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Abstract

We describe a fully automatic method, called iso-charts, to create texture atlases on arbitrary meshes. It is the first

to consider stretch not only when parameterizing charts, but also when forming charts. The output atlas bounds

stretch by a user-specified constant, allowing the user to balance the number of charts against their stretch. Our

approach combines two seemingly incompatible techniques: stretch-minimizing parameterization, based on the

surface integral of the trace of the local metric tensor, and the “isomap” or MDS (multi-dimensional scaling)

parameterization, based on an eigen-analysis of the matrix of squared geodesic distances between pairs of mesh

vertices. We show that only a few iterations of nonlinear stretch optimization need be applied to the MDS param-

eterization to obtain low-stretch atlases. The close relationship we discover between these two parameterizations

also allows us to apply spectral clustering based on MDS to partition the mesh into charts having low stretch.

We also novelly apply the graph cut algorithm in optimizing chart boundaries to further minimize stretch, follow

sharp features, and avoid meandering. Overall, our algorithm creates texture atlases quickly, with fewer charts

and lower stretch than previous methods, providing improvement in applications like geometric remeshing. We

also describe an extension, signal-specialized atlas creation, to efficiently sample surface signals, and show for

the first time that considering signal stretch in chart formation produces better texture maps.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Mesh, parameterization

1. Introduction

Parameterization forms the basis of many geometry process-
ing algorithms, such as texture mapping, morphing, edit-
ing, remeshing and compression. For parameterizing arbi-
trary meshes, a popular technique is to build texture atlases
[MYV93, Ped95, LPRM02, SSGH01]. The target surface is
first partitioned into a set of charts, called chartification,
which are parameterized and packed into the texture domain.

Because a 3D surface is not isometric to a 2D plane,
parameterization causes distortion. Distortion can be mea-
sured in many ways, including how well angles or areas are
preserved, or how much parametric distances are stretched
or shrunk onto the surface. We focus on distance distor-
tion, specifically [SSGH01]’s definition of geometric stretch,
which measures the average and worst-case stretching of lo-
cal distances over the surface. Minimizing geometric stretch
uses texture samples more efficiently than other measures
[SSGH01], and is asymptotically related to geometric accu-
racy under piecewise-constant reconstruction [SGSH02].

Unfortunately, minimizing stretch requires nonlinear opti-
mization. This leads to two difficulties: stretch minimization
is slow, and it disregards stretch when forming charts in fa-
vor of unrelated heuristics that cut across sharp features or
cluster based on chart compactness and planarity. The latter
is true because if computing a stretch-minimizing embed-
ding for a chart is costly then computing it over all possible
chart partitionings is completely impractical.

To solve this problem, we apply a form of nonlinear di-
mensionality reduction called IsoMap [TSL00] which mini-
mizes geodesic distance distortion between pairs of vertices
on the mesh. The key to this application is our new obser-
vation that geodesic distance distortion is closely related to
stretch, though they are defined quite differently. IsoMap
thus provides two benefits for atlas generation. It provides
an effective way, called spectral analysis, to decompose the
model into large, geometrically meaningful parts like ani-
mal appendages that can be parameterized with little stretch.
Without any extra computation, it also supplies an initial pa-
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rameterization for each part. In fact, we show that it provides
an excellent starting point for stretch minimization, so that a
few iterations of nonlinear stetch optimization quickly con-
verge and remove problem “fold-overs” easily.

Our main contribution is a new stretch-driven chartifi-
cation method which clusters based on a spectral analysis
of the matrix of geodesic distances and allows the user to
bound stretch while keeping the number of charts small. We
also show that such spectral analysis simultaneously obtains
a low-stretch parameterization of charts more quickly than
previous methods. We introduce the notion of graph cut to
optimize chart boundaries, and modify the capacity metric to
consider geodesic distance distortion and therefore stretch,
given the relationship discovered between the two metrics.
We propose “special spectral clustering” to create better
charts in cases when geometric parts have periodic (tubu-
lar) structure. Finally, we generalize our approach to signal-
specialized atlas creation. Our atlases are the first whose
chart partitioning, as well as parameterization, is adapted to
a particular signal such as a normal or color map.

2. Related Work

There are many ways to build a texture atlas. A straight-
forward method is to partition the model by hand [KL96].
Early work [MYV93] clusters triangles according to their
normals. Other methods produce charts with convex bound-
aries [EDD∗95, GVSS00, KLS03, LSS∗98, SSGH01], a re-
striction that can significantly increase stretch.

The least squares conformal map (LSCM) [LPRM02] pa-
rameterizes charts with arbitrarily shaped borders. It finds
curves through high curvature zones and then grows charts
to meet at these curves. The Intrinsic Parameterization
[DMA02] is another free-boundary, conformal atlas ap-
proach. Though it preserves angles, conformal parameteri-
zation yields area and distance distortion that is undesirable
in many applications. [SWG∗03] presents a chartification
method based on stretch which forms compact charts that
also cut along high-curvature features. None of these meth-
ods bounds stretch, and all neglect parameterization distor-
tion during chartification.

[SCOGL02] directly considers stretch during chartifica-
tion. But it greedily adds triangles to a growing parameteri-
zation without further adjustment, and so is unable to form
large charts.

Alternatively, an arbitrary surface can be cut into a single
chart instead of an atlas. Geometry Images [GGH03] param-
eterize an entire surface over a single 2D square using cuts
through vertices having extreme stretch. Seamster [SH02] is
another cutting algorithm that reduces distortion by mapping
to a free boundary. Although they can be regarded as stretch-
driven cutting/parameterization algorithms, these methods
do not allow the user to control cut length or stretch.

Many algorithms can parameterize charts over planar

Figure 1: Iso-chart atlas for the Stanford bunny. The model

is partitioned into 15 large charts, which can be flattened

with lower stretch than previous methods (L2 = 1.01, L∞ =

2.26).

regions [BVI91, CS98, DMA02, EDD∗95, Flo97, Flo03]
[HG99, LM98, LPRM02, MYV93, SSGH01]. We refer
the interested reader to the recent survey by [FH04].
Like our method, [ZKK02] also applies IsoMap to mesh
parameterization, but allows only simple (disk-topology)
meshes and often produces triangle flips. Our method
handles an arbitrary mesh, automatically divides it into
multiple charts, guarantees no triangle flips, and extends
to signal-specialized parameterization. We also show that
the IsoMap parameterization is connected to a stretch
minimizing one.

A form of spectral analysis has been used for geometry
compression and smoothing [KG00, Tau95]. These meth-
ods are based on the mesh’s Laplacian which depends only
on its connectivity, rather than geodesic distance. Recently,
[GGS03] applies spectral graph theory to solve the spherical
parameterization problem.

We apply stretch-minimization [SSGH01] to optimize pa-
rameterizations created by spectral analysis. We also use ge-
ometric stretch [SSGH01] or signal stretch [SGSH02] to de-
termine when to terminate chart subdivision.

[KT03] decompose meshes using geodesic distance and
optimize boundaries using graph cut. We apply these ideas
to atlas creation, but also introduce spectral analysis to aid
decomposition and produce geodesic distance preserving pa-
rameterizations. We extend their notion of graph cut “flow
capacity” to respect parameterization distortion, and their
notion of distance to build signal-specialized atlases.

3. Algorithm Overview

Our approach is a top-down, stretch-driven method. Given
a surface and a user-specified stretch value, it performs the
following steps:

1. Compute the surface spectral analysis, providing an ini-
tial parameterization (Section 4.1).

2. Perform a few iterations of stretch optimization
[SSGH01].
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3. If the stretch of this derived parameterization is less than
the threshold, stop.

4. Perform spectral clustering to partition the surface into
charts (Section 4.3).

5. Optimize chart boundaries using the graph cut technique
(Section 4.4).

6. Recursively split charts until the stretch criterion is met.

The result is a set of charts whose parameterizations
have bounded stretch. Chart topology need not be explicitly
checked; the stretch-driven process ensures that all charts are
eventually subdivided into topological disks since otherwise
parameterization stretch is infinite. We do check that the pa-
rameterization domain does not overlap itself and subdivide
in that rare case. As a post-processing step, we merge small
charts together if the parameterization stretch of the merged
chart is less than the user specified stretch value.

Distortion is bounded using two norms on geometric or
signal stretch, proposed in [SSGH01]. The L2 norm inte-
grates (γ2

max +γ2
min)/2 over the surface, followed by an over-

all square root. The L∞ norm maximizes max{γmax,1/γmin}
over the entire surface. Here, γmax and γmin are scalar func-
tions over the surface representing the largest and smallest
singular values of the Jacobian of the affine mapping from
texture space to model/signal space at any point. The in-
clusion of shrink, 1/γmin, in the L∞ norm is a modification
which penalizes undersampling.

Figure 1 shows the chartification and parameterization re-
sults for the Stanford bunny. Notice how meaningful parts of
the model like its head, ears, and body are decomposed into
large charts. The whole computation takes about 1 minute.

4. Chartification and Parameterization

4.1. Surface Spectral Analysis

Our algorithm builds upon the dimensionality reduction
method IsoMap (isometric feature mapping) [TSL00]. Given
a set of high-dimensional points, IsoMap computes the
geodesic distances along a manifold as sequences of hops
between neighboring points. It then applies MDS (multidi-
mensional scaling) to these geodesic distances to find a set
of points embedded in low-dimensional space with similar
pairwise distances.

We refer to this application of IsoMap as surface spectral

analysis and outline its computation. Given a surface with N

vertices,

• Compute the symmetric matrix DN of squared geodesic
distances between surface vertices.

• Apply double centering and normalization to DN to yield
BN =− 1

2 JN DN JN , where JN is a N×N centering matrix

defined by JN = I− 1
N 11T, I is the identity matrix, and 1

is a vector of ones of length N. This is used to constrain
the center of gravity of the set of pairwise distances to lie
at the origin.

• Compute the eigenvalues λi and their corresponding
eigenvectors~vi of BN , (i = 1,2, ...,N).

• For each vertex i of the original surface, its embedding in
the new space is an N-dimensional vector ~yi whose j-th
component is given by~y

j
i =

√

λ j~v
i
j ( j = 1,2, ...,N).

The eigenvalues λi and their corresponding eigenvectors
~vi of BN , (i = 1,2, ...,N) form the spectral decomposition
of the surface shape. Eigenvectors corresponding to large
eigenvalues represent global, low-frequency features on the
surface while eigenvectors corresponding to small eigenval-
ues represent high-frequency details. It is natural to consider
the high-energy, low-frequency components as a basis of
chartification and parameterization.

Although N eigenvalues are needed to fully represent a
surface with N vertices, a small number of them typically
dominate the energy. For the bunny model shown in Figure
1, the top 5 eigenvalues constitute over 85% of the squared
energy; in other words, (∑5

i=1 λi)/(∑N
i=1 λi) > 85%. There-

fore we calculate only the n≪N largest eigenvalues and cor-
responding eigenvectors, leading to a n-dimensional embed-
ding for all vertices. Note that we are trying to find an em-
bedding in a higher dimensional space such that Euclidean
distances in that higher dimensional space match geodesic
distances on the manifold. This generally can not be done in
a 3-dimensional space for arbitrary models.

The distortion of this n-dimensional embedding can be
calculated as the sum of the geodesic distance distortion over
all vertices. For each vertex i, its geodesic distance distortion

(GDD) under the embedding is defined as:

GDD(i) =

√

√

√

√

1
N −1

N

∑
j=1

(

‖~yi − ~y j‖−dgeo(i, j)
)2

(1)

where ~yi is the n-dimensional embedding coordinate of ver-
tex i, and dgeo(i, j) is the geodesic distance between vertex
i and j. This definition can be extended from a vertex to a
triangle by averaging the distortions of its three vertices, and
is used in Section 4.4.

When n = 2, surface spectral analysis yields a surface pa-
rameterization minimizing the sum of squared GDD over
all vertices. This is the key idea of the mapping algorithm
in [ZKK02]. Our observation is that the same technique,
surface spectral analysis, can be simultaneously applied to
two critical problems: decomposition necessary for chartifi-
cation, and parameterization.

To calculate the geodesic distances between surface points
of polygonal models, we use the fast matching method
[KS98], which runs at O(N2 lgN) and obtains more precise
results than the Dijkstra graph search method, since it allows
paths that cut across mesh triangles.
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(a) Uniform + fine-level stretch (b) Uniform + coarse-to-fine stretch
[SSGH01] [SGSH02]

L2 = 1.04, L∞ = 1.68 L2 = 1.03, L∞ = 2.16
PSNR=76.8dB, running time 222s PSNR=76.8dB, running time 39s

(c) LSCM (d) LSCM + fine-level stretch
[LPRM02] [LPRM02] + [SSGH01]

L2 = 1.11, L∞ = 2.27 L2 = 1.09, L∞ = 2.27
PSNR=74.9dB, running time 3s PSNR=75.5dB, running time 26s

(e) IsoMap (f) IsoMap + fine-level stretch
[ZKK02] [ZKK02]+[SSGH01]

L2 = 1.04, L∞ = 2.78 L2 = 1.03, L∞ = 2.32
PSNR=77.0dB, running time 2s PSNR=77.0dB, running time 6s

Figure 2: Comparison between different parameterization

algorithms. PSNRs are measured using a geometry image

that keeps the number of defined (within charts) samples

constant at about 13,500. (d) applies 100 iterations of stretch

minimization to the result of (c); similarly, (f) applies 20

stretch-minimizing iterations to (e).

4.2. Spectral Analysis and Stretch

GDD-minimizing [ZKK02] and stretch-minimizing
[SSGH01] parameterizations both focus on distance dis-
tortion. Still, GDD differs from stretch in several ways.
It is global rather than local, since it considers distance
between vertices that are arbitrarily far on the surface, rather
than local stretch induced by the Jacobian at a point. It is
difference-based rather than ratio-based since it penalizes
differences between the original and parametric distances
rather than how much unit-length tangent vectors are
stretched. And it is discrete rather than continuous since
it only considers distance distortions between vertex pairs
rather than stretch in every triangle and in every direction.

The discrete nature of spectral analysis, which measures
distance distortion only between vertex pairs, gives rise to
the main problem in [ZKK02]: triangle flips. Our algorithm
provides a simple solution. Since triangle flips are defined to
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Figure 3: Stretch vs. number of patches for different param-

eterizations.

cause infinite stretch, and our algorithm always splits charts
whose stretch is above the user’s threshold, any finite thresh-
old guarantees the final atlas will contain no flips.

Spectral analysis requires solution of a low-dimensional
eigenvalue problem rather than general nonlinear optimiza-
tion. We accelerate the computation even further using the
“landmark” extension (see Section 5). Despite differences
between stretch and GDD, we find that spectral analysis re-
duces stretch very effectively.

Figure 2 shows parameterization results for a single chart
model of a face. While LSCM (2c-d) is fast, it is confor-
mal and so limits stretch poorly. IsoMap (2e) quickly pro-
vides a parameterization having little L2 stretch – in fact,
it’s stretch is as good as the slow optimization method of
[SSGH01] (2a). Furthermore, it provides a starting point
which a few L2-stretch-minimizing iterations improves even
further (2f), yielding the best L2 stretch result of all methods,
including ones explicitly designed to minimize stretch. The
PSNR numbers are for a geometry image constructed with
the resulting parameterizations, and confirms the relation-
ship between L2 stretch and geometric accuracy discussed
in [SGSH02]. Since it depends on only a single, worst-case
point in the domain, L∞ stretch is difficult to control for any
method, but especially for a discrete method like IsoMap.
Even there, our result is comparable after applying a few
stretch-minimizing iterations.

Figure 3 compares results on a multi-chart model of a
bunny, focusing on the trade-off between stretch and the
number of charts. We partitioned the bunny into a series of
chart sets, containing from 1 to 6 charts, and shown at the
top of the figure. As in Figure 2, the best L2 stretch result is
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obtained by our methods. We can also see that as the num-
ber of charts increases, it becomes easier to parameterize
these smaller charts with any method. Only “uniform+fine-
level stretch” ([SSGH01]) lags behind, because its initial 2D
parameterization domain is a circle while the other meth-
ods adopt more natural domain shapes. As in Figure 2, L∞

stretch is more haphazard, and a few L2 stretch-minimizing
iterations improves our result significantly.

4.3. Surface Spectral Clustering

If the parameterization induced by spectral analysis fails to
satisfy the user’s stretch threshold, it is partitioned into sev-
eral smaller charts. Recall that global features of a model
such as the head, ears, legs, and tails of animals corre-
spond to the larger eigenvalues, so we use them to partition.
We compute a few representative vertices using the spectral
analysis results and then grow charts simultaneously around
these representatives, a method we call surface spectral clus-

tering. The algorithm is as follows:

1. Rank the eigenvalues λi and corresponding eigenvectors
~vi from surface spectral analysis such that (λ1 ≥ λ2 ≥
·· · ≥ λN ).

2. Get the top n eigenvalues and eigenvectors such that
λn/λn+1 is maximized.

3. For each vertex i of the mesh, compute its n-dimensional
embedding coordinates:~y j

i =
√

λ j~v
i
j ( j = 1,2, ...,n).

4. For each of the n embedding coordinates, find the two
vertices with maximum and minimum coordinate values
and set them as 2n representatives.

5. Remove representatives which are too close together,
yielding m ≤ 2n representatives.

6. Partition the mesh into m parts by growing charts simul-
taneously around the representatives using the geodesic
distance calculated in surface spectral analysis. Each tri-
angle is assigned to the chart which has the closest repre-
sentative to the triangle.

Step 2 amounts to a relative error threshold that finds the
“knee” in the curve relating energy to the number of eigen-
values. The value of n is a measure of shape complexity:
n < 3 implies a fairly flat shape; large n implies a compli-
cated shape with significant detail. Eliminating the remain-
ing N − n eigenvalues ignores high frequency detail and
avoids partitioning into too many charts. Our implementa-
tion also restricts n ≤ 10 (see Section 5), which in turn re-
stricts the maximum number of sub-charts.

Since representatives computed from different dimen-
sions in Step 4 may be close and so redundant, Step 5 re-
moves them. We use a distance threshold of 10 times the av-
erage edge length of the input mesh. In Step 6, the geodesic
distance from a triangle to a representative vertex is com-
puted as the average of the geodesic distances of the trian-
gle’s three vertices to the representative.

(a) (b)

S T

Figure 4: Finding the optimal partition boundary is formu-

lated as a graph cut problem. (a) the shape is decomposed

into three parts, lateral areas A (red), B (blue) and medial

area C (green). (b) constructing a graph for the medial area.

(a) Angular distance only (b) GDD only (c) Combined
L2 = 1.02, L∞ = 2.05 L2 = 1.01, L∞ = 1.87 L2 = 1.01, L∞ = 1.94

Figure 5: Comparing different graph-cut capacities.

The top row in Plate 1 demonstrates spectral clustering re-
sults for several models. Charts correspond nicely to global
features in the model such as the the wings of feline, and the
neck, legs and tail of dinosaur.

4.4. Computing Optimal Partition Boundaries

After splitting charts, we optimize the boundaries between
them. Chart boundaries should satisfy two objectives: 1) they
should cut through areas of high curvature without being too
jaggy, and 2) they should minimize the embedding distor-
tions of the charts they border.

The first objective has been addressed in previous charti-
fication work [SSGH01, LPRM02, SWG∗03], which mini-
mize various measures of chart compactness while choosing
chart cuts of shortest length or along edges having high di-
hedral angle. Recently [KT03] has used graph cut to decom-
pose meshes, an idea we apply to the mesh parameteriza-
tion problem. The second objective relates to our desire for
a stretch-minimizing partition, and has never been addressed
as far as we know.

Our solution is to formulate the optimal boundary prob-
lem as a graph cutting problem. For simplicity, we discuss
the binary case which splits the surface into two. When sub-
dividing into more than two charts, we consider each pair of
neighboring charts in turn.

Figure 4a gives an example. Suppose we seek an optimal
boundary between two charts A and B. The initial partition
is generated by using surface spectral clustering. We then
generate a medial region, C, by expanding an area to ei-
ther side of the initial split boundary. The medial region’s
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size is proportional to the total area of the unsplit patch; we
use 30% for all examples. Now an undirected flow network
graph (Figure 4b) can be constructed from C using an exten-
sion of the method in [KT03]. We modify their definition of
“capacity” between the two adjacent triangles fi and f j as

c( fi, f j) = α cang( fi, f j)+(1−α) cdistort( fi, f j) (2)

The first term in equation (2) corresponds to the first ob-
jective of a nonjaggy cut through edges of high dihedral an-
gle. We adopt the same formula as [KT03]:

cang( fi, f j) =

(

1+
dang( fi, f j)

avg(dang)

)−1

(3)

where dang( fi, f j) is defined as (1−cosαi j), αi j is the angle
between normals of the triangles fi and f j, and avg(dang) is
the average angular distance between adjacent triangles.

The second term in equation (2) measures embedding dis-
tortion, defined as

cdistort( fi, f j) =
ddistort( fi, f j)

avg(ddistort)
(4)

ddistort( fi, f j) = |GDDA( fi)−GDDB( fi)|

+ |GDDA( f j)−GDDB( f j)|

where GDDA( fi) and GDDB( fi) are the GDDs of triangle
fi under the embedding induced by A or B, respectively.
avg(ddistort) is the average ddistort( fi, f j) over all pairs of
adjacent triangles. This definition of cdistort( fi, f j) prefers
boundary edges whose adjacent triangles balance GDD be-
tween embeddings determined by A and B. In other words,
the cut should avoid placing a triangle on the wrong side
where it creates unnecessary distortion.

The weight parameter α trades off the two objectives. α =
1 defines capacity as in [KT03] and achieves good results
for models with sharp features. For shapes whose dihedral
angles vary smoothly in the medial area, it tends toward a
cut of shortest length (see Figure 5a). But this split produces
too much stretch in the right chart, which must be split again
to satisfy the user’s threshold (right side of Figure 5a).

On the other hand, we can set α = 0 to minimize GDD
as Figure 5b illustrates, which avoids chart proliferation but
makes the boundary jaggier. Figure 5c sets α = 0.5. Al-
though the parameterization stretch is a little larger than 5b,
a smoother boundary is desirable for many applications.

4.4.1. Landmark IsoMap for Medial Region Embedding

To compute the above optimal partition boundary, we require
two embeddings over the unsplit chart: one corresponding
to side A and one to side B. These two embeddings define
GDDA and GDDB. Neither sub-chart “core”, A or B, con-
tains the inner vertices of the medial region C. So we can’t
compute the embedding coordinates of C’s vertices using
spectral analysis on A or B alone. Since we don’t yet know

which triangles of C will be joined with A and which with B,
we desire embeddings for each sub-chart that will not be too
distorted by triangles that end up inserted in the other sub-
chart. A recent extension of IsoMap [ST02], called landmark
IsoMap, solves this problem by embedding the medial re-
gion implicitly given only embeddings for each core and the
geodesic distance relationship of C’s to each core’s vertices.

Suppose there are NA vertices in A. After performing sur-
face spectral analysis, we get nA eigenvalues λi and corre-
sponding eigenvectors ~vi. The nA-dimensional embeddings
of all vertices in A form the columns of an nA ×NA matrix
LA:

LA =
[

√

λ1~v1,
√

λ2~v2, · · · ,
√

λnA
~vnA

]T

A vertex p outside A can be located in its nA-dimensional
embedding space by using its known geodesic distances to
the vertices in A as constraints. This same idea identifies
geographic location using a finite number of distance read-
ings in GPS [ST02]. Let ∆p denote the column vector of
squared distances between p and the vertices in A. The nA-
dimensional embedding coordinate~vp can be computed by
the formula:

~vp =
1
2

L
†
A (∆̄−∆p)

where ∆̄ is the column mean of DNA
, and L

†
A is the pseudoin-

verse transpose of LA:

L
†
A =

[

~v1/
√

λ1,~v2/
√

λ2, · · · ,~vnA/
√

λnA

]T

Now we can calculate GDDs for all vertices in C under
the embedding induced by A, and similarly for B.

4.5. Special Spectral Clustering for Tubular Shapes

Given the n dominant eigenvalues, surface spectral cluster-
ing partitions the shape into at most 2n charts. This works
well for complex shapes but can produce too many charts for
simple shapes with n ≤ 3. As shown in Figure 6a, spectral
clustering partitions the bunny ear into 5 charts and the feline
wing into 6 charts. To avoid excessive partitioning, we can
instead subdivide the chart into two, according to the first
of the embedding coordinates. This simple approach often
works, but it is not ideal for tubular/cylindrical protrusions,
a common feature in typical meshes (see Figure 6b).

A better method (Figure 6d) is inspired by recent work in
computer vision [BH03, EK03], which observes that domi-
nant eigenpairs of the distance matrix can be used to detect
and segment data points with cyclic distributions. The fol-
lowing heuristic has proven effective, which regards a shape
as tubular if its eigenvalues λi meet the following conditions:

• (∑3
i=1 λi)/(∑N

i=1 λi) > 0.9, i.e. the top three eigenvalues
represent the shape well.

• λ1/λ2 > 3, means the shape is long enough.

c© The Eurographics Association 2004.



K. Zhou, J. Synder, B. Guo and H.-Y. Shum / Iso-charts

(a) n>2 (b) n=1,λ=λ1 (c) n=1,λ=λ2 (d) n=1,λ=λ3

Figure 6: Partitioning tubular shapes. Column a shows gen-

eral spectral clustering (Section 4.3), while columns b-d

show binary clustering based on the first, second, and third

eigenvalues.

• λ2/λ3 < 2, means the shape is cyclic.
• λ3/λ4 > 3, i.e. the 4-th eigenvalue decreases quickly

enough to be ignored.

As long as a shape is detected as a cylinder/tube, it is par-
titioned into two sub-charts. As noted by [BH03], the second
and third dimensions can be regarded as cyclic axes. Parti-
tioning the shape according to the third principal dimension,
which corresponds to the shorter cyclic axis, produces more
planar patches. Figure 6d shows the results using the third
component, a more natural split than using the first or sec-
ond component in Figure 6bc.

The overall chart subdivision algorithm may be summa-
rized as follows. If the top three eigenvalues contain less
than 90% of the energy, we perform “general” spectral clus-
tering (Section 4.3). Otherwise, if the chart is tubular, we
perform “special” spectral clustering described in this sec-
tion. In all other cases, we perform binary spectral cluster-
ing, using the single embedding coordinate corresponding to
the largest eigenvalue. In our experience, only a single non-
binary chart subdivision is performed (at the first iteration);
thereafter, binary subdivision suffices.

5. Implementation Details

A naive implementation of our stretch-driven chartification
and parameterization algorithm is expensive, especially as
the number of model vertices grows.

To accelerate the computation, we exploit landmark
IsoMap [ST02], which was used in the last section to com-
pute the embedding coordinates for vertices in the medial
region. Landmark IsoMap selects q vertices as landmark
points, where q≪N. Instead of computing the N×N matrix

of squared geodesic distances, DN , an q×N matrix Dq,N is
computed measuring distances from each vertex to the land-
mark points only. Embedding coordinates of the q landmark
points are computed using surface spectral analysis while
the remaining vertices can be computed using the method
described in Section 4.4.1.

To get the landmark points, models are simplified by per-
forming half edge collapse operations based on the quadric
error metric [GH97]. Progressive meshes [Hop96] free us
from having to simplify each chart from scratch. We only
need to perform enough vertex splits recorded in the PM to
obtain enough landmark points within the chart.

For all charts, we use q = 100 landmark points, which
makes the processing fast even on large charts. When the
chart has fewer than 100 vertices, we simply include them
all as landmark points. Though the landmark embedding can
exhibit more stretch than the full analysis, this is likely only
for large chart that have high stretch and will need to be re-
fined anyway. Landmark embedding with q independent of
chart size thus provides a fast but very reasonable heuristic.

Since the the top 10 eigenvalues constitute over 95% of
the squared energy in our test models, another speed-up is to
calculate only the first 10 eigenpairs in surface spectral anal-
ysis. In summary, the geodesic distance computation is re-
duced to O(qN logN) and spectral decomposition to O(q2).

6. Signal-Specialized Atlas Creation

So far, we have used geometric stretch to drive chartification
and parameterization. Our algorithm can also be generalized
to produce a signal-specialized parameterization which rep-
resents a given surface signal using textures as compact as
possible. To achieve this goal, [SGSH02] defines a signal-
stretch metric and develops an iterated multi-grid strategy to
minimize it over manually created charts.

We extend our approach to surface signals by computing
the pairwise signal distances between vertices. Given two
vertices i and j and the geodesic path between them, the sig-
nal distance between them is defined as the sum of signal
differences between pairs of adjacent points along the path.
Applying spectral analysis to a matrix of signal distances
creates a parameterization that preserves them, and therefore
ties our algorithm to signal distortion in the same way as our
previous algorithm was tied to geometric distortion.

Typical signals such as textured colors exhibit much more
variation than the underlying geometry. Unsurprisingly, sur-
face spectral analysis using signal distances produces a
very complex embedding with many dominant eigenval-
ues and leads to excessive partitioning. This same prob-
lem led [SGSH02] to combine geometric and signal stretch;
our solution defines distance with a similar combination of
geodesic and signal distances:

dcomb(i, j) = β
dgeo(i, j)

avg(dgeo)
+(1−β)

dsig(i, j)

avg(dsig)
(5)
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bunny horse dino feline skull dinosaur
# vertices 35k 48k 24k 75k 20k 56k
# faces 69k 97k 48k 150k 40k 112k

# charts 15 19 20 38 6 23
# charts before merge 21 32 36 67 6 39
Packing ratio 0.72 0.69 0.66 0.65 0.71 0.70
L2 stretch 1.01 1.03 1.04 1.07 1.03 1.06
L∞ stretch 2.26 2.78 3.29 5.12 2.87 4.13

chart&param (s) 40 68 20 165 14 87
merging (s) 15 10 26 72 0 32
packing (s) 15 20 10 50 3 43
total (s) 70 98 56 287 17 162

Table 1: Statistics and timings for models presented in the

paper. Times were measured on an Intel Xeon 3.0G machine.

horse feline gargoyle
remeshing dimension 215×309 245×272 296×218
# defined vertices 47,655 45,563 47,151
# unique vertices 45,768 42,690 45,167
geometry PSNR 88.7 82.9 85.6

[SWG∗03]

remeshing dimension 281×228 478×133 466×138
# defined vertices 48,389 48,038 46,724
# unique vertices 41,857 35,956 41,961
geometry PSNR 84.6 79.5 83.8

Table 2: Comparing Iso-charts and MCGIMs of [SWG∗03].

Our PSNR results are approximately 3-4dB higher.

where dsig(i, j) is the signal distance between i and j. We
achieve good results with β = 0.5.

7. Results

Figure 1 and Plate 1 illustrate results on several models.
For all experiments, the stretch threshold was set at L2 =
1.1, L∞ = 5.0. To generate the texture atlases shown in the
bottom row, we use the method proposed by [SWG∗03] to
pack the charts together. Table 1 supplies additional statis-
tics, including running times, for the resulting atlases. The
results demonstrate that our method produces low-stretch at-
lases with a small number of charts. The following sections
demonstrate applications of our method and compare it to
previous work.

Multi-Chart Geometry Images Figure 7 and Table 2 com-
pare our method to [SWG∗03] for the construction of multi-
chart geometry images. Results from [SWG∗03] (middle
column of Figure 7 and bottom 4 rows of Table 2) are outputs
of their software, obtained with their permission. The num-
ber of charts in their method is selected by hand, and was
chosen by the authors to provide a reasonable balance be-
tween stretch and number of charts. Our method better pre-
serves detail and exhibits fewer artifacts. Geometric accu-
racy numbers (PSNR, see [SWG∗03] for a definition) con-
firm our advantage.

Original model MCGIM, PSNR=79.5dB Iso-chart, PSNR=82.9dB
Figure 7: Comparison of geometry remeshing methods. Ge-

ometry images have resolution 256×256.

Following [SWG∗03]’s terminology, defined vertices
count those within charts, and so ignore wasted inter-chart
space. Unique vertices count the number of unique MCGIM
samples and so discount sampling redundancy along chart
boundaries caused by “zippering” neighboring charts to-
gether. By bounding stretch using as few charts as possible,
we create atlases having shorter boundaries yielding more
unique vertices and thus better PSNR (3-4dB).

Signal-Specialized Atlases Our method provides a simple
but effective way to specialize texture atlases to a particular
signal in order to optimize use of limited texture samples.
To show the effectiveness of both parts of our approach –
parameterization and chartification – we applied three differ-
ent atlas generation methods: one based only on geometric
stretch (i.e., ignoring the particular signal), one that param-
eterizes based on signal stretch but still uses charts based on
the geometry, and one that adapts both the charts and their
parameterizations to the signal. Following [SWG∗03], we
measure signal approximation error (SAE) which integrates
over the surface the difference between the original signal
and one reconstructed from the texture map.

In Figure 8 (top), our algorithm reduces SAE for a nor-
mal map from 18.7 to 11.5 by parameterizing based on sig-
nal stretch (8e) rather than geometric stretch (8d). Visual fi-
delity is correspondingly improved. These results are similar
to those reported in [SGSH02], which cut charts manually
without considering their signal contents and is therefore
analogous to our result in 8e (though our method is auto-
matic). When chart partitioning is also adapted to the signal
(8f), a texture atlas with even smaller SAE and better visual
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fidelity is produced. The bottom of the figure shows a similar
result for a color signal.

8. Conclusion

Spectral analysis on the matrix of geodesic distances be-
tween points on a surface provides a fast, simple, and ef-
fective way to simultaneously solve two problems in atlas
generation: partitioning the model into charts, and parame-
terizing those charts. It can also be simply generalized to ac-
count for signal rather than geometric distance, to optimize
the atlas for a particular signal. We have shown that spectral
analysis reduces stretch very well and provides a good start-
ing point for further stretch minimization. Finally, we have
shown how to incorporate these ideas in a stretch-driven at-
las generator that improves results over previous techniques
in geometry remeshing and texture map creation.

In future work, we are interested in generalizing “special”
spectral clustering to other types of shapes and applying our
algorithm to point geometry.
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