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Abstract

In recent times, many real world applications
have emerged that require estimates of class ra-
tios in an unlabeled instance collection as op-
posed to labels of individual instances in the col-
lection. In this paper we investigate the use of
maximum mean discrepancy (MMD) in a repro-
ducing kernel Hilbert space (RKHS) for estimat-
ing such ratios.

First, we theoretically analyze the MMD-based
estimates. Our analysis establishes that, under
some mild conditions, the estimate is statistically
consistent. More importantly, it provides an up-
per bound on the error in the estimate in terms
of intuitive geometric quantities like class sep-
aration and data spread. Next, we use the in-
sights obtained from the theoretical analysis, to
propose a novel convex formulation that auto-
matically learns the kernel to be employed in the
MMD-based estimation. We design an efficient
cutting plane algorithm for solving this formula-
tion. Finally, we empirically compare our esti-
mator with several existing methods, and show
significantly improved performance under vary-
ing datasets, class ratios, and training sizes.

1. Introduction

The goal of this work is to estimate the ratio of classes in
any unlabeled test dataset given a labeled training dataset
with an arbitrarily different ratio of classes. The closely re-
lated problem of creating a classifier with shifted class pri-
ors in the training and test set has been extensively studied.
In contrast, our end goal is to estimate the ratio of classes
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and not the labels of individual instances in the unlabeled
set. Many real-world applications have emerged that mo-
tivate this problem. As an example consider websites that
serve user directed content like news, videos, or reviews.
Each item (article, video, or product) is associated with
many user comments. An analyst wants to estimate the
fraction of comments that express positive/negative senti-
ments. The polarity of each comment is not of interest.

We now describe our problem formally. Let X = {x €
R} be the set of all instances and Y = {0, 1, ..., c} be the
set of all labels. We are given a labeled dataset D(C X X
V). Our goal is to design an estimator that for any given set
U(C X) can estimate the class ratios 8 = [0, 01, ...,0.]
where 60, denotes the fraction of instances with class label
y in U. We consider the case where the estimator will have
to handle unlabeled data with widely varying values of 0,
which might be different from those in the training data.
As in all existing work on the topic (discussed next) we
assume that the Pr(x|y) distribution remains unchanged in
the training and test distributions.

A baseline estimator is to use the labeled data D to train a
classifier C' : X — ) using supervised learning techniques
and estimate 6, as =+ where n,, is the size of U and 7, is
the number of instances of U labeled y by C. Since most
supervised learning algorithms assume that the training and
test data follow the same distribution, this method is un-
likely to perform well. Many fixes have been proposed: for
example, (Cortes & Mohri, 2004; Clémengon et al., 2009)
propose to maximize the area under the ROC to make the
classifier work for all possible class ratios, (Selvaraj et al.,
2011) proposes transductive learning, while (Elkan, 2001)
and (Lin et al., 2002) assume that the true class ratios are
known, and propose to reweight instances or rebalance the
decision cutoff. However, the primary goal of these meth-
ods is to improve per-instance accuracy, and class ratios
are estimated using the same paradigm of aggregating from
per-instance predictions.

Since we are not interested in the labels of individual in-
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stances, we explore direct methods of estimating the class
ratios. There have been three reported attempts for such di-
rect estimation. The first is an EM-based approach (Saerens
et al., 2002) that alternates between estimating the class
ratios from per-instance predictions and ’correcting’ the
predictions using the estimated class ratios as priors. The
second approach (Plessis & Sugiyama, 2012), proposes to
minimize various f-divergence measures between the test
distribution and a model distribution parameterized on the
unknown Os and instance-level ratios of two distributions.
This method is developed in a semi-supervised setting and
involves solving an elaborate optimization problem for
each test set. The third, most recent approach (Zhang et al.,
2013), is based on minimizing the maximum mean dis-
crepancy (MMD) over functions in a reproducing kernel
Hilbert space (RKHS) induced by a kernel K. The MMD-
based approach has several advantages: it is applicable to
arbitrary domains since it does not assume any parametric
density on the data unlike conventional mixture modeling
approaches (Titterington, 1983; Woodward et al., 1984).
Because of this property, MMD has been successfully de-
ployed in other problems including covariance shift (Gret-
ton et al., 2009) and two-sample test (Gretton et al., 2012a).
When deployed for class ratio estimation, it gives rise to
a convex QP over a small number of variables, which is
efficiently solvable. However, the approach has not been
understood theoretically, empirical comparisons with other
class ratio estimation methods are lacking, and kernel se-
lection has not been adequately addressed.

In this paper we address the above limitations of the MMD
approach. Specifically, we make these contributions:

We theoretically analyze the MMD-based estimator for ar-
bitrary number of classes. Under some mild conditions, we
show that the estimator is statistically consistent. In addi-
tion to asymptotic convergence rates, we derive empirical
bounds that involve intuitive geometric quantities and moti-
vate a kernel learning method. Analysis of the MMD-based
estimator is non-trivial and requires bounding techniques
that exploit the nature of the MMD objective in addition
to typical concentration inequalities employed in learning
theory. We are aware of no work that bounds the error of
class ratio estimates by any other method.

We use the insights obtained from the theoretical analysis,
to propose a novel convex formulation for selecting the best
kernel to be employed in the MMD-based estimation pro-
cedure. Our kernel learning formulation turns out to be an
instance of a Semi-Definite Program (SDP) with infinitely
many linear constraints.

Since it is expected that at optimality only a few of the lin-
ear constraints are active, we propose a cutting-plane based
algorithm for solving this formulation. At every iteration,
the SDP restricted to the current constraint-set is solved us-

ing a simple projected sub-gradient descent algorithm. We
are aware of no prior work on kernel selection for this prob-
lem.

We present an extensive evaluation of several existing
methods, both from the direct and per-instance aggregation
family, under varying true class ratios and training sizes.
We obtain up to 60% reduction in class ratio estimation er-
rors over the best existing method.

Outline: In Section 2, we present an overview of the
MMD-based approach and analyze it theoretically. In Sec-
tion 3, we provide our formulation for learning a kernel
function for improved estimates. In Section 4 we present
empirical comparisons and conclude in Section 5.

2. The Maximum Mean Discrepancy
approach

The core idea in maximum mean discrepancy (MMD) in a
reproducing kernel Hilbert space (RKHS) is to match two
distributions based on the mean of features in the Hilbert
space induced by a kernel K. This is justified because
when K is universal there is an injection between the space
of distributions and the space of mean feature vectors lying
in its RKHS. From a practical perspective too, the MMD
approach is appealing because unlike other parametric den-
sity estimation methods, it can be applied to arbitrary do-
mains and to high-dimensional data, and is computationally
tractable. This approach was earlier used in the covariance
shift problem (Gretton et al., 2009), the two-sample prob-
lem (Gretton et al., 2012a), and recently in (Zhang et al.,
2013) for estimating class ratios.

Let K be a universal kernel and H denote the RKHS in-
duced by K. Let & : X +— H denote the canonical
feature map induced by the kernel on the RKHS. We ex-
pect the test distribution Py (x) to match the distribution
Q(x) = >, Pp(x|y)0, where 6, denotes the unknown
probability of class y instances in U’s distribution and
Pp(x|y) denotes the training distribution for class y. This
holds because as mentioned earlier, we assume that

Py(xly) = Pp(x|y), Yy € ¥ (Al)

Let @y and ®,, denote the true means of the feature vectors
of the y-th class and unlabeled data respectively. That is,
<I)U = EPU(X)CI)(X)

(i)y = ]EPD(x|y)cI)(X)7
The true mean feature vector for the QQ(x) distribution is
then v, 0,®,. To match Q(x) and Py(x), the MMD
approach minimizes the distance between the two means.
This gives rise to the following optimization problem over
the unknown 0s:

' 0,8, — oy
s DL R "
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or, after rewriting using 0y = 1 — Z;Zl 0, as

min
feNne

|46 — a||” 2)

where A = [@; —®( ... &.— Pg]and a = [Py — ] and
A° denotes the new feasibility set {6, > 0,3~ _, 6, < 1}.
Let 8 denote the solution of the above, which is unique
because of the following two assumptions:

K 1is universal (A2)
V0 £ 6,5, 0, Pr(xly) £ 3, 0!, Pr(xly) (A3)

A2 implies that there is an injection from the space of dis-
tributions to the space of mean feature vectors. A3 is a
standard identifiability assumption on 8 without which the
class ratio estimation problem is undefined and no algo-
rithm can identify the true class ratio.

However Equation 2 is impossible to solve as i)y and @,
are unknowns. So, we approximate them by substituting
sample means from sample U of Py (x), and labeled sam-
ple D of Pp(x|y) calculated as

)= 3 2 G,y =y 2

n n,
(x,y)eD Y xeU ¥

Here, n, denotes the number of instances in U, and n,
denotes the number of instances labeled y in D. The em-
pirical version of the MMD above is:
A(n)6 ’
i —a 3
Imin ‘ (n) a(n)H 3)

where A(n) = [®1(n1) — ®o(no) ... ®c(ne) — Bo(no)]
and a(n) = [®y(ny) — Po(np)]. We call the solution to
this the MMD estimate 6(r). In the paper we sometimes
drop the (n) argument from 2, <f>, a, 9 to reduce clutter.

We can apply the Kernel trick on this objective and rewrite
it in kernel form as follows:
min 6" [ATA] 6 —20"[ATq] (4)
fcAe
where an entry yy/ of [AT A] = &)J >, —<f>;—<f>0 —BJ B+
&)OT &)0 and each ‘5;&)3/ can be written in terms of a kernel
as —— 2 (), (x ) ep K (%, x"). Similarly an entry y of
[ETa} = CTDJCTDU — CTJJCT)O - CTD(TCT)U + @g@o can be written
in terms of kernel. Since the objective is convex in € with

only the simplex constraints, algorithms such as Mirror De-
scent (Beck & Teboulle, 2003) can solve it efficiently.

We note here that this MMD formulation is equivalent to
Equation 6 in (Zhang et al., 2013) when applied on discrete
labels and with a few other minor modifications. However,
we are aware of no prior work on the theoretical analysis

of this MMD estimate. The analysis of MMD for the co-
variance shift problem is very different (Yu & Szepesvari,
2012; Gretton et al., 2009; Cortes et al., 2008) from ours
because their objectives and assumptions are different.

2.1. Theoretical Analysis

o~

We next discuss results that show the closeness of 6(n) to
the true 8™ both in the finite sample case and asymptoti-
cally. We already assumed that 8* is unique. For any
formal comparison, a(n) is also required to be unique. Our
proof makes another mild assumption that makes the ob-

jective strongly convex:

4 has full column rank (A4)
A(n) has full column rank (A5)

~

These assumptions imply the uniqueness of 6(n) and 6*.
For example, .45 holds whenever all labeled and unlabeled
data points are distinct and K is universal.

At this point we note that typical learning theory bounds
are derived for knowing how close the objectives of (2) and
(3) are, while we desire to know how close their solutions
are. Also, (2) and (3) do not have a closed form solution'.
Hence deriving finite sample closeness bounds as well as
asymptotic convergence between solutions of (2) and (3) is
interesting. To this end, we present the following theorem.

Theorem 1. With the notation and strong convexity as-
sumptions (A4, A5) presented above, the following hold:
1. With probability at least 1 — 6,

. g
16(n)—0"(|* < .

mineig(A(n)T A(n))

&)
2. {||§(n) - 0*||2} L5 0 where mineig(M) denotes® the
minimum eigen value of M and R is the data-spread given
by R = max,cx ||P(x)].

The proof has two key steps. The first is a result, given be-
low as Lemma 1, that helps to bound the distance between
the optimal objectives of (2) and (3). The second is a re-
sult, given below as Lemma 2, that bounds the closeness
between the solutions of (2) and (3) in terms of closeness
between their optimal objectives. We proceed by present-
ing the two lemmas and defer their proofs to the end of the
section.

"Problems (2) and (3) have closed form solutions (least
squares kind) only if we assume 6;, # 0, gy # 0,Vy. However,
in practice this is not reasonable to assume.

2Also, {X,} 2 X denotes that the sequence of random vari-
ables X1,...,X,,... converges in probability to X.
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Lemma 1.
|A()0" —a(n)[|* — [An)B(n) —a(m)|*  (©)
2
o[ FH2e+2 -2 2
(SRt (e ked)

with at least probability 1 — 0.
Lemma 2. The following two claims hold:

) #|12 < LAmO" —am)|* | AmOe) ~a(n) | *
1 He( ) 0 H mineig(A(n)T A(n))
2. With probability 1 — 6,
mineig(A" A) — mineig(A(n) " A(n))
1 1 2 1
< 8R? — —+ — | log =

Now from Lemma 1 and Lemma 2.1, we obtain the first
result of the theorem. From Lemma 1, Lemma 2 and union
bound, we obtain that with probability 1 — J, we have:

16(n) — 0*1*

R2 (c +2¢+2+Zy 2 ><1+\/@)2
o 1 2 2
~8R Z (Z ny+n0> log

v=0 " y=1

mineig( A

Note that the above bound holds as long as n =
(ng,...,Me,ny) is high enough such that the denominator
in the above expression is positive. Choosing such n is pos-
sible because of the assumption .44, mineig(A" A) > 0.

From the above bound, we obtain that {||§(n) —0* ||2} 2
0asn = (ng,...,ne,ny) — 00. In the following we

provide a sketch of proof for the lemmas and postpone the
details to the supplementary.

Proof of Lemma 1 First note that || A(n)6* — a(n)||2 —
| A(n)8(n)—~a(n)|* < || A(n)0* ~a(n)||>. Now, we upper-
bound the RHS. Let f(Xo,..., Xe, Xu) = A(n)o* —
a(n) = Y0050, (n,) — ®y(n,), where X, X, de-
note independent samples of size n,, n,, from Pp(x|y) and
Py (x) respectively. Note that || f(X,, ..., X, Xu)|| sat-
isfies the bounded difference property and applying McDi-
armid’s inequality we get that with probability at least 1—4,

1A~ EfLAI] < R 2log§<1 Y 1) ™
Ny y=0

Ny

Next, we use E(||f||) <
E(|fI?) < RA(E2e22 4 370

result.

E(||f||*) and the claim
y) to get the desired

Proof of Lemma 2 Let h(0) = || A(n)0 —
h is quadratic in 8, we then have:

a(n)||?. Since

~

h(6) — h(B(n)) = VA(B(n)) T (0" — O(n))
(0" —8(n) T A(n) T A(n) (6" — 8(n))

Moreover, Vh(a(n))—r(ﬂ = 67(71)) > 0 for any 8 € A°
This is because, 0 (n) is the optimal solution of 3 and hence
the gradient at this point Vh(§ (n)) should lie in the normal
cone of the feasibility set A€ at a(n) Hence,

-~

h(0(n)) = (67
> mineig(g(n)

—0(n)T A(n) T A(n)(0* — 8(n))
TA(n))|60* — (n)|

This, together with assumption A5, gives Lemma 2.1. To
prove Lemma 2.2, we first prove in the supplementary that?

h(6*) —

mineig(A" A) — mlnelg(//l\( ) A\(n))
<[ ATA — A@) T Am)]|r

Let g(Xo,...,Xe) = ||[ATA — A(n)T A(n)| p. It is easy
to verify that Eg = 0. Also, g satisfies the bounded dif-
ference property, hence by an application of McDiarmid’s
inequality, we get that with probability 1 — ¢

C

1 L1 2 1
<8R?Y — — 4+ — | log=~. 8
pssy b (S ey @

y=0

This completes the proof for Lemma 2.

Theorem 1 is indeed interesting: first, it shows that our em-
pirical estimate is statistically consistent. Second, it shows
that the convergence rate of the squared error is at least
@ (%) We observe this graphically in Figure 1(a) as we
see the error bound asymptotically going to zero with in-
creasing training and test sizes. More importantly, in the
finite regime, the theorem provides an upper-bound on the
square error in terms of known and intuitive geometric
quantities like mineig(A(n)" A(n)) and R. In particular,
for the two-class case, this bound says that the estimate is
accurate whenever the distance between the sample means
of feature vectors of the two classes are far apart and the
overall data spread (R) is small. We illustrate the depen-
dence graphically in Figure 1(b), where we plot the bounds

for increasing S/R where S = 1/mineig(AT A). When

the positive and negative means are sufficiently separated
(S/R > 0.7), the error bounds are quite tight. In the fol-
lowing section, we present a novel formulation for exploit-

ing these bounds for kernel selection.

*Here, || M || denotes the Frobenius norm of M.
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Figure 1. Error bound computed by Theorem 1 against increasing
training and test size in log scale (Figure 1(a)), increasing separa-
tion ratio S/R (Figure 1(b)).

Comparison with other bounds We are aware of no
other work that bounds the error of class-ratio estimates
via any other method. For regression and under covari-
ance shift, (Yu & Szepesvari, 2012) bounds the error of the
mean y in an unlabeled set U estimated as } B(x)y

where B(x) is estimated using MMD for the covariance
shift problem. Even though the setting is different, it is in-
teresting to compare their convergence rates (with 0/1 val-
ues of y) with ours for two classes. Their convergence rate
is O(log™* ;) where n = Z;:o n, and s is a positive
constant. Note that these rates are much slower than ours.

3. The Kernel Learning Formulation

Our theoretical analysis shows that the universal kernel
used in the MMD estimator needs to be carefully chosen to
obtain accurate class-ratios. Here, we present a novel con-
vex formulation for learning such a kernel. We also present
an efficient algorithm for solving this formulation.

We assume that we are given a set of base kernels
k1,...,kn, and the goal is to find the right conic combi-
nation, ky = Z;”il wjk;,w; > 0V j, that makes the esti-
mated class-ratios close to the true class-ratios. Posing the
problem of kernel learning as that of optimizing the kernel
weights in the conic combination is a popular strategy in

the kernel learning community (Lanckriet et al., 2002).

We first use the bounds in Theorem 1 to increase the
accuracy of class ratio estimates: we choose the ker-
nel weights such that the upper-bound (5) is minimized.
There are two quantities in this upper-bound that de-
pend on the kernel weights: i) mineig(A(n)" A(n)) =
mineig( ?ilejj(n)Tﬁj(n)), where A;(n) is the A
term computed using the ;" base kernel, and ii) R =
||w]|2- The first term needs to be maximized and the second
needs to be minimized. Since we wish to obtain a sparse set
of kernel weights, leading to kernel selection, we minimize
||w]|; instead of ||w||s.

Our goal of reducing error in the MMD-estimate may not
be adequately served by minimizing the upper bound alone
because the bound is derived without making any distribu-

tional assumptions (other than A1-.44) and may be overly
pessimistic for the given data distribution. We therefore in-
clude an empirical term in the objective that reduces the
deviation between the estimated and true class-ratios over
several datasets. We assume we have a set of datasets
{U;}, (each U; is a set {X;1,...,Xin, }) With known
true class-ratios 0. We discuss later one way of obtain-
ing such a dataset from the given labeled set D. Let
mmd(U;, 8, w) denote the value of the MMD objective
( 4) at 8 when applied to U; with kernel k,. One way of
minimizing the deviation between the estimate and the true
class-ratios is by simply minimizing the deviation between
the corresponding mmd()s. We cast this goal in the max-
margin framework for structured learning (Tsochantaridis
et al., 2005): we want w to be such that for each (U;, 67),
mmd(U;, 07, w) < mmd(U;, 0, w) for all 8 far from 6;.
We rewrite mmd(U;, 6, w) as a linear function of w as:

mmd(U;, 0, w) = —WTF(UZ' 0) s.t. )
F;(U;,0) =0 A] A;0 +20" A]a;(U;)  (10)

where @;(U;) = ®(U;) — ®J with ® (U;) being the mean
feature map over the jth kernel calculated on sample U;
and @/ is also specialized to kernel k;. Let E(6;,0) be a
measure of the distance between 6 and 6. We want the
margin w ' F(U;,07) — w F(U;,0) = w' 6F;(U;,0) to
be large when E(67, 0) is large.

Combining the two bound-related objectives and the em-
pirical term we obtain the following convex formulation for
learning the kernel weights

2

min wli+C + B maxei —w; AT A;
e Il Clel 2 w4
st. w! O0F;(U;,0) > E(0,0) — & V|0 — 07| > eVi

(1)

where & = {¢;}/, are the slack variables, C, B are the pa-
rameters of the optimization problem and € > 0 is a user-
given tolerance. The above is an instance of a convex pro-
gram with infinitely many constraints and hence we resort
to solving it using the cutting-plane algorithm (Tsochan-
taridis et al., 2005). In Figure 2 we present an overview.
The input to the algorithm is a labeled dataset D and can-
didate kernels &y, . .., k. We create the (U, 0;) dataset
pairs required for our training by resampling from available
labeled set D. To create m datasets we repeat this process
m times: first, sample a value of @] uniformly randomly
from the ¢ + 1 dimensional simplex. If a prior distribution
on the test set Os is known, one can use it in place of the
uniform distribution. We did not assume any such priors
in our experiments. Second, form U; as follows. Let T’
be the expected size of the test set. For each class y, use
sampling with replacement to select 707, instances from
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1: Input: D, ky,...,k,,

2: (U;,07) = sampled sets from D with varying ratios 0

3: w = Initial parameter w; = 1

4: Initial constraint set S = {}

5: while no convergence do

6:  i,0 = argmin; ymmd(U;, 6, w)—E(6;, 0) (Sec 3.1)

7. If wldF;(U;,0) > E(67,0) — &, then exit; else
add (7,0) to S.

8:  Solve (11) restricted to S and obtain w, £ (Sec 3.2).

9: end while

Figure 2. Kernel selection algorithm for the MMD estimator.

D, = {(x,y) € D}. We now discuss the two crucial opti-
mization problems solved within the loop of the algorithm:
(1) the selection of the most violating constraint (step 6), (ii)
solving the MKL objective with the finite set of constraints
(step 8). We elaborate on how each is solved.

3.1. Finding the most violating constraint

For a given value of w we have to find the 8 corresponding
to the most violating constraint for (U;, 8;) by solving
Juin mmd(U;, 8, w) —E(67,0) (12)
This optimization problem differs from our original con-
vex objective in only the additional E(6},0) term. Since
the @ corresponds to parameters of a multinomial distri-
bution, suitable choices for E(;,0) are the L. distance
(y > 1) and KL-divergence both of which are convex
in 6. This makes objective (12) non-convex but since it
is the difference of two convex functions, algorithms like
CCCP (Yuille & Rangarajan, 2003) can give a local opti-
mum. However, for two very apt error measures: the L.,
distance and L, we are able to provide an optimal answer.
Both of these can be expressed as a max over a small num-
ber of linear functions of 8. For example when E(8;,0)

is the Lo distance max;_ |07, — 0, [, we can rewrite it as

Max,y ¢ et A" (0 — 07), where we use E<H! to denote all
vectors with exactly one of the ¢ + 1 positions either +1
or -1 and zero for the rest. There are 2¢ + 2 such vectors.
Now, we can find the most violating constraint by solving
these 2¢ + 2 MMD-like convex objectives:
min min mmd(U;,0) — X" (0 — 6} 13
Jmin min mmd(U:,0) ~X'(0—67)  (13)
Similarly, the L; distance can be expressed as
max, ¢ ge+1 A'(8 — 6]) where E consists of vec-
tors with +1 and -1 over any of the c positions.

3.2. Solving the MKL objective with finite constraints

This section focuses on solving (11) with the constraint-set
restricted to S. We begin by noting that the formulation in

this case can be written as a Semi-Definite Program (SDP):

D Wil +C i€l + Bt
weR[ K £cRT teR

st. w! 0F;(U;,0) > E(07,0) — & :V(i,0) € S,

ng
4 wjAJA; =0, (14)

j=1

where I is the identity matrix of size ¢ x c. As long as ¢
and nj are not high, standard SDP solvers like Mosek or
SeDuMi can solve (14). Otherwise, we re-write the above
as the following non-differentiable convex problem:

ngk

min ||wlj; + B maxeig(z fwjgyﬁj)
weRK =

+C > max (0,E(6],60) — w'6F;(U;,0))
v(i,0)eS

The above program can be solved using projected sub-
gradient descent*. The sub-gradient expression for the
first and third terms in the oblectiAve is easy, for the sec-
ond term maxeig(} ") —w; A A;), the subgradient is’

J
TATA TAT A T ;
[—eWA1 Aty ... — ewAnkAnkew} where ey, is any
eigenvector corresponding to the maximum eigenvalue of
. i T
the matrix > 7% ) —w; Aj A;.

Related work on kernel selection for MMD We are
aware of no other work on learning kernels in the context of
MMD-based class ratio estimation. For the two-sample test
problem, (Gretton et al., 2012b) proposed a kernel learn-
ing formulation that minimizes the asymptotic probability
of hypothesizing two distributions as same, when they are
different (Type II error) for a given bound of the Type I
error. In contrast, the novelty of our formulation is that it
includes both asymptotic terms and an empirical term that
minimizes error under finite data settings.

4. Experiments

We compare our proposed estimator with several existing
methods under various settings. First, we compare differ-
ent methods under varying true class ratios. Second, we
compare them under varying training sizes. Finally, we
compare different kernel selection methods.

Our chosen kernel family Kz is a conic combination of
univariate and multivariate Gaussian (RBF) kernels, a pop-
ular family in various kernel learning literature (Gretton
et al., 2012b; Vishwanathan et al., 2010). We first fix a
kernel width (o) based on training data as per (Zhang et al.,

“The feasibility set in this case is the first orthant and hence it
is simple to compute the projection onto this.
SPlease refer to the supplementary for the derivation.
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Dataset Number | Number | [)] Ny Ny,
Features | Instances | c+1

Australian 14 690 2 200 100
Diabetes 8 768 2 200 | 100
German 24 1000 2 200 | 100
Tonosphere 34 351 2 200 | 100
SAHeart 9 462 2 200 | 100
Youtube 1000 | 6,431,471 2 250 | 1000
Acoustic 50 78823 3 |varying {10000
Botswana 145 3248 14 |varying (10000
Shuttle 9 43500 7 |varying 10000

Table 1. Summary of Datasets

2013). For each feature, we have one univariate kernel with
this width. We create several multivariate kernels based on
bandwidths from this set: [276 275 ... 26] x o x d* where
d is the number of features.

Methods: We compare the following methods.

SMO-MKL: As a first baseline, we estimate class ratio by
aggregating from per-instance predictions from a classi-
fier. The classifier we used was SMO-MKLS (Vishwanathan
et al., 2010) which trains a SVM but with the benefit of ker-
nel selection from our kernel family K.

PE-DR: As a member of the direct method, we use the PE
divergence based class ratio estimation method of (Plessis
& Sugiyama, 2012). We thank the authors for providing us
with the Matlab code for this method’. We exclude results
for the method in (Saerens et al., 2002), since it offered no
benefit over the baseline SMO-MKL.

MMD: This is the MMD based approach (Section 2) with
a single best kernel chosen from our kernel family KCx
through cross-validation. Recall that (Zhang et al., 2013)’s
proposal is also a MMD method — the only difference is in
how kernel parameters are chosen. We found that choosing
a single kernel via cross-validation provided much higher
accuracy than their formula of kernel width selection.

MMD-MKL: Here, we used MMD on a kernel learned as in
Section 3. The datasets i.e. {(U;,0])} pairs required for
this training were sampled from the training data D using
the method of Section 3 with m = 110. The class means
®, were estimated from the entire labeled data. The pa-
rameters C' and B were fixed via cross-validation.

Datasets: Table 1 summarizes the datasets we used. The
first six are binary datasets comprising five of the six UCI
datasets used in (Plessis & Sugiyama, 2012) and a dataset
based on YouTube comments that we created based on this®

8Code taken from  http://research.microsoft.com/en-
us/um/people/manik/code/SMO-MKL/download.html

"http://sugiyama-www.cs.titech.ac.jp/~christo/classpriorchange

.html
8http://mlg.ucd.ie/yt

collection. The goal in the YouTube dataset is to estimate
the fraction of comments that are spams on a YouTube
video. The dataset was crawled by tracking 6407 popular
YouTube videos over 77 days and comprises of 6,431,471
comments labeled spam or not. The feature set is a normal-
ized TF-IDF vector over 1000 words + a comment length
feature. The next three are multi-class datasets. Acous-
tic is a dataset about classifying military vehicles from
geophone recordings and is used in (Plessis & Sugiyama,
2012). Botswana is a dataset about classifying spectral sig-
natures into different land cover types and is from (Zhang
et al., 2013) and Shuttle is a UCI dataset.

We created a training set by sampling n, samples from
each class y, and series of test sets with n,, points each for
a given ratio of classes 8. The default values of n,, n,, are
in Table 1. For the binary datasets, all experiments are with
varying 6" and for the multi-class datasets, the default 8™ is
the class prior skew in the entire labeled data. All numbers
are averaged over 10 random seeds. We measure error as
the L, distance between the true and estimated class ratios
normalized by the number of classes.

Varying class ratios: We perform these experiments
on the six binary datasets by varying 6; as per the
set {0.01,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.99}. In
Figure 4, we plot the estimation error (|0 — §o|) against
true fractions () for the six binary datasets. The follow-
ing conclusions can be drawn from the plots: SMO-MKL,
the baseline that aggregates per-instance predictions, is in-
deed very sensitive to the changes in test prior distribution.
For many datasets, we see a ’bowl” shaped graph and usu-
ally the minimum is when test prior is close to 0.5 which is
equal to the training prior. The curves for the direct meth-
ods (PE-DR, MMD, MMD-MKL) are much flatter showing
that they are much less sensitive to the training class ratios.
Except for YouTube, both the MMD-based methods pro-
vide lower error than PE-DR. MMD-MKL is more accurate
than MMD in most cases, and on YouTube we get upto a
33% drop in error.

Running time: In this paper we skip a detailed comparison
on running time, instead we report some specific timings:
On YouTube, our largest dataset, MKL training via Matlab
takes 20 minutes whereas deployment takes 5 minutes on a
desktop class machine. On Botswana, the dataset with 14
classes, MKL training takes 6 minutes whereas deployment
takes 0.3 minutes. In comparison PE-DR took 12 minutes
on YouTube and 5 minutes on Botswana.

Increasing training size:  For these experiments we vary
the value of n,, (number of instances per class) in the range
[10 30 50 70 90] keeping all other values fixed to their de-
fault in Table 1. We selected the three multi-class datasets
for these experiments. We observe smooth error reduction
in MMD-MKL with increasing training size and consistent
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Figure 3. Class ratio estimation error (|05 — bo |) on Y-axis against varying true fractions (6p) for the six binary datasets of Table 1. The
methods compared are same in all six datasets; the legend is present in only one of them to reduce clutter.
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Figure 4. Class ratio estimation error (|6* — 1/9\\ /c+ 1) on Y-axis against increasing per-class training size n, for the three multi-class
datasets of Table 1. The methods compared are the same in all datasets; the legend is present in only one of them to reduce clutter.
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Figure 5. Comparing the kernel selection methods MMD-MKL,
MKL-BOUND and MKL-EMPIRICAL on various datasets

improvement over other methods. In contrast, SMO-MKL
has inconsistent behavior. The best improvement we get
is for the Acoustic dataset where MMD-MKL reduces error
from 0.12 to 0.05 with 90 instances per class.

Comparison of Kernel Selection: Our MKL attempts to
jointly minimize the theoretical error bounds and empirical
error. We evaluate if any one of them would be adequate
by comparing our joint model (MMD-MKL) with (1) MKL-
BOUND that minimizes only the Eigen and ||w||; terms in
(11), and (2) MKL-EMPIRICAL that drops the Eigen term.
In Figure 5 we plot error of these methods averaged over
various class ratios. We observe that the joint model pro-
vides the highest overall accuracy.

5. Conclusion

In this paper we address a real-world motivated problem of
estimating the ratio of classes in an unlabeled set. ~We
investigated the use of the maximum mean discrepancy
(MMD) measure as a basis for estimating the class ratios.
We present the first ever theoretical analysis of the esti-
mator and show that the MMD estimator is consistent un-
der mild conditions. We provide empirical error bounds in
terms of intuitive quantities like class-separation and data-
spread. Combining these bounds and empirical error we
propose a novel convex formulation for kernel learning and
also design an efficient cutting plane algorithm for solving
it. We empirically compare our estimator with many exist-
ing methods and obtain up to 60% reduction in error over
the best existing method. Further, our method of kernel
learning reduces plain MMD error by up to 40%.

As part of future work, we wish to explore other families of
kernel selection, for example directly optimizing the width
of the RBF kernel as in (Gehler & Nowozin, 2008; Ar-
gyriou et al., 2006).
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