, we decided to include 
only non-native speakers of north-American English in this 
user study. Nevertheless, the average per user WER in this 
population ranged from 8.4% to 49.8%.  
 The corpus collected in this experiment contains 384 
dialogs and 6389 user turns (the results we report here 

were computed after we excluded one participant who 
misunderstood 7 of the 10 scenarios; keeping this partici-
pant in the corpus leads to a stronger, but we believe less 
accurate result). The task success rate was higher in the 
treatment condition: 81.3% vs. 73.6%. To better under-
stand the effect of the proposed belief updating models on 
task success (TS), we performed a logistic analysis of vari-
ance using the experimental condition as a fixed effect and 
WER as a covariate. The resulting model is: 

Logit(TS) ← 2.09 - 0.05·WER + 0.69·Condition 

 This model shows that both the WER (p<10-4) and the 
experimental condition (p=0.0095) have a significant im-
pact on task success. Based on this fitted model, we plot 
the probability of task success as a function of WER in the 
two experimental conditions in Figure 4. As this figure 
illustrates, the proposed models lead to gains in task suc-
cess across a wide range of WER. As expected, the im-
provements are larger at high WER. For instance, at a 
WER of 30%, the belief updating models produce a 14% 
absolute improvement in task success (from 64% to 78%). 
To attain the same task success with the control system, we 
would need a 16% WER. In effect, we have cut the WER 
in half. The largest improvement in task success, 16.3%, is 
obtained at a WER of 47%. At very high WER, the im-
provements decrease again, as it becomes much harder to 
improve global performance under these conditions. The 
analysis of variance shows than on average the proposed 
models improve the log-odds of task success by the same 
amount as a 13.6% absolute reduction in WER. 
 The proposed belief updating models also exert a sig-
nificant impact on dialog efficiency. An analysis of vari-
ance using the experimental condition as a fixed effect, 
WER as a random effect and task duration for successful 
tasks (in number of turns) as the main effect shows that: 

Duration ← -0.21 + 0.013·WER - 0.106·Condition 

 Both WER (p<10-4) and the experimental condition 
(p=0.0003) have a significant effect on task duration. The 
improvements due to the belief updating models are 
equivalent to a 7.9% absolute reduction in WER. 
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Discussion and Future Work 

To date, various machine learning methods have been pro-
posed for detecting turn-level misunderstandings (Walker 
et al, 2000) and corrections (Hirschberg et al, 2001) in 
spoken dialog systems. Our work bridges these ideas and 
provides a unified approach that allows systems to con-
tinuously monitor and update their beliefs throughout the 
conversation.  
 Independent of the gains in effectiveness and efficiency, 
the proposed method has several other desirable properties. 
First, the proposed approach learns from data, tracks mul-
tiple hypotheses, and integrates information across multi-
ple turns in the conversation. The idea of updating beliefs 
through time appears in previous work. Higashinaka et al. 
(2003) keep track of multiple dialog-states and resolve the 
ambiguities using empirical probabilities of dialog-act / 
dialog-act and dialog-act / dialog-state sequences. Before 
that, Paek and Horvitz (2000) used a handcrafted Dynamic 
Bayesian Network to continuously update the belief over a 
user’s goal in a command-and-control application. We take 
inspiration from their work and we automatically induce 
the models from data. The advantage of the proposed ma-
chine learning technique (generalized linear models) is that 
it allows us to consider a very large number of features 
from different knowledge sources in the system, and it 
does not require expert knowledge about the potential rela-
tionships between these features. The most informative 
features are automatically selected and weighted accord-
ingly. 
 Second, the proposed approach is sample efficient and 
scalable. The approach focuses on a local (one-turn) rather 
than a global optimization. Furthermore, the beliefs over 
each concept are updated independently (we are not model-
ing any inter-concept dependencies at this point). Although 
we sacrifice theoretical global optimality, learning is feasi-
ble even with relatively little training data. We have shown 
this approach can lead to significant gains in task success 
and dialog efficiency in a real-world, fairly complex spo-
ken dialog system. RoomLine operates over a space of 29 
concepts with cardinalities ranging between two to several 
hundred possible values. Our study indicates that good 
local decisions can sum up to improvements in overall per-
formance. In the future, we plan to integrate a data-driven 
decision making component with this belief updating 
framework (Bohus and Rudnicky, 2005b). We believe this 
approach will help overcome the scalability issues that 
have hindered the deployment of learning-based optimiza-
tion of dialog management (Singh et al, 2000) in real-
world spoken dialog systems (Paek, 2006). 
 Last but not least, the approach is portable. The pro-
posed belief updating framework was implemented as part 
of a generic dialog management engine, decoupled from 
any particular dialog task (we are planning to reuse it in 
other RavenClaw-based dialog systems). More impor-
tantly, the approach does not make any strong assumptions 
about the dialog management approach used (e.g. form-
filling, plan-based, task-oriented, information state update, 
etc), and consequently does not tie a developer into any 

particular type of dialog controller. 
 We believe further performance improvements are pos-
sible. We plan to train and evaluate models that incorporate 
more information from the n-best list (n > 1). Furthermore, 
we plan to add other high-level pragmatic features (e.g. 
features that capture domain-specific constraint violations). 
Another question we intend to address is: what is the trade-
off between training set size and performance gains? Fi-
nally, we plan to investigate the transferability of these 
models across different domains.  
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