An Asynchronous, Distributed
Implementation of Mobile Ambients

Cédric Fournet!, Jean-Jacques Lévy?, and Alan Schmitt?*

! Microsoft Research
2 INRIA Rocquencourt

Abstract We present a first distributed implementation of the Cardelli-
Gordon’s ambient calculus. We use Jocaml as an implementation lan-
guage and we present a formal translation of Ambients into the dis-
tributed join calculus, the process calculus associated with Jocaml. We
prove the correctness of the translation.

1 Introduction

We present a highly concurrent distributed implementation of the Cardelli-
Gordons’s calculus of Mobile Ambients [4] in Jocaml [13,6]. The ambient calculus
is a simple and very esthetic model for distributed mobile computing. However,
until now, it did not have a distributed implementation. Such an implementation
may seem easy to build, especially with a language with distribution and strong
migration (Jocaml), but we encountered several difficulties and design choices.

Ambients are nested. Their dynamics is defined by three atomic steps: an
ambient may move into a sibling ambient (IN), it may move out of its parent
ambient (OUT), or it may open one of its child ambients (OPEN). Each atomic
migration step may involve several ambients, possibly on different sites. For
instance, the source and destination ambients participate to an IN-step; similarly
the source and parent ambients take part to an OUT-step; the target ambient
participates to an OPEN-step. Each atomic step of the ambients calculus can be
decomposed in two parts: checking whether the local structure of the ambient
tree enables the step, and actually performing the migration.

The first part imposes some distributed synchronization. One may use a
global synchronous primitive existing at the operating system or networking
level, but such a solution is unrealistic in large-scale networks. A first range
of solutions can be designed by considering locks and critical sections in order
to serialize the implementation of atomic steps. For instance, the two ambients
participating to a reduction step can be temporarily locked. However this solu-
tion cannot be symmetric, in the same way as there is no symmetric distributed
solution to the Dining Philosophers problem. Some ambients have to be distin-
guished, for instance, one ambient could be the synchronizer of all ambients.
Naturally, the nested structure of ambients can be used, for instance each am-
bient can control the synchronization of its direct subambients. In both cases,

* This work is partly supported by the RNRT project MARVEL 9850347

one has to be careful to avoid deadlocks or too much serialization. This solution
would be similar to Cardelli’s centralized implementation of an earlier variant of
the ambient calculus in Java [1,2]. One advantage of a serialized solution is the
ease of the correctness proof of the implementation. On the negative side, each
attempt to perform a step takes several locks higher up in the ambient hierarchy;
these locks may be located at remote sites, leading to long delays before these
locks are released for other local steps. Moreover, due to the mobility discipline
of the ambient calculus, an ambient that migrates from one point to another
in the ambient hierarchy has to travel through an ambient enclosing both the
origin and the destination, thus inducing global bottlenecks.

A different set of solutions is fully asynchronous. Atomic steps of ambients
are decomposed into several elementary steps, each involving only local syn-
chronization. In this approach, each ambient step is implemented as a run of
a protocol involving several messages. Concurrency is higher, as only the mov-
ing ambient might not be available for other reduction steps. For instance, our
solution never blocks steps involving parents of a moving ambient. The imple-
mentation of migration towards a mobile target may be problematic, but can be
handled independently of the implementation of ambient synchronization, e.g.,
using a forwarding mechanism. In our case, we simply rely on the strong mi-
gration primitive of Jocaml. On the negative side, the correctness proof is more
involved.

In this paper, we present an asynchronous distributed algorithm for imple-
menting ambients, we make it precise as a translation into the join calculus—the
process calculus that is a model of Jocaml [9], and we refine this translation into
a distributed implementation of ambients written in Jocaml. The algorithm pro-
vides an insight into the implementability of ambients. The Jocaml prototype
is a first, lightweight, distributed implementation of ambients. The translation
is proved correct in two stages: first we use barbed coupled simulations for the
correctness of the algorithm, then we use an hybrid barbed bisimulation for the
actual translation into the join calculus. Technically, the first stage is a first
application of coupled-simulations [17] in a reduction-based, asynchronous set-
ting; it relies on the introduction of an auxiliary ambient calculus extended with
transient states; it does not depend of the target language. The second stage is
a challenging application of the decreasing diagram technique [16]. In combina-
tion, these results imply that the translation preserves and reflects a variety of
global observation predicates.

The paper is organized as follows. In section 2, we present the asynchronous
algorithm and we show a formal translation from ambient processes to join
calculus processes. In section 3, we discuss the correctness of the translation in
terms of observations. In section 4, we focus on the operational correspondence
between a process and its translation; to this end, we refine the ambient calculus
to express additional transient states induced by the translation. In section 5, we
state our main technical results and give an idea of their proofs. In section 6, we
describe more practical aspects of the Jocaml implementation. We conclude in
section 7. In an appendix, we recall the operational semantics of the distributed

join calculus and of the calculus of mobile ambients, and we give an overview
of both calculi. The reader who is not familiar with these calculi should refer to
these sections before section 2. Additional discussions, technical details, and all
the proofs appear in the full version of this paper [10].

2 From ambients to the join calculus

We describe the asynchronous algorithm, then we specify it as a translation
from ambients to the join calculus. We begin with a fragment of the ambient
calculus given by the grammar P ::= a[P] ‘ ina.P | out a.P ‘ P|P ‘ 0.
In a second stage, we incorporate OPEN steps and other ambient constructs.

2.1 An asynchronous algorithm

The dynamic tree structure of ambients is represented by a doubly linked tree.
FEach node in the tree implements an ambient: each node bears an ambient name;
each node contains non-ambient processes such as in b.P or out a.c[@)] running
in parallel; each node also hosts an ambient manager that controls the steps
performed in this ambient and in its direct subambients. Different nodes may be
running at different physical sites, so their ambient managers should use only
asynchronous messages to communicate with one another. Since several ambients
may have the same name, each node is also associated with a unique identifier.
(Informally, we still refer to ambients by name, rather than unique identifier.)

Each ambient points to its subambients and to its parent ambient. The down
links are used for controlling subambients, the up link is used for proposing new
actions. The parent of the moving ambient for an IN-step knows the destination
ambient; the parent also knows the destination ambient—its own parent—for an
OuT-step; it controls the opened ambient for an OPEN-step. Hence, the decision
to perform a step will always be taken by the parent of the affected ambient.

Moves of ambient a in and out of ambient b correspond to three succes-
sive steps, depicted below. Single arrows represent current links; double arrows
represent messages in transit.

0 1 2 final
delegate c relocate [& ¢
AN N I X
In a b a b reglster/ b b
/! 7
a a
c c registeT/ c C
N N N SN
delegate/ b /b a b|a b
pd
OuT a a /T'elocate

We detail the dynamics of an IN-step, e.g., ¢[a[in b.Q | | b[0]] — ¢[b] a[Q]]].

0-step: initially, a delegates the migration request IN b to its current parent
(here ¢); to this end, it uses its current up link to send a message to ¢ saying
that a is willing to move into an ambient named b.

1-step: the enclosing ambient ¢ matches a’s request with a’s and b’s down links.
Atomically, a’s request and the down link to a are erased, and a relocation
message is sent to a; this message contains the address of b, so that a will be
able to relocate to b, and also a descriptor of a’s successful action, so that a
can complete this step by triggering its guarded process Q.

2-step: the moving ambient a receives ¢’s relocation message, relocates to b’s
site, and updates its up link to point to b. It also sends a message to b that
eventually registers a as a subambient of b, establishing the new downlink.

The 1-step may preempt other actions delegated by a to its former parent c.
Such actions should now be delegated to its new parent b. For that purpose, a’s
ambient manager keeps a log of the pending actions delegated in 0-steps, and,
as it completes one of these actions in a 2-step, it re-delegates all other actions
towards its new parent. The log cannot be maintained by the parent, because
delegation messages may arrive long after a’s departure. Moreover, in the case an
ambient moves back into a former parent, former delegation messages may still
arrive, and should not be confused with fresh ones. Such stale messages must be
deleted. This is not directly possible in an asynchronous world, but equivalently
each migration results in a modification of the unique identifier of the moving
ambient, each delegation message is tagged with the current identifier, and the
parent discards every message with an old identifier.

An OuT-step of a out of b corresponds to the same series of three steps. The
main different is in step 1, as the enclosing ambient b matches a’s request with
a’s down link and its own name b, and passes its own up link in the relocation
message sent back to a.

2.2 A simple translation

The compositional translation [-], appears in Figure 1. Overall, the tree of
nested ambients is mapped to an isomorphic tree of nested locations. Each am-
bient is mapped to a join calculus location containing the definition D of the
channel names that form the ambient interface, and containing processes that
represent the ambient state. The definition D is composed of three groups of rules
Dy, Dy, and D5 that respectively implement 0, 1, and 2-steps of the algorithm.

To represent the distributed data structure used in the algorithm of sec-
tion 2.1, an ambient is represented by an interface e, which is a record that
contains fields here, amb, sub;,, suboyus, Teloc, in, and out. The here-field is the
name of the location hosting the ambient, whereas the other fields are channel
names used to interact with this ambient. The translation is parameterized by
the interface e of the current enclosing ambient. A down link to a subambient
named b with interface e, and unique identifier (uid) j is represented as a message
amb(j, b, ep). For every ambient, the up link to its parent ambient is represented
by the parent interface e, which is stored in the state message s(a,i,¢e,l). In

[a[P]], = def AM,.(P)in0

[in a.P], = def x()>[P], in e.in(a, k)
[out a.P], = def x()>[P], in e.out(a, k)
PIql = [P, |[al,
[0, = o

where the ambient manager AMq .(P) is defined as:

a
o
8

Do ¥ s(a,i,e,l) | in(b, k) >s(a,i,e,lU{In b k}) | e.subin(i, b, k)

s(a,i,e,l) | out(b, k) >s(a,i,e,l U{Out b k}) | e.subout (i, b, k)
D1 ¥ s(a,i,e) | amb(j,b,ep) | amb(k,c,e.) | subin(k,b, k) >

s(a,i,e,l) | amb(j,b,ep) | ec.reloc(ep, k)
A s(a,i,e,l) | amb(j, b, ep) | subout(4,a, k) >s(a,i,e,l) | ep.reloc(e, k)

Dy ¥ s(a,i,e 1) | reloc(e’, k) >go(e . here); ({a,ep, et | K() | Flush(l,in,out, k))

>H

o

def

D = Do AN D1 A Do
Ioe, e L' Gef uid i in s(a,i,e,0) | e.amb(i,a,ep)

def

AM , o(P) = here [D t Jagepe | [[P]]eh,]

aet | here = here, amb = amb, sub;, = sub;
with the record notation ep, =) ’ o o
Subout = Subout, reloc = reloc,in = in, out = out

Figure 1. Translation from IN/OUT ambient processes to the join calculus

addition, the state message contains the name a and the current uid i of the
ambient, and the log [of IN and OUT actions that have been delegated to the
parent ambient using e.

We resume our study of an IN-action, considering the role of each message
in the translation of ¢[a[in b.Q | | b[0]]. Initially, the translation defines a
continuation x for @) and issues a message in(b, k) in a, which is a subjective
migration request into an ambient named b.

The 0-step consists of delegating the request to the parent ambient. Using the
first rule of a’s Dy, the messages s(a, i, e,l) and in(b, k) are consumed, the request
is recorded in a’s log as an entry In b k, and the request is forwarded to the
enclosing ambient ¢ described by the interface e. The ambient a remains active,
with new state s(a,i,e,lU{In b x}). In parallel, the message e.sub;,(i,b, k) is a
subambient move request sent to ¢, with the explicit identifier ¢ of the requester a.

The 1-step is performed by ¢’s ambient manager. The message sub;y,(i,b, k)
may be consumed using the first rule of D;. The rule also requires that both the
ambient that issued the request and another destination ambient with name b be
actually present. This step removes the down link for the moving ambient—the
message amb(i, a, e,)—, thus blocking other actions competing for the same mes-
sage, whereas the destination ambient remains available for concurrent steps. A

.P], = def x()>[P], in e.open(a, k)
[(n)], = e.send(n)
1. = def x(n)>[P], in e.recv(k)
I. = det x()>[P], | () in ()
[va.P], = def fresha in [P],

with additional rules in the definition of AM g (P):

D} ¥ s(a,i,e,l) | amb(j,b, ep) | open(b, k) > s(a, i, e, 1) | er.opening(k)
de

Dby % s(a,i, e, 1) | opening(r)> f(e) | k() | Flush(l, e.in, e.out, r)

Do ¥ s(a,i,e,l) | reco(k) | send(n) > s(a, i, e, 1) | k(n)

Dr ¥ f(e) | in(b, k) > f(e) | e.in(b,)
A f(e) | out(b,k)> f(e) | e.out(b, k)
A f(e) | open(b,k)> f(e) | e.open(b, k)
A f(e) | amb(j,b,ep)> f(e) | e.amb(j,b, ep)
A f(e) | subin(k,b,k)> f(e) | e.subin(k,b, k)
A f(e) | subout(k, b, k)> f(e) | e.subout(k, b, k)
A f(e) | reco(k)> f(e) | e.recu(k)
A f(e) | send(b)r> f(e) | e.send(b)

def

D “ Dy ADi AD,ADyADyADe ADp

with the extended record notation

aet | here = here, amb = amb, sub;p, = Subin, Subout = suboyt, Open = open,
ep =
reloc = reloc, in = in, out = out, opening = opening, recv = recv, send = send

Figure 2. Additional clauses for the full translation

relocation message e,.reloc(ey, k) is emitted, signalling to the requesting ambi-
ent a that it must migrate to the ambient with interface e, with continuation k.

The 2-step, using a’s rule Do, consumes the message on reloc and the current
state message, performs a join calculus migration to the location of the destina-
tion ambient, then resumes the activities of a with parent interface e;. To this
end, the process I, ¢, ¢, restores an active state: it generates a fresh uid 4/, issues
a local state message s(a, i, ep, (}) representing the up link, and sends to the new
parent a message ep.amb(i’, a,e,) representing the down link. (Since no down
link will ever mention the previous uid i, previous delegation messages tagged
with ¢ will never match a rule of D;. In our implementation, these stale messages
are actually discarded.) In addition, the message x() triggers the continuation.
Finally, the process Flush(lU{In b k}), in, out, k) restarts any preempted actions
appearing in the log. As defined in the appendix, this process emits a message
in(d, k') or out(d, k") for every entry In d x’ or Out d &’ appearing in the log !
and such that x’ # k. These entries correspond to actions preempted by the

migration; they will be delegated to a new parent through other iterations of
0-steps.

Similarly, an OUT-step is performed according to the algorithm by using the
second rule of Dy of the moving ambient, the second rule of D; of the enclosing
ambient, and finally rule Dy of the moving ambient.

2.3 Dealing with other ambient constructs

The translation of Figure 2 generalizes the translation above to the full ambient
calculus. For each additional construct, we add a clause to the compositional
translation [- [,. We also upgrade AM,(-), and use a larger environment e
with extra fields for open, opening, recv, and send.

Values and Scopes. Ambient names are mapped to identical names in the
join calculus. The two calculi rely on similar lexical scope disciplines, with
scope extrusion performed by structural equivalence (rule SCOPE in join,
rules R1 and R2 in ambients). Thus, it suffices to translate the creation of
local ambient names va.P into binders fresh a with the same scope in the
join calculus.

Communication. Ambient communication is implemented by supplementing
every ambient manager with a rule D¢ that binds two channels send and recv
and synchronizes message outputs and message requests. This encoding is
much like the encoding of pi-calculus channels into the join calculus (see [8]).

Replication. Each replicated process !P is coded using a standard recursive
encoding of infinite loops in the join calculus.

Open. Ambient processes may dissolve ambient boundaries using the open
capabilities. In contrast, join calculus names are statically attached to their
defining location, and location boundaries never disappear. We thus lose the
one-to-one mapping from ambients to locations, and distinguish two states
for each location: either the ambient is still running and the message s is
present, or it has been opened and henceforth messages sent to its interface
are forwarded to the enclosing ambient. The indirection is achieved by using
a persistent message sent on f defined in Dp. This leads to complications in
the proofs, as one must prove that these opened locations do not interfere
with the rest of the translation.

3 Correctness of the translation

The distributed synchronization algorithm seems to depart from the operational
semantics of ambients, and the translation of nested ambients yields arbitrarily
large terms with numerous instances of the algorithm running in parallel. This
makes the correctness of the distributed implementation problematic. Techni-
cally, both calculi have a reduction-based semantics, which can be equipped with
standard notions of observation. This provides a precise setting for establishing
correctness on the translation, rather than on an abstraction of the algorithm.

(Of course, there are still minor discrepancies between the translation and the
actual code in Jocaml; see section 6.)

We first define a syntactic notion of observation. For each calculus, we use a
family of predicates on processes P indexed by names b, written P |;.

— In the ambient calculus, P |, when b is free in P and P = vv.(b[Q] | R).
— In the join calculus, P |, when b is free in P and P = o[D’ : b(v) | P'| A D.

Next, we express the correctness of the translation in terms of the following
predicates, for both ambient and join processes:

— A process P has a weak barb on b (written P |;) when P —* P’ |.
— A process P diverges (written P 1)) when P has an infinite series of steps.

— A process P has a fair-must barb on b (written OP |;) when for all P’ such
that P —* P’ we have P’ |;.

In combination, these predicates give a precise content to the informal notion
of correctness: “the translation should neither suppress existing behaviors, nor
introduce additional behaviors.” The minimal notion of correctness for an im-
plementation is the reflection of weak barbs, which rules out spurious behaviors;
the converse direction states that the implementation does not discard potential
behaviors; for instance, it rules out new deadlocks, or even an empty transla-
tion. The preservation of convergence is of pragmatic importance. In addition,
correctness for fair-must tests relates infinite computations [7], and rules out
implementations with restrictive scheduling policies.

Since top-level ambients are not translated into messages on free names, the
observation of translated ambients requires some special care. To this end, we
supplement the translation at top-level with a definition D, that reveals the
presence of a particular barb |, in the source process. Using D and e;, as defined
in figure 2, and for a given interface e, we define the top-level translation

[P]° = here[D A Dy Auidi: s(a,i,e,0) | t(b) | [P],,]
Dy = s(a,i,e,l) | amb(j,b,ep) | 4(b)>s(a, i, e,1) | amb(j, b, ey) | yes()

Without loss of generality, we always assume that the names in a, i, t, e, yes
do not clash with any name free in P, and that the location and channel names
introduced by the translation do not clash with any name of P.

We are now ready to state that all the derived observations discussed above
are preserved and reflected by the translation:

Theorem 1. For every ambient process P and name b, we have P |y if and only
if [P]° Wyes; P14 if and only if [P]* #t; and OP Uy if and only if O[P]" Yyes.

While correctness is naturally expressed in terms of observations along the
reduction traces of processes, its proof is challenging. In particular, a direct
approach clearly leads to intractable inductions on both the syntax of the source
process and on the series of reductions.

4 A calculus of Ambients extended with transient states

In order to prove theorem 1, we introduce an intermediate calculus of ambi-
ents with constructs that materialize the key transient states of the algorithm of
section 2.1, and we equip this calculus with a reduction semantics in direct cor-
respondence with the algorithm. For instance, atomic IN steps are decomposed
into series of 1- and 2-steps. (However, O-steps are not represented, inasmuch
as requests are always eventually delegated to the current parent.) In the next
section, we rely on the extended calculus to establish correctness as the composi-
tion of two equivalences. First, we use coupled simulations [17] to relate the two
semantics for ambients; then, we use bisimulations to relate ambients equipped
with the extended semantics to their join calculus translations.

The grammar for the extended calculus appears in Figure 3. It has new
processes representing ambients that are committed to move or to be opened,
as the result of their father’s 1-step—we call such transient ambients stubs—and
also new processes marking the future position of migrating ambients—we call
such precursors scions. Pairs of stubs and scions are syntactically connected by
a marker 7. The extended operational semantics appears in Figure 4. It is a
reduction-based semantics with auxiliary labels for stubs and scions. Each of the
reduction steps IN, OUT, and OPEN is decomposed in two steps. Initial steps —1
introduce stubs and scions; completion steps —o consume them. The reduction
rules for RECV and REPL are those of the original semantics, except that we write
—¢ instead of —. Overall, we obtain a reduction system for extended ambient
processes with steps —12¢ S —1 U —9 U —¢. For the sake of comparison, we
also extend the original reduction semantics and the observation predicates from
ambients to extended ambients.

Initially, stubs and scions are neighbors, but they may drift apart as the result
of other steps before performing the matching completion step, so an auxiliary
labeled transition system is used to match stubs and scions. The completion of
a deferred migration is thus rendered as a global communication step between
processes residing in two different ambient contexts, and syntactically linked by
the name ¢. This may seem difficult to implement, but actually scions have no
operational contents; they represent the passive target for a strong migration.
To illustrate the extended calculus, we give below the reductions for a process
with a critical pair. Processes P; are regular ambient processes; processes (J; are
transient processes reflecting intermediate states of our algorithm.

P opena | af b[out a]]

OPE}*I Our 1
Q1 %~ o-af b[out a]] Q2 “ opena | vi.(a[7b[]] | i)
Our 1 def %
OPEN 2 Q = yi,(ofa[f*b[]] | Z) MOoVE 2
def OPEN 2 def
Py = blout a] MOVE 2 P, =openalal] | b[]

def %

P3:b[] OPEN 2

P = extended ambient process
all the constructors of Figure 5

| Xn[P] stub
| @ scion
| vi.P marker restriction
X = state extension
{P}- the stub is committed to move to 4
| ofP}- the stub is being opened

Well-formed conditions: stubs and scions may occur only in extended evaluation con-
texts; restricted markers ¢ must be used linearly (exactly one stub and one scion). In
the following, we write X~ n[P] for either Xn[P] or n[P].

Figure 3. Syntax for an ambient calculus extended with transient states

Extended evaluation contexts E(-) are defined by the grammar
E():= - | PIE() | EC)|P | X"n[E()] | wnE() | vi.E()

Structural equivalence = is the smallest equivalence relation on processes that is closed
by application of extended evaluation contexts and by a-conversion, and that satisfies
the axioms PO, P1, P2, C0, C1, R1, R2 of figure 6 and:

m #n mis not free in X
Xn[ym.P] = vm.Xn[P]

R2X

Labeled transitions — are the smallest families of relations closed by application of
restriction-free extended evaluation contexts and such that

stus #{Q}-n[R] "o Scion i ~5 P

Original reduction steps — are defined as in Figure 6 with extended evaluation contexts.
Initial steps —1, Completion steps —2, and Other steps —¢ are the smallest relations
closed by structural equivalence, by application of extended evaluation contexts, and
such that:

m[P] | n[in m.Q | R] X=m[P | nfout m.Q | R]]

N vimli | P @y nlR) O o vii | X=m[P | Q) nlR]
Sp QLS
MOVE2 P TQ) = P Q
OPEN 1 open n.Q | n[R] —1 o{Q}n[R] OPEN 2 ofQ}n[R] —2Q | R
ReEcv (n)| (z).P —c P{"/} REPL P —¢ P |IP

Figure 4. Semantics for an ambient calculus extended with transient states

5 Coupled simulations and operational correspondence

We continue our study of correctness in terms of equivalences based upon weak
barbs. These equivalences are essential to obtain a modular proof. As a side
benefit, they also provide a finer account of correctness. (See [7] for a discussion
of equivalences and encodings in process calculi.) Instead of equivalences, we ac-
tually often use relations ranging over different domains, equipped with different
notions of reduction steps —,, —4 and families of observations |, and .

Definition 1 (Barbed bisimulations). A relation R € P, X Py is a weak
barbed simulation when, for all P R Q, we have (1) if P —* P’, then there
exists Q' such that Q —; Q' and P' R Q'; (2) for all x, if P {4 5, then Q Jp o
R is a barbed bisimulation when R and its converse R~ are barbed simulations.

Bisimulations come with effective proof techniques that consider only a few
steps at a time, rather than whole execution traces. Unfortunately, barbed bisim-
ilarity ~—the largest barbed bisimulation closed by application of evaluation
contexts—is too discriminating for our protocol. Transient processes such as Q1
in the example above account for a partially-committed internal choice: Q1 may
reduce to P; and Ps, but not to P». In some contexts, they are not bisimilar
to any derivative of P in the original ambient semantics. To address this issue
of gradual commitment, Parrow and Sjodin proposed coarser relations called
coupled simulations [17,15]. We liberally adapt their definition to ambients:

Definition 2 (Coupled simulations). The relations < € P, x Pp and € €
Py X P, form a pair of barbed coupled simulations when < and € are barbed
simulations that meet the coupling conditions: (1) if P < @Q, then Q —;< P; (2)
if Q< P, then P —!< Q.

The discrepancy between < and > is most useful for handling transient states
such as 1. The coupling conditions guarantee that every transient state can be
mapped both to a less advanced state and to a more advanced one. In our case,
we would have 1 € P and P; < Qq fori=1,3.

Correctness of the asynchronous algorithm. The first stage of our correctness ar-
gument is expressed as coupled simulations between ambient processes equipped
with the original and the extended semantics. In the statement below, related
processes have the same syntax, but live in different calculi, equipped with dif-
ferent reduction semantics.

Theorem 2. Let < be the union of < N> for all barbed coupled simulations
between ambient and extended ambient processes that are closed by application
of evaluation contexts. For all ambient processes P, we have P < P.

The proof appears in [10]; it makes apparent some subtleties of our algorithm due
to additional concurrency. After a first series of results on partial commutation
properties for extended steps, the key lemmas establish that, for any ambient
process P and extended ambient process @, if P —],- @, then (1) for some
ambient process P’ we have Q —7,- P’ and (2) for any such process P’, we also
have P —* P’ in the original semantics.

Operational correspondence. The second stage of the proof relates ambients
equipped with the extended semantics to their join calculus translations. It is
simpler than the first one, in principle, but its proof is complicated because the
translation makes explicit many details of the implementation that are inessen-
tial to the algorithm.

In order to express the correspondence of observations across the translation,
we supplement the top-level translation [-]]b of theorem 1 with an external choice
of the ambient barb to be tested. With the same notations, we write [-]* for
the translation that maps every process P to the process [D A D; A uid i :
s(a,i e, 0) | p(t) | [P],,]- As before, we assume that names in a, i, e, p, ¢, and
yes do not clash with names free in P. At any point, we can use the evaluation
context Ty(-) = hp[p(t)>t(b) : 0] A (-) to test a translated ambient barb on b by
testing the plain join calculus barb Ty (+) Jyes. We have [P]” ~ Ty([P]") in the
join calculus.

Theorem 3 (Correctness of the translation). Let ~% be the largest bisim-
ulation between extended ambient processes with reductions —12¢c and join pro-
cesses such that Q ~% R implies Q by iff To(R) Yyes. For all ambient pro-
cesses P, we have P =% [P]".

In the long version of the paper [10], a more precise strong bisimulation up to
bookkeeping result is proved for the translations of all reachable extended ambient
processes. Since every significant transient state induced by the translation has
been lifted to the extended ambient calculus, its proof essentially amounts to
an operational correspondence between the two calculi. We partition reductions
in the join calculus according to the static rule of the translation being used.
For instance, we let —; steps in the join calculus be the steps using a rule
of a definition Dy A D} of figure 2; these steps create a reloc or an opening
message, and are in operational correspondence with source —; steps. We obtain
two main classes of join calculus steps: steps —12¢ that can be traced back to
extended ambient steps, and “bookkeeping” steps — g, which are auxiliary steps
used to trigger continuations, migrate, manage the logs, or unfold new ambient
managers.

The main lemmas describe dynamic simplifications of derivatives of the trans-
lation, which are required to obtain translations of derivatives in the extended
source calculus. These lemmas are expressed as elementary commutation dia-
grams between simplification relations and families of reduction steps. For in-
stance, one lemma states that “stale messages” can be discarded; another, more
complex lemma states that locations and ambient managers representing opened
ambients can be eliminated, effectively merging the contents of opened ambients
with the contents of their previously-enclosing ambient. To conclude, we ex-
hibit a bisimulation relation between extended ambients equipped with steps
—12¢ and global translations of these extended ambients equipped with steps
—5—12c—5- The proof is structured using the decreasing diagram technique
of [16], whose conditions guarantee that every weak simulation diagram in the
final proof can be obtained by gluing previously-established diagrams.

6 Distributed implementation

In this section, we briefly describe the actual implementation in Jocaml. The
initialization and the dynamics of distribution for ambient processes among sev-
eral Jocaml runtimes lead to some design choice, discussed in the long version
of the paper [10]. We also refer to [11] for the source code, setup instructions,
and programming examples.

Our implementation closely follows the translation given in figures 1 and 2.
Since Jocaml already provides support for mobility, local synchronization, and
run-time distribution, our code is very compact—Iless than 400 lines for the
interpreter, less than 40k in bytecode for the object files. The main differences
between the formal translation and the code are given below:

— Messages in the implementation may pass names, but also arbitrary chains of
capabilities [4], as for instance in the ambient process (in a.out b) |!(z).z.(x).

— Instead of a global translation, the implementation is an interpreter. Hence,
the implementation translates guarded processes on the fly and maintains
an environment for local variables. The interpreter also performs dynamic
type checking whenever a value is used either as a name or as a capability.

— The translation relies on non-linear join-patterns, which are not available in
Jocaml. More explicitly, the implementation caches some messages before
they are processed: when a message arrives on sub;,, suboyt, amb, or open,
either it is immediately used in combination with the message cache, or it is
added to the cache.

— The formal translation of replication always yields a diverging computation
(as in the source ambient process). More reasonably, the interpreter unfolds
replication on demand: since every ambient reduction involves at most two
copies of a replicated process, it suffices to initially unfold two copies, then to
unfold an additional copy whenever a fresh copy is used or modified. Hence,
the process !a[] does not diverge, while !a[in a] still does.

7 Conclusions

We translated Mobile Ambients into the join calculus, and gave a first, asyn-
chronous, distributed implementation of the ambient calculus in Jocaml, with a
high level of concurrency. The synchronization mechanisms of Ambients turned
out to be challenging first to implement, then to prove correct. This provides an
insight into the ambient calculus as a model of concurrency. At the same time,
this shows how Jocaml and its formal model can be used to tackle distributed
and mobile implementations. For instance, the translation takes full advantage
of join patterns to describe complex local synchronization steps, while a more
traditional language would decompose these steps into explicit series of reads
and updates protected by locks.

In order to get a safer and more efficient implementation, one should care
about typing information for passed values and mobility capabilities [5,3]. Our
implementation insures dynamic type-checking on values, whereas it would be

preferable to use the static type-checking discipline of Jocaml. Similarly, static
knowledge of the actions that never appear in a given ambient can lead to more
efficient, specialized ambient managers.

Finally, little is known about actual programming with Ambients, or the rel-
evant abstractions to build a high-level language on top of the ambient calculus.
While we did not consider changing the source language, we believe that our
implementation provides an adequate platform for experimenting with ambient-
based language design. For instance, our translation would easily accommodate
the co-capabilities proposed in [14].

Acknowledgments. This work benefited from discussions with Luca Cardelli,
Fabrice Le Fessant, and Luc Maranget.

References

1. L. Cardelli. Ambit, 1997. Available from http://www.luca.demon.co.uk/Ambit
/Ambit.html.

2. L. Cardelli. Mobile ambient synchronization. Technical note 1997-013, Digital
Systems Research Center, July 1997.

3. L. Cardelli, G. Ghelli, and A. D. Gordon. Mobility types for mobile ambients. In
ICALP’99, volume 1644 of LNCS, pages 230-239, 1999.

4. L. Cardelli and A. Gordon. Mobile ambients. In FoSSaCS’98, volume 1378 of
LNCS, pages 140-155, 1998.

5. L. Cardelli and A. D. Gordon. Types for mobile ambients. In POPL’99, pages
79-92. ACM, Jan. 1999.

6. S. Conchon and F. Le Fessant. Jocaml: Mobile agents for objective-caml. In
ASA/MA’99, pages 22-29. IEEE Computer Society, Oct. 1999.

7. C. Fournet. The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, Ecole Polytechnique, Palaiseau, Nov. 1998. INRIA, TU-0556.

8. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In POPL’96, pages 372-385. ACM, Jan. 1996.

9. C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of
mobile agents. In CONCUR’96, volume 1119 of LNCS, pages 406—421, Aug. 1996.

10. C. Fournet, J.-J. Lévy, and A. Schmitt. A distributed implementation of Ambients.
Long version of this paper, available from http://join.inria.fr/ambients.html, 1999.

11. C. Fournet and A. Schmitt. An implementation of Ambients in JOCAML. Software
available from http://join.inria.fr /ambients.html, 1999.

12. A. D. Gordon and L. Cardelli. Equational properties of mobile ambients. In
Fo0S55aCS’99, volume 1578 of LNCS, pages 212226, 1999.

13. F. Le Fessant. The JoCAML system prototype. Software and documentation
available from http://pauillac.inria.fr/jocaml, 1998.

14. F. Levi and D. Sangiorgi. Controlling interference in ambients. In POPL’00, pages
352-364. ACM, Jan. 2000.

15. U. Nestmann and B. C. Pierce. Decoding choice encodings. In CONCUR’96,
volume 1119 of LNCS, pages 179-194, Aug. 1996. Revised full version as report
ERCIM-10/97-R051, 1997.

16. V. Oostrom. Confluence by decreasing diagrams. Theoretical Computer Science,
126:259-280, 1994.

17. J. Parrow and P. Sjodin. Multiway synchronization verified with coupled simula-
tion. In CONCUR’92, volume 630 of LNCS, pages 518-533, 1992.

Appendix: Two notions of mobile computations

We define our syntax and semantics for the calculus of Mobile Ambients and for
the distributed join calculus. We refer to the long version of the paper [10] for
an overview of the two calculi.

Operational semantics for ambients Our syntax and semantics of the calculus of
ambients are given in figures 5 and 6.

This presentation slightly differs from Cardelli and Gordon’s [4] on several
counts. In spirit, it is actually closer to the harness semantics of [12]. Our struc-
tural equivalence is more restrictive; it does not introduce or remove v binders;
it operates only in evaluation contexts. Our operational semantics represents the
unfolding of replication as a silent reduction step rather than a structural law.
Also, communicated values are just ambient names, rather than both names and
chains of capabilities. (Chains of capabilities are fully supported in the Jocaml
implementation, but their encoding is heavy.)

Operational semantics for the join calculus Our syntax and semantics for the
join calculus are given in figures 7 and 8.

A path « is a string of location names a, b, Active locations are locations
not under a def; they can be nested. The path of an active sublocation a[D : P]is
«.a, where « is the path of its enclosing location. A configuration is a conjunction
of top-level locations such that every location has a unique name, such that the
set of paths for all active locations is prefix-closed except for the empty prefix
(i.e. active locations form a tree whose nodes are indexed by location names),
and such that every channel is defined in at most one location. In a configuration,
a location with path a.a is folded when it is the only top-level location whose
path contains a.

Names can be bound either as parameters y in a message pattern z(y) or
as names defined in D by def D in P. The definition a[D’ : P] defines a and
names defined in D’. A definition containing a rule with message pattern x(y)
also defines .

To simplify the translation of section 2, we supplement the join calculus with
some convenient extensions, which are easily encoded in the plain join calculus.
We supplement definitions with new constructs uid ¢ and fresh a that bind
names i and a, which we use to generate unique identifiers—we could use instead
dummy rules such as i() >0. We use a record notations e = {l; = z1;...l, = z,}
as a shortcut for a tuple of names x1,...,x, passed in a consistent order, and
write e.l; for x;. We use an algebraic notation In b k, Out b & for log entries with
tags IN, OUT and names b, k. We use finite sets of log entries, interpreted in the
standard mathematical sense. Rather than making explicit a standard encoding
of set iterators for implementing the process Flush(l,in, out, k), we supplement
the operational semantics of the join calculus with a rule for flushing logs of
messages:

FrLusH Flush(l,in,out, k) — H in(d, k") | H out(d, k")
Indwet|r#tn Out d x’ €l | k#w/!

P = ambient process

n[P] ambient
| P|P parallel composition
| C.P guarded process
| vn.P name restriction
| (n) asynchronous message
| (z).P message reception
| P replication
| 0 inert process
C = capability
inn ingoing migration
| outn outgoing migration
| openn ambient dissolution

Figure 5. Syntax for the ambient calculus

Evaluation contexts E(-) are defined by the grammar
B()s=- | PIEG) | BOIP | alBO)] | wnB()

Structural equivalence = is the smallest equivalence relation closed by application of
evaluation contexts, by a-conversion, and such that

n is not free in P

PO P|O=P R1 °
Pl P|P =P |P Plvn.Q=vn(P|Q)
P2 (P|P)|P"=P|(P'|P") Ro m#n

m[vn.P] = vn.m[P]

Ambient reduction — is the smallest relation closed by structural equivalence, by ap-
plication of evaluation contexts, and such that

m[P] | n[inm.Q | R]
— m[P|n[Q|R]]

m[P | nlout m.Q | R]]

OUT [P] | Q| R]

IN

OPEN openn.Q | n[R] - Q| R
Recv (n) | (z).P — P{"/z} RepL !P — P |!P

Figure 6. Operational semantics for the ambient calculus

P .= join calculus process

0 inert process
| P|P parallel composition
| z(y) asynchronous message
| go(a); P migration request
| def DinP local definition
D = join calculus definition
T void definition
| DAD' composition
| J>P reaction rule
| a[D: P sub-location (named a, running D and P)
| «[D: P top-level location (with path a, running D and P)
J = join pattern
a:@) message pattern
| J|J synchronization

Figure 7. Syntax for the distributed join calculus

Structural equivalence = (on both processes and definitions) is the smallest equivalence
relation closed by application of contexts - A -, - | - and «f - : -], by a-conversion on
bound names, and such that:

PO P|O=P DO DAT=D
PL P|P =P |P DI DAD' =D'AD
P2 (P|P)|P'=P|(P'|P") D2 (DAD)YAD"=DA(D AD")
T a[a[D' :P|AD: P] Sco names defined in D’ are fresh
REE PE
= a.a[D': P'| Aa[D : P] a[D: P|def D' in P’

=a[DAD' :P|P]

Join calculus reduction — is the smallest relation on configurations that is closed by
structural equivalence and such that:

2 is defined in D’ o operates on message contents of J
ComMm — — JoIN
alD:z(®) | P)AB[D" : P|NE a[DANJ>Q:Jo | PINE
—a[D: P]ABD :z(®) | P|ANE —a[DAJ>Q:Qo | PINE
a folded
Go

a.a[lD: P|go(b);QABYD : PIANE
— B.b.alD:P|QIABYD : P|ANE

Figure 8. Operational semantics for the distributed join calculus

