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Abstract– Wepresent a new cluster scheduler,Graphene,
aimed at jobs that have a complex dependency structure
and heterogeneous resource demands. Relaxing either of
these challenges, i.e., scheduling a DAG of homogeneous
tasks or an independent set of heterogeneous tasks, leads
to NP-hard problems. Reasonable heuristics exist for
these simpler problems, but they perform poorly when
scheduling heterogeneous DAGs. Our key insights are:
(1) focus on the long-running tasks and those with tough-
to-pack resource demands, (2) compute a DAG sched-
ule, oøine, by ûrst scheduling such troublesome tasks
and then scheduling the remaining tasks without violat-
ing dependencies. _ese oøine schedules are distilled to
a simple precedence order and are enforced by an online
component that scales to many jobs. _e online compo-
nent also uses heuristics to compactly pack tasks and to
trade-oò fairness for faster job completion. Evaluation on
a 200-server cluster and using traces of productionDAGs
at Microso�, shows that Graphene improves median job
completion time by 25% and cluster throughput by 30%.

1 Introduction
Heterogeneous DAGs are increasingly common in data-
parallel clusters. We useDAG to refer to a directed acyclic
graph where each vertex represents a task and edges en-
code input-output dependencies. Programming models
such as Dryad, SparkSQL and Tez compile user scripts
into job DAGs [2, 19, 24, 43, 57, 67]. Our study of a large
production cluster inMicroso� shows that jobs have large
and complex DAGs; the median DAG has a depth of ûve
and thousands of tasks. Furthermore, there is a substan-
tial variation in task durations (sub-second to hundreds
of seconds) and the resource usage of tasks (e.g., compute,
memory, network and disk bandwidth). In this paper, we
consider the problem of scheduling such heterogeneous
DAGs eõciently.

Given job DAGs and a cluster of machines, a cluster
scheduler matches tasks to machines online. _is match-
ing has tight timing requirements due to the scale ofmod-
ern clusters. Consequently, schedulers use simple heuris-
tics. _e heuristics leave gains on the table because they
ignore crucial aspects of the problem. For example, crit-

ical path-based schedulers [36] only consider the critical
path as determined by predicted task runtime and sched-
ule tasks in the order of their critical path length. When
DAGs have many parallel chains, running tasks that use
diòerent resources together can lead to a better schedule
because it allows more tasks to run at the same time. As
another example, multi-resource packers [37] aim to run
the maximal number of pending tasks that ût within the
available resources. WhenDAGs are deep, locally optimal
choices do not always result in the fastest completion time
of the whole DAG. Hence, intuitively, considering both
variation in resource demands and dependencies may re-
sult in better schedules for heterogeneous DAGs.
By comparing the completion times of jobs in the pro-

duction cluster with those achieved by an oracle, we esti-
mate that themedian job can be sped up by up to 50%. We
observe that individual DAGs have fewer tasks running
relative to the optimal schedule at some point in their life-
time. _e cluster has lower overall utilization because (a)
resources are idle even when tasks are pending due to de-
pendencies or resource fragmentation, and (b) fewer jobs
are released because users wait for the output of previous
jobs. Given the large investment in such clusters, even a
modest increase in utilization and job latency can have
business impact [1, 10, 61].
We note that the optimal schedule for heterogeneous

DAGs is intractable [54, 55]. Prior algorithmic work exists
especially on simpler versions of the problem [18, 20, 21,
35, 50, 60, 65]. However, we are yet to ûnd one that holds
in the practical setting of a data-parallel cluster. Speciû-
cally, the solution has to work online, scale to large and
complex DAGs as well as many concurrent jobs, cope
with machine-level fragmentation as opposed to imagin-
ing one cluster-wide resource pool, and handle multiple
objectives such as fairness, latency and throughput.

In this paper, we describe a cluster schedulerGraphene
that eõciently schedules heterogeneous DAGs. To iden-
tify a good schedule for one DAG, we observe that
the pathologically bad schedules in today’s approaches
mostly arise due to two reasons: (a) long-running tasks
have no other work to overlap with them, which reduces
parallelism, and (b) the tasks that are runnable do not



pack well with each other, which increases resource frag-
mentation. Our approach is to identify the potentially
troublesome tasks, such as those that run for a very long
time or are hard to pack, and place them ûrst onto a vir-
tual resource-time space. _is space would have d + 1 di-
mensions when tasks require d resources; the last dimen-
sion being time. Our intuition is that placing the trou-
blesome tasks ûrst leads to a good schedule since the re-
maining tasks can be placed into resultant holes in this
space.
At job submission time, Graphene builds a preferred

schedule for a job as shown in Figure 1. A�er identifying
a subset of troublesome tasks, the remaining tasks are di-
vided into the parent, child and sibling subsets. Graphene
ûrst places the troublesome tasks onto a virtual resource-
time space and then places the remaining subsets. Realiz-
ing this idea has a few challenges. Which choice of trou-
blesome tasks leads to the best schedule? Further, since
troublesome tasks are placed ûrst, when a task is consid-
ered for placement some of its parent tasks and some of
its children tasks may already have been placed in the vir-
tual space. How to guarantee that every task can be placed
without violating dependencies? Our answers are in §4.

Graphene’s online component schedules the tasks of
each DAG in the order of their starting time in the vir-
tual resource-time space. Furthermore, across the many
DAGs that may be running in the cluster, the online com-
ponent respects diòerent objectives– low job latency, high
cluster throughput and fairness. _ese objectives can
translate to discordant actions. For example, a fairness
scheme such as DRF [33] may want to give resources to
a certain job but the shortest-job-ûrst heuristic that re-
duces job latency may pick a diòerent job. Similarly, the
task that is most likely to reduce resource fragmenta-
tion [37] may not start early in the virtual resource-time
space. Our reconciliation heuristic intuitively picks tasks
by consensus (e.g., based on a weighted combination of
the scores received by a task from each objective). How-
ever, to maintain predictable performance, we limit un-
fairness to an operator-conûgured threshold.
We have implemented Graphene as extensions to

Apache YARN and Tez and have experimented with jobs
from TPC-DS, TPC-H and other benchmarks on a 200
server cluster. Furthermore, we evaluate Graphene in
simulations on 20,000 DAGs from a production cluster.

To summarize, our key contributions are:
1. A characterization of the DAGs seen in production
at Microso� and an analysis of the performance of
various DAG scheduling algorithms (§2).

2. A novel DAG scheduler that combines multi-
resource packing and dependency awareness (§4).

3. An online inter-job scheduler that mimics the pre-
ferred per-job schedules while bounding unfair-
ness (§5) for many fairness models [6, 33, 47].

Figure 1: Steps taken by Graphene from a DAG on the le�
to its schedule on the right. Troublesome tasks T (in red) are
placed ûrst. _e remaining tasks (parents P, children C and
siblings S) are placed on top of T in a careful order to ensure
compactness and respect dependencies.

4. Using our new lower bound on the completion time
of a DAG (§6), we show that the schedules built by
Graphene’s oøine component are within 1.04 times
the theoretically optimal schedule (OPT) for half of
the production DAGs; three quarters are within 1.13
times and the worst is 1.75 times OPT.

5. Our experiments show that Graphene improves the
completion time of half of the DAGs by 19% to 31%
across the various workloads. ProductionDAGs im-
prove relatively more because those DAGs are more
complex and have diverse resource demands. _e
gains accrue from running more tasks at a time; the
cluster’s job throughput (e.g., makespan) also im-
proves by about 25%.

While we present our work in the context of cluster
scheduling, DAGs are a powerful and general abstraction
for scheduling problems. Scheduling the network trans-
fers of a multi-way join or the work in a geo-distributed
analytics job etc. can be represented as DAGs. We oòer
early results in §9 from applying Graphene to scheduling
the DAGs that arise in distributed build systems [3, 34]
and in request-response work�ows [46, 66].

2 Primer on Scheduling Job DAGs
2.1 Problem deûnition

Let each job be represented as a directed acyclic graph
G = {V ,E}. Each node in V is a task with demands for
various resources. Edges in E encode precedence con-
straints between tasks. Many jobs can simultaneously run
in a cluster. Given a set of concurrent jobs {G}, the cluster
schedulermaps tasks tomachineswhile respecting capac-
ity constraints and task dependencies. Tasks may be allo-
cated fewer resources than their (peak) demands causing
them to take longer (task duration is assumed to be a con-
vex function of resource allocation). _e goals of a typical
cluster scheduler are high performance (measured using
job throughput, average job completion time and overall
cluster utilization) while oòering fairness (measured w.r.t
how resources are divided).

2.2 An illustrative example

We use the DAG shown in Figure 2 to illustrate the issues
in scheduling DAGs. Each node represents a task: the
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Technique Execution Order Time Worst-case
OPT t1 → t3 →{t4 , t0}→ {t0 , t2 , t5} T −
CPSched t0 → t3 → t4 → t5 → t1 → t2 3T O(n)×OPT
Tetris t0 → t1 → t3 → t2 → t4 → t5 3T O(d)×OPT

Figure 2: An example DAG where a packer (Tetris [37]) and
a Critical Path scheduler take 3× the optimal algo OPT. Here,
Graphene is close to OPT (see §2.2). Assume ε→ 0.

Figure 3: Illustrating the online case. Online, Graphene
schedules the tasks of each DAG in the order of their start
time in the oøine schedule. Resources are to be divided fairly
between two jobs both of which have the same DAG shown
in Figure 2. Notice that fairness interleaves allocation be-
tween the jobs. Graphene’s average job completion time and
makespan improve by 25% to 75% and 50% to 100% respec-
tively depending on the compared baseline.

node labels represent the duration (top) and the demands
for two resources (bottom). Assume that the capacity is 1
for both resources. Let ε represent a value approaching
zero.

Intuitively, a good schedule would overlap the long-
running tasks shownwith a dark background. _e result-
ing optimal schedule (OPT) is listed in the table below the
ûgure. OPT overlaps the execution of all the long-running
tasks, t0 , t2 and t5, and ûnishes in T .

Since such long-running or resource-intensive tasks
can be present anywhere in the DAG, greedy schedulers
o�en perform poorly as we show next.
Critical path-based schedulers (CPSched) pick tasks

along the critical path (CP) in the DAG. _e CP for a
task is the longest path from the task to the job output.
_e table shows the task execution order with CPSched.1
CPSched ignores the resources needed by tasks. In this
example, CPSched performs poorly because it does not
schedule tasks oò the critical path early (e.g., t1 , t3 , t4)
even though doing so reduces resource fragmentation by

1CPof t0 , t1 , t3 isT(1+5ε),T(1+ε) andT(1+4ε) respectively. Tasks
can run simultaneously only if their total demand is below capacity.

overlapping long-running tasks.
Packers, such as Tetris [37], match tasks to machines

so as to maximize the number of simultaneously running
tasks. Tetris greedily picks the task with the highest value
of the dot product between task’s demand vector and the
available resource vector. _e table also shows the task ex-
ecution order with Tetris.2 Tetris does not account for de-
pendencies. Its packing heuristic only considers the tasks
that are currently schedulable. In this example, Tetris per-
forms poorly because it will not choose locally inferior
packing options (such as running t1 instead of t0) even
though that can lead to a better global packing.

Graphene comes close to the optimal schedule for this
example. When searching for troublesome subsets, it will
consider the subset {t0 , t2 , t5} because these tasks run
for much longer. As shown in Figure 1, the troublesome
tasks will be placed ûrst. Since there are no dependencies
among them, they will run at the same time. _e par-
ents ({t1 , t3 , t4}) and any children are then placed before
and a�er the troublesome tasks respectively in a compact
manner while maintaining inter-task dependencies.
Online: Consider two jobs that have the DAG shown
in Figure 2. Figure 3 illustrates the online schedule
when resources are to be divided evenly between these
jobs (e.g., slot fairness [13]).

_e oøine schedule computed byGraphene for each of
the jobs, which overlaps the long-running tasks (t0 , t2 , t5),
is shown on top. _e online component distills these
schedules into a precedence order over tasks. For exam-
ple, the order for both jobs is: t1 → t3 → t4 →{t0 , t2 , t5}.
Figure 3, bottom, shows a time-lapse of the task execu-
tion.
Capacity Scheduler (CS) [7], a widely used cluster

scheduler, checks for which DAG the next available slot
has to be allocated, and then picks (in a breadth-ûrst or-
der) a runnable task from the designatedDAG that ûts the
available resources. Figure 3 shows that CS results in an
average job completion time (JCT) and makespan of 4T .
Fairness causes the scheduler to interleave the tasks of the
two jobs. Tetris happens to produce a similar schedule
to CS. Note that this online schedule is far from the pre-
ferred per-DAG schedule, only a few of the long-running
tasks overlap. Similar to CS, most production schedulers,
including Spark, schedule tasks based on some topolog-
ical ordering of the DAG while using fairness to decide
which job to give resources to next. Hence, they behave
similarly.
Figure 3 also shows that CPSched has an average JCT

andmakespan of 3.5T and 4T respectively. _is is because
CPSched ûnishes the t1 tasks of both the jobs late; because
t1 has a small CP length. _erefore the t2 tasks from both

2Tetris’ packing score for each task, in descending order, is t0=0.9,
t1=0.85, t3=0.84, t2=0.8, t4=0.7 and t5=0.3.
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Figure 4: Visualizing a few small production DAGs. _e leg-
end is in the top le�. See §2.3.

jobs do not overlap with any other long task.
Finally, the ûgure shows that Graphene has an average

JCT and makespan of 2T . Graphene achieves this by just
enforcing a precedence order within eachDAG. In partic-
ular, note that all of the schedulers are work-conserving;
they leave resources idle only if no schedulable task can ût
in those resources. _e key diòerence, among the sched-
ulers, is the order in which they consider the tasks for
scheduling. Another diòerence is whether this order is
computed based only on the runnable tasks (e.g., order-
ing runnable tasks on their CP length, packing score or
on their breadth-ûrst position) versus ordering based on
a global optimization. Informally, Graphene’s gains arise
from looking at the entire DAG and choosing a globally
optimal schedule.
2.3 Analyzing DAGs in Production

To understand the problem with actual DAGs and at
scale, we examine (a) the production jobs from a cluster
of tens of thousands of servers at Microso�, (b) jobs from
a 200 server Hive [67] cluster and (c) jobs from a Condor
cluster [5].
Structural properties: As a preliminary, Figure 4 illus-
trates some production DAGs at Microso�. Each circle
denotes a stage. By stage, we mean a collection of tasks
that perform the same computation on diòerent data (e.g.
all map tasks). _e size of the circle corresponds to the
number of tasks in logarithmic scale, the circle’s color cor-
responds to the average task duration in linear scale and
the edge color denotes the type of dependency. We see
W-shaped DAGs (bottom le�) that join multiple datasets,
inverted V-shaped DAGs (middle) that perform diòerent
analysis on a dataset, and more complex shapes (right)
wherein multiple datasets are analyzed leading to multi-
ple outputs. Note also the varying average durations of the
tasks (circle colors); the resource variations are not shown
for simplicity. Further, note cycles in the DAGs which are
possibly due to self-joins and range-partitions.
Figure 5 plots a CDF of various structural properties of

theDAGs from theMicroso� cluster. Since the x-axis is in
log scale, we put the probability mass for x = 0 at x = 0.1.
We see that the median DAG has a depth of ûve. To
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Figure 5: Characterizing structural properties of the DAGs

compare, a map-reduce job has depth of one. A quarter
of the DAGs have depth above ten.
While 40% of the DAGs are trees (i.e., no cycle a�er

ignoring the direction of dependency), we see that many
have cycles (half of the DAGs have at least 3 cycles); the
average number of tasks in a cycle is 5 (not shown in the
ûgure). Tree-like DAGs are an important special case as
they are, theoretically, more tractable to schedule [48].

_e DAGs can be quite large; the median job has thou-
sands of tasks and tens of stages. To compare, a map-
reduce job has two stages. _e number of stages that
a query translates to depends upon the optimizer. For
benchmark queries in TPC-DS and TPC-H, when com-
pared to the DAGs generated by Hive, we see that the
query optimizer in this cluster creates DAGs with sub-
stantially fewer stages. _e data�ow within a task is
largely through memory (a task can have multiple rela-
tional operators within it). However, the data�ow across
stages is harder to optimize since it is unknown when or
onwhichmachine the consuming tasks will be scheduled;
hence fewer stages, in general, lead to faster execution.
We also see that most of the edges are not barriers (e.g.,

those labeled “can be local”). Note the gap between the
orange stars line and the black squares line in Figure 5
which correspond to counts of all edges and barriers re-
spectively. A barrier edge indicates that every task in the
parent stage should ûnish before any task in the child
stage begins.
We observe that DAGs can be cut into portions such

that all tasks a�er the cut can only begin a�er every task
before the cut has ûnished. An example cut is shown
with a red dashed line on the DAG in Figure 4 (le� bot-
tom). Cuts o�en arise because a dataset, perhaps newly
generated by upstream tasks, has to be partitioned before
downstream tasks can begin. Cuts are convenient because
the optimal schedule for the DAG is a concatenation of
the optimal schedules of the cut portions of that DAG.
We observe that 24% of the production DAGs can be split
into four or more parts.

_e median (75th percentile) task in-degree and out-
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CPU Mem. Network Disk
R W R W

Enterprise: Pri-
vate Stack

0.76 1.01 1.69 7.08 1.39 1.94

Enterprise: Hive 0.89 0.42 0.77 1.34 1.59 1.41
HPC: Condor 0.53 0.80 N/A N/A 1.55 (R+W)

Table 1: Coeõcient-of-variation (= stdev./avg.) of tasks’ de-
mands for various resource. Across three examined frame-
works, tasks exhibit substantial variability (CoV∼ 1) formany
resources.
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DAG runtime .

degree are 1 (8) and 3 (20) respectively. For a map-reduce
job withm mappers and r reducers, themedian in-degree
will be 0 if m ≥ r and m otherwise. _e larger out-degree
is because stages that read from the ûle-systemare data re-
ductive; hence, the query optimizer creates fewer down-
stream tasks overall.

Overall, we conclude that DAGs are both large and
have complex structures.
Diversity in resource demands: Similar to prior
work [33, 37], we measure the coeõcient-of-
variation (CoV) across tasks in their demand for
various resources. Table 1 shows substantial variability.
_e variability is possibly due to the diòerences in work
at each task: some are compute heavy (e.g., user-deûned
code that processes videos) whereas other tasks are
memory heavy (e.g., in-memory sorts).
Potential for improvement: To quantify potential gains,
we compare the runtime of productionDAGs to twomea-
sures. _e ûrst, CPLength, is the duration of the DAG’s
critical path. If the available parallelism is inûnite, the
DAGwould ûnish within CPLength. _e second, TWork,
is the total work in the DAG normalized by the cluster
share of that DAG (a formula is in Table 3.) If there were
no dependencies and perfect packing, a DAG would ûn-
ish within TWork. Figure 6 plots a CDF of the relative gap
between the runtime of a DAG and these measures. Half
of the jobs have a gap of over 70% for both CPLength and
TWork.
Understanding the gap: A careful reader would notice
that about 15% of the DAGs ûnish faster than some mea-
sures. _is is because our production scheduler occa-
sionally gives jobs more than their fair share if the cluster
has spare resources; hence, measures which assume that
the cluster share will be the minimum guaranteed for the
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Figure 7: A CDF of the portion of a DAGs TWork that is
present on the critical path or is “unconstrained” i.e. in tasks
with no parents.

DAG can be larger than the actual completion time. We
will ignore such DAGs for this analysis.

Suppose OPT is the optimal completion time for a DAG
given a certain cluster share. We know that actual run-
time is larger than OPT and that the above measures are
smaller than OPT. Now, the gap could be due to one of
two reasons. (1) _e measure is loose (i.e., well below
OPT). In practice, we found this to be the case because
CPLength ignores all the work oò the critical path and
TWork ignores dependencies. (2) _e observed runtimes
of DAGs are in�ated by runtime artifacts such as task fail-
ures, stragglers and performance interference from other
cluster activity [17, 74].

To correct for (2), we discount the eòects of runtime
artifacts on the above computed DAG runtime as follows.
First, we chose the fastest completion time from a group
of recurring jobs. It is unlikely that every execution suf-
fers from failures. Second, to correct for stragglers–one
or a few tasks holding up job progress–we deduct from
completion time the periods when the job ran fewer than
ten concurrent tasks. Note that both these changes reduce
the gap; hence they under-estimate the potential gain.
Further, to correct for (1), we develop a new improved

lower bound NewLB that uses the speciûc structure of
data-parallel DAGs. Further details are in §6; but intu-
itively NewLB leverages the fact that all the tasks in a job
stage (e.g., a map or reduce or join) have similar depen-
dencies, durations and resource needs. _e gap relative
to NewLB is smaller, indicating that the newer bound is
tighter, but the gap is still over 50% for half of the jobs.
_at is, they take over two times longer than they could.
Where does the work lie in a DAG? We now focus on
the parts of the DAG that domore work (measured as the
product of task duration and resource needs). Figure 7
shows a CDF over DAGs of the fraction of work that is
on the critical path and in tasks with no parents (“un-
constrained”). If all of the work lies on the critical path
or in un-constrained tasks, critical path scheduling and
packers would perform well. We see from the ûgure that
only about 18% of the DAGs have 80% of their work in
unconstrained tasks; the corresponding number for criti-
cal path is 23%. We oòer this as a motivation for the need
of a holistic solution that considers the entire DAG.

5



Figure 8: A counter-example DAG that shows any scheduler
not considering DAG structure will be Ω(d) times OPT.

To summarize, (1) production jobs have large DAGs
that are neither a bunch of unrelated stages nor a chain
of stages, and (2) a packing+dependency-aware scheduler
can oòer substantial improvements.
2.4 Analytical Results

Lemma 1 (Dependencies). Any scheduling algorithm,
deterministic or randomized, that does not account
for the DAG structure (e.g., only schedules currently
runnable tasks) is Ω(d) times OPT where d is the num-
ber of resources.

Proof. We prove this ûrst for deterministic schedulers by
constructing an adversarial DAG in response to sched-
uler’s actions. Consider the DAG in Figure 8 which is a
chain of d groups with dependencies going from le� to
right. All tasks run for 1t. Each group (oval) has k tasks.
Tasks in the i’th group only use the i’th resource and re-
quire 1r. Assume that the capacity for all d resources is 1r.
Hence, if dependencies are handled correctly, it is possi-
ble to run up to d tasks together, one from each of the
groups. Further, in each group there is a certain task col-
ored red that is the parent of all tasks in the next level.
_is information is unavailable (and unused) by sched-
ulers that do not consider the DAG structure. Hence, re-
gardless of which order the scheduler picks tasks, the ad-
versary chooses the last task in that group to be the red
task. _is leads to a schedule that takes kdt time. Observe
that OPT only requires (k+d−1)t since it can schedule the
red tasks ûrst, one a�er the other (in (d− 1)t); now all the
blue tasks become runnable and can be scheduled in kt
more steps (one task from each group per step). _us, all
deterministic schedulers are Ω(d)×OPT.

To extend to randomized algorithms, we use Yao’smin-
imax principle [56]. Speciûcally, to establish that the
lower bound on the expected performance of a random-
ized algorithm is X, we have to choose some distribu-
tion over inputs such that no deterministic algorithmper-
forms better than X in expectation on that input distri-
bution. Suppose each task in a group has the same prob-
ability of being red, the best deterministic algorithm on
this input has an expected schedule time of k+k(d−1)t/2
which is still Ω(d)×OPT.

Lemma 1 applies to the following multi-resource pack-
ers [37, 58, 69, 70] since they ignore dependencies.

Lemma 2 (Resource Variation). Schedulers that ig-
nore resource heterogeneity have poor worst-case per-

Figure 9: ADAGwhere critical path scheduling isO(n) times
OPT where n is the number of nodes in the DAG.

Figure 10: A DAG where Tetris [37] is 2d − 2 times OPT when
tasks use d kinds of resources.

formance. For example, critical path scheduling can be
Ω(n) times OPTwhere n is the number of tasks in a DAG.

Proof. Figure 9 shows an example DAG where CPSched
takes n times worse than OPT for a DAGwith 2n tasks. As
before, assume capacity is 1r. _e long tasks have duration
∼ 1t and demand 1

n r whereas the wide tasks have duration
εt and require (1− ε)r. _e critical path lengths of the
various tasks are such that CPSched alternates between
one long task and one wide task le� to right. However, it
is possible to overlap all of the long running tasks. _is
DAG completes at ∼ nt and ∼ 1t with CPSched and OPT

respectively. _us, CPSched is O(n) times OPT.

Figure 10 shows an example where Tetris [37] is 2d −2
times OPT. As in the above example, all long tasks can
run together, hence OPT ûnishes in 1t. Tetris greedily
schedules the task with the highest dot-product between
task demands and available resources. _e DAG is con-
structed such that whenever a long task is runnable, it will
have a higher score than any wide task. Further, for every
long task that is not yet scheduled, there exists at least one
wide parent that cannot overlap any long task that may be
scheduled earlier. Hence, Tetris takes (2d − 2)t which is
(2d −2) times OPT.
Combining these two principles, we conjecture that it

is possible to ûnd similar examples for any scheduler that
ignores dependencies or ignores resource usages.

To place these results in context, note that d is about
4 (cores, memory, network, disk) and can be larger when
tasks require resources at other servers or on many net-
work links. Further, the median DAG has hundreds of
tasks (n). _e key intuition here is that DAGs are hard
to schedule because of their complex structure and be-
cause of discretization issues when tasks use multiple re-
sources (fragmentation, task placement etc.) Graphene is
close to OPT on all of the described examples and is within
1.04 times OPT for half of the production DAGs (see §8).
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Scheme(s) DAG annotation needed
DAG Structure Task Resource

Demands
TaskDu-
rations

Hive [67],
Spark [73],
Tez [2]

✓
‡

✓
‡

Yarn [8],
Mesos [41]

✓
‡

CPSched ✓
‡

✓
‡

Tetris [37] ✓
‡

✓
‡

Graphene ✓
‡

✓
‡

✓
‡

∗: online estimates suõce; ‡ : online reûnements possible

Table 2: DAG annotations that are required by the various
schedulers. Note that Yarn and Mesos are meta-schedulers
that are agnostic to the actual work (e.g., DAGs) being sched-
uled.

2.5 Acquiring annotated DAGs

Acquiring an annotated DAG is non-trivial. Much prior
work has similar requirements as Graphene (see Table 2).
_ere are two parts to this: the structure of the DAG and
the task proûles (resource needs and durations).
DAG structure: In order to launch a task only a�er par-
ent tasks ûnish, everyDAG scheduler is aware of theDAG
structure. Furthermore, the DAG is o�en known before
the job starts. Runtime changes to the DAG, if they hap-
pen, only aòect small portions of a DAG. For example,
our scheduler adds an aggregation tree in front of a re-
duce stage depending upon runtime conditions.
Task resource demands and durations: Graphene re-
quires each task to be annotated with the demands for
any resource that could be congested; the other resources
do not aòect scheduling. Here, we consider four re-
sources (cores, memory, disk and network bandwidth).
Schedulers such as Yarn, Mesos, Hive and Spark ask users
to annotate their tasks with cores and memory require-
ments; for example, [1 core, 1 GB] is the default inHadoop
2.6. Graphene requires annotations for more resources as
well as the durations of tasks.

_ere are some early eòorts to obtain these pro-
ûles (tasks’ demands and durations) automatically. For
example, in the production cluster atMicroso�, up to 40%
of the resources in the examined cluster are used by recur-
ring jobs; the same script executes periodically on newly
arriving data. Recurring jobs can be identiûed based on
the job name (e.g., LogMiner date[ time]) and prior
work shows that the task proûles of these jobs can be es-
timated from history (a�er normalizing for the size of in-
put) [16]. For the remaining jobs, some prior work builds
proûles via sampling [59], program analysis [40], or based
on online observations of the actual usages of tasks in the
same stage [17]. Our method is described in §7; our sen-
sitivity analysis in §8.4 shows that Graphene is robust to
modest amounts of estimation error.

RM

Online Component 
+multiple objectives

DAG

Schedule 
Constructor

AM

DAG

Schedule 
Constructor

AM

…

Node
heartbeats

Assign tasks

Figure 11: Graphene builds schedules per DAG at job sub-
mission. _e runtime component handles online aspects.
AM and RM refer to the YARN’s application and resource
manager components.

3 Novel ideas in Graphene
Cluster scheduling is the problem of matching tasks to
machines. Most production schedulers today do so in
an online manner and have very tight timing constraints
since clusters have thousands of servers, many jobs that
each havemany pending tasks and tasks that ûnish in sec-
onds or less [8, 73]. Given such stringent time budget,
carefully considering large DAGs seems daunting.
As noted in §1, a key design decision in Graphene is

to divide this problem into two parts. An oøine compo-
nent constructs careful schedules for a single DAG. We
call these the preferred schedules. A second online compo-
nent enforces the preferred schedules of the various jobs
running in the cluster. We elaborate on each of these parts
below. Figure 11 shows an example of how the two parts
may inter-operate in a YARN-style architecture. Dividing
a complex problem into parts and independently solving
each part o�en leads to a sub-optimal solution. While we
have no guarantees for our particular division, we note
that it scales to large clusters and outperforms the state-
of-art in experiments.

To ûnd a compact schedule for a single DAG, our idea
is to place the troublesome tasks, i.e. those that can lead to
a poor schedule, ûrst onto a virtual space. Intuitively, this
maximizes the likelihood that any holes, un-used parts
of the resource-time space, can be ûlled by other tasks.
However, ûnding the best choice of troublesome tasks is
as hard as ûnding a good schedule for theDAG.Weuse an
eõcient search strategy that mimics dynamic program-
ming: it picks subsets that are more likely to be useful
and avoids redundant exploration. Furthermore, placing
troublesome tasks ûrst can lead to dead-ends. We deûne
dead-end to be an arrangement of a subset of the DAG
in the virtual space on which the remaining tasks can-
not be placed without violating dependencies. Our strat-
egy is to divide the DAG into subsets of tasks and place
one subset at a time. While intra-subset dependencies
are handled directly during schedule construction, inter-
subset dependencies are handled by restricting the order
in which the various subsets are placed. We prove that the
resultant placement has no dead-ends.

_e online component has to co-ordinate between
some potentially discordant directives. Each job running
in the cluster oòers a preferred schedule for its tasks (con-
structed as above). Fairness models such as DRF may
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Term Deûnition
Task t an atomic unit of execution
Stage s a group of tasks that run same code on diòer-

ent data
TWork(s) maxresource r

1
Cr
∑t∈s tduration ∗ trdemands

ExecTime(s) estimated time to execute tasks in s
V ,G V denotes all stages (and tasks) in a DAG G
S a virtual schedule: i.e. a placement of a given

DAG of tasks in a resource-time space
C(s,G), P(s,G),
D(s,G),
A(s,G), U(s,G)

Children, parents, descendants, ancestors and
unordered neighbors of s in G; note that
U(s,G) = V −A(s,G)−D(s,G)−{s}

Table 3: Glossary of terms.

1 Func: BuildSchedule:
2 Input: G: a DAG, m: number of machines
3 Output: An ordered list of tasks t ∈ G
4 Ans←{}
5 foreach dag G′ ∈ CutDAGs(G) do
6 Sbest ←∅ // best schedule for G′ thus far
7 foreach sets {T,S,P,C} ∈ CandidateTroublesomeTasks(G′) do
8 Space S ← CreateSpace(m) //resource-time space
9 S ← PlaceTasks(T,S ,G′) // trouble goes first

10 S ← TrySubsetOrders({SCP,SPC,CSP,PSC},S ,G′)
11 if S < Sbest then Sbest ←S //keep the best schedule;

12 Ans← Ans∪OrderTasks(G′ ,Sbest) // concatenate schedules

Figure 12: Pseudocode for constructing the schedule for a
DAG. Helper methods are in Figure 13.

dictate which job (or queue) should be served next. _e
set of tasks that is advantageous for packing (e.g., maxi-
mal use of multiple resources) can be diòerent from both
the above choices. We oòer a simple method to reconcile
these various directives. Our idea is to compute a real-
valued score for each pending task that incorporates the
above aspects so�ly. _at is, the score trades-oò violations
on some directives if the other directives weigh strongly
against it. For example, we can pick a task that is less use-
ful from a packing perspective if it appears much earlier
on the preferred schedule. One key novel aspect is bound-
ing the extent of unfairness.

_e oøine component of Graphene is described next;
the online component is described in Section 5.

4 Scheduling one DAG

Graphene builds the schedule for a DAG in three steps.
Figure 1 illustrates these steps and Figure 12 has a simpli-
ûed pseudocode. First,Graphene identiûes some trouble-
some tasks and divides the DAG into four subsets (§4.1).
Second, tasks in a subset are packed greedily onto the vir-
tual space while respecting dependencies (§4.2). _ird,
Graphene carefully restricts the order in which diòerent
subsets are placed such that the troublesome tasks go ûrst
and there are no dead-ends (§4.3). Graphene picks the
most compact schedule a�er iterating over many choices
for troublesome tasks. _e resulting schedule is passed on
to the online component (§5).

4.1 Searching for troublesome tasks

To identify troublesome tasks, Graphene computes two
scores per task. _e ûrst, LongScore, divides the task
duration by the maximum across all tasks. Tasks with a
higher score are more likely to be on the critical path and
can beneût frombeing placed ûrst because otherwork can
overlap with them. _e second, FragScore, re�ects the
packability of tasks in a stage (e.g., a map or a reduce). It
is computed by dividing the total work in a stage (TWork
deûned in Table 3) by the time a greedy packer takes
to schedule that stage. Tasks that are more diõcult to
pack would have a lower FragScore. Given thresholds
l and f , Graphene picks tasks with LongScore ≥ l or
FragScore ≤ f . Intuitively, this biases towards select-
ing tasks that are more likely to hurt the schedule because
they are long or diõcult to pack. Each value of {l , f } leads
to a choice of troublesome tasks Twhich leads to a sched-
ule (a�er placing the tasks in T ûrst and then the other
subsets); Graphene iterates over diòerent values for the l
and f thresholds and picks the most compact schedule.

To speed up this search, (1) rather than choose the
threshold values arbitrarily, Graphene picks values that
are discriminative, i.e. those that lead to diòerent choices
of troublesome tasks, and (2) Graphene remembers the
set of troublesome tasks that were already explored (by
previous settings of the thresholds) so that only one
schedule is built for each troublesome set. Note also that
the diòerent choices of troublesome tasks can be explored
in parallel. Further improvements are in §4.4.
As shown in Figure 13 (line 22), the set T is a closure

over the chosen troublesome tasks. _at is, T contains
the troublesome tasks and all tasks that lie on a path in
the DAG between two troublesome tasks. _e parent and
child subsets P, C consist of tasks that are not in T but have
a descendant or ancestor in T respectively. _e subset S
consists of the remaining tasks.

4.2 Compactly placing tasks of a subset

Given a subset of tasks and a partially occupied space,
howbest to pack the taskswhile respecting dependencies?
Graphene uses the following logic for each of the subsets
T,P,S and C. One can choose to place the parents ûrst
or the children ûrst. We call these the forward and back-
ward placements respectively. More formally, the forward
placement recursively picks a task all of whose ancestors
have already been placed on the space and puts it at the
earliest possible time a�er its latest ûnishing ancestor. _e
backward placement is analogously deûned. Intuitively,
both placements respect dependencies but can lead to dif-
ferent schedules since greedy packing yields diòerent re-
sults based on the order in which tasks are placed. Fig-
ure 14:PlaceTasks shows some simpliûed pseudo-code.
Traversing the tasks in either placement has n logn com-
plexity for a subset of n tasks and if there arem machines,
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1 Func: CutDAGs:
2 Input: G: input DAG Output: L: ordered list of DAGs
3 L← {G}
4 toProcess.push(G)
5 while ! toProcess.empty() do
6 G′ ← toProcess.pop()
7 foreach stage s ∈ G′ do
8 if U(s ,G′) =∅ // no unordered neighbors then
9 {G1 ,G2}← {A(s ,G′)∪ s, D(s ,G′)} // cut at s

10 Replace G′ with {G1 ,G2} in L
11 toProcess.push(G1)
12 toProcess.push(G2)
13 break

14 Func: CandidateTroublesomeTasks:
15 Input: DAG G; Output: list L of sets T,S,P,C

// choose a candidate set of troublesome tasks; per choice, divide G
into four sets

16 L←∅
17 ∀v ∈ G ,LongScore(v) ← v .duration/maxv′∈G v′ .duration
18 ∀v ∈ G , v in stage s ,FragScore(v) ← TWork(s)/ExecTime(s)
19 foreach l ∈ δ , 2δ , . . . 1 do
20 foreach f ∈ δ , 2δ , . . . 1 do
21 T←{v ∈ G∣LongScore(v) ≥ l or FragScore(v) ≤ f }
22 T← Closure(T)
23 if T ∈ L then continue // ignore duplicates;
24 P←⋃v∈T A(v ,G); C←⋃v∈T D(v ,G); S←V−T−P−C;
25 L←L∪{T,S,P,C}

Figure 13: Identifying various candidates for troublesome
tasks and dividing the DAG into four subsets.

placing tasks greedily has n log(mn) complexity.

4.3 Subset orders that guarantee feasibility

For each division of DAG into subsets T,S,P,C,Graphene
considers these 4 orders: TSCP,TSPC,TPSC or TCSP. _at
is, in the TSCP order, it ûrst places all tasks in T, then tasks
in S, then tasks in C and ûnally all tasks in P. Intuitively,
this helps because the troublesome tasks T are always
placed ûrst. Further, other orders may lead to dead-ends.
For example, consider the order TPCS; by the time some
task t in the subset S is considered for placement, parents
of t and children of t may already have been placed since
they may belong to the sets P and C respectively. Hence,
it may be impossible to place t without violating depen-
dencies. We prove that the above orders avoid dead-ends
and are the only orders beginning with T to do so.

Note also that only one of the forwards or backwards
placements (described in §4.2) are appropriate for some
subsets of tasks. For example, tasks in P cannot be placed
forwards since some descendants of these tasks may al-
ready have been placed (such as those in T). As noted
above, the forwards placement places a task a�er its last
ûnishing ancestor but ignores descendants and can hence
violate dependencies if used for P; because by deûnition
every task in the parent subset P has at least one descen-
dant task. Analogously, tasks in C cannot be placed back-
wards. Tasks in S can be placed in one or both place-
ments, depending on the inter-subset order. Finally, since
the tasks in T are placed onto an empty space they can be
placed either forwards or backwards; details are in Fig-
ure 14:TrySubsetOrders. We prove the following:

1 Func: PlaceTasks(V ,S ,G):
2 Inputs: V : subset of tasks to be placed, S : space (partially filled), G:
a DAG

3 Output: a new space with tasks in V placed atop S
4 return min(PlaceTasksF(V ,S ,G), PlaceTasksB(V ,S ,G))

5 Func: PlaceTasksF: // forwards placement, inputs and outputs same
as PlaceTasks

6 S ← Clone(S)
7 finished placement set F ←{v ∈ G∣v already placed in S}
8 while true do
9 ready set R←{v ∈ V − F ∣ P(v ,G) ⊆ F}

10 if R =∅ then break // all done;
11 v′ ← task in R with longest runtime
12 t←maxv∈P(v ,G)EndTime(v ,S)
13 // place v′ at earliest time ≥ t when its resource needs can be met
14 F ← F ∪ v′

15 Func: PlaceTasksB: // backwards placement, inputs and outputs
same as PlaceTasks

16 Input: V , S , G; Output: S
17 S ← Clone(S)
18 finished placement set F ←{v ∈ G∣v already placed in S}
19 while true do
20 ready set R←{v ∈ V − F∣C(v ,G) ⊆ F}
21 if R =∅ then break // all done;
22 v′ ← task in R with longest runtime
23 t← (minv∈C(v ,G)BeginTime(v ,S))− v′ .duration
24 // place v′ at the latest time ≤ t when its resource demands can

be met
25 F ← F ∪ v′

26 Func: TrySubsetOrders:
27 Input: G: a DAG, Sin: space with tasks in T already placed
28 Output: A space that has the most compact placement of all tasks.
29 S1 ,S2 ,S3 ,S4 ← Clone(Sin)
30 return min( // pick the most compact among all feasible orders
31 PlaceTasksF(C, PlaceTasksB(P, PlaceTasks(S,S1 ,G),G),G), //SPC
32 PlaceTasksB(P, PlaceTasksF(C, PlaceTasks(S,S2 ,G),G),G), //SCP
33 PlaceTasksB(P, PlaceTasksB(S, PlaceTasksF(C,S3 ,G),G),G), //CSP
34 PlaceTasksF(C, PlaceTasksF(S, PlaceTasksB(P,S4 ,G),G),G) //PSC
35 );

Figure 14: Pseudocode for the description in §4.2, §4.3.

Lemma 3. (Correctness) Our method in §4.1–§4.3 satis-
ûes dependencies and avoids dead-ends. (Completeness)
_emethod explores every order that places troublesome
tasks ûrst and is free of dead-ends.

Intuitively, the proof (omitted for space) follows from
(1) all four subsets are closed and hence intra-subset de-
pendencies are respected by the placement logic in §4.2
whether in the forward or in the backward placement, (2)
the inter-subset orders and the corresponding restrictions
to only use forwards and/or backwards placements spec-
iûed in §4.3 ensure that dependencies across subsets are
respected and, (3) every other order that beginswith T can
lead to dead-ends.
4.4 Enhancements

We note a few enhancements. First, as noted in §2.3, it
is possible to partition a DAG into parts that are totally
ordered. Hence, any schedule for the DAG is a concate-
nation of per-partition schedules. _is lowers the com-
plexity of schedule construction. We recursively cut un-
til no more cuts are possible. Figure 13:CutDAGs shows
how to do this in linear time. 24% of the production
DAGs can be split into four or more parts. Second, and
along similar lines, whenever possible we reduce com-
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1 Func: FindAppropriateTasksForMachine:
2 Input: m: vector of available resources at machine; J : set of jobs

with task details{tduration , tdemands , tpriScore}; deficit:
counters for fairness;

3 Parameters: κ: unfairness bound; rp: remote penalty
4 Output: S , the set of tasks to be allocated on the machine
5 S ←∅
6 while true do
7 foreach task t do
8 {pScoret ,oScoret}← {0, 0}
9 rPenaltyt ← t is locality sensitive ? rp : 1

10 if tdemands ≤m // fits? then
11 pScoret ← (m ⋅ tdemands)rPenaltyt // dot product

12 else
13 // what-if analysis: “overbook or wait”.
14 ∀tasks t′ affected by t running at m , let before(t′),
15 after(t′) be expected completion times before and
16 after placing t at m
17 benefit = nextSchedOpp+ tduration −after(t)
18 cost =∑aff. tasks t′ (after(t

′)−before(t′))
19 if benefit > cost then oScoret = benefit−cost;
20 job j ∋ t ,srpt j ←∑pending u∈ j uduration ∗ ∣udemands ∣

21 perfScoret ← tpriScore {pScoret ,oScoret}− ηsrpt j

22 tbest ← argmax{perfScoret ∣t}// task with highest perf score
23 if tbest =∅ then break // no new task can be scheduled on this

machine;
24 g′ ← jobgroup with highest deficit counter

25 if deficitg′ ≥ κC then tbest ← argmax{perfScoret ∣t ∈ g′};

26 S ← S ∪ tbest

27 m← [m− tbestdemands]0+
28 deficitg ← deficitg+

factor(tbestdemands)∗{
fairShareg − 1 t ∈ jobgroup g
fairShareg otherwise

Figure 15: Simpliûed pseudocode for the online component.

plexity by reasoning over stages. Stages are collections
of tasks and are 10 to 103 times fewer in number than
tasks. _ird, schedule computation can be sped up in a
few ways. Parallelizing the search will help the most, i.e.
examine diòerent choices for troublesome tasks T in par-
allel. Working over more compact representations (e.g.,
scaling down theDAG and the cluster by a corresponding
amount) will also help. Fourth, jobs that are short-lived,
or only use a small amount of resources, or do not have
complex DAG structures, will bypass the oøine portion
of Graphene. Fi�h, the complexity of schedule construc-
tion is independent of the sizes of the subsets T,S,P,C
that Graphene divides the DAG into. However, if ∣T∣ is
very large, the approach of placing troublesome tasks ûrst
and other tasks carefully around them is unlikely to help.
We prune such choices of T without further exploration.
Among the schedules built by Graphene for production
DAGs, the median DAG has 17% of its tasks considered
troublesome; these tasks contribute to 32% of the work in
that job. Finally, note that it is possible to recursively em-
ploy this logic: i.e., given a DAG G, pick a troublesome
subset T, let G′ be the sub-DAG over tasks in T, repeat
the logic on G′. We defer further examination of this ap-
proach to future work.

Figure 16: _evarious aspects considered byGraphene’s on-
line component when matching tasks to machines.

5 Scheduling many DAGs
Given the preferred schedules for each job, we describe
how the Graphene inter-job scheduler matches tasks to
machines online. Recall the example in Figure 3. _e
scheduling procedure is triggered when a machine m re-
ports its vector of available resources to the cluster-wide
resource manager. Given a set of runnable jobs (and their
tasks), the scheduler returns a list of tasks to be allocated
on that machine. _e challenge is to enforce the per-job
order computed in §4 while also packing tasks for cluster
eõciency, ensuring low JCTs, and enforcing fairness.
5.1 Inter-job Scheduler

Enforcing preferred schedules. Using the per-DAG
schedule constructed in §4, a tpr iScore is computed for
each task t by (1) ranking tasks in increasing order of their
start time in the schedule and (2) dividing the rank by the
number of tasks in the DAG so that the result is between
1 (for the task that begins ûrst) and 0. As noted below,
Graphene preferentially schedules tasks with a higher
tpr iScore value ûrst.
Packing eõciency. Graphene borrows ideas from [37] to
improve packing eõciency. For every task, it computes a
packing score pScoret as a dot product between the task
demand vector and the machine’s available resource vec-
tor. To favor local placement, when remote resources are
needed, pScoret is reduced bymultiplying with a remote
penalty rp (∈ [0, 1]). Sensitivity analysis on the value of rp
is in §8.4.
Job completion time. Graphene estimates the remaining
work in a job j similar to [37]; srpt j is a sum over the
remaining tasks to schedule in j, the product of their du-
ration and resource demands. A lower score implies less
work remaining in the job j.
Bounding unfairness. Graphene trades oò fairness for
better performance while ensuring that the maximum
unfairness is below an operator conûgured threshold.
Speciûcally, Graphene maintains deûcit counters [64]
across jobs tomeasure unfairness. _edeûcit counters are
updated as follows. When a task t froma group g is sched-
uled, its deûcit increases by factort ×(fairShareg − 1)
and the deûcit of all the other groups g′ increases by
factort × fairShareg′ . _is update lowers the deûcit
counter of g proportional to the resources allocated to it
and increases the deûcit counters of other groups to re-
member that they were treated unfairly. Further, by vary-
ing the value of factort , Graphene can support diòer-
ent fairness schemes: e.g., factort = 1 mimics slot fair-
ness and factort = demand of the dominant resource of g
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mimics DRF [33].
Combining schedule order, packing, completion time
and fairness. Graphene attempts to simultaneously con-
sider the above four aspects; as shown in Figure 16, some
of the aspects vary with the task while others vary across
jobs. First, Graphene combines the performance related
aspects into a single score, i.e., perfScoret = pScoret ⋅

tpr iScore −ηsrpt j . η is a parameter that is automatically
updated based on the average srpt and pScore across
jobs and tasks. Subtracting η ⋅srpt j prefers shorter jobs.
Sensitivity analysis on the value of η is in §8.4. Intuitively,
the combined value perfScoret so�ly enforces the var-
ious objectives. For example, if a task t is preferred by
all individual objectives (belongs to shortest job, is most
packable, is next in the preferred schedule), then it will
have the highest perfScoret . When the objectives are
discordant, colloquially, the task preferred by a majority
of objectives t will have the highest perfScoret .

Next, to trade-oò performance while bounding unfair-
ness, let the most unfairly treated group (the one with
the highest deûcit counter) be gunfair. If the deûcit
counter of gunfair is below the unfairness threshold, then
Graphene picks the task with the maximum perfScore

from among all groups; else it picks the taskwith themax-
imum perfScore from gunfair. _e unfairness thresh-
old is κC where κ (< 1) is a tunable parameter and C is the
cluster capacity.
Further details, including a pseudo-code, are in Fig-

ure 15.
Judicious overbooking: Weobserve that over-allocating
some resources by a small amount, which we call over-
booking can improve throughput. For example, suppose
that tasks with a duration t require 0.6r. Running two
tasks instead of one, i.e. over-booking by 20%, improves
the task throughput from 1 task/t to 2 tasks/1.2t. Note
however, that this holds only if the resource type is such
that over-allocation leads to a graceful degradation. In the
above example, we assumed that when demand exceeds
capacity, the total goodput remains intact and the net ef-
fect is that tasks take proportionately longer. _is holds
only for certain resources (such as network bandwidth as
opposed to memory which will lead to a net slow-down
due to thrashing) and for small amounts of overbooking
(so as to not trigger collapse issues such as incast).
A key tussle with overbooking is that while it improves

throughput it may hurt latency, because the runtimes of
all tasks executing on the overbooked machine will in-
crease. Worse, if resources will become free at some other
machine soon, then overbooking may be counterproduc-
tive. For the above example, if another machine can run
the second task at time +ε. Without overbooking, tasks
will ûnish at {t, t + ε} and with overbooking both ûnish
at 1.2t. Hence, optimal overbooking is NP-hard [53].

Graphene oòers a heuristic for overbooking. First, it

uses micro-benchmarks to determine how task runtimes
will be delayed when each resource is overbooked. _ese
functions are concave and vary across resource types.
Next, per potential task to overbook, Graphene runs a
what-if analysis to decide between overbooking and wait-
ing. We compute the expected completion times of all af-
fected tasks a�er overbooking. Note that resource over-
booking delays these tasks but the extent of delay can vary.
_e benefit of overbooking is how much earlier would
the new task ûnish with overbooking versus having to
wait for next-free-resource. _e cost is the increase in
runtime of all the other tasks due to overbooking. _us,
overbooking score equals benefit−cost.

Putting the above description into one place, Figure 15
oòers simpliûed pseudo-code for the online component
of Graphene.

6 A new lower bound
We develop a new lower bound on the completion time
of a DAG of tasks. As we saw in §2.3, previously known
lower bounds are very loose since they either ignore all
the work oò the critical path (e.g., CPLen) or ignore de-
pendencies and assume perfect packing (e.g., TWork).
Since the optimal solution is intractable to compute [54,
55], without a good lower bound, it is hard to assess the
quality of a heuristic solution such as Graphene.
Equations 1a and 1b describe the known bounds: criti-

cal path length CPLen and total work TWork. Equation 1d
is (a simpler form of) our new lower bound. At a high
level, the new lower bound uses some structural proper-
ties of these job DAGs. _ere are four key ideas. First,
recall that DAGs can be split into parts that are totally
ordered (§4.4). _is lets us pick the best lower bound
for each part independently. For a DAG that splits into
a chain of tasks followed by a group of independent tasks,
we could use CPLen of the chain plus the TWork of the
group. Notice that the maximum of several lower bounds
is also a valid lower bound. A second idea is that on a path
through the DAG, at least one stage has to complete en-
tirely. _at is, all of the tasks in some stage and at least one
task in each other stage on the path have to complete en-
tirely. _is leads us to the ModCPG formula in Equation 1c
where one stage s along any path p is replaced with the
total work in that stage. A third idea is that some stages
have all-to-all dependencies to all parents and children.
_at is all its tasks have to ûnish a�er the last parent task
ûnishes and before the ûrst child task can start. For such
stages, we can replace them with their total work. To see
why this helps, consider a stage of n tasks with duration
d and demand vector r. _is stage will now contribute
max(nd r

C ,d) instead of d. When n or r are large, this
leads to a larger CPLength. 34% of the stages in our pro-
duction DAGs have this property. Finally, we group tasks
having identical parents and children even though their
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CPLenG = max
path p∈G

∑
task t∈p

tduration (1a)

TWorkG = maxresource r

1
Cr
∑
t∈G

tduration trdemands (1b)

ModCPG = max
path p∈G

max
stage s∈p

⎛
⎝
max(TWorks ,CPLens)+ ∑

g∈p−{s}
min

task t∈g
tduration

⎞
⎠

(1c)

NewLBG = ∑
G′∈Partitions(G)

max(CPLenG′ ,TWorkG′ ,ModCPG′) (1d)

Figure 17: Lower bound formulas for DAG G; p, s, t denote
a path through the DAG, a stage and a task respectively. C ,
here, is the capacity available for this job. We developed
ModCP and NewLB.

Figure 18: For theDAGon le�, themodiûedDAGused by our
lower bound is on the right. Lower bound improves from 14t
to 22.8t. Edge types are as per the legend in Figure 4.

functions diòer. For example, two map stages preceding
the same reduce stage (in a join). Larger groups let us cu-
mulatively account for their tasks which helps the second
and third changes above.

_e take-away is that the new lower bound NewLB is
much tighter and allows us to show thatGraphene is close
to OPT; since by deûnition of a lower bound Graphene
≥ OPT ≥ NewLB.
We have the following lemma:

Lemma 4. NewLB (Eqn. 1d) is a valid lower bound for
DAG runtime, and NewLB ≥max(CPLen,TWork).

Proof. First, observe that the maximum of the lower
bounds is also a lower bound. Second, observe that by
deûnition the DAG is cut into parts that have no overlap.
Hence, the lower bound of the DAG is equal to the sum
of the lower bounds of the parts. _is supports Eqn. 1d.

Next, grouping stages with identical parent and child
stages is appropriate because (a) there are no dependen-
cies between these tasks and (b) the deûnition of a stage
has been a group of independent tasks that can run in
parallel and adhere to a speciûc dependence pattern with
tasks in parent and child stages.

Using the total work to be done in a stage instead of
the duration of a single task is appropriate. _is holds be-
cause either all of the work has to be done in line (when
all parents and children have all-to-all edges) or at least

one stage on a path through the DAG will have to ûnish
all of its work. _is supports Eqn. 1c.

Stepping back, this new lower bound was possible be-
cause of the abundance of groups of independent tasks
that is common in data-parallel DAGs. As we did not
relax either dependence satisfaction or resource capac-
ity limits, this lower bound is much tighter than other
bounds based on linear programs that relax those as-
pects [22, 52, 53].

Illustrative Example: Figure 18 shows an example DAG
and the various lower bounds. Note that, CPLen is 14t;
the longest critical path is {S1 ,S2} → S4 → S6 → S8 .
Further, TWork is 12t with stages S4 ,S6 ,S7 contributing
10t, 0.2t, 1.8t respectively; as before, we assume the clus-
ter capacity C is 1r.

_e DAG on the right shows the modiûcations used by
Graphene. First, we can cut at S6 per logic in §4.4; all
tasks in previous stages should ûnish, because of the bar-
riers between S4 ,S5 and S6. Second, we can replace S4
with its duration of 10t because (a) S4 has to fully ûnish
since its parents S1 ,S2 and its children S6 are connected
with a barrier and (b) the fastest schedule for S4 would
run ten tasks in each wave and ûve waves leading to a du-
ration of 10t. _ird, for the portion of the DAG below
the cut, we can replace at most one stage with its modi-
ûed duration; we choose to do that for the stage created by
merging S7 and S8 (they have the same parent and chil-
dren) and their duration together is 1.8t. Finally, we can
alsomerge S1 and S2 but their duration remains 1t because
of their small resource requirement and this does not af-
fect the overall bound. Hence, the overall lower bound
is now 22.8t; 11t from CPLen of the sub-DAG above the
cut, 10t from the duration of S6 and 1.8t from the modi-
ûed duration of {S7 ,S8}. Due to our ideas, the bound has
improved from 14t to 22.8t.

In this case, OPT is 24t. _e gap between NewLB and
OPT arises from two causes here. (a) A 1t addition in the
sub-DAG above the cut because S5 cannot overlap with
{S1 ,S2} (due to dependencies; S3 has to ûnish) and also
cannot overlap with S4 (because S4 fully uses capacity of
1r). (b) A 0.2t increase in the sub-DAG below the cut;
because due to fragmentation only one task of S7 can run
at a time causing it to take twenty waves and ûnish in 2t
as opposed to the 1.8t predicted by perfect packing. Note
however that NewLB is much closer to OPT.

7 Graphene System
Wehave implemented the runtime component (§5) in the
Apache YARN resource manager (RM) and the sched-
ule constructor (§4) in the Apache Tez application mas-
ter (AM). Our (unoptimized) schedule constructor ûn-
ishes in tens of seconds on theDAGs used in experiments;
this is in the same ballpark as the time to compile and
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query-optimize these DAGs. Recurring jobs use previ-
ously constructed schedules. Each DAG is managed by
an instance of the Tez AM which closely resembles other
frameworks such as FlumeJava [25] and Dryad [43]. _e
per-job AMs negotiate with the YARN RM for containers
to run the job’s tasks; each container is a ûxed amount of
various resources. As part of implementingGraphene, we
expanded the interface between the AM and RM to pass
additional information, such as the job’s pending work
and tasks’ demands, duration and preferred order. Here,
we describe some key aspects.

7.1 DAG Annotations

Recall from §2.5 that Graphene requires a more detailed
annotation of DAGs than existing systems: speciûcally, it
needs task durations and estimates of network and disk
usages; the usages of cores and memory are already avail-
able [8, 67, 73].

Our approach is to construct estimates for the aver-
age task in each stage using a combination of historical
data and prediction. _ese estimates are used by the of-
�ine portion of Graphene (§4). As noticed by prior work,
recurring jobs are common in our production clusters
and historical usages, a�er normalizing for the change in
data volume, are predictive for such job groups [16]. _e
online portion of Graphene (§5) reûnes these estimates
based on the actual work of a task (e.g., by noting its input
size) and based on the executions of earlier tasks; since
(a) tasks in the same stage o�en run in multiple waves
due to capacity limits and (b) running tasks issue periodic
progress reports [8, 17].

In our evaluation, we execute the jobs once and use
the actual observed usage (from job history) to compute
the necessary annotations. We normalize both the dura-
tion and usage estimates by the tasks’ input size, as ap-
propriate. A sensitivity analysis that introduces diòerent
amounts of error to the estimates and shows their eòect
on performance is in §8.4.
We observe that Graphene is rather robust to estima-

tion error because relatively small diòerences in tasks’ du-
ration and usages do not change the schedule. For exam-
ple, while it is useful to know that reduce and join tasks
are network-heavy as opposed to map tasks which have
no network usage, it is less useful to know precisely how
much network usage a reducer or a join task will have; the
actual usage would vary, at runtime, in any case due to
contention, thread or process scheduling, etc. Similarly,
while it is useful to know that tasks in a certain stage will
take ten times longer, on average, and hence it is better to
overlap those tasks with unrelated work, it is less useful
to know the exact duration of a task; again, the exact du-
rations will vary because of contention, machine-speciûc
slowdowns etc. [17].

7.2 Eõcient online matching

Naively implementing our runtime component (§5)
would improve schedule quality at the cost of delaying
scheduling. We use bundling to oòset this issue.

Some background: _e matching logic in typical
schedulers is heartbeat-based [8]. When amachine heart-
beats to the RM, the allocator (0) maintains an ordering
over pending tasks, (1) picks the ûrst appropriate task to
allocate to that machine, (2) adjusts its data structures
(such as, resorting/rescoring) and (3) repeats these steps
until all resources on the node have been allocated or all
allocation requests have been satisûed.
A naive implementation of the runtime component

would examine all the pending tasks; thereby increasing
the time to match.

Instead, we propose to bundle the allocations. Speciû-
cally, rather than breaking the loop a�er ûnding the ûrst
schedulable task (step 1 above), we keep along a bundle
of tasks that can all be potentially scheduled on the ma-
chine. At the end of one pass, we assign multiple tasks by
choosing from among those in the bundle.

_e bundle amortizes the cost of examining the pend-
ing tasks. We can allocate multiple tasks in one pass as
opposed to one pass per task. It is also easy to see that
bundling admits non-greedy choices and that the pass can
be terminated early when the bundle has good-enough
tasks. We have refactored the Yarn scheduler with conûg-
urable choices for (1) which tasks to add to the bundle, (2)
when to terminate bundling and (3) which tasks to pick
from the bundle. From conversations with Hadoop com-
mitters, these code-changes help improve matching eõ-
ciency and code readability.

7.3 Co-existing with other features

We note that a cluster scheduler performs other roles be-
sides matching tasks to machines. Several of these roles
such as handling outliers and failed tasks diòerently [17,
74], delay scheduling [72], reservations [12, 30] or sup-
porting heterogeneous clusters where only some servers
may have GPUs [11] are implemented as preconditions to
the main schedule loop, i.e. they are checked ûrst, or are
implemented by partitioning the tasks that will be con-
sidered in the scheduling loop. Since Graphene’s changes
only aòect the inner core of the schedule loop (e.g., given
a set of pending tasks, which subset to allocate to a ma-
chine), our implementation co-exists with these features.

8 Evaluation
Our key evaluation results are as follows.
(1) In experiments on a 200 server cluster, relative to Tez
jobs running on YARN, Graphene improves completion
time of half of the jobs by 19% to 31% across various bench-
marks. 25% of the jobs improve by 30% to 49%. _e extent
of gains depends on the workload (complexity of DAGs,
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resource usage variations etc.).
(2) On over 20,000 DAGs from production clusters, the
schedules constructed by Graphene are faster by 25% for
half of the DAGs. A quarter of the DAGs improve by 57%.
Further, by comparing with our new lower bound, these
schedules are optimal for 40% of the jobs and within 13%
of optimal for 75% of the jobs.
(3) By examining further details, we show that the gains
are from better packing dependent tasks. Makespan (and
cluster throughput) improve by a similar amount. More
resources are used, on average, by Graphene and trading
oò short-term unfairness improves performance.
(4) We also compare with several alternative schedulers
and oòer a sensitivity analysis to cluster load, various pa-
rameter choices, and annotation errors.

8.1 Setup

Our experimental clusterhas 200 serverswith two quad-
core Intel E2550 processors (hyperthreading enabled), 128
GB RAM, 10 drives, and a 10Gbps network interface. _e
network has a congestion-free core [39].
Workload: Our workload mix consists of jobs from
public benchmarks—TPC-H [14], TPC-DS [15], Big-
Bench [4], and jobs from a production cluster that runs
Hive jobs (E-Hive). We also use 20K DAGs from a pri-
vate production system in our simulations. In each exper-
imental run, job arrival is modeled as a Poisson process
with average inter-arrival time of 25s for 50minutes. Each
job is picked at random from the corresponding bench-
mark. We built representative inputs and varied input size
fromGBs to tens of TBs such that the average query com-
pletes in a few minutes and the longest query ûnishes in
under ten minutes on the idle cluster. A typical experi-
ment run has about 120 jobs. _e results presented are
the median over three runs.
Compared Schemes: We experimentally compare
Graphene with the following baselines: (1) Tez ∶ breadth-
ûrst order of tasks in the DAG running atop YARN’s
Capacity Scheduler (CS), (2) Tez+CP ∶ critical path
length based order of tasks in the DAG atop CS and (3)
Tez+Tetris ∶ breadth-ûrst order of tasks in the DAG
atop Tetris [37]. To tease apart the gains from the of-
�ine and online components, we also oòer results for (4)
Tez+G+CS and (5) Tez+G+Tetris which use the of-
�ine constructed schedules at the jobmanager (to request
containers in that order) but the online components are
agnostic to the desired schedule (either the default ca-
pacity scheduler or Tetris respectively). Using simula-
tions, we also compare Graphene against the following
schemes: (6) BFS ∶ breadth ûrst order, (7) CP ∶ critical
path order, (8) Random order, (9) StripPart [20], (10)
Tetris [37], and (11) CoffmanGraham [29].
All of the above schemes except (9) are work-

conserving. (6)–(8) and (10) pick only from among the

runnable tasks but vary in the speciûc heuristic. (9) and
(11) perform more complex schedule construction, as we
will discuss later.
Metrics: Improvement in JCT is our key metric. Be-
tween two schemes, we measure the normalized gap in
JCTs. _at is, the diòerence in the runtime of a job di-
vided by the job runtime; the normalization lets us com-
pare jobs with very diòerent runtimes. We also measure
makespan, i.e., the time to ûnish a given set of jobs, Jain’s
fairness index [45], and the actual usages of various re-
sources in the cluster.

8.2 How does Graphene do in experiments?

Job Completion Time: Relative to Tez, Figure 19 shows
thatGraphene improves half of theDAGs by 19 to 31%; the
extent of gains depends on the workload and varies across
benchmarks. A quarter of the DAGs improve by 30 to
49%. We see occasional regressions. Up to 5% of the jobs
in the TPC-DS benchmark slow down with Graphene;
the maximum slowdown is 16%. We found this to pri-
marily happen on the shorter jobs and believe it is due to
noise from runtime artifacts such as stragglers and task
failures [17]. _e table in Figure 19 shows the results for
all the benchmarks; we see that DAGs from E-Hive see
the smallest improvement (19% at median) because the
DAGs here are mostly two stage map-reduce jobs. _e
other benchmarks have more complex DAGs and hence
receive larger gains.

Relative to the alternatives, Figure 19 shows that
Graphene is 15% to 34% better. Tez+CP achieves
only marginal gains over Tez, hinting that critical path
scheduling does not suõce. _e exception is the Big-
Bench dataset where about half the queries are dominated
by work on the critical path. Tez+Tetris comes closest
to Graphene because Tetris’ packing logic reduces frag-
mentation. _e gap is still substantial since Tetris ignores
dependencies. In fact, we see that Tez+Tetris does not
consistently beat Tez+CP. Our takeaway is that consid-
ering both dependencies and packing substantially im-
proves DAG completion time.

Where do the gains come from? Figure 20 oòers more
detail on an example experimental run. Graphene keeps
more tasks running on the cluster and hence ûnishes
faster (Figure 20a). _e other schemes take over 20%
longer. Graphene runs more tasks by reducing fragmen-
tation and by overbooking resources such as network and
disk that do not lose goodput when demand exceeds ca-
pacity (unlike say memory). Comparing Figure 20b with
Figures 20c, 20d, the average allocation of all resources is
higher with Graphene. Occasionally, Graphene allocates
over 100% of the network and disk. One caveat about our
measurement methodology here: we take the peak us-
age of a task and assume that the task held on to those
resources for the entirety of its lifetime; hence, the us-
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(a) CDF jobs on TPC-DS workload

25th % 50th % 75th %
Workload T+CP T+T G T+CP T+T G T+CP T+T G
TPC-DS 2.0 1.9 16.0 4.1 6.5 27.8 8.9 16.6 45.7
TPC-H 1.8 1.5 7.6 3.8 8.9 30.5 7.7 15.0 48.3
BigBench 4.1 2.0 5.6 6.4 6.2 25.0 21.7 18.5 33.3
MS-Prod -3.0 3.2 4.4 1.0 5.8 19.0 4.5 14.2 29.7
G is Graphene, T+T is Tez + Tetris and T+CP is Tez + CP. The improvements are
relative to Tez. Each group of columns reads out the gaps at the percentile in the label
of that group.

(b) Improvements in JCT across all the workloads

Figure 19: Comparing completion time improvements of various schemes relative to Tez.
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(c) Tez+Tetris
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Figure 20: For a cluster run with 200 jobs, a time lapse of how many tasks are running (le�most) and how many resources are
allocated by each scheme. N/R represents the amount of network read, D/R the disk read and D/W the corresponding disk
write.

Workload Tez+CP Tez+Tetris Graphene
TPC-DS +2.1% +8.2% +30.9%
TPC-H +4.3% +9.6% +27.5%

Table 4: Makespan, gap from Tez.

Workload Scheme 2Q vs. 1Q Jain’s fairness index
Perf. Gap 10s 60s 240s

TPC-DS
Tez −13% 0.82 0.86 0.88

Tez+DRF −12% 0.85 0.89 0.90
Tez+Tetris −10% 0.77 0.81 0.92

Graphene +2% 0.72 0.83 0.89
Table 5: Fairness: Shows the performance gap and Jain’s fair-
ness index when used with 2 queues (even share) versus 1
queue. Here, a score of 1 indicates perfect fairness.

ages are over-estimates for all schemes. Tez+Tetris,
the closest alternative, has fewer tasks running at all times
because (a) it does not overbook (resource usages are be-
low 100% in Figure 20c) and (b) it has aworse global pack-
ing for a DAG because it ignores dependencies and packs
only the runnable tasks. Tez+CP is impacted negatively
by two eòects: (a) ignoring disk and network usage leads
to arbitrary over-allocation (the “total” resource usage is
higher because, due to saturation, tasks hold on to allo-
cations for longer) and (b) due to fragmentation, many
fewer tasks run on average. Overall, Graphene gains by
increasing the task throughput.
Makespan: To evaluate makespan, we make one change
to the experiment setup– all jobs arrive within the ûrst
few minutes. Everything else remains the same. Table 4
shows the gap in makespan for diòerent cases. Due to
careful packing, Graphene sustains high cluster resource
utilization which in turn enables jobs to ûnish quickly:
makespan improves 30% relative to Tez and over 20% rel-
ative to alternatives.
Fairness: Can we improve performance while also be-

Tez+G+CS Tez+G+Tetris
50th %ile 75th %ile 50th %ile 75th %ile

JCT 28.1 41.7 26.3 39.5
Makespan 24.6 35.4 22.5 32.2

Table 6: Shows the performance gap, relative to Graphene,
when the preferred schedules of DAGs are used by the job
managers but ignored by the cluster scheduler.
ing fair? Intuitively, fairness may hurt performance since
fairly dividing resources may lower overall utilization or
slow-down some jobs. To evaluate fairness, we make one
change to the experiment set up. _e jobs are evenly and
randomly distributed among two queues and the sched-
uler has to divide resources evenly.

Table 5 reports the gap in performance (median JCT)
for each scheme when run with two queues vs. one.
Tez, Tez+DRF and Tez+Tetris lose over 10% in per-
formance relative to their one queue counterparts. _e
table shows that with two queues, Graphene has a small
gain (perhaps due to experimental noise). Hence, rela-
tively, Graphene performs even better than the alterna-
tives if given more queues. But why? Table 5 also shows
Jain’s fairness index computed over 10s, 60s and 240swin-
dows. We see thatGraphene is less fair at short timescales
but is indistinguishable at larger time windows. _is is
because Graphene bounds unfairness (§5); it leverages
short-term slack from precise fairness to make schedul-
ing choices that improve performance.
Value of enforcing preferred schedules online: Recall
that Graphene’s online component enforces the preferred
schedules constructed by the oøine component. To tease
apart the value of this combination, we consider alterna-
tives wherein the job managers use the preferred sched-
ules (to request containers in that order) but the clus-
ter scheduler is agnostic; i.e. it simply runs the default
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(b) Graphene vs. Alternates
Figure 21: Comparing Graphene with other schemes. We
removed the lines for CG and StripPart from the right ûgure
because they hug x = 0; see Table 7.

25th 50th 75th 90th

Graphene 7 25 57 74
Random −2 0 1 4

Crit.Path
Fit cpu/mem −2 0 2 1
Fit all 1 4 13 16
Overbooking 2 9 24 31

Tetris Fit all 0 7 29 42
Overbooking 0 11 33 49

Strip Part. Fit all 0 1 12 27
Overbooking 0 2 16 33

Coffman-Graham. Fit all 0 1 12 26
Fit cpu/mem −2 0 0 2

Table 7: Reading out the gaps from Figure 21. _e improve-
ments are relative to BreadthFirst - standard approach
used in Tez.

capacity scheduler or Tetris (we call these Tez+G+CS
and Tez+G+Tetris respectively). Table 6 shows that
Graphene oòers 26% and 28% better median JCT com-
pared to Tez+G+Tetris and Tez+G+CS. _is exper-
iment was conducted on a smaller 50 server cluster with
diòerent hardware so these numbers are not directly com-
parable with the remaining experiments; we oòer them
merely as a qualitative validation of Graphene’s combi-
nation of online and oøine components.

8.3 Comparing with alternatives

We use simulations to compare a wider set of algo-
rithms (§8.1) on the much larger DAGs that ran in the
production clusters. We mimic the actual dependencies,
task durations and resource needs from the cluster.
Figure 21 compares the schedules constructed by

Graphene with the schedules from other algorithms. Ta-
ble 7 reads out the gaps at various percentiles. We observe
that Graphene’s gains at the end of schedule construction
are about the same as those at runtime (Figure 19). _is
is interesting because the runtime component only so�ly
enforces the desired schedules from all the jobs running
simultaneously in the cluster. It appears that any loss in
performance from not adhering to the desired schedule is
made up by the gains from better packing (across DAGs)
and trading oò some short-term unfairness.

Second, Graphene’s gains are considerable compared
to the alternatives. CP and Tetris are the closest. _e
reason is that Graphene looks at the entire DAG and
places the troublesome tasks ûrst, leading to a more com-
pact schedule overall.

_ird, when tasks have unit durations and nicely
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(b) Makespan
Figure 22: Graphene - sensitivity analysis.

shaped demands, CG (Coòman-Graham [29]) is at most 2
times optimal. However, it does not perform well on the
heterogeneous DAGs seen in production. Some recent
extensions of CG to handle heterogeneity ignore fragmen-
tation when resources are divided across machines [49].
Fourth, StripPart [20] combines resource packing

and task dependencies and has the best-known approx-
imation ratio: O(logn) on a DAG with n tasks [20]. _e
key idea is to partition tasks into levels such that all depen-
dencies go across levels and then to tightly pack each level.
We ûnd that StripPart under-performs simpler heuris-
tics in practice because (a) independent tasks that happen
to fall into diòerent levels cannot be packed together lead-
ing to wasted resources between levels and (b) the recom-
mended per-level packers (e.g. [60]) do not support mul-
tiple resources and vector packing [58].

How close is Graphene to Optimal? Comparing
Graphene with NewLB, we ûnd that Graphene is optimal
for about 40% of the DAGs. For half (three quarters) of
the DAGs, Graphene is within 4% (13%) of the new lower
bound. A gap still remains: for 10% of DAGs, Graphene
takes 25% longer. Manually examining these DAGs shows
that NewLB is loose for most of them (deriving a tighter
lower bound is an open problem). In sum, Graphene is
close to optimal for most of the production DAGs.

8.4 Sensitivity Analysis

Packing vs. Shortest Remaining Processing Time
(srpt): Recall that we combine packing score and srpt
using a weighted sum with η (§5). Let η be m times the
average over the two expressions that it combines. Fig-
ure 22 shows the reduction in average JCT (on le�) and
makespan (on right) for diòerent values of m. Values of
m ∈ [0.1,0.3] have the most gains. Lower values lead to
worse average JCT because the eòect of srpt reduces;
larger values lead to moderately worse makespan. Hence,
we recommend m = 0.2.
Remote Penalty: Graphene uses a remote penalty rp to
prefer local placement. Our analysis shows that both JCT
and makespan improve the most when rp ∈ [0.7,0.85]
(Figure 22). Since rp is amultiplicative penalty, lower val-
ues of rp cause the scheduler tomiss (non-local) schedul-
ing opportunities whereas higher rp can over-use remote
resources. We use rp = 0.8.
Cluster Load:We vary cluster load by reducing the num-
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Figure 23: Graphene’s gains increase with cluster load.
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Figure 24: Fractional change in the job completion
time (JCT) of DAGs with various schedulers when task
durations and resource proûles are mis-estimated.

ber of available servers without changing the workload.
Figure 23 shows the JCTs and makespan for a query set
derived from TPC-DS. Both Graphene and the alterna-
tives oòer more gains at higher loads. _is is because the
need for careful scheduling and packing increases when
resources are scarce. Gains due to Graphene increase by
+10% at 2× load and by +15% at 6× load. Further, the gap
between Graphene and the alternatives remains similar
across load levels.
Impact of misestimations: We oòer to each scheduler
an inaccurate task duration and resource usage vector
but have the underlying execution use the true values.
Hence, the schedulers match tasks to machine based on
imperfect estimates. Once scheduled, the tasks may ûn-
ish a�er a diòerent duration or use diòerent amounts
of resources. When the total resource demand crosses
machine capacity, we delay the completion of tasks fur-
ther by a proportional amount. Figure 24 shows a CDF
of the change in the completion time of the production
DAGs for diòerent schedulers. Each line denotes a dif-
ferent amount of error. For example, the red triangle
line labeled [−0.75 ∶ −0.50] corresponds to picking a ran-
dom number in that range for each stage and then chang-
ing the task durations and resource needs fractionally by
that random number (−0.75 indicates a 75% lower value).
We see that the impact of mis-estimates is rather small;
Graphene changes roughly similarly to the other sched-
ulers. Under-estimates tend to speed up the job because
the scheduler over-allocates tasks but over-allocation can
also slow-down jobs. Over-estimates delay jobs because
the scheduler wastes resources; it may refrain from allo-
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Figure 25: Comparing Graphene (G) with Tetris (T) and
Critical path scheduling (CP) on DAGs from other domains.

cating a task when its needs appear larger than the avail-
able resources at a machine. Overall, Graphene appears
robust to mis-estimations.

9 Applying Graphene to other domains
WeevaluateGraphene’s eòectiveness in schedulingDAGs
that arise in distributed compilation jobs [3, 32, 34] and
Internet service work�ows [46].
Distributed build systems speed up the compilation of

large code bases [3, 34]. Each build is a DAG with de-
pendencies between the various tasks (compilation, link-
ing, test, code analysis). _e tasks have diòerent runtimes
and diòerent resource proûles. Figure 25a shows that
Graphene is 20% (30%) faster than Tetris (CP) when
scheduling the buildDAGs from a production distributed
build system [32]. Each bar is centered on themedian gain
for DAGs of a certain size; the error bars are quartiles.
We also examine the DAGs that arise in datacenter-

side work�ows for Internet-services [46]. For instance,
a search query translates into a work�ow of dependent
RPCs at the datacenter (e.g., spell check before index
lookup, video and image lookup in parallel). _e RPCs
use diòerent resources, have diòerent runtimes and of-
ten run on the same server pool [46]. Over several
work�ows from a production service, Figure 25b shows
that Graphene improves upon alternatives by about 24%.
_ese encouraging early results hint that Graphene may
be more broadly useful.

10 RelatedWork
To structure the discussion, we ask four questions: (Q1)
does a scheme consider both packing and dependencies,
(Q2) does it make realistic assumptions, (Q3) is it practi-
cal to implement in cluster schedulers and, (Q4) does it
consider multiple objectives such as fairness? Graphene
is unique in positively answering these four questions.
Q1 ∶ NO. Substantial prior work ignores dependencies
but packs tasks with varying demands for multiple re-
sources [26, 37, 60, 65, 71]. _e best results are when the
demand vectors are small [21]. Other work considers de-
pendencies but assumes homogeneous demands [29, 36].
A recent multi-resource packing scheme, Tetris [37], suc-
ceeds on the three other questions but does not handle
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dependencies. Hence, we saw in §8 that Tetris performs
poorly when scheduling DAGs (can be up to 2d times oò,
see [38]). Tetris can also be arbitrarily unfair.

Q1 ∶ YES,Q2 ∶ NO._epacking+dependencies problemhas
been considered at length under job-shop scheduling [31,
35, 50, 63]. Most results assume knowledge of job arrival
times and proûles [49]. For the case with unknown fu-
ture job arrivals (the version considered here), no algo-
rithms with bounded competitive ratios are known [54,
55]. Some notable work assumes only two resources [23],
applies for a chain but not a general DAG [18] or assumes
one cluster-wide resource pool [51].

Q3 ∶ NO. Several of the schemes listed above are com-
plex and hence do not meet the tight timing require-
ments of cluster schedulers. VM allocators [28] also con-
sider multi-resource packing. However, cluster sched-
ulers have to support roughly two to three orders of mag-
nitude higher rate of allocation (tasks aremore numerous
than VMs).

Q3 ∶ YES,Q1 ∶ NO. Several works in cluster scheduling ex-
ist such as Quincy [44], Omega [62], Borg [68], Kuber-
netes [9] and Autopilot [42]. None of these combine
multi-resource packing with DAG-awareness and many
do neither. Job managers such as Tez [2] and Dryad [43]
use simple heuristics such as breath-ûrst scheduling and
perform poorly in our experiments.

Q4 ∶ NO. Recently proposed fairness schemes incor-
porate multiple resources [33] and some are work-
conserving [27]. We note that these fairness schemes nei-
ther pack nor are DAG-aware. Graphene can incorporate
these fairness methods as one of the multiple objectives
and trades oò bounded unfairness for performance.

11 Concluding Remarks

DAGs are a common scheduling abstraction. However,
we found that existing algorithms make key assumptions
that do not hold in the case of cluster schedulers. Our
scheduler, Graphene, is an eõcient online solution that
scales to large clusters. We experimentally validated that
it substantially improves the scheduling of DAGs in both
synthetic and emulated production traces. _e core tech-
nical contributions are: (1) construct a good schedule
for a DAG by placing tasks out-of-order on to a virtual
resource-time space, and (2) use an online heuristic to
so�ly enforce the desired schedules and simultaneously
manage other concerns such as packing and fairness.
Much of these innovations use the fact that job DAGs
consist of groups of tasks (in each stage) that have similar
durations, resource needs, and dependencies. We intend
to contribute our Graphene implementation to Apache
YARN/Tez projects.
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