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Global analytics in the face of bandwidth and regulatory constraints

Ashish Vulimiri*
Thomas Jungblut™
“: UIUC <vulimirl,pbg> @illinois.edu

Abstract

Global-scale organizations produce large volumes of
data across geographically distributed data centers.
Querying and analyzing such data as a whole introduces
new research issues at the intersection of networks and
databases. Today systems that compute SQL analytics
over geographically distributed data operate by pulling
all data to a central location. This is problematic at
large data scales due to expensive transoceanic links,
and may be rendered impossible by emerging regulatory
constraints. The new problem of Wide-Area Big Data
(WABD) consists in orchestrating query execution across
data centers to minimize bandwidth while respecting
regulatory constaints. WABD combines classical query
planning with novel network-centric mechanisms de-
signed for a wide-area setting such as pseudo-distributed
execution, joint query optimization, and deltas on cached
subquery results. Our prototype, Geode, builds upon
Hive and uses 250 % less bandwidth than centralized an-
alytics in a Microsoft production workload and up to
360x less on popular analytics benchmarks including
TPC-CH and Berkeley Big Data. Geode supports all
SQL operators, including Joins, across global data.

1 Introduction

Organizations operating at global scale need to analyze
vast amounts of data. The data is stored in multiple data
centers around the world because of stringent latency
requirements for user-facing applications. The volume
of data collected while logging user interactions, mon-
itoring compute infrastructures, and tracking business-
critical functions is approaching petabytes a day. These
new global databases across data centers — as opposed
to traditional parallel databases [4] within a data center
— introduce a new set of research issues at the intersec-
tion of databases and networks, combining the traditional
problems of databases (e.g., query planning, replication)
with the challenges of wide area networks (e.g., band-
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width limits, multiple sovereign domains [17]). Recent
work in global databases illustrates this research trend,
from Spanner [12] (global consistency) to Mesa [22]
(replication for fault tolerance) to JetStream [34] (ana-
lytics for data structured as OLAP cubes).

In these applications, besides the many reads and
writes generated by user transactions or logging, data is
frequently accessed to extract insight, using ad-hoc and
recurrent analytical queries. Facebook [40, 44], Twit-
ter [29], Yahoo! [14] and LinkedIn [3] report operat-
ing pipelines that process tens or hundreds of TBs of
data each day. Microsoft operates several large-scale ap-
plications at similar scales, including infrastructures for
collecting telemetry information for user-facing applica-
tions, and a debugging application that queries error re-
ports from millions of Windows devices [19]. Many of
these queries require Joins and cannot be supported using
the OLAP cube abstraction of [34].

To the best of our knowledge, companies today per-
form analytics across data centers by transferring the data
to a central data center where it is processed with stan-
dard single-cluster technologies such as relational data
warehouses or Hadoop-based stacks. However, for large
modern applications, the centralized approach transfers
significant data volumes. For example, an analytics ser-
vice backing a well known Microsoft application ingests
over 100 TB/day from multiple data centers into a cen-
tralized analytics stack. The total Internet bandwidth
crossing international borders in 2013 was 100 Tbps
(Figure 1). Even if all this capacity were dedicated to
analytics applications and utilized with 100% efficiency,
it could support only a few thousand such applications.

Moreover, while application demands are growing
from 100s of terabytes towards petabytes per day, net-
work capacity growth has been decelerating. The 32%
capacity growth rate in 2013-2014 was the lowest in the
past decade (Figure 1). A key reason is the expense of
adding network capacity: for instance, a new submarine
cable connecting South America and Europe is expected
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Figure 1: Sum of capacities of Internet links crossing
international borders [24]

to cost $185 million. This scarcity of wide-area net-
work bandwidth can drive applications to discard valu-
able data; the problem will only worsen as applications
scale up and out. Our analysis of bandwidth trends is
consistent with [34, 28, 21].

A second emerging difficulty is that privacy concerns
(for example in the EU [16]) may result in more regula-
tory constraints on data movement. However, while local
governments may start to impose constraints on raw data
storage [35], we speculate that derived information, such
as aggregates, models, and reports (which are critical
for business intelligence but have less dramatic privacy
implications) may still be allowed to cross geographical
boundaries.

Thus our central thesis is: rising global data and scarce
trans-oceanic bandwidth, coupled with regulatory con-
cerns, will cause an inflection point in which centraliz-
ing analytics (the norm today) will become inefficient
and/or infeasible. We consider the problem of provid-
ing wide area analytics while minimizing bandwidth over
geo-distributed data structured as SQL tables, a domi-
nant paradigm. We support the entire array of SQL op-
erators on global data including Joins, providing exact
answers. We refer to such analytics as Wide-Area Big
Data or WABD.

Our paper proposes a solution to the WABD prob-
lem. We support SQL analytics on geo-distributed data,
providing automated handling of fault-tolerance require-
ments and using replicated data to improve performance
whenever possible. We assume that resources within a
single data center (such as CPU and storage) are rela-
tively cheap compared to cross-data center bandwidth.
We target the batch analytics paradigm dominant in large
organizations today [44, 29, 3], where the cost of sup-
porting analytics execution is the primary metric of inter-
est. Our optimizations are all targeted at reducing band-
width cost; we currently make no attempt at minimizing
analytics execution latency.

Our techniques revisit the classical database prob-
lem of query planning while adding a networking twist.
In particular, while classical query planning optimizes
query processing (“What’s the best join order?”’) to min-
imize computation, in WABD we optimize the execution

strategy to minimize bandwidth and respect sovereignity.
For example, one of our techniques is based on caching
previous answers to subqueries at data centers and only
sending the difference, reminiscent of differential file
transfer mechanisms [42, 41]. Similarly, our query op-
timization approach relies on the fact that analytical
queries are repeated: thus simple measurement tech-
niques common in networking can be used to measure
data transfer costs across data centers. This contrasts
with classical database techniques using histograms (de-
signed to handle arbitrary queries) that are well known
to be inaccurate in the face of Joins and User Defined
Functions [30].

We make four main contributions:

1. Optimizer: We jointly optimize query execution
plans and data replication to minimize bandwidth cost.
Our solution combines a classical centralized SQL query
planner (a customized version of Apache Calcite) with
an integer program for handling geo-distribution.

2. Pseudo-distributed measurement: We develop a
technique that modifies query execution to collect ac-
curate data transfer measurements, potentially increas-
ing the amount of (cheap) computation within individual
data centers, but never worsening (expensive) cross-data
center bandwidth.

3. Subquery Deltas: We take advantage of the cheap
storage and computation within individual data centers to
aggressively cache all intermediate results, using them to
eliminate data transfer redundancy using deltas.

4. Demonstrated Gains: Our prototype, Geode, is
built on top of the popular Hive [39] analytics frame-
work. Geode achieves a 250x reduction in data trans-
fer over the centralized approach in a standard Microsoft
production workload, and up to a 360x improvement in
arange of scenarios across several standard benchmarks,
including TPC-CH [9] and Berkeley Big Data [6].

2 Approach Overview

We start by discussing an example inspired by the Berke-
ley Big-Data Benchmark [6] and use it to motivate our
architecture.

Running example

We have a database storing batch-computed page meta-
data and a log of user visits to web pages, including in-
formation about the revenue generated by each visit:

ClickLog(sourceIP,destURL,visitDate,adRevenue,. ..
PageInfo(pageURL,pageSize,pageRank,...)

Pages are replicated at multiple edge data centers, and
users are served the closest available copy of a page. Vis-
its are logged to the data center the user is served from,
so that the ClickLog table is naturally partitioned across
edge data centers. The Pagelnfo table is stored centrally
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in a master data center where it is updated periodically
by an internal batch job.

Now consider an analytical query reporting statistics
for users (identified by their IP address) generating at
least $100 in ad revenue.

Q: SELECT sourceIP, sum(adRevenue), avg(pageRank)
FROM ClickLog cl JOIN Pagelnfo pi
ON cl.destURL = pi.pageURL
WHERE pi.pageCategory = ’Entertainment’
GROUP BY sourceIP
HAVING sum(adRevenue) >= 100

Supporting this query via the centralized approach re-
quires retrieving all updates made to the ClickLog table
to a central data center where the analytical query is com-
puted. This means that the daily network bandwidth re-
quirement is proportional to the total size of the updates
to the database. Assuming 1B users, 6 pages visited per
user, 200 bytes per ClickLog row, this is roughly (1B * 6
*200) bytes = 1.2 TB per day.

By contrast, Geode provides an equivalent location-

independent [33] query interface over distributed data.
The analyst submits the query Q unmodified to Geode,
which then automatically partitions the query and or-
chestrates distributed execution. Geode constructs the
distributed plan in two stages:
1. Choose join order and strategies. Geode first cre-
ates a physical execution plan for the logical query Q,
explicitly specifying the order in which tables are joined
and the choice of distributed join algorithm for process-
ing each join (broadcast join, semijoin etc. — see §5). In
this simple query, there is only one choice: the choice of
algorithm for processing the join between the ClickLog
and Pagelnfo tables.

To make these choices we use Calcite++, a customized
version we built of the Apache Calcite centralized SQL
query planner. Calcite has built-in rules that use sim-
ple table statistics to optimize join ordering for a given
query; Calcite++ extends Calcite to also make it identify
the choice of distributed join algorithm for each join. We
describe Calcite++’s design in detail in §4.1.

When Calcite++ is run on Q, it outputs an annotation
JOINHINT (strategy = right_broadcast), indicat-
ing that the join should be executed by broadcasting the
(much smaller) Pagelnfo table to each data center hold-
ing a partition of the (larger) ClickLog table, then com-
puting a local join at each of these data centers.

Assuming an organization that operates across three
edge data centers, the physical plan Q,,, translates di-
rectly into the DAG in Figure 2. Each circle is a task: a
SQL query operating on some set of inputs. Edges show
data dependencies. Tasks can read base data partitions
(e.g. q1) and/or outputs from other tasks (e.g. gs) as in-
put. All the inputs a task needs must either already be
present or be copied over to any data center where it is

SELECT sourcelP, ...
FROM ClickLog cl

ClickLo
9 JOIN Pagelnfo pi ON ...

Pagelnfo

to analyst

SELECT pageURL, ...
FROM Pagelnfo
WHERE
pageCategory
= 'Entertainment’

SELECT sourcelP, ...
FROM ClickLog cl
JOIN Pagelnfo pi ON ...
HAVING
sum(adRevenue)
>100

Figure 2: DAG corresponding to Q,

scheduled. While we do not consider them in this sim-
ple example, regulatory restrictions may prohibit some
partitions from being copied to certain data centers, thus
constraining task scheduling.

2. Schedule tasks. Geode now needs to assign tasks to
data centers, taking into account task input dependencies
and base data regulatory constraints.

Geode can maintain multiple copies of base data parti-
tions, for performance and/or for fault tolerance, and po-
tentially schedule multiple copies of tasks operating on
different partition copies. For instance, it could maintain
a synchronized copy of the Pagelnfo table at every data
center and create multiple copies of task ¢; at each data
center. The choice of replication strategy is controlled by
a workload optimizer, at a much longer time scale than
one individual query’s execution (typically replication
policy changes occur on a weekly basis or even slower).
The optimizer chooses the replication policy taking vari-
ous factors into account (§4).

At runtime, Geode schedules tasks for individual
queries on data centers by solving an integer linear pro-
gram (ILP) with variables x;; = 1 iff a copy of task ¢
is scheduled on data center d. The constraints on the
ILP specify the input dependencies for each task and the
availability and regulatory constraints on copies of parti-
tions at each data center. The ILP tries to minimize the
total cost of the data transfers between tasks in the DAG
if measurements of inter-task transfer volumes are avail-
able (see §4). The ILP described here is a simpler version
of the more nuanced multi-query optimizer in §4.3.

Assume an initial setup where data are not replicated.
Then the natural strategy is to schedule g; on the master
data center holding the Pagelnfo table, push ¢, g3, g4
down to the edge data centers holding the ClickLog par-
tition they operate on, and co-locate g5 with one of ¢,
q3 or g4. If query Q is submitted once a day, 1B users
visit 100M distinct pages each day, 100K users have an
ad revenue larger than $100, each tuple output by g is 20
bytes long and by ¢», g3, g4 is 12 bytes long, distributed
execution will transfer 3 * 100M %20 + (2/3) x 1B* 12
+ 100K * 12 = 14 GB of data each day, compared to 1.2
TB per day for the centralized approach.
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While these numbers suggest a clear win for the dis-
tributed approach, if Q is submitted once every 10 min-
utes centralization is more efficient. The workload opti-
mizer evaluates this tradeoff across the entire analytical
workload and continuously adapts, reverting to central-
ized execution if needed. Analytical queries can be much
more complex than Q; for example, the CH benchmark
(§6) contains a query with 8 joins (involving 9 different
tables) for which the degrees of freedom (join order, join
strategy, replication) are much higher.

Architecture

Our example motivates the architecture in Figure 3.

Geode processes analytics over data split across multi-
ple data centers, constantly updated by interactions with
a set of end-users. End-user interactions are handled ex-
ternally to our system, and we do not model them explic-
itly. We assume that at each data center all data has been
extracted out into a standard single-data-center analytics
stack, such as Hive or a relational database. Our current
implementation is Hive-based.

The core of our system is a central command layer.
The command layer receives SQL analytical queries,
partitions them to create a distributed query execution
plan, executes this plan (which involves running queries
against individual data centers and coordinating data
transfers between them), and collates the final output. At
each data center the command layer interacts with a thin
proxy deployed over the local analytics stack. The proxy
layer facilitates data transfers between data centers and
manages a local cache of intermediate query results used
for the data transfer optimization in §3.

A workload optimizer periodically obtains measure-
ments from the command layer to estimate if changing
the query plan or the data replication strategy would im-
prove overall performance. These measurements are col-
lected using our pseudo-distributed execution technique
(§4.2), which may entail rewriting the analytical queries.
The optimizer never initiates changes directly, but in-
stead makes suggestions to an administrator.

We next discuss: an optimization we implement to re-
duce data transfers (§3); the workload optimizer includ-

time
0+ DCB asks DCA for result of subquery g
e <ooet DC,
running subquery q; DCA — ’ B
DC, computes and sends g
After transfer, both kee = ol
P DCp bCq

cached copy

1 4 DCy again asks DC, for result

of running subquery q; DC
DC, computes new results q;, A

@-®)

but only sends diff

Figure 4: Subquery delta mechanism

ing pseudo-distributed execution (§4); and the design and
implementation of our Geode prototype (§5).

3 Subquery deltas: Reducing data transfer

We first turn our attention to optimizing the mechanics
of data movement. The unique setting we consider, in
which each node is a full data center with virtually lim-
itless CPU and storage, but connectivity among nodes
is costly/limited, lends itself to a novel optimization for
eliminating redundancy.

Consider a query computing a running average over
the revenue produced by the most revenue generating IPs
over the past 24 hours. If the query is run once an hour,
more than 95% of the data transfer will be wasted be-
cause every hour unoptimized Geode would recompute
the query from scratch, transferring all the historical data
even though only the last hour of data has changed.

We leverage storage and computation in each data cen-
ter to aggressively cache intermediate results. Figure 4
details the mechanism. After data center DCp retrieves
results for a query from data center DCy, both the source
and the destination store the results in a local cache
tagged with the query’s signature. The next time DCp
needs to retrieve results for the same query from DCy,
DCy4 recomputes the query again, but instead of sending
the results afresh it computes a diff (delta) between the
new and old results and sends the diff over instead.

Note that DCy still needs to recompute the results for
QO the second time around. Caching does not reduce
intra-data-center computation. Its purpose is solely to
reduce data transfer between data centers.

We cache results for individual sub-queries run against
each data center, not just for the final overall results re-
turned to the analyst. This means that caching helps
not only when the analyst submits the same query re-
peatedly, but also when two different queries use results
from the same common sub-query. E.g. in the TPC-CH
benchmark that we test in §6, 6 out of the 22 analytical
queries that come with the benchmark perform the same
join operation, and optimizing this one join alone allows
caching to reduce data transfer by about 3.5 x.
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4 Workload Optimizer

Geode targets analytics with a small, slowly evolving
core of recurring queries. This matches our experience
with production workloads at Microsoft, and is consis-
tent with reports from other organizations [44, 3, 29].
The workload optimizer tailors policy to maximize the
performance of this core workload, jointly optimizing:

1. Query plan: the execution plan for each query, de-
ciding e.g. join order and the execution mechanism
(broadcast join, semijoin etc.).

2. Site selection: which data center is used to execute
each sub-task for each query.

3. Data replication: where each piece of the database
is replicated for performance/fault-tolerance.

The problem we face is akin to distributed database
query planning. In that context, it is common [27] to
employ a two-step solution: (1) find the best centralized
plan (using standard database query planning), and (2)
decompose the centralized plan into a distributed one, by
means of heuristics (often employing dynamic program-
ming). Our approach is similar in spirit, but is faced with
substantially different constraints and opportunities aris-
ing from the WABD setting:

1. Data Birth: We can replicate data partitions to other
data centers, but have no control over where data is
generated originally — base data are naturally “born”
in specific data centers dictated by external consid-
erations, such as the latency observed by end-users.

2. Sovereignty: We must deal with the possibility of
sovereignty constraints, which can limit where data
can be replicated (e.g. German data may not be al-
lowed to leave German data centers).

3. Fixed Queries: We can optimize the system for a
small, approximately static core workload, which
means we do not have to use general-purpose ap-
proximate statistics (e.g., histograms) that yield
crude execution cost estimates for one-time queries.
We can instead collect narrow, precise measures for
a fixed core of queries.

These features drive us to the architecture in Fig-
ure 5. Briefly, we start by identifying the optimal cen-
tralized plan for each query in the core workload using
the Calcite++ query planner (§4.1). We then collect
precise measures of the data transfers during each step
of distributed execution for these plans using pseudo-
distributed measurement (§4.2). We finally combine all
these measurements with user-specified data sovereignty
and fault tolerance requirements to jointly solve the site
selection and data replication problems (§4.3).

4.1 Centralized query planning: Calcite++

Apache Calcite is a centralized SQL query planner cur-
rently being used or evaluated by several projects, in-
cluding Hive [39]. Calcite takes as input a SQL query
parse tree along with basic statistics on each table, and
produces a modified, optimized parse tree. Calcite++ ex-
tends Calcite to add awareness of geo-distributed execu-
tion.

Calcite optimizes queries using simple statistics such
as the number of rows in each table, the average row size
in each table, and an approximate count of the number
of distinct values in each column of each table. All these
statistics can be computed very efficiently in a distributed
manner. Calcite uses these statistics along with some
uniformity assumptions to optimize join order. In Cal-
cite++ we leave the join order optimization unchanged
but introduce new rules to compare the cost of various
(distributed) join algorithms, passing in as additional in-
put the number of partitions of each table. The output
of the optimization is an optimized join order annotated
with the lowest cost execution strategy for each join —
e.g., in our running example (§2) Calcite++ chooses a
broadcast join, broadcasting PageInfo to all ClickLog lo-
cations where local partial joins are then computed.

While both Calcite and (therefore) Calcite++ currently
use only simple, rough statistics to generate estimates,
in all the queries we tested in our experimental evalua-
tion (§6.1), we found that at large multi-terabyte scales
the costs of the distributed join strategies under consid-
eration were orders of magnitude apart, so that impre-
cision in the generated cost estimates was inconsequen-
tial. (The centralized plan generated by Calcite++ always
matched the one we arrived at by manual optimization.)
Moreover, Calcite is currently under active development
— for instance, the next phase of work on Calcite will
add histograms on each column.

4.2 Pseudo-distributed execution

The crude table statistics Calcite++ employs suffice
to compare high-level implementation choices, but for
making site selection and data replication decisions we
require much better accuracy in estimating the data trans-
fer cost of each step in the distributed execution plan.
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WHERE
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= 'Entertainment]
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Figure 6: Pseudo-distributed execution of query Q (§2) in
a centralized deployment. Cf. Figure 2

Traditional database cardinality estimation techniques
can be very inaccurate at generating absolute cost esti-
mates, especially in the face of joins and user-defined
functions [30]. The sheer volume of data, heterogene-
ity network topologies and bandwidth costs, and cross-
query optimizations such as the sub-query delta mech-
anism we propose, further complicate statistics estima-
tion.

Instead, we measure data transfers when executing
the plan in the currently deployed configuration (which
could be a centralized deployment or an already running
Geode deployment), modifying query execution when
necessary to make it possible to collect the estimates we
need. As an example consider query Q (Figure 2) from
§2, currently running in a centralized configuration (i.e.
the entire database is replicated centrally). To estimate
the cost of running in a distributed fashion Geode sim-
ulates a virtual topology in which each base data par-
tition is in a separate data center. This is accomplished
by rewriting queries to push down WHERE country = X
clauses constraining each of g2, g3, g4 to operate on the
right subset of the data'. Figure 6 depicts this process.
The artificial decomposition allows us to inspect inter-
mediate data sizes and identify the data transfer volume
along each edge of the DAG in Figure 2.

This technique, which we call pseudo-distributed ex-
ecution, is both fully general, capable of rewriting arbi-
trary SQL queries to simulate any given data partition-
ing configuration, and highly precise, since it directly
executes rewritten queries and measures output and in-
put sizes instead of attempting any estimation. We em-
ploy the technique whenever we need to evaluate an al-
ternative deployment scenario, such as when considering
moving from an initial centralized deployment to a dis-
tributed Geode deployment; or when considering adding
or decommissioning data centers in a distributed deploy-
ment in response to changes in the load pattern.

The latency overhead added by pseudo-distribution is
minimal and easily mitigated, as we discuss in §6.2.

'Every partitioned table in Geode has a user-specified/system-
generated field identifying the partition each row belongs to (§5).

Trading precision for overhead: While Geode’s imple-
mentation of pseudo-distributed execution measures the
costs of most SQL queries accurately, including those
with joins and nested queries, we deliberately introduce a
limited degree of imprecision when evaluating aggregate
functions to reduce measurement overhead.

Specifically, we ignore the possibility of partial aggre-
gation within data centers. As an example, suppose 10
data partitions are all replicated to one data center, and
consider a SUM query operating on all this data. Retriev-
ing one total SUM over all 10 partitions is sufficient, but
Geode always simulates a fully distributed topology with
each partition in a separate data center, thus retrieving
separate SUMs from each partition and overestimating the
data transfer cost. To measure the true cost of function
evaluation with partial aggregation we would need an ex-
ponential number of pseudo-distributed executions, one
for each possible way of assigning or replicating parti-
tions across data centers; one execution suffices for the
upper bound we use instead.

We found this was not an issue in any of the work-
loads (production or benchmark) we tested. The majority
of the data transfers during query execution arise when
joining tables, and data transfer during the final aggrega-
tion phase after the joins have been processed is compar-
atively much smaller in volume. In all six of our work-
loads, the data transfer for tasks involved in computing
combinable aggregates was < 4% of the total distributed
execution cost.

4.3 Site Selection and Data Replication

After identifying the logical plan (DAG of tasks) for
each query (§4.1) and measuring the data transfer along
each edge (§4.2), we are left with two sets of decisions
to make: site selection, specifying which data centers
tasks should be run on and which copies of the data they
should access; and data replication, specifying which
data centers each base data partition should be replicated
to (for performance and/or fault tolerance). This should
be done while respecting disaster recovery requirements
and sovereignty constraints.

We formulate an integer linear program (Figure 7a)
that jointly solves both problems to minimize total band-
width cost. The ILP is built from two sets of binary
variables, x4 indicating whether partition p is replicated
to data center d; and y,q. identifying the (source, desti-
nation) data center pairs (d,e) to which each edge g in
the considered DAGs is assigned®. Constraints specify
sovereignty and fault-tolerance requirements.

While the ILP provides very high quality solutions, its
complexity limits the scale at which it can be applied—as

2We schedule edges instead of nodes because (1) replication turns
out to be easier to handle in an edge-based formulation, and (2) the
node-based formulation would have a quadratic (not linear) objective.
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Inputs:

D = number of data centers

P = number of data partitions

G = (V,E) = union of DAGs for all core workload queries
be = number of bytes of data transferred along each edge
g € E (from pseudo-distrib. exec.)

update rate,, = rate at which partition p is updated by
OLTP workload (bytes per OLAP run)

link_costy, = cost ($/byte) of link connecting DCs d and e
fp = minimum number of copies of partition p that the
system has to make for fault-tolerance

R C PxD={(p,d) | partition p cannot be copied to data
center d due to regulatory constraints }

Variables:

All variables are binary integers (= 0 or 1)

xpq = L iff partition p is replicated to DC d

Yede = 1 iff edge g in the DAGs is assigned source data
center d and destination data center e

z;q = 1 iff a copy of task ¢ in the DAGs is assigned to data
center d

Solution:

M~
Mo

replCost = update.rate,, % xpq * ink oSt ymepc(p)

d

Il
-

p

o

D
Z Yede * bg x link_costg,

execCost = Z
gEEd=1e=1

miI}(iI;I/liZG replCost + execCost

subject to
V(p,d)€ER:x,3=0

YpiY xpd > fp
VdVeVg | src(g) is a[i)artition Yede < Xgre(g),d
VdYeVg | sre(g) is a task : Ygde < Zgre(g).a
VnVeVg | dst(g) =n: zye = ;ygde

VnVpVd | n reads from partition p A (p,d) €R: 7,4 =0
Vn: ZZW’ >1
d

(a) Integer Linear Program jointly solving both problems

for all DAG G € workload do
for all task ¢ € toposort(G) do
for all data center d € legal_choices(t) do
cost(d) = total cost of copying all of #’s inputs to d
if lowest cost is zero then
assign copies of 7 to every data center with cost =0
else
assign ¢ to one data center with lowest cost
for all (p,d) Z R do
check if replicating p to d would further reduce costs
translate decisions so far into values for x, y, z variables in ILP above
solve simplified ILP with pinned values

(b) Greedy heuristic
Figure 7: Site selection + Data replication: Two solvers

we show in §6.3. For example, if we bound our optimiza-
tion time to 1h (recall that this is an offline, workload-
wide process), the ILP can only support up to 10 data

centers for workloads of the size we test in our experi-
ments. This is barely sufficient for today’s applications.
But the rapid growth in infrastructure [21] and applica-
tion scales that is the norm today may soon outstrip the
capabilities of the ILP. As future-proofing, we propose
an alternative greedy heuristic (Figure 7b) that has much
better scalability properties.

The heuristic approach first uses a natural greedy task
placement to solve the site selection problem in isolation:
identify the set of data centers to which each task can be
assigned based on sovereignity constraints over its input
data, and greedily pick the data center to which copy-
ing all the input data needed by the task would have the
lowest cost. We are still left with the NP-hard problem
of finding the best replication strategy subject to fault-
tolerance and sovereignty requirements. This is tackled
by a (much simpler) ILP in isolation from site selection.

The greedy heuristic scales much better than the ILP,

identifying solutions in less than a minute even at the
100 data center scale. However, in some cases this can
come at the cost of identifying significantly sub-optimal
solutions. We evaluate the tradeoff between processing
time and solution quality in §6.3.
Limitation: At this point the formulation does not at-
tempt to account for gains due to cross-query caching
(the benefit due to the mechanism in §3 when different
queries share common sub-operations). The precise ef-
fect of cross-query caching is hard to quantify, since it
can fluctuate significantly with variations in the order and
relative frequency with which analytical queries are run.
Similar to the discussion of partially aggregatable func-
tions in the previous subsection, we would need an ex-
ponential number of pseudo-distributed measurements to
estimate the benefit from caching in every possible com-
bination of execution plans for different queries.

However, we do account for intra-query caching —
the benefit from caching within individual queries (when
the same query is run repeatedly). We always collect
pseudo-distributed measurements with a warm cache and
report stable long-term measurements. This means all
data transfer estimates used by the ILP already account
for the long-term effect of intra-query caching.

5 Geode: Command-layer interface

Geode presents a logically centralized view over data
partitioned and/or replicated across Hive instances in
multiple data centers. Users submit queries in the SQL-
like Hive Query Language (HQL) to the command layer,
which parses and partitions queries to create a distributed
execution plan as in §2. We discuss the basic interface
Geode presents to analysts in this section.
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Describing schema and placement

Geode manages a database consisting of one or more ta-
bles. Each table is either partitioned across several data
centers, or replicated at one or more data centers. Par-
titioned tables must have a specified partition column
which identifies which partition any row belongs to. The
partition column is used to, among other things, support
pseudo-distributed execution and to automatically detect
and optimize joins on co-partitioned tables. Partitioned
tables can either be value-partitioned, meaning each dis-
tinct value of the partition column denotes a separate par-
tition, or range-partitioned on an integer column, mean-
ing each partition corresponds to a specified range of val-
ues of the partition column.

Analysts inform Geode about table schema and place-
ment by submitting CREATE TABLE statements anno-
tated with placement type and information — we omit
the details of the syntax.

Supported queries

We support most standard analytics features in Hive 0.11
(the latest stable version when we started this project):
nested queries, inner-, outer- and semi-joins, and user-
defined aggregate functions; although we do not support
some of Hive’s more unusual feature-set, such as com-
pound data structures and sampling queries [39]. Our
architecture is not tied to Hive and can be easily adapted
to work with other SQL backends instead.

Joins. By default, Geode passes user-submitted queries
through Calcite++ (§4.1) first to optimize join order
and execution strategy. However, users can enforce a
manual override by explicitly annotating joins with a
JOINHINT (strategy = _) instruction.

Geode currently supports three classes of distributed
join execution strategies: (1) co-located joins, which can
be computed without any cross-data center data move-
ment either because both tables are co-partitioned or be-
cause one table is replicated at all of the other table’s data
centers; (2) left or right broadcast joins, in which one ta-
ble is broadcast to each of the other table’s data centers,
where separate local joins are then computed; and (3) left
or right semi-joins, in which the set of distinct join keys
from one table are broadcast and used to identify and re-
trieve matches from the other table. We are currently ex-
ploring adding other strategies, such as hash-joins with a
special partitioning-aware hash function [38].

Nested queries. Nested queries are processed recur-
sively®>. The system pushes down nested queries com-
pletely when they can be handled entirely locally, with-
out inter-data-center communication; in this case the re-
sults of the nested query are stored partitioned across

3This simple strategy is sufficient because Hive does not support
correlated subqueries.

data centers. For all other queries, the final output is
merged and stored locally as a temporary table at the
master data center (hosting the Geode command layer).
The results of nested queries are transferred lazily to
other data centers, as and when needed to execute outer
queries.

User-defined functions. We support Hive’s pluggable
interface for both simple user-defined functions (UDFs),
which operate on a single row at a time, and for user-
defined aggregate functions (UDAFs). Existing user
code can run unmodified.

For UDAFs, note that the need is to allow users
to write functions that process data distributed over
multiple machines. Hive’s solution is to provide a
MapReduce-like interface in which users define (1) a
combine function that locally aggregates all data at each
machine, and (2) a reduce function that merges all the
combined output to compute the final answer. By default
we use this interface in an expanded hierarchy to com-
pute UDAFs by applying combine a second time in be-
tween steps (1) and (2) above, using it on the combined
output from each machine to aggregate all data within
one data center before passing it on to reduce. Users can
set a flag to disable this expansion, in which case we fall
back to copying all the input to one data center and run-
ning the code as a traditional Hive UDAF.

Extensibility

Geode is designed to support arbitrary application do-
mains; as such the core of the system does not include
optimizations for specific kinds of queries. However, the
system is an extensible substrate on top of which users
can easily implement narrow optimizations targeted at
their needs. To demonstrate the flexibility of our system
we implemented two function-specific optimizations: an
exact algorithm for top-k queries [7], originally proposed
in a CDN analytics setting and recently used by Jet-
Stream [34]; and an approximate percentile algorithm
from the sensor networks literature [36]. We evaluate
the benefit from these optimizations in §6.4.

6 Experimental Evaluation

We now investigate the following questions experimen-
tally: How much of a bandwidth savings does our system
actually yield on real workloads at multi-terabyte scales
(§6.1)? What is the runtime overhead of collecting the
(pseudo-distributed) measurements needed by our opti-
mizer (§6.2)? What is the tradeoff between solution qual-
ity and processing time in the optimizer (§6.3)? Can
implementing narrow application-specific optimizations
yield significant further bandwidth cost reduction (§6.4)?
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Figure 8: End-to-end evaluation of all six workloads

6.1 Large-scale evaluation

We ran experiments measuring Geode performance on a
range of workloads, on two Geode deployments: a dis-
tributed deployment across three data centers in the US,
Europe and Asia, and a large centralized cluster on which
we simulated a multi-data center setup. Specifically, we
ran experiments on both deployments up to the 25 GB
scale (and validated that the results were identical), but
used the centralized cluster exclusively for all experi-
ments on a Microsoft production workload and all exper-
iments larger than 25 GB on other workloads. This was
because running experiments at the multi-terabyte scale
we evaluate would have otherwise cost tens of thousands
of dollars in bandwidth in a fully distributed deployment.
We tested six workloads.

Microsoft production workload: This use case consists
of a monitoring infrastructure collecting tens of TBs of
service health/telemetry data daily at geographically dis-
tributed data centers. The data are continuously repli-
cated to a central location and analyzed using Hive. The
bulk of the load comes from a few tens of canned queries
run every day producing aggregate reports on service uti-
lization and infrastructure health.

TPC-CH: The TPC-CH benchmark [9] by Cole et al.
models the database for a large-scale product retailer
such as Amazon, and is a joint OLTP + OLAP bench-
mark constructed by combining the well-known TPC-C
OLTP benchmark and the TPC-H OLAP benchmark.
BigBench: BigBench [18] is a recently proposed bench-
mark for big-data systems modeling a large scale prod-
uct retailer that sells items online and in-store, collecting
various information from customers (including reviews
and click logs) in the process. Analytics consists of a
core of Hive queries along with some non-relational ma-

chine learning operations that further process the rela-
tional output. We do not implement the non-relational
component explicitly, but model it as a black box analyst
interacting with Geode — Geode’s task is to compute the
results the non-relational black box needs as input.

Big-data: The big-data benchmark [6], developed by the
AMPLab at UC Berkeley, models a database generated
from HTTP server logs. The analytical queries in this
benchmark are parametric: each has a single parameter
that can be adjusted to tune the volume of data transfer
that would be required to process it. In our experiments
we set the normalized value (€ [0, 1]) of each parameter
to 0.5, to make each query require median data transfer.

YCSB-aggr, YCSB-getall: We defined these two very
simple benchmarks to demonstrate the best- and worst-
case scenarios for our system, respectively. Both bench-
marks operate using the YCSB [11] database and OLTP
workload, configured with database schema:
table(key, fieldl, fleld2)

The OLTP workload is constituted by transactions that
add a single row with fieldl a randomly chosen digit
in the range [0,9] and field2 a random 64-bit integer.
The difference between the two benchmarks is solely in
their analytical workload.

YCSB-aggr’s analytical workload consists of the
single query SELECT fieldl, AVG(field2) FROM
Table GROUP BY fieldl. Since there are only 10 dis-
tinct values of fieldl, Geode achieves significant ag-
gregation, requiring only 10 rows (partial sum and count
for each distinct field1) from each data center.

YCSB-getall’s analytical workload is a sin-
gle query asking for every row in the table
(SELECT * FROM Table). Here no WABD solu-
tion can do better than centralized analytics.
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We evaluate all six workloads by measuring the data
transfer needed for both centralized and distributed exe-
cution for varying volumes of changes to the base data in
between runs of the analytical workload. Our workload
optimizer consistently picks among the best of the cen-
tralized and distributed solutions at each point, so that
Geode’s performance would be represented by the min
of all the graphs in each plot. We omit the min line to
avoid crowding the figures.

Figure 8 shows results for all six workloads. (We are
required to obfuscate the scale of the axes of Figure 8a
due to the proprietary nature of the underlying data.) We
note a few key observations.

In general, the centralized approach performs rela-
tively better when update rates are low, actually outper-
forming distributed execution at very low rates in 2 of the
6 workloads. This is because low volumes mean frequent
analytics running on mostly unchanged data. Distributed
execution performs better at higher update rates.

Caching significantly improves performance at low
update rates in TPC-CH, BigBench and Berkeley big-
data: for instance, performance with caching always out-
performs centralized execution in the TPC-CH bench-
mark, while performance without caching is worse for
volumes < 6 GB per OLAP run. However, at high
update rates, caching is ineffective since redundancy in
the query answers is minimal. Caching does not help
in the YCSB workloads because small changes to the
base data end up changing analytics results completely in
both benchmarks, and in the Microsoft production work-
load because every query tagged all output rows with a
query execution timestamp, which interacts poorly with
the row-based approach we use to compute deltas (more
sophisticated diffs can overcome this limitation).

At the largest scales we tested, distributed execution
outperformed the centralized approach by 150 — 360x
in four of our six workloads (YCSB-aggr, Microsoft
prod., TPC-CH, and BigBench). The improvement was
only 3% in the Big-Data with normal distributed execu-
tion, but when we implemented the special optimization
for top-k queries [7] we discussed in §5, the improve-
ment went up to 27x — we discuss details in §6.4. Fi-
nally, YCSB-getall was deliberately designed so that dis-
tributed execution could not outperform the centralized
approach, and we find that this is indeed the case.

6.2 Optimizer: Runtime overhead

The pseudo-distributed execution method we use to col-
lect data transfer measurements can slow down query ex-
ecution (although it never worsens bandwidth cost, as we
discussed in §4.2). We measured the added overhead for
all the queries we tested in §6.1.

In all our workloads, we found that the latency over-
head compared to normal distributed Geode was con-

tained in the <20% range. Given the scale-out nature of
the Hive backend, this is easily compensated for by in-
creasing parallelism. Note also that this overhead is only
occasionally felt, since in our architecture the optimizer
operates on a much slower timescale than normal query
execution. E.g. if queries are run once a day and the op-
timizer runs once a month, pseudo-distributed execution
only affects 1/30 = 3.3% of the query runs.

Further, this overhead could be reduced in many cases
by using separate lightweight statistics-gathering queries
to estimate transfers, instead of full-fledged pseudo-
distributed runs. For instance, for the query in Figure 2,
we could instead run a SELECT sum( len(pageURL)
+ len (pageRank)) FROM PageInfo WHERE ...
query to estimate the size of the join, and then determine
the size of the final output by executing the query using
a normal (as opposed to a pseudo-distributed) join.

6.3 Optimizer Performance, Running time

The optimizer consists of two components, the Calcite++
centralized SQL query planner, and a site selection + data
replication solver. Calcite++ is responsible for a very
small proportion of the optimizer’s running time, com-
pleting in < 10 s for all the queries in §6.1. The majority
of the time spent by the optimizer is in the site selec-
tion and data replication phase, for which we defined two
solutions: a slower but optimal integer linear program,
and a faster but potentially suboptimal greedy heuristic
(84.3). We now investigate the relative performance of
these two approaches.

We first compare the optimality gap between the two
solutions by evaluating their performance on: (i) the real
workloads from §6.1, and (ii) simulations on randomly
generated SQL workloads.

In all the workloads we tested in §6.1, the optimal-
ity gap is small. The greedy strategy performs remark-
ably well, identifying the same solution as the ILP in
over 98% of the queries we tested. It does fail in some
instances, however. For example, the BigBench [18]
benchmark has a query which joins a sales log table with
itself to identify pairs of items that are frequently ordered
together. The heuristic greedily pushes the join down to
each data center, resulting in a large list of item pairs
stored partitioned across several data centers. But it is
then forced to retrieve the entire list to a single data cen-
ter in order to compute the final aggregate. By contrast,
the ILP correctly detects that copying the entire order log
to a single data center first would be much cheaper.

In order to compare the strategies’ performance in a
more general setting, we simulated their performance
on randomly generated SQL queries. We generated
10,000 random chain-join queries of the form SELECT *
FROM T; JOIN 7> ... JOIN 7; USING(col), where
each table has schema 7;(col INT), k chosen randomly
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Figure 9: ILP and greedy heuristic comparison

between 2 and 10. In each query we chose table sizes
and join selectivities according to a statistical model by
Swami and Gupta [37], which tries to cover a large range
of realistic query patterns, generating e.g. both queries
which heavily aggregate the input they consume in each
step, as well as queries which “expand” their inputs.

Figure 9a shows the results we obtained. The greedy
heuristic and the ILP identified the same strategy in
around 16% of the queries. In the remaining 84% the
ILP performs better: 8 x better in the median, and more
than 8 orders of magnitude better in the tail. The worst
performance generally arises when the heuristic com-
pounds multiple errors of the kind described in the ex-
ample above. The results show that the gap between the
true optimum and the greedy strategy can be substantial.

However, this optimality gap turns out to be difficult
to bridge at large scales. Figure 9b shows the running
times of both approaches for workloads of the same size
as the largest in §6.1. The ILP’s running time grows very
quickly, taking more than an hour with just 10 data cen-
ters. By contrast, the greedy heuristic takes less than a
minute even at the 100 data centers scale, although as
we have seen this can come at the expense of a loss in
solution quality.

We are actively evaluating a hybrid strategy that first
uses the greedy heuristic to generate an initial solution,
and then uses the ILP for a best-effort search for better
alternatives starting from the initial greedy solution, un-
til a specified running time bound. We defer reporting
results until a thorough evaluation.

We note again that many of the results reported in this
section were based on simulating synthetic workloads,
albeit ones that were designed to be realistic [37]. The
question of how well both approaches will perform on
practical workloads (beyond those in §6.1, where we saw
that the greedy heuristic was competitive) remains open,

and can only be answered in the future, as analytical
workloads rise in sophistication to take advantage of the
cost reduction achieved by geo-distributed execution.

6.4 Function-specific optimizations
We close by showing how performance could be im-
proved even further by leveraging optimizations targeted
at specific classes of queries from past work. We evalu-
ate the two optimizations we discussed in §5: for top-k
queries [7] and for approximate percentile queries [36].
Both algorithms proved quite effective on applicable
queries. The top-k algorithm directly benefited the most
data-intensive query in the Berkeley big-data benchmark
(Figure 8d), achieving a further 9x reduction in data
transfer over normal distributed execution. And in a
sales-value percentile query we defined on the TPC-CH
benchmark database, the approximate percentile algo-
rithm achieved170x less data transfer than exact com-
putation with < 5% error, and 30 x less with < 1% error.
There is a vast range of optimizations from several re-
lated fields one can leverage in the WABD setting —
Geode serves as a convenient framework on which these
optimizations can be layered.

7 Limitations and Open Problems

Several considerations arise when designing a global an-
alytics framework. We chose to focus solely on mini-
mizing bandwidth costs, while handling fault-tolerance
requirements and respecting sovereignty constraints. We
did not attempt to address:

Latency. Our focus was entirely on reducing data trans-
fer volume and large scale, and we made no attempt
to optimize analytics query latency. It is likely that in
many cases the problems of minimizing bandwidth us-
age and minimizing latency coincide, but effort charac-
terizing the differences is necessary.

Consistency. We support a relaxed eventual consistency
consistency model. This suffices for many use cases
which only care about aggregates and trends, but the
problem of building a WABD solution for applications
requiring stronger consistency guarantees remains open.
Privacy. Geode addresses regulatory restrictions by lim-
iting where base data can be copied. However, we al-
low arbitrary queries on top of base data, and make no
attempt to proscribe data movement by queries. While
this suffices for scenarios where all queries are care-
fully vetted before they are allowed to execute, an au-
tomated solution, which would necessitate a differen-
tial privacy [15] or privacy-preserving computation [26]
mechanism, would be interesting to pursue.

Other bandwidth cost models. We assumed each net-
work link has a constant $/byte cost. Supporting other
cost models, such as ones based on 95th %ile bandwidth
usage, would require modifying the workload optimizer.
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Other data models. We have concentrated on WABD
for a relational model, but similar issues of bandwidth
minimization and latency/regulatory constraints arise in
other data models as well, such as Map-Reduce or even
computational models that go beyond querying such as
machine learning. The fundamental issues, limited band-
width and the choice between various levels of dis-
tributed and centralized computing, remain the same. We
discuss these challenges further in [43].

8 Related Work

Unlike parallel databases running in a single LAN [13,
20], where latencies are assumed to be uniform and low,
we have non-uniform latency and wide-area bandwidth
costs. Work on distributed databases and view mainte-
nance, starting as early as [8, 5] and surveyed in [27, 33],
handles efficient execution of arbitrary queries assum-
ing a fixed data partitioning and placement. By contrast,
we are able to assume a slowly evolving workload that
the system can be optimized for (§4), and automatically
replicate data for performance and fault-tolerance while
handling regulatory constraints. The focus on analytics
instead of transactions, the much larger scale of WABD,
and the focus on bandwidth as a measure further differ-
entiates WABD from distributed databases [33].

Spanner [12] focuses on consistency and low-latency
transaction support, and is not designed to optimize an-
alytics costs. A complete solution would complement
Spanner-like consistent transactions with cost-efficient
analytics as in Geode. The Mesa [22] data warehouse
geo-replicates data for fault tolerance, as we do, but con-
tinues to process analytical queries within a single data
center. Stream-processing databases [23, 34] process
long-standing continuous queries, transforming a dis-
persed collection of input streams into an output stream.
The significant focus in this area has been on relatively
simple data models with data always produced at the
edge, with (typically degraded) summaries transmitted
to the center, in contrast with the relational model we
consider.

Jetstream [34] is an example of stream processing for
data structured as OLAP cubes that focuses, as we do, on
bandwidth as a metric; however, its data model is not as
rich as a relational model. Joins, for example, are not al-
lowed. Further, the sytem relies enitirely on aggregation
and approximation to reduce bandwidth, techniques that
are not sufficient for the analytical queries we focus on.

Sensor networks [31] share our assumption of limited
network bandwidth, but not our large scale or the breadth
of our computational model. However, some sensor net-
work techniques can be of interest in WABD: for in-
stance, the approximate percentile algorithm we tested
in §6.4 was originally proposed for a sensor network.

Hive [39], Pig [32], Spark [45] and similar systems can
provide analytics on continuously updated data, but to
the best of our knowledge have not been tested in multi-
data center deployments (and are certainly not optimized
for this scenario). PNUTS/Sherpa[10] does support ge-
ograhically distributed partitions but lays out data to opti-
mize latency (by moving a “master” copy close to where
it is commonly used) and not to minimize analytics cost.

Volley [2] addresses placement issues for data while
accounting for wide-area bandwidth and user latencies,
but without our additional constraint of handling rich
analytics. RACS [1] distributes a key-vaue store, not
a database, across data centers and focuses on fault-
tolerance, not bandwidth. Distributed file systems share
our assumption of limited bandwidth, and the caching
mechanism we use can be viewed as operating on cached
files of answers to earlier analytical queries. However,
distributed file systems do not share our relational data
model or the query planning problem we face.

PigOut [25], developed concurrently with our work,
supports Pig [32] queries on data partitioned across data
centers, but targets a simpler two-step computational
model than ours and focuses on optimizing individual
queries in isolation.

In a recent paper [43] we discussed the vision of geo-
distributed analytics for a more general computational
model with DAGs of tasks. This was a vision paper
that focused on non-SQL models and did not include the
detailed description or evaluation of our techniques we
present here.

9 Conclusion

Current data volumes and heuristics such as data reduc-
tion allow centralizing analytics to barely suffice in the
short term, but the approach will soon be rendered un-
tenable by rapid growth in data volumes relative to net-
work capacity and rising regulatory interest in proscrib-
ing data movement. In this paper we proposed an alter-
native: Wide-Area Big Data. Our Hive-based prototype,
Geode, achieves up to a 360x bandwidth reduction at
multi-TB scales compared to centralization on both pro-
duction workloads and standard benchmarks. Our ap-
proach revisits the classical database problem of query
planning from a networking perspective, both in terms
of constraints such as bandwidth limits and autonomous
policies, as well as solutions such as sub-query deltas and
pseudo-distributed execution.
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