Inheritance in the Join Calculus
(extended abstract)

Cédric Fournet!, Cosimo Laneve?, Luc Maranget®, and Didier Rémy?>

! Microsoft Research, 1 Guildhall Street, Cambridge, U.K.
2 Dipartimento di Scienze dell’Informazione, Universita di Bologna, Mura Anteo
Zamboni 7, 40127 Bologna, Italy
3 INRIA Rocquencourt, BP 105, 78153 Le Chesnay Cedex France.

Abstract. We propose an object-oriented calculus with internal con-
currency and class-based inheritance that is built upon the join calculus.
Method calls, locks, and states are handled in a uniform manner, using
asynchronous messages. Classes are partial message definitions that can
be combined and transformed. We design operators for behavioral and
synchronization inheritance. Our model is compatible with the JoCaml
implementation of the join calculus.

1 Introduction

Object-oriented programming has long been praised as favoring abstraction, in-
cremental development, and code reuse. Objects can be created by instantiating
definition patterns called classes, and in turn complex classes can be built from
simpler ones. To make this approach effective, the assembly of classes should rely
on a small set of operators with a clear semantics and should support modular
proof techniques. In a concurrency setting, such promises can be rather hard to
achieve.

The design and implementation of concurrent object-oriented languages, e.g.
[2/221TI4], has recently prompted the investigation of the theoretical foundations
of concurrent objects. Several works provide encodings of objects in process
calculi [2II20/T25] or, conversely, supplement objects with concurrent primi-
tives [I7U3UTI]. These works promote a unified framework for reasoning about
objects and processes, but they do not address the incremental definition of con-
current objects or its typechecking. (When considered, inheritance is treated as
in a sequential language and does not deal with synchronization.)

In this work, we model concurrent objects in a simple process calculus—a
variant of the join calculus [TJ6], we design operators for behavioral and synchro-
nization inheritance, and we give a type system that statically enforces standard
safety properties.

The join calculus is a simple name-passing calculus, related to the pi cal-
culus but with a functional flavor. It is the core of a distributed programming
language, currently implemented as an extension of ML [8/T3]. In the join calcu-
lus, communication channels are statically defined: when channels are created,

An earlier version appears in FST TCS 2000, LNCS 1974, pp. 397-408, December 2000.
(© Springer-Verlag Berlin Heidelberg 2000

2 Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy

their definition provides a set of reaction rules that specify, once for all, how
messages sent on these names will be synchronized and processed. Although the
join calculus does not have a primitive notion of object, definitions encapsulate
the details of synchronization much as concurrent objects.

Applying the well-known objects-as-records paradigm to the join calculus, we
obtain a simple language of objects with asynchronous message passing. Method
calls, locks, and states are handled in a uniform manner, using labeled messages.
There is no primitive notion of functions, calling sequences, or threads (they can
all be encoded using continuation messages). Our language—the objective join
calculus—allows fine-grain internal concurrency, as each object may send and
receive several messages in parallel.

For every object of our language, message synchronization is defined and com-
piled as a whole. This allows an efficient compilation of message delivery into
automata [I4] and simplifies reasoning on objects. However, the static definition
of behavior can be overly restrictive for the programmer. This suggests some
compile-time mechanism for assembling partial definitions. To this end, we pro-
mote partial definitions into classes. Classes can be combined and transformed
to form new classes. They can also be closed to create objects.

The class language is layered on top of the core objective calculus, with a se-
mantics that reduces classes into plain object definitions. We thus retain strong
static properties for all objects at run-time. Some operators are imported from
sequential languages and adapted to a concurrent setting. For instance, multiple
inheritance is expressed as a disjunction of join definitions, but some disjunc-
tions have no counterpart in a sequential language. In addition, we propose a
new operator, called selective refinement. Selective refinement applies to a parent
class and rewrites the parent reaction rules according to their synchronization
patterns. Selective refinement treats synchronization concretely, but it handles
the parent processes abstractly. Our approach is compatible with the JoCaml
implementation of the join calculus [I3], which relies on runtime representa-
tion of synchronization patterns and, on the contrary, compiles processes into
functional closures. The design of our class language follows from common pro-
gramming patterns in the join calculus. We also illustrate this design by coding
some standard problematic examples that mix synchronization and inheritance.

The language is equipped with a polymorphic type system, in the style of [9];
in addition to basic safety properties, the type system also enforces privacy. The
formal presentation of both dynamic and static semantics, the soundness results,
and their proofs are omitted from this extended abstract. They can be found in
the full paper [10].

The paper is organized as follows. In Section [2, we present the objective join
calculus and develop a few examples. In Section [3] we supplement the language
with classes. In Section[d] we provide more involved examples of inheritance and
concurrency. In Section [Bl, we discuss related works and possible extensions.

Inheritance in the Join Calculus (extended abstract) 3

2 The objective join calculus

Getting started. The basic operation of our calculus is asynchronous message
passing. For instance, the process out.print_int(n) sends a message with label
print_int and content m to an object named out, meant to print integers on
the terminal. Accordingly, the definition of an object describes how messages
received on some labels can trigger processes. For instance,

obj continuation = reply(n) > out.print_int(n)

defines an object that reacts to messages on reply by printing their content on
the terminal. Another example is the rendez-vous, or synchronous buffer:

obj sbuffer = get(r) & put(n,s) > r.reply(n) & s.reply()

The object sbuffer has two labels get and put; it reacts to the simultaneous
presence of one message on each of these labels by passing a message to the
continuation 7, with label reply and content n, and passing an empty message
to s. (Object r may be the previously-defined continuation; object s is another
continuation taking no argument on reply.) As regards the syntax, message syn-
chronization and concurrent execution are expressed in a symmetric manner, on
either side of >, using the same infix operator &.

Some labels may convey messages representing the internal state of an ob-
ject, rather than an external method call. This is the case of label Some in the
following unbounded, unordered, asynchronous buffer:

obj abuffer =
put(n,r) > r.reply() & abuffer.Some(n)
or get(r) & Some(n) > r.reply(n)

The object abuffer can react in two different ways: a message (n,r) on put
may be consumed by storing the value n in a self-inflicted message on Some;
alternatively, a message on get and a message on Some may be jointly consumed,
and then the value stored on Some is sent to the continuation received on get.
The indirection through Some makes abuffer behave asynchronously: messages
on put are never blocked, even if no message is ever sent on get.

In the example above, the messages on label Some encode the state of abuffer.
The following definition illustrates a tighter management of state that imple-
ments a one-place buffer:

obj buffer =

put(n,r) & Empty() > r.reply() & buffer.Some(n)
or get(r) & Some(n) > r.reply(n) & buffer. Empty()
init buffer. Empty()

Such a buffer can either be empty or contain one element. The state is encoded
as a message pending on Empty or Some, respectively. Object buffer is created

4 Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy

Fig. 1. Syntax for the core objective join calculus

P .= Processes
0 null process
.M message sending
P& P parallel composition
objz = D init Py in P, object definition
D = Definitions
M P reaction rule
D1 or Do disjunction
M = Patterns
(&) message
My & My synchronization

empty, by sending a first message on Empty in the (optional) init part of the
obj construct. As opposed to abuffer above, a put message is blocked when the
buffer is not empty.

To keep the buffer object consistent, there should be a single message pending
on either Empty or Some. This invariant holds as long as external users cannot
send messages on these labels directly. In the full paper [10], we describe a refined
semantics and a type system that distinguishes private labels such as Empty and
Some from public labels, and restrict access to private labels. In the examples,
private labels conventionally bear an initial capital letter.

Once private labels are hidden, each of the three variants of buffer provides
the same interface to the outside world (two methods labeled get and put) but
their concurrent behaviors are very different.

Syntaz. We use two disjoint countable sets of identifiers for object names z, z, u €
O and labels ¢ € L. Tuples are written z;°€! or simply Z. The grammar of the
objective join calculus (without classes) is given in Figure [I} it has syntactic
categories for processes P, definitions D, and patterns M. We abbreviate obj
x = D init P in P, by omitting init P; when P; is 0.

A reaction rule M > P associates a pattern M with a guarded process P.
Every message pattern ¢(@) in M binds the object names @ with scope P. We
require that every pattern M guarding a reaction rule be linear, that is, labels
and names appear at most once in M. In addition, the object definition obj z =
D init Py in P, binds the name x to D. The scope of x is every guarded process
in D (here x means “self”) and the processes P; and Ps. Free names in processes
and definitions, written fn(-), are defined accordingly. Terms are taken modulo
renaming of bound names (or a-conversion).

The reduction relation on processes is defined using a reflexive chemical ab-
stract machine; it appears in the full paper.

Inheritance in the Join Calculus (extended abstract) 5
3 Inheritance and concurrency

We now extend the calculus of concurrent objects with classes and inheritance.
The behavior of objects in the join calculus is statically defined: once an object
is created, it cannot be extended with new labels or with new reaction rules
synchronizing existing labels. Instead, we provide this flexibility at the level of
classes. Our operators on classes can express various object paradigms, such as
method overriding (with late binding) or method extension. As regards concur-
rency, these operators are also suitable to define synchronization policies in a
modular manner.

Refining synchronization. We introduce the syntax for classes in a series of simple
examples. We begin with a class buffer defining the one-place buffer of Section

class buffer = self(z)
get(r) & Some(n) > r.reply(n) & z.Empty()
or put(n,r) & Empty() > r.reply() & z.Some(n)

As regards the syntax, the prefix self(z) explicitly binds the name z to self. The
class buffer can be used to create objects:

obj b = buffer init b. Empty()

Assume that, for debugging purposes, we want to log the buffer content on the
terminal. We first add an explicit log method:

class logged_buffer = self(z)
buffer
or log() & Some(n) > out.print_int(n) & z.Some(n)
or log() & Empty() > out.print_string(” Empty”) & z.Empty()

The class above is a disjunction of an inherited class and of additional reaction
rules. The intended meaning of disjunction is that reaction rules are cumulated,
yielding competing behaviors for messages on labels that appear in several dis-
juncts. The order of the disjuncts does not matter. The programmer who writes
logged_buffer must have some knowledge of the parent class buffer, namely the
use of private labels Some and Empty for representing the state.

Some other useful debugging information is the synchronous log of all mes-
sages that are consumed on put. This log can be produced by selecting the pat-
terns in which put occurs and adding a printing message to the corresponding
guarded processes:

class logged_buffer_bis =
match buffer with
put(n,r) = put(n,r) > out.print_int(n)
end

6 Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy

The match construct can be understood by analogy with pattern matching a
la ML, applied to the reaction rules of the parent class. In this example, every
reaction rule from the parent buffer whose synchronization pattern contains the
label put is replaced in the derived logged_buffer_bis by a rule with the same
synchronization pattern (since put appears on both sides of =) and with the
original guarded process in parallel with the new printing message (the original
guarded process is left implicit in the match syntax). Every other parent rule is
kept unchanged. Hence, the class above behaves as the definition:

class logged_buffer_bis = self(z)
get(r) & Some(n) > r.reply(n) & z.Empty()
or put(n,r) & Empty() > r.reply() & z.Some(n) & out.print_int(n)

Yet another kind of debugging information is a log of put attempts:

class logged_buffer_ter = self(z)
match buffer with
put(n,r) = Parent_put(n,r) >0
end
or put(n,r) > out.print_int(n) & z.Parent_put(n,r)

In this case, the match construct performs a renaming of put into Parent_put in
every pattern of class buffer, without affecting their guarded processes.

The net effect is similar to parent method overriding, with the new put calling
the parent one and a late-binding semantics. Namely, should there be a message
z.put in a guarded process of the parent class, this message would reach the new
definition of put.

The examples above illustrate that the very idea of class refinement is less
abstract in a concurrent setting than in a sequential one. In the first logged_buffer
example, logging the buffer state requires knowledge of how this state is encoded;
otherwise, some states might be forgotten or logging might lead the buffer into
deadlock. The other two examples expose another subtlety: in a sequential lan-
guage, the distinction between logging put attempts and put successes is irrele-
vant. Thinking in terms of sequential object invocations, one may be unaware of
the concurrent behavior of the object, and thus write logged_buffer_ter instead
of logged_buffer_bis.

Syntax. The language with classes extends the core calculus of Section 2} its
grammar is given in Figure[2l Classes are taken up to the associative-commutative
laws for disjunction. We use two additional sets of identifiers for class names ¢ € C
and for sets of labels L € 2. Such sets L are used to represent abstract classes
that declare the labels in L but do not necessarily define them.

Join patterns J generalize the syntactic category of patterns M given in Fig-
ure [Tl with an or operator that represents alternative synchronization patterns.
Selection patterns K are either join patterns or the empty pattern 0. All patterns
are taken up to equivalence laws: & and or are associative-commutative, & dis-
tributes over or, and 0 is the unit for &. Hence, every pattern K can be written

Inheritance in the Join Calculus (extended abstract) 7

Fig. 2. Syntax for the objective join calculus

P = Processes
0 null process
x.M message sending
P& P parallel composition
objz = Cinit P, in P object definition
classc=C'in P class definition
C = Classes
c class variable
L abstract class
Jo> P reaction rule
Ci or Cy disjunction
self(x) C self binding
match C' with S end selective refinement
S = Refinement clauses
(Ki= K> P)|S refinement sequence
0 empty refinement
J = Join patterns
/(e) message
Ji & Jo synchronization
J1 or Ja alternative
K = Selection patterns
0 empty pattern
J join pattern

as an alternative of patterns or;er M;, and the reaction rule (or;cr M;) > P be-
haves as or;er(M; > P). We always assume that processes meet the following
well-formed conditions:

1. All conjuncts M; in the normal form of K are linear (as defined in Sec-
tion) and bind the same names. By extension, we say that K binds the
names fn(M;) bound in each M;, and write fn(K) for these names.

2. In a refinement clause Ky = K, > P, the pattern K is either M or 0,
the pattern K5 binds at least the names of K7 (fn(K;) C fn(K3)), and K;
is empty whenever Ks is empty (so as to avoid the generation of empty
patterns).

Binders for object names include object definitions (binding the defined ob-
ject) and patterns (binding the received names). In a reaction rule J > P, the
join pattern J binds fn(J) with scope P. In a refinement clause K1 = Ko > P,
the selection pattern K; binds fn(K;) with scope K and P; the modification

8 Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy

pattern Ky binds fn(Ks) \ m(K;) with scope P. Finally, self(z)C binds the
object name z to the receiver (self) with scope C.

Class definitions class ¢ = C'in P are the only binders for class names ¢, with
scope P. Processes, classes, and reaction rules are taken up to a-conversion.

Labels don’t have scopes. Join patterns J declare the labels appearing in
their message. Classes C' declare the labels of their reaction rules. Abstract
classes trivially declare their labels. Finally, selective refinements declare labels
appearing either in the parent class or in a refinement clause.

Class expressions are simplified by means of a reduction semantics, that al-
lows to obtain processes in the core calculus without classes. These reduction
semantics (see the full paper [10]) has been designed to support separate com-
pilation of classes.

4 Inheritance anomaly

As remarked by many authors, the classical point of view on class abstraction—
method names and signatures are known, method bodies are abstract—does
not mix well with concurrency. More specifically, the signature of a parent class
does not usually convey any information on its synchronization behavior. As a
result, it is often awkward, or even impossible, to refine a concurrent behavior
using inheritance. (More conservatively, object-oriented languages with plain
concurrent extensions usually require that the synchronization properties be
invariant through inheritance, e.g., that all method calls be synchronized. This
strongly constrains the use of concurrency.) This well-known problem is often
referred to as the inheritance anomaly. Unfortunately, inheritance anomaly is
not defined formally, but by means of problematic examples.

In [I5] for instance, Matsuoka and Yonezawa identify three patterns of in-
heritance anomaly. For each pattern, they propose a refinement of the class lan-
guage that suffices to express the particular synchronization property at hand:
they identify the parts of the code that control synchronization in the parent
class (which are otherwise hidden in the body of the inherited methods); they
express this “concurrency control” in the interface of the class; and they rely on
the extended interface to refine synchronization in the definition of subclasses.

In principle, it should be possible to fix any particular anomaly by enriching
the class language in an ad hoc manner. However, the overall benefits of this
approach are unclear. Our approach is rather different: we start from a core cal-
culus of concurrency, rather than programming examples, and we are primarily
concerned with the semantics of our inheritance operators. Tackling the three
patterns of inheritance anomaly of [I5], as we do in this section, appears to be
a valuable test of our design.

We consider the same running example as Matsuoka and Yonezawa: a FIFO
buffer with two methods put and get to store and retrieve items. We also adopt
their taxonomy of inheritance anomaly: inheritance induces desirable modifica-
tions of “acceptable states” [of objects], and a solution is a way to express these
modifications.

Inheritance in the Join Calculus (extended abstract) 9

In the following examples, we use a language extended with basic datatypes.
Booleans and integers are equipped with their usual operations. Arrays are cre-
ated by create(n), which gives an uninitialized array of size n. The size of an
array A is given by A.size. Finally, the array A[i] < v is obtained from A by
overwriting its i-th entry with value v.

The FIFO buffer of [I5] can then be written as follows:

class buff = self (z)
put(v,r) & (Empty(A, i, n) or Some(A, i, n)) >
r.reply() & z.Check(A[(i+n) mod A.size] «— v, i, n+1)
or get(r) & (Full(A, i, n) or Some(A4, i, n)) >
r.reply(A[i]) & z.Check(A, (i+1) mod A.size, n—1)
or Check(A,i,n) >
if n = A.size then z.Full(A, i, A.size)
else if n =0 then z.Empty(A4, 0, 0)
else z.Some(A4, i, n)
or Init(size) > z. Empty(create(size), 0, 0)

The state of the buffer is encoded as a message with label Empty, Some, or Full.
The buffer may react to messages on put when non-full, and to messages on get
when non-empty; this is expressed in a concise manner using the or operator
in patterns. Once a request is accepted, the state of the buffer is recomputed
by sending an internal message on Check. Since Check appears alone in a join
pattern, message sending on Check acts like a function call.

Partitioning of acceptable states. The class buff2 supplements buff with a new
method get2 that atomically retrieves two items from the buffer. For simplicity,
we assume size> 2.

Since get2 succeeds when the buffer contains two elements or more, the buffer
state needs to be refined. Furthermore, since for instance a successful get2 may
disable get or enable put, the addition of get2 has an impact on the “acceptable
states” of methods get and put, which are inherited from the parent buff. There-
fore, label Some is not detailed enough and is replaced with two labels One
and Many. One represents a state with exactly one item in the buffer; Many
represents a state with two items or more in the buffer.

class buff2 = self(z)
get2(r) & (Full(A,i,n) or Many(A4, i, n)) >
r.reply(A[i], A[(i+1) mod A.size])
& z.Check(A, (i+2) mod A.size, n—2)
or match buff with
Some(A, i, n) = (One(A, i, n) or Many(A, i, n)) >0
end
or Some(A, i, n) >
if n > 1then z.Many(A, i, n) else z.0ne(A4, i, n)

In the program above, a new method get2 is defined, with its own synchroniza-
tion condition. The new reaction rule is cumulated with those of buff, using a

10 Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy

selective refinement that substitutes “One(...) or Many(...)” for every occur-
rence of “Some(...)” in a join pattern. The refinement eliminates Some from
any inherited pattern, but it does not affect occurrences of Some in inherited
guarded processes: the parent code is handled abstractly, so it cannot be modi-
fied. Instead, the new class provides an adapter rule that consumes any message
on Some and issues a message on either One or Many, depending on the value
of n.

History-dependent acceptable states. The class gget_buff alters buff as follows:
the new method gget returns one item from the buffer (like get), except that
a request on gget can be served only immediately after serving a request on
put. More precisely, a put transition enables gget, while get and gget transitions
disable it. This condition is reflected in the code by introducing two labels A fter-
Put and NotAfterPut. Then, messages on gget are synchronized with messages
on AfterPut.

class gget_buff = self (z)
gget(r) & AfterPut() & (Full(A, i, n) or Some(4, i, n)) >
r.reply(A[i]) & z.NotAfterPut()
& z.Check(A, (i+1) mod A.size, n—1)
or match buff with
Init(size) = Init(size) > z.NotAfterPut()

| put(v, r) =
put(v, r) & (AfterPut() or NotAfterPut()) > z.AfterPut()
| get(r) =
get(r) & (AfterPut() or NotAfterPut()) > z.NotAfterPut()
end

The first clause in the match construct refines initialization, which now also issues
a message on NotAfterPut. The two other clauses refine the existing methods
put and get, which now consume any message on AfterPut or NotAfterPut and
produce a message on AfterPut or NotAfterPut, respectively.

Modification of acceptable states. We first define a general-purpose lock with the
following locker class:

class locker = self (z)
suspend(r) & Free() > r.reply() & z.Locked()
or resume(r) & Locked() > r.reply() & z.Free()

This class can be used to create locks, but it can also be combined with some
other class such as buff to temporarily prevent message processing in buff. To this
end, a simple disjunction of buff and locker is not enough and some refinement
of the parent class buff is required:

class locked_buff = self (z)
locker

Inheritance in the Join Calculus (extended abstract) 11

or match buff with
Init(size) = Init(size) > z.Free()
| 0= Free() > z.Free()
end

The first clause in the match construct supplements the initialization of buff
with an initial Free message for the lock. The second clause matches every other
rule of buff, and requires that the refined clause consume and produce a message
on Free. (The semantics of clause selection follows the textual priority scheme of
ML pattern-matching, where a clause applies to all reaction rules that are not
selected by previous clauses, and where the empty selection pattern acts as a
default case.)

As a consequence of these changes, parent rules are blocked between a call to
suspend and the next call to resume, and parent rules leave the state of the lock
unchanged. In contrast with previous examples, the code above is quite general;
it applies to any class following the same convention as buff for initialization.

5 Related and future works

The addition of classes to the join calculus enables a modular definition of syn-
chronization. Different receivers for the same labels can thus be introduced at
different syntactic positions in a program. In that respect, we partially recover
the ability of the pi calculus to dynamically introduce receivers on channels [16].
However, our layered design confines this modularity to classes, which are re-
solved at compile time. From a programming-language viewpoint, this strikes
a good balance between flexibility and simplicity, and does not preclude type
inference or the efficient compilation of synchronization [14].

Odersky et. al. independently proposed an object-oriented extension of the
join calculus [I8/19]. As in Section [2] they use join patterns to define objects
and synchronization between labeled messages. The main difference lies in the
encapsulation of methods within objects. In our proposal, a definition binds a
single object, with all the labels appearing in the definition, and we rely on
types to hide some of those labels as private. In their proposal, a definition
may bind any number of objects, and each object explicitly collects some of
the declared labels as its methods. As a result, a label that is not collected
remains syntactically private. Besides, their synchronization patterns can express
matching on the values carried in messages (strings, integers, lists, trees, etc.)
rather than matching on just the message labels. For instance, a rule £(h :: t) > P
reacts provided £ carries a non-empty list. Those design decisions may lead to
different implementation strategies. However, they do not deeply affect typing.

Since our type system abstracts from the shape of synchronization patterns in
classes, it is blind to a number of relevant properties of concurrency, such as the
presence of race conditions or deadlock freedom. The design of a sophisticated
analyzer that is sensitive to synchronizations is a promising research direction.

12 Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy

6 Conclusion

We have designed a simple, object-based variant of the join calculus. Every
object is defined as a fixed set of reaction rules that describe its synchronization
behavior. The expressiveness of the language is significantly increased by adding
classes—a form of open definitions that can be incrementally assembled before
object instantiation. In particular, our operators for inheritance can express
transformations on the parent class, according to its synchronization patterns.
We motivated our design choices using standard, problematic examples that
mix inheritance and synchronization. We gave operational semantics for objects
and classes, and a type system that prevents standard errors and also enforces
privacy.

Acknowledgments. This work benefited from fruitful discussions with Sylvain
Conchon, Fabrice Le Fessant, and Francois Pottier.

References

1. G. Agha, P. Wegner, and A. Yonezawa. Research Directions in Concurrent Object-
Oriented Programming. MIT Press, 1993.

2. P. America. Issues in the design of a parallel object-oriented language. Formal
Aspects of Computing, 1(4):366—411, 1989.

3. P. D. Blasio and K. Fisher. A calculus for concurrent objects. In U. Monta-
nari and V. Sassone, editors, Proceedings of the 7th International Conference on
Concurrency Theory (CONCUR ’96), LNCS 1119, pages 406—421, 1996.

4. L. Cardelli. Obliq A language with distributed scope. SRC Research Report 122,
Digital Equipment, June 1994.

5. S. Dal-Zilio. Quiet and bouncing objects: Two migration abstractions in a simple
distributed blue calculus. In H. Hiittel and U. Nestmann, editors, Proceedings of
the Worshop on Semantics of Objects as Proceedings (SOAP ’98), pages 35-42,
June 1998.

6. C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, Ecole Polytechnique, Palaiseau, Nov. 1998.

7. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In Proceedings of POPL ’96, pages 372—-385, Jan. 1996.

8. C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of
mobile agents. In U. Montanari and V. Sassone, editors, Proceedings of the 7th
International Conference on Concurrency Theory (CONCUR ’96), LNCS 1119,
pages 406-421, 1996.

9. C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Implicit typing a la ML for the
join-calculus. In A. Mazurkiewicz and J. Winkowski, editors, Proceedings of the
8th International Conference on Concurrency Theory, LNCS 1243, pages 196212,
1997.

10. C. Fournet, C. Laneve, L. Maranget, and D. Rémy. Inheri-
tance in the join-calculus. Full version. Available electronically at
http://cristal.inria.fr/ remy/work/ojoin/, June 2000.

11. A. D. Gordon and P. D. Hankin. A concurrent object calculus: reduction and typ-
ing. In U. Nestmann and B. C. Pierce, editors, HLCL ’98: High-Level Concurrent
Languages, volume 16(3) of entcs, Nice, France, Sept. 1998.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Inheritance in the Join Calculus (extended abstract) 13

J. Kleist and D. Sangiorgi. Imperative objects and mobile processes. In Proc. IFIP
Working Conference on Programming Concepts and Methods (PROCOMET’98).
North-Holland, 1998.

F. Le Fessant. The JoCAML system prototype. Software and documentation
available from http://pauillac.inria.fr/jocaml, 1998.

F. Le Fessant and L. Maranget. Compiling join-patterns. FElectronic Notes in
Computer Science, 16(2), 1998.

S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented
concurrent programming languages. In G. Agha, P. Wegner, and A. Yonezawa, ed-
itors, Research Directions in Concurrent Object-Oriented Programming, chapter 4,
pages 107-150. The MIT Press, 1993.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I and
II. Information and Computation, 100:1-40 and 41-77, Sept. 1992.

O. Nierstrasz. Towards an object calculus. In O. N. M. Tokoro and P. Weg-
ner, editors, Proceedings of the ECOOP’91 Workshop on Object-Based Concurrent
Computing, LNCS 612, pages 1-20, 1992.

M. Odersky. Functional nets. In Proc. FEuropean Symposium on Programming,
number 1782 in LNCS, pages 1-25. Springer Verlag, Mar. 2000.

M. Odersky. An overview of functional nets. In APPSEM Summer School, Cam-
inha, Portugal, LNCS. Springer Verlag, Sept. 2000. To appear.

D. Sangiorgi. An interpretation of typed objects into typed m-calculus. Information
and Computation, 143(1):34-73, 1998.

D. J. Walker. Objects in the pi-calculus. Information and Computation,
116(2):253-271, 1995.

A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-oriented concurrent program-
ming in ABCL/1. ACM SIGPLAN Notices, 21(11):258-268, Nov. 1986. Proceed-
ings of OOPSLA ’86.

	Inheritance in the Join Calculus (extended abstract)

