
Iso-charts: Stretch-driven Mesh Parameterization
using Spectral Analysis

KUN ZHOU

Microsoft Research Asia

JOHN SNYDER

Microsoft Research

BAINING GUO and HEUNG-YEUNG SHUM

Microsoft Research Asia

We describe a fully automatic method, called iso-charts, to create texture atlases on arbitrary
meshes. It is the first to consider stretch not only when parameterizing charts, but also when
forming charts. The output atlas bounds stretch by a user-specified constant, allowing the user
to balance the number of charts against their stretch. Our approach combines two seemingly in-
compatible techniques: stretch-minimizing parameterization, based on the surface integral of the
trace of the local metric tensor, and the “IsoMap” parameterization, based on an eigen-analysis
of the matrix of squared geodesic distances between pairs of mesh vertices (spectral analysis). We
show that only a few iterations of nonlinear stretch optimization need be applied to the IsoMap
parameterization to obtain low-stretch atlases. The close relationship we discover between these
two parameterizations also allows us to apply spectral clustering based on IsoMap to partition
the mesh into charts having low stretch. We also novelly apply the graph cut algorithm in opti-
mizing chart boundaries to further minimize stretch, follow sharp features, and avoid meandering.
Overall, our algorithm creates texture atlases quickly, with fewer charts and lower stretch than
previous methods, providing improvement in applications like geometric remeshing and texture
synthesis. We also describe an extension, signal-specialized atlas creation, to efficiently sample
surface signals, and show for the first time that considering signal stretch in chart formation
produces better texture maps.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: mesh, parameterization

Additional Key Words and Phrases: eigenanalysis, chartification, graph cutting, multi-chart ge-
ometry image, signal-specialized parameterization, texture synthesis

1. INTRODUCTION

Parameterization forms the basis of many geometry processing algorithms, such as
texture mapping, morphing, editing, remeshing and compression. For parameteriz-
ing arbitrary meshes, a popular technique is to build texture atlases [Maillot et al.
1993; Pedersen 1995; Lévy et al. 2002; Sander et al. 2001]. The target surface is

Authors’ addresses: K. Zhou, B. Guo and H.-Y. Shum, Microsoft Research Asia, 3F, Beijing Sigma
Center, No. 49, Zhichun Road, Haidian District, Beijing 100080, P.R.C.; J. Snyder, Microsoft
Research, Redmond, WA, 98052, USA.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0730-0301/20YY/0100-0001 $5.00

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 · Zhou, Snyder, Guo, and Shum

first partitioned into a set of charts, called chartification, which are parameterized
and packed into the texture domain to form an atlas.

Because a 3D surface is not isometric to a 2D plane, parameterization causes
distortion. Distortion can be measured in many ways, including how well angles or
areas are preserved, or how much parametric distances are stretched or shrunk onto
the surface. We focus on distance distortion, specifically [Sander et al. 2001]’s defi-
nition of geometric stretch, which measures the average and worst-case stretching of
local distances over the surface. Minimizing geometric stretch uses texture samples
more efficiently than other measures [Sander et al. 2001], and is asymptotically re-
lated to geometric accuracy under piecewise-constant reconstruction [Sander et al.
2002].

Stretch reduction is intimately related to the partition of meshes into charts.
Generally speaking, the smaller the charts, the less the distortion of any kind,
including stretch. In the limit, distortion can be eliminated by making each mesh
triangle its own chart [Carr and Hart 2002]. However, excessively fine partitioning
is disadvantageous. It constrains mesh simplification, adds extra inter-chart gutter
space, causes mipmap artifacts, and removes continuity across charts [Sander et al.
2001]. A good mesh atlas creation tool must therefore allow a careful choice of its
charts, balancing chart distortion against the cost of more charts.

We achieve this balance by driving mesh partitioning from a user-specified stretch
value. [Lévy et al. 2002] alluded to this possibility. However, stretch-driven param-
eterization is challenging, requiring nonlinear optimization which greatly slows the
computation. If computing a stretch-minimizing embedding for a single chart is
costly, then computing it over all possible chart partitionings becomes completely
impractical. This difficulty has led previous approaches to disregard stretch when
forming charts in favor of unrelated heuristics that cut across sharp features or
cluster based on chart compactness or planarity. These simple heuristics produce
charts that are either smaller or more stretched than necessary. Our approach,
iso-charts, is the first algorithm for generating a texture atlas with large charts and
bounded stretch.

To do this, we apply a form of nonlinear dimensionality reduction called IsoMap
[Tenenbaum et al. 2000] which minimizes geodesic distance distortion between pairs
of vertices on the mesh. The key to this application is our new observation that
geodesic distance distortion is closely related to stretch, though they are defined
quite differently. IsoMap thus provides two benefits for atlas generation. It pro-
vides an effective way, called spectral analysis, to decompose the model into large,
geometrically meaningful parts like animal appendages that can be parameterized
as charts with little stretch. Without any extra computation, it also supplies an
initial parameterization for each chart. In fact, we show that it provides an excel-
lent starting point for stretch minimization, so that a few iterations of nonlinear
stetch optimization quickly remove problem “fold-overs” that result from applying
IsoMap by itself. In essence, IsoMap provides a much better heuristic for creating
and parameterizing low-stretch charts than previous methods.

Our main contribution is a new stretch-driven chartification method which clus-
ters based on a spectral analysis of the matrix of geodesic distances and allows
the user to bound stretch while keeping the number of charts small. We also show
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Iso-charts: Stretch-driven Mesh Parameterization using Spectral Analysis · 3

that such spectral analysis simultaneously obtains a low-stretch parameterization of
charts more quickly than previous methods. We introduce the notion of graph cut
to optimize chart boundaries, and modify the capacity metric to consider geodesic
distance distortion and therefore stretch, given the relationship discovered between
the two metrics. We propose “special spectral clustering” to create better charts
in cases when geometric parts have periodic (tubular) structure. Finally, we gen-
eralize our approach to signal-specialized atlas creation. Our atlases are the first
whose chart partitioning, as well as parameterization, is adapted to a particular
signal such as a normal or color map.

2. RELATED WORK

There are many ways to build a texture atlas. A straightforward method is to
partition the model by hand [Krishnamurthy and Levoy 1996]. Early work [Maillot
et al. 1993] clusters triangles according to their normals. Other methods produce
charts with convex boundaries [Eck et al. 1995; Guskov et al. 2000; Khodakovsky
et al. 2003; Lee et al. 1998; Sander et al. 2001], a restriction that can significantly
increase stretch.

The least squares conformal map (LSCM) [Lévy et al. 2002] parameterizes charts
with arbitrarily shaped borders. It finds curves through high curvature zones and
then grows charts to meet at these curves. The Intrinsic Parameterization [Des-
brun et al. 2002] is another free-boundary, conformal atlas approach. Though it
preserves angles, conformal parameterization yields area and distance distortion
that is undesirable for many applications in which texture map storage should be
conserved. [Sander et al. 2003] presents a chartification method based on stretch
which forms compact charts that also cut along high-curvature features. None of
these methods bounds stretch, and all neglect parameterization distortion during
chartification.

[Sorkine et al. 2002] directly considers stretch during chartification. But it greed-
ily adds triangles to a growing parameterization without further adjustment, and
so is unable to form large charts.

Alternatively, an arbitrary surface can be cut into a single chart instead of an
atlas. Geometry Images [Gu et al. 2003] parameterize an entire surface over a
single 2D square using cuts through vertices having extreme stretch. Seamster
[Sheffer and Hart 2002] is another cutting algorithm that reduces distortion by
mapping to a free boundary. Although they can be regarded as stretch-driven
cutting/parameterization algorithms, these methods do not allow the user to control
cut length or stretch.

By observing that many objects consist of relatively simple regions, each of which
has a natural parameterization, [Zhang et al. 2004] proposed a feature-based patch
creation method. They make use of distance-based Morse functions to reduce genus
and identify features. Each feature region will be unfolded to one or two patches
based on a covariance matrix of the feature’s surface points. To reduce the stretch
during patch unfolding, the Green-Lagrange tensor is used in an optimization pro-
cess. Although this method can decompose the models into large charts, it does
not allow user control of the parameterization stretch. You can see from the tex-
ture layouts (refer to Figure 11 in that paper) that the texture colors are greatly

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

4 · Zhou, Snyder, Guo, and Shum

distorted in some regions. Another advantage of our method is that it runs much
faster. For the Stanford bunny (70k faces), our method takes about 1 minute on a
3.0 GHz PC, while the running time for the 10K bunny model using their method
is over 9 minutes on a 2.4 GHz PC. Furthermore, our algorithm can also be gener-
alized to produce signal-specialized atlases which represents a given surface signal
using textures as compact as possible.

Many algorithms can parameterize charts over planar regions [Bennis et al. 1991;
Campagna and Seidel 1998; Desbrun et al. 2002; Eck et al. 1995; Floater 1997;
2003; Hormann and Greiner 1999; Lévy and Mallet 1998; Lévy et al. 2002; Maillot
et al. 1993; Sander et al. 2001]. We refer the interested reader to the recent survey
by [Floater and Hormann 2004].

Like our method, [Zigelman et al. 2002] also applies IsoMap to mesh parameter-
ization, but allows only simple (disk-topology) meshes and often produces triangle
flips. Our method handles an arbitrary mesh, automatically divides it into multiple
charts, guarantees no triangle flips, and extends to signal-specialized parameteri-
zation. We also show that the IsoMap parameterization is connected to a stretch
minimizing one.

Recently, [Peyré and Cohen 2004] presented a surface flattening method based
on another nonlinear data dimensionality reduction method, called Locally Linear
Embedding (LLE) [Roweis and Saul 2000]. LLE aims at finding a mapping which
preserves the relationship between neighboring data points. Therefore the LLE-
based flattening approach is more local than the IsoMap-based approach [Zigelman
et al. 2002], which tends to preserve the pairwise geodesic distances between surface
vertices. However, both methods cannot guarantee validity of the flattening.

A form of spectral analysis has been used for geometry compression and smooth-
ing [Karni and Gotsman 2000; Taubin 1995]. These methods are based on the
mesh’s Laplacian which depends only on its connectivity, rather than geodesic dis-
tance. Recently, [Gotsman et al. 2003] applies spectral graph theory to solve the
spherical parameterization problem.

We apply stretch-minimization [Sander et al. 2001] to optimize parameterizations
created by spectral analysis. We also use geometric stretch [Sander et al. 2001] or
signal stretch [Sander et al. 2002] to determine when to terminate chart subdivision.

[Katz and Tal 2003] decompose meshes using geodesic distance and optimize
boundaries using graph cut. We apply these ideas to atlas creation, but also in-
troduce spectral analysis to aid decomposition and produce geodesic distance pre-
serving parameterizations. We extend their notion of graph cut “flow capacity” to
respect parameterization distortion, and their notion of distance to build signal-
specialized atlases.

3. ALGORITHM OVERVIEW

Our approach is a top-down, stretch-driven method. Given a surface and a user-
specified stretch value, it performs the following steps:

(1) Compute the surface spectral analysis, providing an initial parameterization
(Section 4.1).

(2) Perform a few iterations of stretch optimization [Sander et al. 2001].
(3) If the stretch of this derived parameterization is less than the threshold, stop.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Iso-charts: Stretch-driven Mesh Parameterization using Spectral Analysis · 5

Fig. 1. Iso-chart atlas for the Stanford bunny. The model is partitioned into 15 large charts,
which can be flattened with lower stretch than previous methods (L2 = 1.01, L∞ = 2.26).

(4) Perform spectral clustering to partition the surface into charts (Section 5.1).
(5) Optimize chart boundaries using the graph cut technique (Section 5.2).
(6) Recursively split charts until the stretch criterion is met.

The result is a set of charts whose parameterizations have bounded stretch. Chart
topology need not be explicitly checked; the stretch-driven process ensures that all
charts are eventually subdivided into topological disks since otherwise parameteri-
zation stretch is infinite. We do check that the parameterization domain does not
overlap itself and subdivide in that rare case. As a post-processing step, we merge
small charts together if the parameterization stretch of the merged chart is less
than the user specified stretch value.

Distortion is bounded using two norms on geometric or signal stretch, proposed
in [Sander et al. 2001]. The L2 norm integrates (γ2

max + γ2
min)/2 over the surface,

followed by an overall square root. The L∞ norm maximizes max{γmax, 1/γmin}
over the entire surface. Here, γmax and γmin are scalar functions over the surface
representing the largest and smallest singular values of the Jacobian of the affine
mapping from texture space to model/signal space at any point. The inclusion of
shrink, 1/γmin, in the L∞ norm is a modification which penalizes undersampling.

Figure 1 shows the chartification and parameterization results for the Stanford
bunny. Notice how meaningful parts of the model like its head, ears, and body are
decomposed into large charts. The whole computation takes about 1 minute.

4. SPECTRAL ANALYSIS

4.1 Applying IsoMap

Our algorithm builds upon the dimensionality reduction method called IsoMap
(isometric feature mapping) [Tenenbaum et al. 2000]. Given a set of points on a
high-dimensional manifold, IsoMap computes geodesic distances along the manifold
as sequences of hops between neighboring points. It then applies MDS (multidi-
mensional scaling) to find a set of points embedded in a low-dimensional space
whose Euclidean distances are similar to the corresponding geodesic distances on
the original manifold, as shown in Figure 2. Since geodesic rather than Euclidean

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

6 · Zhou, Snyder, Guo, and Shum

1x

2x

Nx
Ny

2y

1y

Fig. 2. Spectral analysis for the Stanford bunny. The left image is the original bunny; the right
image is a visualization of the result of spectral analysis showing just the first three embedding
coordinates. These embedding coordinates, �yi, are chosen so that Euclidean distances between
pairs match geodesic distances between points on the original surface, �xi.

distance represents the true geometry of the manifold, IsoMap can discover the
nonlinear manifold structure underlying complex data like 3D surface geometry.

We refer to this application of IsoMap as surface spectral analysis and outline its
computation. Given a surface with N vertices, �xi,

—Compute the symmetric matrix DN of squared geodesic distances between surface
vertices.

—Apply double centering and normalization to DN to yield BN = − 1
2 JN DN JN ,

where JN is a N×N centering matrix defined by JN = I − 1
N 11T, I is the

identity matrix, and 1 is a vector of ones of length N . This constrains the center
of gravity of the computed point set to lie at the origin.

—Compute the eigenvalues λi and their corresponding eigenvectors �vi of BN , (i =
1, 2, ..., N).

—For each vertex i of the original surface, its embedding in the new space is an
N -dimensional vector �yi whose j-th component is given by �yj

i =
√

λj �vi
j (j =

1, 2, ..., N).

The eigenvalues λi and their corresponding eigenvectors �vi of BN , (i = 1, 2, ..., N)
form the spectral decomposition of the surface shape. Eigenvectors corresponding
to large eigenvalues represent global, low-frequency features on the surface while
eigenvectors corresponding to small eigenvalues represent high-frequency details.
It is natural to consider the high-energy, low-frequency components as a basis of
chartification and parameterization.

TODO: possible diagram visualizing embedding from different eigenvalues. Could
show bunny embedding with first three components, then next three, then next
three, etc.

In general, N eigenvalues (and thus an N -dimensional embedding) are needed to
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Iso-charts: Stretch-driven Mesh Parameterization using Spectral Analysis · 7

fully represent a surface with N vertices. In practice, a small number of them
typically dominate the energy. For the bunny model shown in Figure 1, the
top 5 eigenvalues constitute over 85% of the squared energy; in other words,
(
∑5

i=1 λi)/(
∑N

i=1 λi) > 85%. Therefore we calculate only the n � N largest eigen-
values and corresponding eigenvectors, leading to a n-dimensional embedding for
all vertices.

The distortion of this n-dimensional embedding can be calculated as the sum of
the geodesic distance distortion over all vertices. For each vertex i, its geodesic
distance distortion (GDD) under the embedding is defined as:

GDD(i) =

√√√√ 1
N − 1

N∑
j=1

(‖�yi − �yj‖ − dgeo(i, j))
2 (1)

where �yi is the n-dimensional embedding coordinate of vertex i, and dgeo(i, j) is
the geodesic distance between vertex i and j. This definition can be extended from
a vertex to a triangle by averaging the distortions of its three vertices, and is used
in Section 5.2.

When n = 2, surface spectral analysis yields a surface parameterization minimiz-
ing the sum of squared GDD over all vertices. This is the key idea of the mapping
algorithm in [Zigelman et al. 2002]. Our observation is that the same technique,
surface spectral analysis, can be simultaneously applied to two critical problems:
decomposition necessary for chartification, and parameterization.

To calculate the geodesic distances between surface points of polygonal mod-
els, we use the fast matching method [Kimmel and Sethian 1998], which runs at
O(N2 lg N) and obtains more precise results than the Dijkstra graph search method,
since it allows paths that cut across mesh triangles.

4.2 Analyzing Isomap Stretch

GDD-minimizing [Zigelman et al. 2002] and stretch-minimizing [Sander et al. 2001]
parameterizations both focus on distance distortion. Still, GDD differs from stretch
in several ways. It is global rather than local, since it considers distance between
vertices that are arbitrarily far on the surface, rather than local stretch induced
by the Jacobian at a point. It is difference-based rather than ratio-based since
it penalizes differences between the original and parametric distances rather than
how much unit-length tangent vectors are stretched. And it is discrete rather than
continuous since it only considers distance distortions between vertex pairs rather
than stretch in every triangle and in every direction.

The discrete nature of spectral analysis, which measures distance distortion only
between vertex pairs, gives rise to the main problem in [Zigelman et al. 2002]:
triangle flips. Our algorithm provides a simple solution. Since triangle flips are de-
fined to cause infinite stretch, and our algorithm always splits charts whose stretch
is above the user’s threshold, any finite threshold guarantees the final atlas will
contain no flips.

Spectral analysis requires solution of a low-dimensional eigenvalue problem rather
than general nonlinear optimization. We accelerate the computation even further
using the “landmark” extension (see Section 5). Despite differences between stretch
and GDD, we find that spectral analysis reduces stretch very effectively.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

8 · Zhou, Snyder, Guo, and Shum

(a) Uniform + fine-level stretch (b) Uniform + coarse-to-fine stretch
[Sander et al. 2001] [Sander et al. 2002]

L2 = 1.04, L∞ = 1.68 L2 = 1.03, L∞ = 2.16
PSNR=76.8dB, running time 222s PSNR=76.8dB, running time 39s

(c) LSCM (d) LSCM + fine-level stretch
[Lévy et al. 2002] [Lévy et al. 2002] + [Sander et al. 2001]

L2 = 1.11, L∞ = 2.27 L2 = 1.09, L∞ = 2.27
PSNR=74.9dB, running time 3s PSNR=75.5dB, running time 26s

(e) IsoMap (f) IsoMap + fine-level stretch
[Zigelman et al. 2002] [Zigelman et al. 2002]+[Sander et al. 2001]
L2 = 1.04, L∞ = 2.78 L2 = 1.03, L∞ = 2.32

PSNR=77.0dB, running time 2s PSNR=77.0dB, running time 6s

Fig. 3. Comparison between different parameterization algorithms. PSNRs are measured using
a geometry image that keeps the number of defined (within charts) samples constant at about
13,500. (d) applies 100 iterations of stretch minimization to the result of (c); similarly, (f) applies
20 stretch-minimizing iterations to (e).

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Iso-charts: Stretch-driven Mesh Parameterization using Spectral Analysis · 9

1.4

1.8

2.2

2.6

3

1 2 3 4 5 6

number of patches

Li
nf

 S
tre

tc
h

1

1.04

1.08

1.12

1.16

1.2

1 2 3 4 5 6

L2
 S

tre
tc

h
uniform + f ine-level stretch
uniform + coarse-to-f ine stretch
LSCM
LSCM + f ine-level stretch
IsoMap
IsoMap + f ine-level stretch

Fig. 4. Stretch vs. number of patches for different parameterizations.

Figure 3 shows parameterization results for a single chart model of a face. While
LSCM (3c-d) is fast, it is conformal and so limits stretch poorly. IsoMap (3e)
quickly provides a parameterization having little L2 stretch – in fact, it’s stretch is
as good as the slow optimization method of [Sander et al. 2001] (3a). Furthermore,
it provides a starting point which a few L2-stretch-minimizing iterations improves
even further (3f), yielding the best L2 stretch result of all methods, including ones
explicitly designed to minimize stretch. The PSNR numbers are for a geometry im-
age constructed with the resulting parameterizations, and confirms the relationship
between L2 stretch and geometric accuracy discussed in [Sander et al. 2002]. Since
it depends on only a single, worst-case point in the domain, L∞ stretch is difficult
to control for any method, but especially for a discrete method like IsoMap. Even
there, our result is comparable after applying a few stretch-minimizing iterations.

Figure 4 compares results on a multi-chart model of a bunny, focusing on the
trade-off between stretch and the number of charts. We partitioned the bunny into
a series of chart sets, containing from 1 to 6 charts, and shown at the top of the

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

10 · Zhou, Snyder, Guo, and Shum

Analysis

Clustering

(a) (b)

(c)

Fig. 5. Spectral analysis/clustering method for the horse model.

figure. As in Figure 3, the best L2 stretch result is obtained by our method. We can
also see that as the number of charts increases, it becomes easier to parameterize
these smaller charts with any method. Only “uniform+fine-level stretch” ([Sander
et al. 2001]) lags behind, because its initial 2D parameterization domain is a circle
while the other methods adopt more natural domain shapes. As in Figure 3, L∞

stretch is more haphazard, and a few L2 stretch-minimizing iterations improve our
result significantly.

5. SPECTRAL CLUSTERING AND BOUNDARY OPTIMIZATION

5.1 Spectral Clustering

If the parameterization induced by spectral analysis fails to satisfy the user’s stretch
threshold, it is partitioned into several smaller charts. Recall that global features
of a model such as the head, ears, legs, and tails of animals correspond to the larger
eigenvalues, so we use them to partition. We compute a few representative vertices
using the spectral analysis results and then grow charts simultaneously around
these representatives, a method we call surface spectral clustering and illustrated
in Figure 5. The algorithm is as follows:

(1) Rank the eigenvalues λi and corresponding eigenvectors �vi from surface spectral
analysis such that (λ1 ≥ λ2 ≥ · · · ≥ λN).

(2) Get the top n eigenvalues and eigenvectors such that λn/λn+1 is maximized.
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Iso-charts: Stretch-driven Mesh Parameterization using Spectral Analysis · 11

∑
∑

=

=

Ni
i

ni
i

,1

,1

λ

λ
n=3 n=4

1+i

i

λ
λ 43 λλ

Fig. 6. Eigenvalues for the horse model.

(3) For each vertex i of the mesh, compute its n-dimensional embedding coordi-
nates: �yj

i =
√

λj �vi
j (j = 1, 2, ..., n).

(4) For each of the n embedding coordinates, find the two vertices with maximum
and minimum coordinate values and set them as 2n representatives, shown as
pairs of colored dots in Figure 5.

(5) Remove representatives which are too close together, yielding m ≤ 2n repre-
sentatives.

(6) Partition the mesh into m parts by growing charts simultaneously around the
representatives using the geodesic distance calculated in surface spectral anal-
ysis. Each triangle is assigned to the chart whose representative is closest to
the triangle.

Step 2 computes n by finding the “knee” in the curve relating the sum of eigen-
values to the number of eigenvalues, as shown in the top graph of Figure 6. To
find this knee, we look at the ratio of successive eigenvalues, findng the pair where
the eigenvalues are dropping fastest; i.e., finding i maximizing λi/λi+1. In the case
where the top three eigenvalues constitute 90% or more of the total eigenvalue sum,
we perform binary subdivision. Otherwise, we find the n ≥ 3 which maximizes the
ratio of successive eigenvalues and proceed with this n using the above 6 steps.
The bottom part of Figure 6 shows the ratio graph and the optimal value of n = 3
selected for this horse example.

The value of n is a measure of shape complexity: n < 3 implies a fairly flat
shape; large n implies a complicated shape with significant detail. Eliminating the
remaining N − n eigenvalues ignores high frequency detail and avoids partitioning
into too many charts. Our implementation also restricts n ≤ 10 (see Section 6),
which in turn restricts the maximum number of sub-charts.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

12 · Zhou, Snyder, Guo, and Shum

(a) n = 1 (b) n = 2 (c) n = 3 (d) n = 4

Fig. 7. Spectral clustering results for the horse model as a function of n.

Since representatives computed from different dimensions in Step 4 may be close
and so redundant, Step 5 removes them. We use a distance threshold of 10 times
the average edge length of the input mesh. In Step 6, the geodesic distance from
a triangle to a representative vertex is computed as the average of the geodesic
distances of the triangle’s three vertices to the representative.

Figure 7 shows clustering results for different values of n on the horse model.
Note how identifiable features, such as the legs, are partitioned using this method.
The top row in Figure 13 demonstrates spectral clustering results for other models.
Charts correspond to global features in the model such as the wings of the feline,
and the neck, legs and tail of the dinosaur.

5.2 Computing Optimal Partition Boundaries with Graph Cutting

After splitting charts, we optimize the boundaries between them. Chart boundaries
should satisfy two objectives: 1) they should cut through areas of high curvature
without being too jaggy, and 2) they should minimize the embedding distortions of
the charts they border.

The first objective has been addressed in previous chartification work [Sander
et al. 2001; Lévy et al. 2002; Sander et al. 2003], which minimize various measures
of chart compactness while choosing chart cuts of shortest length or along edges
having high dihedral angle. Recently [Katz and Tal 2003] has used graph cut to
decompose meshes, an idea we apply to the mesh parameterization problem. The
second objective relates to our desire for a stretch-minimizing partition, and has
never been addressed as far as we know.

Our solution is to formulate the optimal boundary problem as a graph cutting
problem. For simplicity, we discuss the binary case which splits the surface into two.
When subdividing into more than two charts, we consider each pair of neighboring
charts in turn.

Figure 8a gives an example. Suppose we seek an optimal boundary between
two charts A and B. The initial partition is generated by using surface spectral
clustering. We then generate a medial region, C, by expanding an area to either
side of the initial split boundary. The medial region’s size is proportional to the
total area of the unsplit patch; we use 30% for all examples. Now an undirected
flow network graph (Figure 8b) can be constructed from C using an extension of the
method in [Katz and Tal 2003]. We modify their definition of “capacity” between
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Iso-charts: Stretch-driven Mesh Parameterization using Spectral Analysis · 13

(a) (b)

S T

Fig. 8. Finding the optimal partition boundary is formulated as a graph cut problem. (a) the
shape is decomposed into three parts, lateral areas A (red), B (blue) and medial area C (green).
(b) constructing a graph for the medial area.

(a) Angular distance only (α=1) (b) GDD only (α=0) (c) Combined (α=0.5)

L2 = 1.02, L∞ = 2.05 L2 = 1.01, L∞ = 1.87 L2 = 1.01, L∞ = 1.94

Fig. 9. Comparing different graph-cut capacities.

the two adjacent triangles fi and fj as

c(fi, fj) = α cang(fi, fj) + (1 − α) cdistort(fi, fj) (2)

The first term in equation (2) corresponds to the first objective of a nonjaggy
cut through edges of high dihedral angle. We adopt the same formula as [Katz and
Tal 2003]:

cang(fi, fj) =
(

1 +
dang(fi, fj)
avg(dang)

)−1

(3)

where dang(fi, fj) is defined as (1−cos αij), αij is the angle between normals of the
triangles fi and fj , and avg(dang) is the average angular distance between adjacent
triangles.

The second term in equation (2) measures embedding distortion, defined as

cdistort(fi, fj) =
ddistort(fi, fj)
avg(ddistort)

(4)

ddistort(fi, fj) = |GDDA(fi) − GDDB(fi)| + |GDDA(fj) − GDDB(fj)| (5)

where GDDA(fi) and GDDB(fi) are the GDDs of triangle fi under the embedding
induced by A or B, respectively. avg(ddistort) is the average ddistort(fi, fj) over all
pairs of adjacent triangles. This definition of cdistort(fi, fj) prefers boundary edges
whose adjacent triangles balance GDD between embeddings determined by A and

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

14 · Zhou, Snyder, Guo, and Shum

(a) before boundary optimization
13 charts, L2 = 1.04, L∞ = 2.40

(b) after boundary optimization
11 charts, L2 = 1.01, L∞ = 1.84

Fig. 10. Boundary optimization results for the hand model.

B. In other words, the cut should avoid placing a triangle on the wrong side where
it creates unnecessary distortion.

Given the graph in Figure 8b with edge weights defined via equation (2), the
minimum cut algorithm generates a boundary satisfying our two objectives: it
passes through areas of high curvature (if they exist) without meandering and
yields low embedding distortion of its bordering charts.

The weight parameter α trades off the two objectives. α=1 defines capacity as in
[Katz and Tal 2003] and achieves good results for models with sharp features. For
shapes whose dihedral angles vary smoothly in the medial area, it tends toward a
cut of shortest length (see Figure 9a), often generating unbalanced cuts that poorly
control stretch. For example in Figure 9a (left), splitting by α = 1 produces too
much stretch in the yellow chart, requiring it to be split again to satisfy the user’s
threshold (right).

On the other hand, we can set α = 0 to minimize GDD as Figure 9b illustrates,
which avoids needless chart subdivision but makes the boundary jaggier. Figure 9c
sets α = 0.5. Although the parameterization stretch is a little larger than 9b, a
smoother boundary is desirable for many applications.

Figure 10 shows the result of graph-cut boundary optimization on a hand model.
Note how optimized chart boundaries follow creases in the model, such as the
between the thumb and hand. Stretch of the resulting charts is also significantly
decreased, even though fewer are required to satisfy the stretch threshold.

5.2.1 Landmark IsoMap for Medial Region Embedding. To compute the above
optimal partition boundary, we require two embeddings over the unsplit chart: one
corresponding to side A and one to side B. These two embeddings define GDDA

and GDDB . Neither sub-chart “core”, A or B, contains the inner vertices of the
medial region C. So we can’t compute the embedding coordinates of C’s vertices
using spectral analysis on A or B alone. Since we don’t yet know which triangles
of C will be joined with A and which with B, we desire embeddings for each
sub-chart that will not be too distorted by triangles that end up inserted in the
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Iso-charts: Stretch-driven Mesh Parameterization using Spectral Analysis · 15

other sub-chart. A recent extension of IsoMap [Silva and Tenenbaum 2002], called
landmark IsoMap, solves this problem by embedding the medial region implicitly
given only embeddings for each core and the geodesic distance relationship of C’s
to each core’s vertices.

Suppose there are NA vertices in A. After performing surface spectral analysis,
we get nA eigenvalues λi and corresponding eigenvectors �vi. The nA-dimensional
embeddings of all vertices in A form the columns of an nA × NA matrix LA:

LA =
[√

λ1 �v1,
√

λ2 �v2, · · · ,
√

λnA
�vnA

]T

A vertex p outside A can be located in its nA-dimensional embedding space by
using its known geodesic distances to the vertices in A as constraints. This same
idea identifies geographic location using a finite number of distance readings in GPS
[Silva and Tenenbaum 2002]. Let ∆p denote the column vector of squared distances
between p and the vertices in A. The nA-dimensional embedding coordinate �vp can
be computed by the formula:

�vp =
1
2

L†
A (∆̄ − ∆p)

where ∆̄ is the column mean of DNA
, and L†

A is the pseudoinverse transpose of LA:

L†
A =

[
�v1/

√
λ1, �v2/

√
λ2, · · · , �vnA

/
√

λnA

]T

Now we can calculate GDDs for all vertices in C under the embedding induced
by A, and similarly for B.

5.3 Special Spectral Clustering for Tubular Shapes

Given the n dominant eigenvalues, surface spectral clustering partitions the shape
into at most 2n charts. This works well for complex shapes but can produce too
many charts for simple shapes with n ≤ 3. As shown in Figure 11a, spectral
clustering partitions the bunny ear into 5 charts and the feline wing into 6 charts. To
avoid excessive partitioning, we can instead subdivide the chart into two, according
to the first of the embedding coordinates. This simple approach often works, but it
is not ideal for tubular/cylindrical protrusions, a common feature in typical meshes
(see Figure 11b).

A better method (Figure 11d) is inspired by recent work in computer vision
[Brand and Huang 2003; Elad and Kimmel 2003], which observes that dominant
eigenpairs of the distance matrix can be used to detect and segment data points
with cyclic distributions. The following heuristic has proven effective, which regards
a shape as tubular if its eigenvalues λi meet the following conditions:

—(
∑3

i=1 λi)/(
∑N

i=1 λi) > 0.9, i.e. the top three eigenvalues represent the shape
well.

—λ1/λ2 > 3, means the shape is long enough.
—λ2/λ3 < 2, means the shape is cyclic.
—λ3/λ4 > 3, i.e. the 4-th eigenvalue decreases quickly enough to be ignored.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

16 · Zhou, Snyder, Guo, and Shum

(a) n > 2 (b) n=1,λ=λ1 (c) n=1,λ=λ2 (d) n=1,λ=λ3

Fig. 11. Partitioning tubular shapes. Column a shows general spectral clustering (Section 4.3),
while columns b-d show binary clustering based on the first, second, and third eigenvalues.

As long as a shape is detected as a cylinder/tube, it is partitioned into two sub-
charts. As noted by [Brand and Huang 2003], the second and third dimensions can
be regarded as cyclic axes. Partitioning the shape according to the third principal
dimension, which corresponds to the shorter cyclic axis, produces more planar
patches. Figure 11d shows the results using the third component, a more natural
split than using the first or second component in Figure 6bc.

The overall chart subdivision algorithm may be summarized as follows. If the top
three eigenvalues contain less than 90% of the energy, we perform “general” spectral
clustering (Section 5.1). Otherwise, if the chart is tubular, we perform “special”
spectral clustering described in this section. In all other cases, we perform binary
spectral clustering, using the single embedding coordinate corresponding to the
largest eigenvalue. In our experience, only a single nonbinary chart subdivision is
performed (at the first iteration); thereafter, binary subdivision suffices.

6. IMPLEMENTATION DETAILS

A naive implementation of our stretch-driven chartification and parameterization
algorithm is expensive, especially as the number of model vertices grows.

To accelerate the computation, we exploit landmark IsoMap [Silva and Tenen-
baum 2002], which was used in the last section to compute the embedding coor-
dinates for vertices in the medial region. Landmark IsoMap selects q vertices as
landmark points, where q�N . Instead of computing the N×N matrix of squared
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Iso-charts: Stretch-driven Mesh Parameterization using Spectral Analysis · 17

geodesic distances, DN , an q×N matrix Dq,N is computed measuring distances
from each vertex to the landmark points only. Embedding coordinates of the q
landmark points are computed using surface spectral analysis while the remaining
vertices can be computed using the method described in Section 5.2.1.

To get the landmark points, models are simplified by performing half edge col-
lapse operations based on the quadric error metric [Garland and Heckbert 1997].
Progressive meshes [Hoppe 1996] free us from having to simplify each chart from
scratch. We only need to perform enough vertex splits recorded in the PM to obtain
enough landmark points within the chart.

For all charts, we use q = 100 landmark points, which makes the processing fast
even on large charts. When the chart has fewer than 100 vertices, we simply include
them all as landmark points. Though the landmark embedding can exhibit more
stretch than the full analysis, this is likely only for large chart that have high stretch
and will need to be refined anyway. Landmark embedding with q independent of
chart size thus provides a fast but very reasonable heuristic.

Since the the top 10 eigenvalues constitute over 95% of the squared energy in our
test models, another speed-up is to calculate only the first 10 eigenpairs in surface
spectral analysis. In summary, the geodesic distance computation is reduced to
O(q N logN) and spectral decomposition to O(q2).

To stretch-optimize the parameterization produced by spectral analysis, we per-
form a few iterations of the method in [Sander et al. 2002]. We first find each vertex
whose L2 stretch in its 1-ring neighborhood is greater than the user-specified limit,
and rank these vertices in decreasing order of stretch. For each vertex, we then per-
form the following steps. If a vertex is not in the convex kernel of its neighborhood,
we relocate it to the centroid of the kernel. We then take a random direction and
minimize stretch along that direction. Directional minimizations are performed up
to 6 times or until an iteration fails to improve stretch sufficiently (using a threshold
of at least 10% improvement).

After generating an atlas, we perform a post-processing step that merges charts
using a simple heuristic. We begin by ranking the charts in increasing order of
number of faces belonging to the chart and computing an average normal for each
chart. Only “small” charts are considered, having no more than 10% of the total
number of faces. For each small chart, we consider merging each of its neighboring
charts in decreasing order of dot products of average normals. Chart pairs are
greedily merged in this order if the stretch after merging still satisfies the stretch
thresholds.

Our packing algorithm is an extension of the “Tetris” algorithm in [Lévy et al.
2002] (refer to Figure 7 in that paper). In [Lévy et al. 2002], charts can only be
introduced from the top; we can introduce them from the top, bottom, left or right
directions. Our algorithm therefore keeps track of the current “horizons” for each of
the four directions, given all the charts introduced so far. A horizon for a direction
(up, down, left, right) is the distance in that direction to the nearest chart for each
edge pixel. For example, the top horizon is the distance in the vertical direction
from the top of the packing to the nearest chart inserted, for each pixel in the top
row.

The user specifies the desired width and height of the atlas, W and H. Our
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

18 · Zhou, Snyder, Guo, and Shum

packing algorithm then performs the following steps:

(1) Rescale each chart to make its area in the texture domain equal to its area in
3D domain.

(2) Sort the charts in decreasing order according to their area.
(3) For each chart:

—Choose the direction pair in which to add the chart. Suppose that the current
atlas height and width is Hcurr and Wcurr (initialized to zero). Compute
Wexpect = Hcurr ∗W/H. If Wexpect > Wcurr, try introducing the chart from
the left and right, otherwise try from the top and bottom.

—Insert the chart into the packing. From the direction pair of the previous
step (left/right or top/bottom), choose the single direction that wastes the
least space. If the chart is introduced from the top (bottom), we adopt the
method in [Lévy et al. 2002] to compute the horizontal translation of the chart
minimizing lost space between the bottom (top) horizon of the chart and the
current top (bottom) horizon of the evolving packing. Similarly, if the chart
is introduced from the left (right), we minimize the lost space between the
right (left) horizon of the chart and the current left (right) horizon of the
packing.

Like [Sander et al. 2003], we also allow several rotations for each chart (16 in our
implementation). Our method produces packings that waste little space between
charts and have nearly the same aspect ratio as was requested.

7. SIGNAL-SPECIALIZED ATLAS CREATION

So far, we have used geometric stretch to drive chartification and parameterization.
Our algorithm can also be generalized to produce a signal-specialized parameteriza-
tion which represents a given surface signal using textures as compact as possible.
To achieve this goal, [Sander et al. 2002] defines a signal-stretch metric and develops
an iterated multi-grid strategy to minimize it over manually created charts. Our
approach is to apply our IsoMap-based algorithm, but using signal distance rather
than geometric distance.

For surface signals defined by interpolation over per-vertex samples, we compute
the pairwise signal distances between vertices. Given two vertices i and j and the
geodesic path between them, the signal distance between them is defined as the
sum of signal differences between pairs of adjacent points along the path. Applying
spectral analysis to a matrix of signal distances creates a parameterization that
preserves these distances and therefore ties our algorithm to signal distortion in the
same way as our unspecialized algorithm was tied to geometric distortion.

The rest of the algorithm is analogous. We use signal distance in the embedding
distortion part of the graph cut capacity metric, perform signal-stretch minimiz-
ing iterations to refine the embedding [Sander et al. 2002], and use signal-stretch
thresholds as a chart subdivision criterion.

For surface signals that exhibit more variation between vertices (such as one de-
fined by a pre-existing parameterization that is to be optimized), we can exploit the
idea of the integrated metric tensor (IMT) from [Sander et al. 2002] to encapsulate
the signal’s variation. The IMT is an integral over each triangle of the metric tensor
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Iso-charts: Stretch-driven Mesh Parameterization using Spectral Analysis · 19

(Jacobian transpose times Jacobian) of the mapping from points on the triangle
into the signal space. It is a symmetric, 2×2 matrix regardless of the signal’s di-
mensionality and is therefore a compact measure of per-triangle signal variation,
requiring only three numbers per triangle. For mapped signals, the Jacobian is
not constant over each triangle, as it is for a signal defined by linear interpolation
between triangle vertices, but varies spatially. Thus, computing IMTs for mapped
signals requires numerical integration.

Given the geodesic path between vertices i and j, we can use the sequence of
IMTs of each triangle traversed by the path to compute the signal distance along
the path from i to j. Let Mk be the IMT of the k-th triangle traversed by this
geodesic path, and pk and qk be the first and last points along the linear segment
of the path within this triangle. Then the contribution to signal distance of the
path segment from pk to qk is given by

(pk − qk)T Mk (pk − qk).

In other words, the IMT is interpreted as a quadratic form that maps geometric
difference vectors within a triangle to squared signal distances.

Typical signals such as textured colors can exhibit much more variation than
the underlying geometry. Unsurprisingly, surface spectral analysis using signal
distances produces a very complex embedding with many dominant eigenvalues
and leads to excessive partitioning. The analogous problem led [Sander et al. 2002]
to combine geometric and signal stretch; our solution defines distance with a similar
combination of geodesic and signal distances:

dcomb(i, j) = β
dgeo(i, j)
avg(dgeo)

+ (1 − β)
dsig(i, j)
avg(dsig)

(6)

where dsig(i, j) is the signal distance between i and j. We achieve good results with
β = 0.5.

8. ISOCHARTS FOR TEXTURE SYNTHESIS

Surface texture synthesis algorithms [Wei and Levoy 2001; Turk 2001] build a mesh
pyramid, or sequence of successively coarser meshes, to extend multi-resolution tex-
ture synthesis from 2D images to 3D surfaces. The retiling method [Turk 1991] is
used for this purpose, which distributes points over the surface and then recon-
structs their connectivity. To render the synthesis results, per-vertex colors are
associated with the mesh. More efficient use of graphics hardware results from
using a texture map, which can be created as a post-process.

We instead construct a good mesh pyramid and compact texture maps simulta-
neously. The idea is based on the multi-chart geometry image (MCGIM) [Sander
et al. 2003] which uses an atlas to sample a surface’s geometric coordinates and then
zippers chart boundaries to ensure that a “watertight” mesh can be reconstructed.

Our method first creates a geometric stretch minimizing atlas. We then apply
the sampling, zippering and packing of [Sander et al. 2003] to build a series of
successively coarser MCGIMs (e.g., 128×128, 64×64, 32×32) all derived from this
same atlas. Because these different resolution MCGIMs are packed and zippered
separately, a natural correspondence does not exist between their samples. We

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

20 · Zhou, Snyder, Guo, and Shum

128x12864x6432x32

Fig. 12. Mesh LOD generation for texture synthesis.

compute one explicitly using the normal-shooting method [Sander et al. 2002].
Figure 12 illustrates an example.

Our multiresolution texture synthesis algorithm extends [Wei and Levoy 2001].
The basic algorithm is similar to the sequence in which a picture is painted: long
and thick strokes are placed first, and details are then added. Suppose Ml−1 and Ml

are two successive mesh LODs where Ml−1 is the coarser one. Since the synthesis
proceeds from coarse to fine LOD, assume Ml−1 already has a synthesized texture.
To synthesize the texture for Ml, first transform the colors from Ml−1 to Ml. Then
for each vertex in Ml, build its neighborhoods by flattening and resampling the
mesh locally (refer to Figure 5 in [Wei and Levoy 2001]). The neighborhoods in
Ml−1 are built in a similar way by flattening and resampling the corresponding
vertices and faces in Ml−1. Then the two layer neighborhoods are used to find the
best match pixel color from the sample texture. We refer the readers to Table 3 in
[Wei and Levoy 2001] for the pseudocode of the multiresolution synthesis algorithm.

Our use of MCGIMs for texture synthesis has two advantages. It quickly builds a
mesh pyramid that has a one-to-one correspondence between vertices and samples in
a texture map. This makes storing and rendering the resulting synthesized texture
trivial. Furthermore, we can use the parameterization during texture synthesis
to avoid local flattening of the mesh and the “pointer-chasing” costs of finding
neighboring vertices on a 3D mesh. For samples in the interior of charts, the
2D neighborhood of the sample in the parameterization domain directly provides
neighboring samples and a local flattening. The relatively few samples on chart
boundaries are more complicated so we resort to the 3D mesh.

9. RESULTS

Figure 1 and Figure 13 illustrate results on several models. For all experiments,
the stretch threshold was set at L2 = 1.1, L∞ = 5.0. Table I supplies additional
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Iso-charts: Stretch-driven Mesh Parameterization using Spectral Analysis · 21

L2=1.04, L∞=3.29L2=1.07, L∞=5.12L2=1.03, L∞=2.87 L2=1.03, L∞=2.78 L2=1.06, L∞=4.13

Fig. 13. Chartification and parameterization results produced by our algorithm. The top row
shows the charts on the 3D surface; the bottom row shows iso-parameter lines over the surface
and the texture atlases.

bunny horse dino feline skull dinosaur

vertices 35k 48k 24k 75k 20k 56k

faces 69k 97k 48k 150k 40k 112k

charts 15 19 20 38 6 23

charts before merge 21 32 36 67 6 39

packing ratio 0.72 0.69 0.66 0.65 0.71 0.70

L2 stretch 1.01 1.03 1.04 1.07 1.03 1.06

L∞ stretch 2.26 2.78 3.29 5.12 2.87 4.13

chart¶m (s) 40 68 20 165 14 87

merging (s) 15 10 26 72 0 32

packing (s) 15 20 10 50 3 43

total (s) 70 98 56 287 17 162

Table I. Statistics and timings for models presented in the paper. Times were measured on an
Intel Xeon 3.0G machine.

statistics, including running times, for the resulting atlases. The results demon-
strate that our method produces low-stretch atlases with a small number of charts.
The following sections demonstrate applications of our method and compare it to
previous work.

9.1 Insensitivity to Noise and Mesh Resolution

Since our algorithm is based on the surface spectral analysis, it relies only on the
geodesic distances between surface vertices, which are fairly insensitive to noise
and resolution change. Figure 14 shows the results of applying our algorithm to
a noisy bunny and a low resolution bunny (3,000 triangles). In both cases, the
chart numbers of the texture atlases are similar to that in Figure 1, although the

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

22 · Zhou, Snyder, Guo, and Shum

horse feline gargoyle

remeshing dimension 215×309 245×272 296×218

defined vertices 47,655 45,563 47,151

unique vertices 45,768 42,690 45,167

geometry PSNR 88.7 82.9 85.6

[Sander et al. 2003]

remeshing dimension 281×228 478×133 466×138

defined vertices 48,389 48,038 46,724

unique vertices 41,857 35,956 41,961

geometry PSNR 84.6 79.5 83.8

Table II. Comparing Iso-charts and MCGIMs of [Sander et al. 2003]. Our PSNR results are
approximately 3-4dB higher.

(a) (b)

Fig. 14. Our algorithm is insensitive to noise addition and resolution change. (a) result for a
bunny with added noise, with 17 charts and distortion L2 = 1.03, L∞ = 3.44. (b) result for a low
resolution bunny, with 12 charts and distortion L2 = 1.06, L∞ = 2.79.

segmentation results exhibit minor differences.

9.2 Multi-Chart Geometry Images

Figure 15 and Table II compare our method to [Sander et al. 2003] for the con-
struction of multi-chart geometry images. Results from [Sander et al. 2003] (middle
column of Figure 15 and bottom 4 rows of Table II) are outputs of their software,
obtained with their permission. The number of charts in their method is selected
by hand, and was chosen by the authors to provide a reasonable balance between
stretch and number of charts. Our method better preserves detail and exhibits
fewer artifacts. Geometric accuracy numbers (PSNR, see [Sander et al. 2003] for a
definition) confirm our advantage.

Following [Sander et al. 2003]’s terminology, defined vertices count those within
charts, and so ignore wasted inter-chart space. Unique vertices count the number of
unique MCGIM samples and so discount sampling redundancy along chart bound-
aries caused by “zippering” neighboring charts together. By bounding stretch using
as few charts as possible, we create atlases having shorter boundaries yielding more
unique vertices and thus better PSNR (3-4dB).
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Iso-charts: Stretch-driven Mesh Parameterization using Spectral Analysis · 23

Original model MCGIM, PSNR=79.5dB Iso-chart, PSNR=82.9dB

Fig. 15. Comparison of geometry remeshing methods. Geometry images have resolution 256×256.

9.3 Signal-Specialized Atlases

Our method provides a simple but effective way to specialize texture atlases to a
particular signal in order to optimize use of limited texture samples. To show the
effectiveness of both parts of our approach – parameterization and chartification –
we applied three different atlas generation methods: one based only on geometric
stretch (i.e., ignoring the particular signal), one that parameterizes based on signal
stretch but still uses charts based on the geometry, and one that adapts both the
charts and their parameterizations to the signal. Following [Sander et al. 2003],
we measure signal approximation error (SAE) which integrates over the surface the
difference between the original signal and one reconstructed from the texture map.

In Figure 16, our algorithm reduces SAE for a normal map from 18.7 to 11.5 by
parameterizing based on signal stretch (16e) rather than geometric stretch (16d).
Visual fidelity is correspondingly improved. These results are similar to those re-
ported in [Sander et al. 2002], which cut charts manually without considering their
signal contents and is therefore analogous to our result in 16e (though our method
is automatic). When chart partitioning is also adapted to the signal (16f), a texture
atlas with even smaller SAE and better visual fidelity is produced. Figure 17 shows
a similar result for a color signal.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

24 · Zhou, Snyder, Guo, and Shum

(a) Original (b) Normal maps for (d), (e) and (f)

(c) Original (d) Geometric param., SAE=18.7

(e) Signal param., SAE=11.5 (f) Signal chartif. & param., SAE=9.7

Fig. 16. Signal-specialized atlas results (normal map) (256 × 256 maps).

9.4 Texture Synthesis

Figure 18 shows synthesis results from applying [Turk 2001] on the mesh pyramid
generated by our method. Small stretch is crucial for generating a good synthe-
sis result. To prevent undesirable distortion of the synthesized texture, we find
the same stretch threshold L2 < 1.1, L∞ < 5.0 works well at the resolutions we
use (256×256, 512×512). Our results look very natural with little shrinking or
stretching of the texture pattern onto the surface.

Figure 19 compares texture synthesis results from our atlases and the LSCM
atlases of [Lévy et al. 2002]. Though we used the same stretch thresholds to termi-
nate chart subdivision for both methods, LSCM does not limit stretch as well as our
algorithm and produces more charts, wasting samples. The result is undesirable
texture magnification over the bunny’s nose, and a breaking up of the tile pattern
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Iso-charts: Stretch-driven Mesh Parameterization using Spectral Analysis · 25

(a) Original (b) Color maps for (d), (e) and (f)

(c) Original (d) Geometric param., SAE=20.8

(e) Signal param., SAE=17.9 (f) Signal chartif. & param., SAE=16.5

Fig. 17. Signal-specialized atlas results (color map) (256 × 256 maps).

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

26 · Zhou, Snyder, Guo, and Shum

Fig. 18. Texture synthesis results using our multi-chart geometry images.

in the gargoyle’s cheeks and ears. Our advantage would increase even further if the
comparison was made using an equal number of charts.

10. CONCLUSION

Spectral analysis on the matrix of geodesic distances between points on a surface
provides a fast, simple, and effective way to simultaneously solve two problems
in atlas generation: partitioning the model into charts, and parameterizing those
charts. It can also be simply generalized to account for signal rather than geometric
distance, to optimize the atlas for a particular signal. We have shown that spectral
analysis reduces stretch very well and provides a good starting point for further
stretch minimization. Finally, we have shown how to incorporate these ideas in
a stretch-driven atlas generator that improves results over previous techniques in
geometry remeshing, texture map creation, and texture synthesis.

In future work, we would like to apply our algorithm to point geometry rather
than dealing with global meshes, as in the original IsoMap paper. We are also
interested in generalizing “special” spectral clustering to other categories of shapes
besides tubes. Though we have thoroughly documented an empirical relation, the
theoretical relation between stretch-minimizing and GDD-minimizing parameteri-
zations has yet to be rigorously analyzed and understood. Intuitively though, both
parameterizations are an attempt to limit distance distortions, and both heavily
penalize mapping of large distances over the surface to small distances in the do-
main, rather than penalizing other distortion measures such as lack of conformality
or area preservation.

REFERENCES

Bennis, C., Vezien, J. M., and Iglesias, G. 1991. Piecewise flattening for non-distorted texture
mapping. In Proceedings of SIGGRAPH 1991. 237–246.

Brand, M. and Huang, K. 2003. A unifying theorem for spectral embedding and clustering. In

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Iso-charts: Stretch-driven Mesh Parameterization using Spectral Analysis · 27

Iso-chart, 9 charts
L2 = 1.09, L∞ = 4.90

LSCM, 18 charts
L2 = 1.10, L∞ = 3.50

Iso-chart, 15 charts
L2 = 1.01, L∞ = 2.26

LSCM, 18 charts
L2 = 1.06, L∞ = 2.05

Fig. 19. Minimizing parameterization stretch without using too many charts is crucial for a
high-quality synthesis result.

Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics 2003,
C. M. Bishop and B. J. Frey, Eds.

Campagna, S. and Seidel, H. 1998. Parameterizing meshes with arbitrary topology. In Proceed-
ings of Image and Multidimensional Digital Signal. 287–290.

Carr, N. and Hart, J. 2002. Meshed atlases for real-time procedural solid texturing. ACM
Transaction on Graphics 21, 2, 106–131.

Desbrun, M., Meyer, M., and Alliez, P. 2002. Parameterizing meshes with arbitrary topology.
In Proceedings of Eurographics 2002.

Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. 1995.
Multiresolution analysis of arbitrary meshes. In Proceedings of SIGGRAPH 1995. 173–182.

Elad, A. and Kimmel, R. 2003. On bending invariant signatures for surfaces. IEEE Transaction
on PAMI 25, 10, 1285–1295.

Floater, M. 1997. Parameterization and smooth approximation of surface triangulations.
CAGD 14, 3, 231–250.

Floater, M. 2003. Mean value coordinates. CAGD 20, 1, 19–27.

Floater, M. and Hormann, K. 2004. Surface parameterization: a tutorial and survey. In Ad-

vances in Multiresolution analysis of Geometric Modelling, M. F. N.A. Dodgson and M. Sabin,
Eds. Springer, 259–284.

Garland, M. and Heckbert, P. 1997. Surface simplification using quadric error metrics. In
Proceedings of SIGGRAPH 1997. 209–216.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

28 · Zhou, Snyder, Guo, and Shum

Gotsman, C., Gu, X., and Sheffer, A. 2003. Fundamentals of spherical parameterization for
3d meshes. In Proceedings of SIGGRAPH 2003. 358–363.

Gu, X., Gortler, S., and Hoppe, H. 2003. Geometry images. In Proceedings of SIGGRAPH
2002. 355–361.

Guskov, I., Vidimce, K., Sweldens, W., and Schröder, P. 2000. Normal meshes. In Proceedings
of SIGGRAPH 2000. 95–102.

Hoppe, H. 1996. Progressive mesh. In Proceedings of SIGGRAPH 1996. 99–108.

Hormann, K. and Greiner, G. 1999. Mips: An efficient global parameterization method. In
Curve and Surface Design: Saint-Malo. Vanderbilt University Press, 219–226.

Karni, Z. and Gotsman, C. 2000. Spectral compression of mesh geometry. In Proceedings of
SIGGRAPH 2000. 279–286.

Katz, S. and Tal, A. 2003. Hierachical mesh decomposition using fuzzy clustering and cuts. In
Proceedings of SIGGRAPH 2003. 954–961.

Khodakovsky, A., Litke, N., and Schröder, P. 2003. Globally smooth parameterizations with
low distortion. In Proceedings of SIGGRAPH 2003. 350–357.

Kimmel, R. and Sethian, J. 1998. Computing geodesics on manifolds. In Proceedings of Nat’l
Academy Sciences. 8431–8435.

Krishnamurthy, V. and Levoy, M. 1996. Fitting smooth surfaces to dense polygon meshes. In
Proceedings of SIGGRAPH 1996. 313–324.

Lee, A., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. 1998. Maps: multi-
resolution adaptive parameterization of surfaces. In Proceedings of SIGGRAPH 1998. 95–104.

Lévy, B. and Mallet, J.-L. 1998. Non-distortion texture mapping for sheared triangulated
meshes. In Proceedings of SIGGRAPH 1998. 343–352.

Lévy, B., Petitjean, S., Ray, N., and Mallet, J.-L. 2002. Least squares conformal maps for
automatic texture atlas generation. In Proceedings of SIGGRAPH 2002. 362–371.

Maillot, J., Yahia, H., and Verroust, A. 1993. Interactive texture mapping. In Proceedings
of SIGGRAPH 1993. 27–34.

Pedersen, H. 1995. Decorating implicit surfaces. In Proceedings of SIGGRAPH 1995. 291–300.

Peyré, G. and Cohen, L. 2004. Geodesic computations for fast and accurate surface flattening.
Preprint CMAP n536 .

Roweis, S. and Saul, L. 2000. Nonlinear dimensionality reduction by locally linear embedding.
Science 290, 2323–2326.

Sander, P., Gortler, S., Snyder, J., and Hoppe, H. 2002. Signal-specialized parameterization.
In Proceedings of Eurographics Workshop on Rendering 2002.

Sander, P., Snyder, J., Gortler, S., and Hoppe, H. 2001. Texture mapping progressive meshes.
In Proceedings of SIGGRAPH 2001. 409–416.

Sander, P., Wood, Z., Gortler, S., Snyder, J., and Hoppe, H. 2003. Multi-chart geometry
images. In Symposium on Geometry Processing 2003. 146–155.

Sheffer, A. and Hart, J. 2002. Seamster: inconspicuous low-distortion texture seam layout. In
Proceedings of IEEE Visualization 2002. 291–298.

Silva, V. and Tenenbaum, J. 2002. Global versus local methods in nonlinear dimensionality
reduction. In Advances in Neural Information Processing Systems. 705–712.

Sorkine, G., Cohen-Or, D., Goldenthal, R., and Lischinski, D. 2002. Bounded-distortion
piecewise mesh parameterization. In Proceedings of IEEE Visualization 2002. 355–362.

Taubin, G. 1995. A signal processing approach to fair surface design. In Proceedings of SIG-
GRAPH 1995. 351–358.

Tenenbaum, J., Silva, V., and Langford, J. 2000. A global geometric framework for nonlinear
dimensionality reduction. Science 290, 2319–2323.

Turk, G. 1991. Generating textures for arbitrary surfaces using reaction-diffusion. In Proceedings
of SIGGRAPH 1991. 289–298.

Turk, G. 2001. Texture synthesis on surfaces. In Proceedings of SIGGRAPH 2001. 347–354.

Wei, L. and Levoy, M. 2001. Texture synthesis over arbitrary manifold surfaces. In Proceedings
of SIGGRAPH 2001. 355–360.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

Iso-charts: Stretch-driven Mesh Parameterization using Spectral Analysis · 29

Zhang, E., Mischaikow, K., and Turk, G. 2004. Feature-based surface parameterization and
texture mapping. to appear in ACM Transaction on Graphics.

Zigelman, G., Kimmel, R., and Kiryati, N. 2002. Texture mapping using surface flattening via
multidimensional scaling. IEEE Transactions on Visualization and Computer Graphics 8, 2,
198–207.

ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.

