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ABSTRACT 
This paper exploits Web search logs for query expansion (QE) by 

presenting a new QE method based on path-constrained random 

walks (PCRW), where the search logs are represented as a labeled, 

directed graph, and the probability of picking an expansion term for 

an input query is computed by a learned combination of constrained 

random walks on the graph. The method is shown to be generic in 

that it covers most of the popular QE models as special cases and 

flexible in that it provides a principled mathematical framework in 

which a wide variety of information useful for QE can be incorpo-

rated in a unified way. Evaluation is performed on the Web docu-

ment ranking task using a real-world data set. Results show that the 

PCRW-based method is very effective for the expansion of rare 

queries, i.e., low-frequency queries that are unseen in search logs, 

and that it outperforms significantly other state-of-the-art QE meth-

ods. 

Categories and Subject Descriptors 

H.3.3 [Information Storage and Retrieval]: Information Search 

and Retrieval;  I.2.6 [Artificial Intelligence]: Learning 

General Terms 

Algorithms, Experimentation 

Keywords 

Search Log, Query Expansion, Random Walk, Path Ranking Al-

gorithm, Web Search 

1. INTRODUCTION 

Term mismatch is one of the fundamental challenges in Web search, 

where a query and its relevant documents are often composed using 

different vocabularies and language styles. Query expansion (QE) 

is an effective strategy to address the challenge. It expands a query 

issued by a user with additional related terms, called expansion 

terms, so that more relevant documents can be retrieved. 

QE is a long-standing research topic in information retrieval 

(IR). The methods based on automatic relevance feedback (e.g., ex-

plicit feedback and pseudo relevance feedback (PRF)) have been 

proved to be useful for improving the performance of IR on TREC 

datasets [10, 11, 34, 36, 36, 45, 48]. However, these methods can-

not be applied directly to a commercial Web search engine because 

the relevant documents are not always available and generating 

pseudo-relevant documents requires multi-phase retrieval, which is 

prohibitively expensive. 

Recent studies demonstrate the success of exploiting search 

logs (i.e., clickthrough data) for QE [7, 14, 15, 19, 22, 41, 42]. 

These methods, called log-based QE, also derive expansion terms 

for a query from its (pseudo-)relevant document set. But, different 

from the methods based on automatic relevance feedback, the rele-

vant document set is identified by user clicks recorded in search 

logs. For example, the set of (pseudo-)relevant documents of an in-

put query can be formed by including the documents which have 

been previously clicked for the query or its similar queries [1, 7, 

46]. Most state-of-the-art log-based QE methods use a global model 

that is pre-computed from search logs [14, 19]. The model captures 

the correlation between query terms and documents terms and can 

be used to generate expansion terms for the input query on the fly. 

Despite the effectiveness of log-based QE methods, they suffer 

from two problems. First is data sparseness. A large portion of que-

ries have very few or no click in search logs, as stated by Zipf’s law. 

Second is the ambiguity of search intent. For example, a term cor-

relation model may fail to distinguish the search intent of the query 

term “book” in “school book” from that in “hotel booking”. Alt-

hough the problem can be partially alleviated by using the im-

proved correlation models based on phrases and concepts [19], 

there are plenty of cases where the search intent can only be iden-

tified correctly via global context. For example, the query “why 6 

bottles in one wrap” is about package, and the intent of the query 

“acme baked bread” is to look for the bakery in CA. In such cases, 

a (pseudo-)relevant document set of an input query, if available, is 

more likely to preserve the original search intent than any pre-com-

puted global correlation model. 

In this paper we address the two problems by proposing a new 

log-based QE method based on path-constrained random walks 

[32]. We represent the search logs, consisting of billions of clicked 

query-document pairs, as a labeled, directed graph, where there are 

three types of nodes, representing respectively queries, documents, 

and words (i.e., candidate expansion terms), and the edges between 

nodes are labeled by relations. An example graph, which will be 

described in detail in Section 3.1, is shown in Figure 1.  For each 

path in the graph that links the input query 𝑄 to a candidate expan-

sion term 𝑤, there is a path type 𝜋, defined by a sequence of edge 

labels. Each path type can be viewed as a particular process of gen-

erating 𝑤  from 𝑄 , and the generation probability 𝑃(𝑤|𝑄, 𝜋)  is 

computed by random walks along the paths that instantiate the path 
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type 𝜋 , as known as path-constrained random walks (PCRW). 

Many log-based QE models proposed previously can be formulated 

in the framework of PCRW by defining particular path types. For 

example, the method based on relevance feedback, where the 

pseudo-relevant documents 𝐷  are defined as the ones that have 

clicks for the input query 𝑄 or its similar queries 𝑄′, can be pre-

sented using the following path type 

〈𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑄2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐷2𝑤〉.  

This is a three-step random walk. The first step retrieves similar 

queries by a random walk on edges labeled by the relation 

 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑄2𝑄′  . The second follows any edges labeled by 

𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷 . The third follows any edges labeled by 

𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐷2𝑤. These relations are summarized in Table 1, and 

will be described in detail in Section 3. 

We will show that PCRW provides a generic and flexible mod-

eling framework in that it not only covers most of the popular log-

based QE models as special cases, but also allows us to devise new 

QE models that can potentially use much richer information than 

that of previous models. For example, we can define a rich set of 

walk behaviors that support a variety of labeled edges where differ-

ent information can be used at different stages of the walk. Some 

examples will be presented in Section 3.2. 

Moreover, because different QE methods often rely on different 

sources and are potentially complimentary, it is desirable to com-

bine them to address data sparseness and help disambiguate search 

intent. For example, while the automatic feedback methods using 

(pseudo-)relevant documents are good to retain search intent but 

suffer from data sparseness especially for rare queries, the methods 

based on global term correlation models can be applied equally well 

to both common and rare queries but, due to the limited context 

information it captures, may lead to an unexpected shift of search 

intent. We will show that PCRW provides a flexible mathematical 

framework in which different QE features, specified by path types 

𝜋, can be incorporated in a unified way. Formally, in the PCRW-

based QE method the probability of picking 𝑤  for a given 𝑄 , 

𝑃(𝑤|𝑄), is computed by a learned combination of path-constrained 

random walks on the graph, i.e., 𝑃(𝑤|𝑄) = ∑ 𝜆𝜋𝑃(𝑤|𝑄, 𝜋)𝜋∈𝐵 , 

where 𝜆𝜋′𝑠 are the combination weights learned on training data.   

Our experiments (Section 4) show that the use of PCRW not 

only makes QE robust to data sparseness but also help disambiguate 

search intents, leading to a significant improvement over previous 

state-of-the-art QE methods. 

In the rest of the paper, Section 2 reviews briefly PCRW. Sec-

tion 3 describes in detail the PCRW-based QE method. Sections 4 

and 5 present experiments and related work, respectively. The pa-

per is concluded in Section 6. 

2. PRELIMINARIES 

This section briefly reviews the path-constrained random walk 

model. Readers are referred to [32] for a more detailed treatment. 

The model used in this study is a variant of the one described in [32, 

33]. Modifications are made for the QE task. 

Consider a directed, labeled graph 𝐺 = (𝐶, 𝑇) where 𝑇 ⊆ 𝐶 ×
𝑅 × 𝐶 is the set of labeled edges (also known as triples) (𝑐, 𝑟, 𝑐′). 

Each triple represents an instance 𝑟(𝑐, 𝑐′) of the relation 𝑟 ∈ 𝑅. For 

the QE task considered in this study it will be useful to introduce 

for each relation 𝑟 a separate probabilistic model 𝜃𝑟 , which is used 

to assign a score to the edge. The score is the probability of reaching 

𝑐’  from 𝑐  with a one-step random walk with edge type 𝑟 , 

𝑃(𝑐’|𝑐, 𝜃𝑟). In Section 3 we will see how the use of relation-specific 

models allows us to build significantly more expressive QE models.  

A path type in 𝐺 is a sequence 𝜋 = 〈𝑟1, … , 𝑟𝑚〉. An instance of 

the path type is sequence of nodes 𝑐0, … , 𝑐𝑚 such that 𝑟𝑖(𝑐𝑖−1, 𝑐𝑖). 

Each path type specifies a real-value feature. For a given node pair 

(𝑠, 𝑡), where 𝑠 is source node and 𝑡 is target node, the value of the 

feature 𝜋 is 𝑃(𝑡|𝑠, 𝜋), i.e., the probability of reaching 𝑡 from 𝑠 by a 

random walk that instantiates the path type, also known as a path-

constrained random walk. Specifically, suppose that the random 

walk has just reached 𝑐𝑖 by traversing edges labeled  𝑟1, … , 𝑟𝑖 with 

𝑄 = 𝑐0. Then 𝑐𝑖+1 is drawn at random, according to 𝜃𝑟𝑖+1 , from all 

nodes reachable by edges labeled 𝑟𝑖+1. A path type 𝜋 is active for 

pair (𝑠, 𝑡) if 𝑃(𝑡|𝑠, 𝜋) > 0. 

Let 𝐵 = {⊥, 𝜋1, … , 𝜋𝑛} be the set of all path types of length no 

greater than 𝑙 that occur in the graph together with the dummy type 

⊥ , which represents the bias feature. It is convenient to set 

𝑃(𝑡|𝑠, ⊥) = 1 for any nodes 𝑠, 𝑡. The score of whether target node 

𝑡 is related to source node 𝑠 is given by 

𝑃(𝑡|𝑠) = ∑ 𝜆𝜋𝑃(𝑡|𝑠, 𝜋)

𝜋∈𝐵

, (1) 

where 𝜆𝜋 is the weight of feature 𝜋. The model parameters to be 

learned are the vector 𝝀 = 〈𝜆𝜋〉𝜋∈𝐵. The construction of 𝐵 and the 

estimation of 𝝀 are application specific. For the QE task source 

node is the input query to be expanded 𝑄 and target node is a can-

didate expansion term 𝑤. Thus, Equation (1) gives the probability 

of whether 𝑤 is a good expansion term of 𝑄. This is the QE model 

we will describe in detail in Section 3. 

3. PCRW-BASED QE MODEL 

3.1 Search Logs as a Graph 

The search logs used in this study consist of a list of query-docu-

ment pairs, also known as clickthrough data. Each pair contains a 

query and a document which has one or more user clicks for the 

query. We represent the search logs as a graph 𝐺 = (𝐶, 𝑇) , as 

shown in Figure 1. We define three types of nodes to represent re-

spectively queries, documents, and words that occur in queries and 

documents. While a query in the search logs, denoted by 𝑄’, always 

has clicked document(s), an input query to be expanded, denoted 

by 𝑄, could be a new, low-frequency query without clicked docu-

ments. Such a query is called a rare query in this paper. 𝑄 and 𝑄′ 
are treated as different nodes in 𝐺. 
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Figure 1. Search logs as a graph 



ID Relation 𝒓 Scoring function 

1 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑄2𝑄’ cosine similarity between the term vectors of 𝑄 and 𝑄’, where term weights are assigned using the BM25 function.  

2 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒_𝑄2𝑄′ log ∏ ∑ 𝑃𝑡𝑚(𝑞′|𝑞)
𝑡𝑓(𝑞; 𝑄)

|𝑄|𝑞∈𝑄𝑞′∈𝑄′
 

3 𝑐𝑙𝑖𝑐𝑘_𝑄2𝐷 log 𝑃(𝐷|𝑄) = log
𝑐𝑙𝑖𝑐𝑘(𝑄, 𝐷)

∑ 𝑐𝑙𝑖𝑐𝑘(𝑄, 𝐷𝑖)𝐷𝑖∈𝐃

 

4 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄 log 𝑃(𝑄|𝐷) = log
𝑐𝑙𝑖𝑐𝑘(𝑄, 𝐷)

∑ 𝑐𝑙𝑖𝑐𝑘(𝑄𝑖 , 𝐷)𝑄𝑖∈𝐐

 

5 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑄2𝑤 log ((1 − 𝛼)
𝑡𝑓(𝑤; 𝑄)

|𝑄|
+ 𝛼

𝑐𝑓(𝑤)

|𝐶|
) 

6 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒_𝑄2𝑤 log ∑ 𝑃𝑡𝑚(𝑤|𝑞)
𝑡𝑓(𝑞; 𝑄)

|𝑄|𝑞∈𝑄
 

7 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑄′2𝑤 log ((1 − 𝛼)
𝑡𝑓(𝑤; 𝑄′)

|𝑄′|
+ 𝛼

𝑐𝑓(𝑤)

|𝐶|
) 

8 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒_𝑄′2𝑤 log ∑ 𝑃𝑡𝑚(𝑤|𝑞′)
𝑡𝑓(𝑞′; 𝑄′)

|𝑄′|𝑞′∈𝑄′
 

9 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷 log 𝑃(𝐷|𝑄′) = log
𝑐𝑙𝑖𝑐𝑘(𝑄′, 𝐷)

∑ 𝑐𝑙𝑖𝑐𝑘(𝑄′, 𝐷𝑖)𝐷𝑖∈𝐃

 

10 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐷2𝑤 log ((1 − 𝛽)
𝑡𝑓(𝑤; 𝐷)

|𝐷|
+ 𝛽

𝑐𝑓(𝑤)

|𝐶|
) 

11 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒_𝐷2𝑤 log ∑ 𝑃𝑡𝑚(𝑤|𝑤𝑖)
𝑡𝑓(𝑤𝑖; 𝐷)

|𝐷|𝑤𝑖∈𝐷
 

12 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄′ log 𝑃(𝑄′|𝐷) = log
𝑐𝑙𝑖𝑐𝑘(𝑄′, 𝐷)

∑ 𝑐𝑙𝑖𝑐𝑘(𝑄𝑖
′, 𝐷)𝑄𝑖

′∈𝐐

 

13 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑤2𝐷 log 𝑃(𝐷|𝑤) = log
𝑃𝑙𝑚(𝑤|𝐷)𝑃(𝐷)

∑ 𝑃𝑙𝑚(𝑤|𝐷𝑖)𝑃(𝐷𝑖)𝐷𝑖∈𝐃

, where 𝑃𝑙𝑚(𝑤|𝐷) = (1 − 𝛽)
𝑡𝑓(𝑤; 𝐷)

|𝐷|
+ 𝛽

𝑐𝑓(𝑤)

|𝐶|
 and 𝑃(𝐷) =

∑ 𝑐𝑙𝑖𝑐𝑘(𝑄, 𝐷)𝑄∈𝐐

𝑁
 

14 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑤2𝑄′ log 𝑃(𝑄′|𝑤) = log
𝑃𝑙𝑚(𝑤|𝑄′)𝑃(𝑄′)

∑ 𝑃𝑙𝑚(𝑤|𝑄𝑖)𝑃(𝑄)𝑄𝑖
′∈𝐐

, where 𝑃𝑙𝑚(𝑤|𝑄) = (1 − 𝛼)
𝑡𝑓(𝑤; 𝑄)

|𝑄|
+ 𝛼

𝑐𝑓(𝑤)

|𝐶|
and 𝑃(𝑄) =

∑ 𝑐𝑙𝑖𝑐𝑘(𝑄, 𝐷)𝐷∈𝐃

𝑁
 

Table 1: Relations and their scoring functions used in the graph in Figure 1. Here, 𝑡𝑓(𝑞; 𝑄) is the number of times term q occurs in query 

𝑄, and |𝑄| is the length of query 𝑄. 𝑡𝑓(𝑤; 𝐷) is the number of times term 𝑤 occurs in 𝐷, and |𝐷| is the length of document 𝐷. The 𝑐𝑓(𝑤) 

and |𝐶| values are analogously defined on the collection level, where the collection consists of all the documents in search logs. 𝑃𝑡𝑚(. ) is 

word translation probability assigned by a translation model trained on query-title pairs derived from clickthrough data. 𝑃𝑡𝑚(𝑞′|𝑞) in #2 

is also assigned by the same query-title translation model based on the assumption that a good expansion term 𝑞’ is likely to occur in the 

titles of the clicked documents [19]. 𝑐𝑙𝑖𝑐𝑘(𝑄′, 𝐷) is the number of times document 𝐷 is clicked for 𝑄′ in search logs. In #13, 𝐃 is the full 

set of documents in search logs. 𝐐 in #12 and #14 is the full set of queries in search logs. 𝑁 in #13 and #14 is the total number of clicks in 

search logs, i.e., 𝑁 = ∑ ∑ 𝑐𝑙𝑖𝑐𝑘(𝑄, 𝐷)𝐷∈𝐃𝑄∈𝐐 . Finally, 𝛼 and 𝛽 are model hyperparameters that control smoothing for query and docu-

ment language models, respectively. 

 

Each edge in the graph is labeled by a relation 𝑟, and is scored 

using a relation-specific model 𝜃𝑟. The edge score is the probability 

of reaching target node 𝑡 from source node 𝑠 with a one-step ran-

dom walk with edge type 𝑟, 𝑃(𝑡|𝑠, 𝜃𝑟). The set of relations 𝑟 and 

their corresponding scoring functions 𝑠𝑐𝑜𝑟𝑒𝜃𝑟
(𝑠 → 𝑡), which are 

used in this study, are summarized in Table 1. To ensure that edge 

score is a probability, 𝑃(𝑡|𝑠, 𝜃𝑟) is computed via softmax as 

𝑃(𝑡|𝑠, 𝜃𝑟) =
exp (𝑠𝑐𝑜𝑟𝑒𝜃𝑟

(𝑠 → 𝑡))

∑ exp (𝑠𝑐𝑜𝑟𝑒𝜃𝑟
(𝑠 → 𝑡𝑖))𝑡𝑖

 (2) 

Note that in the original PCRW model [32] there is no 𝜃𝑟, and the 

edge score is computed by  

𝑃(𝑡|𝑠, 𝑟) =
I(𝑟(𝑠, 𝑡))

∑ I(𝑟(𝑠, 𝑡′))𝑡′
  

where I(𝑟(𝑠, 𝑡)) is an indicator function that takes value 1 if there 

exists an edge with type 𝑟 that connects 𝑠 to 𝑡. Introducing 𝜃𝑟 al-

lows us to easily incorporate well-established models that have 

been developed for QE and document ranking models in the IR 

community. The scoring functions in Table 1 lie in four categories. 

The first is the functions for the 𝑠𝑖𝑚𝑖𝑙𝑎𝑟_ ∗ relation (e.g., #1), and 

is based on the BM25 model [39]. The second, including functions 

for the relations of 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_ ∗ (e.g., #5), uses unigram language 

models with Bayesian smoothing using Dirichlet priors [49]. The 

third, including functions for 𝑐𝑙𝑖𝑐𝑘_ ∗ (e.g., #3), uses a click model 

[13]. The last category, including functions for 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛_ ∗ 

(e.g., #6), uses translation models [5, 17, 19], where, if clickthrough 

data is available for model training, the word translation probabili-

ties 𝑃𝑡𝑚 are estimated on query-document pairs by assuming that a 

query is parallel to the documents clicked on for that query [17].  



ID Path type 𝝅 (Comments) 

TM1 〈𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒_𝑄2𝑤〉 (𝑤 is generated using clickthrough-based translation model from 𝑄 as in [19]) 

TM2 〈𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑄2𝑤, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑤2𝐷, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐷2𝑤〉 (variant of TM1 where translation model is trained via 2-step random walks on word-

document graph, as in [31]) 

TM3 〈𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑄2𝑤, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑤2𝐷, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐷2𝑤, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑤2𝐷, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐷2𝑤〉 (variant of TM2 where 4-step random walks are used) 

TM4 〈𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑄2𝑤, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑤2𝑄′, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑄′2𝑤〉 (variant of TM2 where random walks are performed on word-query graph) 

TM5 〈𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑄2𝑤, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑤2𝑄′, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑄′2𝑤, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑤2𝑄′, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑄′2𝑤〉 (variant of TM4 where 4-step random walks are used) 

SQ1 〈𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑄2𝑄′, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑄′2𝑤〉 (𝑤 is generated from similar queries 𝑄’ of 𝑄, where query similarity is based on BM25) 

SQ2 〈𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒_𝑄2𝑄′, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑄′2𝑤〉 (variant of SQ1 where query similarity is based on clickthrough-based translation model) 

SQ3 〈𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑄2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄′, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑄′2𝑤〉 (variant of SQ1 where similar query set is enriched by 2-step random walks on 

query-document graph) 

SQ4 〈𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑄2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄′, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑄′2𝑤〉 (variant of SQ3 where 4-step random walks are used) 

SQ5 〈𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒_𝑄2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄′, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑄′2𝑤〉  (variant of SQ2 where similar query set is enriched by 2-step random walks on 

query-document graph) 

SQ6 〈𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒_𝑄2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄′, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑄′2𝑤〉 (variant of SQ5 where 4-step random walks are used) 

RD1 〈𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑄2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐷2𝑤〉 (𝑤 is generated from pseudo-relevant documents 𝐷 clicked for similar queries 𝑄′ of 𝑄) 

RD2 〈𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒_𝑄2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐷2𝑤〉 (variant of RD1 where query similarity is computed via translation model) 

RD3 〈𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑄2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒_𝐷2𝑤〉 (variant of RD1 where 𝑤 is generated from 𝐷 using translation model) 

RD4 〈𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑄2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐷2𝑤〉 (variant of RD1 where set of 𝐷 is enriched by 2-step random walks on 

query-document graph) 

RD5 〈𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑄2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐷2𝑤〉 (variant of RD1 where 4-step random walks are 

used) 

RD6 〈𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒_𝑄2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐷2𝑤〉 (variant of RD2 where set of 𝐷 is enriched by 2-step random walks on 

query-document graph) 

RD7 〈𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒_𝑄2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐷2𝑤〉 (variant of RD6 where 4-step random walks 

are used) 

RD8 〈 𝑐𝑙𝑖𝑐𝑘_𝑄2𝐷, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐷2𝑤〉 (𝑤 is generated from relevant documents 𝐷 clicked for query 𝑄) 

RD9 〈 𝑐𝑙𝑖𝑐𝑘_𝑄2𝐷, 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄, 𝑐𝑙𝑖𝑐𝑘_𝑄2𝐷, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐷2𝑤〉 (variant of RD8 where the set of 𝐷 is enriched by 2-step random walks on query-docu-

ment graph) 

RD10 〈 𝑐𝑙𝑖𝑐𝑘_𝑄2𝐷, 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄, 𝑐𝑙𝑖𝑐𝑘_𝑄2𝐷, 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄, 𝑐𝑙𝑖𝑐𝑘_𝑄2𝐷, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐷2𝑤〉 (variant of RD9 where 4-step random walks are used) 

Table 2: Some examples of path types, each used as a feature in the PCRW model for QE. 

 

3.2 Feature as Path Type 

Given a graph, any path type 𝜋 that starts with the input query node 

𝑄 and ends with a word node 𝑤 defines a real-value feature, which 

can be viewed as a QE model (or QE feature). The feature value is 

the probability of picking 𝑤 as an expansion term 𝑃(𝑤|𝑄, 𝜋) by 

PCRWs of type 𝜋. In what follows we illustrate the capability of 

the PCRW model using examples in Table 2. We focus our discus-

sion on three categories of QE features: (1) TM features, which 

perform QE using translation models (i.e., the corresponding path 

types are specified by IDs from TM1 to TM5 in Table 2), (2) SQ 

features, which perform QE using similar queries (i.e., SQ1 to 

SQ6), and (3) RD features, which perform QE using (pseudo-)rel-

evant documents (i.e., RD1 to RD10). 

Many log-based QE methods use clickthrough-based transla-

tion models where term correlations are pre-computed using query-

document pairs extracted from clickthrough data [14, 19, 22]. Com-

pared to the methods that are based on thesauri either compiled 

manually [38] or derived from document collections [28], such log-

based methods are superior in that the translation models explicitly 

capture the correlation between query terms and document terms. 

One example is the word translation model described in [19], which 

can be encoded by the path type TM1, 〈𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛_𝑄2𝑤〉. In 

case there is not (enough) clickthrough data for model training, Laf-

ferty and Zhai [31] present a method using Markov chains, where 

the translation probability between two words is computed by ran-

dom walks on a document-word graph. The method can be encoded 

by the path types of TM2 and TM3 in Table 2. 

Rare queries present a big challenge for Web search [45]. The 

expansion of a rare query 𝑄 is often performed by adding terms 

from common queries 𝑄′ which are similar to 𝑄 [45].  The PCRW 

model achieves this by a random walk that instantiates the path type 

SQ1, 〈𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑄2𝑄′, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑄′2𝑤〉 . [6, 21, 35] show that 

(more) similar queries can be retrieved by performing random 

walks on a query-document click graph. Thus, rare query expansion 

could be improved using a larger set of similar queries identified 

by repeatedly applying random walks following the edges with 

types 𝑐𝑙𝑖𝑐𝑘_𝑄2𝐷 and 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄. SQ3 and SQ4 in Table 2 are two 

examples of such improved models. 

A set of relevant documents 𝐷 of an input query 𝑄 that is seen 

in the search logs can be formed by collecting all the documents 



that have clicks for that query. Thus, the relevance feedback QE 

method can be represented as e.g., RD8, 

〈𝑐𝑙𝑖𝑐𝑘_𝑄2𝐷, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐷2𝑤〉.  

If the input query is a rare query, we can form the set of pseudo-

relevant documents through its similar queries 𝑄′ that are in the 

search logs, e.g., RD1, 

〈𝑠𝑖𝑚𝑖𝑙𝑎𝑟_𝑄2𝑄′, 𝑐𝑙𝑖𝑐𝑘_𝑄′2𝐷, 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝐷2𝑤〉.  

To conquer the data sparseness problem, more pseudo-relevant 

documents can be retrieved by performing random walks on a 

query-document click graph, such as RD4 and RD5 in Table 2. 

Following previous work [12, 21, 31], in our experiments the 

random walks are implemented as matrix multiplication. As an ex-

ample, we consider the task of retrieving similar queries by repeat-

edly applying random walks following 𝑐𝑙𝑖𝑐𝑘_𝑄2𝐷 and 𝑐𝑙𝑖𝑐𝑘_𝐷2𝑄. 

Let 𝑁 be the number of query nodes in 𝐺 and 𝑀 be the number of 

document nodes. Let 𝑨 be the 𝑁 × 𝑀 matrix with entries 𝑨𝑄,𝐷 =

𝑃(𝐷|𝑄), called query-document transition matrix, where the prob-

ability is calculated from clicks as in #3 in Table 1. Also, let 𝑩 be 

the 𝑀 × 𝑁 matrix with entries 𝑩𝐷,𝑄 = 𝑃(𝑄|𝐷), where the proba-

bility is calculated from clicks as in #4 in Table 1. 𝑨 and 𝑩 are 

called transition matrices. It is easy to see that using 𝑪 = 𝑨𝑩 we 

can compute the probability of walking from an initial query 𝑄0 to 

any other query 𝑄 in 2𝑘 steps, and the corresponding probability, 

which is used to measure query-to-query similarity, is given by 

𝑃(𝑄|𝑄0) = 𝑪𝑄0,𝑄
𝑘 . Because the matrices 𝑨 and 𝑩 are sparse, the 

matrix product 𝑪 = 𝑨𝑩  can be computed efficiently. As 𝑘  in-

creases, 𝑪𝑘 quickly becomes dense and the powers cannot be com-

puted efficiently. However, as 𝑘 increases, the search intent shifts 

from the initial query, as the probability quickly spreads out over 

all queries. Thus, in our experiments we limit 𝑘 to 1 and 2.  

3.3 QE as Path Ranking 

For QE, we rewrite the PCRW model of Equation (1) as 

𝑃(𝑤|𝑄) = ∑ 𝜆𝜋𝑃(𝑤|𝑄, 𝜋)

𝜋∈𝐵

, (3) 

which is weighted linear combination of path features 𝜋 in 𝐵. Thus, 

the PCRW model performs QE by ranking a set of combined paths, 

each for one pair of 𝑄  and 𝑤  (i.e., a candidate expansion term). 

This section presents the way 𝐵 is constructed and the next two sec-

tions present the way parameters 𝜆𝜋 are estimated. 

Given a graph, the total number of path types |𝐵| grows expo-

nentially with the increase of path length. To make the computation 

feasible, in our experiments we set the maximum length to 7, and 

only consider a small set of relations that are highly selective, as 

shown in Table 1. Given a path type 𝜋, due to the large number of 

nodes in 𝐺, even with a length limit, the total number of paths that 

instantiate 𝜋 could be extremely large. For example, since a word 

could translate to any other word based on a smoothed translation 

model, any node pair (𝑄′, 𝑄) would have a non-zero-score relation 

𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒_𝑄2𝑄′ (#2 in Table 1), thus making the transition matrix 

extremely dense. For efficiency, we keep the (multiplication of) 

transition matrices sparse by retaining only top-1000 (partial) paths 

after each step of random walk.  

3.4 Training Data Generation 

The training data used for the estimation of parameters 𝜆𝜋 in Equa-

tion (3) is denoted as {(𝐱𝑖 , 𝑦𝑖)}, where 𝐱𝑖  is a vector of all the path 

features for the pair (𝑄𝑖 , 𝑤𝑖). That is, the j-th component of 𝐱𝑖  is 

𝑃(𝑤𝑖|𝑄𝑖 , 𝜋𝑗), and 𝑦𝑖 is a Boolean variable indicating whether 𝑤𝑖 is 

a good expansion term for 𝑄𝑖. In our experiments 𝐷 is generated 

using a method similar to [10], which will be described below. 

Assume we have developed a relevance judgment set. The set 

consists of a set of queries. Each query is associated with a set of 

documents. Each query-document pair has a relevant label. The ef-

fectiveness of a document ranking model 𝑆𝑐𝑜𝑟𝑒(𝐷, 𝑄) can be eval-

uated on the set. We determine whether a word 𝑤 is a good expan-

sion for a query 𝑄  by examining whether expanding 𝑄  with 𝑤 

leads to a better document ranking result. Specifically, we use the 

following ranking model 

𝑆𝑐𝑜𝑟𝑒(𝐷, 𝑄) = 𝛼 log 𝑃(𝑤|𝜃𝐷) + ∑ 𝑃(𝑞|𝜃𝑄) log 𝑃(𝑞|𝜃𝐷)

𝑞∈𝑄

 (4) 

where 𝑤 is the expansion term under consideration, 𝛼 is its weight, 

𝑞 is a term in the original query 𝑄, and 𝜃𝑄 and 𝜃𝐷 are query and 

document models, respectively. The query model 𝑃(𝑞|𝜃𝑄) is esti-

mated via MLE (maximum likelihood estimation) without smooth-

ing as 

𝑃(𝑞|𝜃𝑄) =
𝑡𝑓(𝑞; 𝑄)

|𝑄|
 (5) 

where 𝑡𝑓(𝑞; 𝑄) is the number of times 𝑞 occurs in 𝑄, and |𝑄| is the 

query length. The document model, e.g., 𝑃(𝑤|𝜃𝐷), is estimated via 

MLE with Dirichlet smoothing as  

𝑃(𝑤|𝜃𝐷) =
𝑡𝑓(𝑤; 𝐷) + 𝜇𝑃(𝑤|𝐶)

|𝐷| + 𝜇
 (6) 

where 𝑡𝑓(𝑤; 𝐷) is the number of times 𝑤 occurs in 𝐷, |𝐷| is the 

document length, 𝜇 is the Dirichlet prior (set to 2000 in our exper-

iments), and 𝑃(𝑤|𝐶) is the probability of 𝑤 on the collection 𝐶, es-

timated via MLE without smoothing. 

Equation (4) can be viewed as a simplified form of QE with a 

single term. It is used to label whether 𝑤 is a good expansion term 

for 𝑄. To simplify the training data generation process, we assume 

that 𝑤 acts on the query independently from other expansion terms, 

and each expansion term is added into 𝑄 with equal weight, i.e., 

𝛼 = 0.01 or 𝛼 = −0.01.  

The training data is generated as follows. For each query 𝑄 in 

the relevance judgment set, a set of candidate expansion terms {𝑤𝑖} 

is formed by collecting all terms that occur in the documents that 

are paired with 𝑄 but do not occur in 𝑄. Then 𝑤𝑖  is labeled as a 

good expansion term for 𝑄 if it improves the effectiveness of rank-

ing document when  𝛼 = 0.01 and hurt the effectiveness when 𝛼 =
−0.01. 𝑤𝑖 is labeled as bad if it produces an opposite effect or pro-

duces similar effect when 𝛼 = 0.01 or 𝛼 = −0.01. 

3.5 Parameter Estimation 

Given training data {(𝐱𝑖 , 𝑦𝑖)}, the model parameters 𝝀 = 〈𝜆𝜋〉𝜋∈𝐵 

can be optimized by maximizing the following objective [32] 

ℱ(𝝀) = ∑ 𝑓(𝐱, 𝑦; 𝛌)

(𝐱,𝑦)∈{(𝐱𝑖,𝑦𝑖)}

− 𝛼1‖𝝀‖1 − 𝛼2‖𝝀‖2
2 (7) 

where 𝛼1and 𝛼2 respectively control the strength of the L1-regular-

ization, which helps with structure selection, and L2-regularization 

which helps prevent overfitting. 𝑓(𝐱, 𝑦; 𝛌) is the log-likelihood of 

the training sample (𝐱, 𝑦), and is defined as 



𝑓(𝐱, 𝑦; 𝛌) = 𝑦 log 𝑃(𝐱, 𝝀) + (1 − 𝑦) log(1 − 𝑃(𝐱, 𝝀)) (8) 

and  

𝑃(𝐱, 𝝀) ≡ 𝑃(𝑦 = 1|𝐱, 𝝀) =
exp(𝝀𝑇𝐱)

1 + exp(𝝀𝑇𝐱)
 (9) 

is the model-predicted probability. In our experiments the maximi-

zation is performed using the OWL-QN algorithm [2], which is a 

special version of L-BFGS designed to deal with non-differentiable 

L1 norm. 

The PCRW-based model of Equation (3) assigns each path type 

a weight. Such a parameterization is called one-weight-per-path-

type. An alternative way of parameterizing the model is one-

weight-per-edge-label [11, 37]. [32] argue that the former is supe-

rior in that it takes into account the context in which a relation ap-

pears. In our experiments we compare these two parameterization 

options. Following [32], we use the same objective function and 

optimization procedure for the parameter estimation of the one-

weight-per-edge-label model. Because the model can be seen as the 

combination of all the PCRWs with each path having its weight set 

to the product of all the edge weights along the path, we can calcu-

late the gradient of edge weights by first calculating the gradient 

with respect to the paths, and then applying the chain rule of deriv-

ative. 

4. EXPERIMENTS 

4.1 Dataset and Evaluation Method 

In this study the effectiveness of a QE method is evaluated by issu-

ing a set of queries which are expanded using the method to a search 

engine and then measuring the Web search performance. Better QE 

methods are supposed to lead to better Web search results using the 

correspondingly expanded query set. 

Due to the characteristics of our QE methods, we cannot con-

duct experiments on standard test collections such as the TREC 

data because they do not contain related search logs we need. 

Therefore, following previous studies of log-based QE [e.g., 14, 19, 

40], we used the proprietary datasets that have been developed for 

building a commercial search engine, and demonstrated the effec-

tiveness of our methods by comparing them against several state-

of-the-art QE methods that are originally developed using TREC 

data [45, 34, 36]. For comparison, we also reproduced on our da-

tasets the results of several previous state-of-the-art log-based QE 

methods [14, 19, 41]. 

Our relevance judgment set consists of 12,000 rare queries in 

English. On average, each query is associated with 33 Web docu-

ments (URLs). Each query-document pair has a relevance label.  

The label is human generated and is on a 5-level relevance scale, 0 

to 4, with 4 meaning document 𝐷 is the most relevant to query 𝑄 

and 0 meaning 𝐷 is not relevant to 𝑄.  

The relevance judgment set is constructed as follows. First, the 

rare queries are sampled from one day of search engine logs. Adult, 

spam, and bot queries are all removed. To reflex a natural distribu-

tion of rare queries, we do not try to control the quality of these 

queries. We found that in comparison with common queries, rare 

queries are longer and contain more spelling errors. For example, 

in our rare query set, the average query length is 5 (vs. 3-word for 

a common query set), and there are around 20% misspelled queries 

(vs. 12% for a common query set). Second, for each query, we col-

lect Web documents to be judged by issuing the query to several 

popular search engines (e.g., Google, Bing) and fetching top-10 re-

trieval results from each. Finally, the query-document pairs are 

judged by a group of well-trained assessors. In this study all the 

queries are preprocessed as follows. The text is white-space to-

kenized and lowercased, numbers are retained, and no stem-

ming/inflection treatment is performed. Since all the document 

ranking and QE models tested in our experiments contain free pa-

rameters that must be estimated empirically on data, we used two-

fold cross validation to report results: a set of results on one half of 

the relevance judgment set is obtained using the parameter settings 

optimized on the other half, and global retrieval results are com-

bined from those of the two sets. 

The search logs used in this study consist of approximately 3 

billion query-document pairs sampled from the search logs of a 

commercial search engine. The Web document collection consists 

of around 730 million Web pages. In the retrieval experiments we 

use the index based on the content fields (i.e., body and title text) 

of each Web page. 

The performance of Web search is evaluated by mean Normal-

ized Discounted Cumulative Gain (NDCG) [26]. We report NDCG 

scores at truncation levels 1, 3, and 10.  We also performed a sig-

nificance test, i.e., a t-test with a significance level of 0.05. A sig-

nificant difference should be read as significant at the 95% level. 

4.2 System 

We constructed the graph 𝐺 using the search logs described in Sec-

tion 4.1. 𝐺 consists of 730 million document nodes 𝐷, 1.8 billion 

query nodes 𝑄′, and 100 million word nodes 𝑤. To represent the 

rare queries in the relevant judgment set, we extend 𝐺 by generated 

12,000 input query nodes 𝑄, each for one rare query. The edges 

between nodes are labeled using the relations defined in Table 1. 

Since rare queries are unseen in search logs, the edges between 𝑄 

and 𝐷, as in Figure 1, have a zero score, and all path types that 

include zero-score edges are inactive, such as RD8, RD9 and RD10 

in Table 2. 

QE is performed as follows. Given a trained PCRW model and 

the node of an input query 𝑄, we perform random walks in 𝐺 fol-

lowing all possible paths that instantiate the path types defined in 

𝐵. We then generate a list of candidate expansion term nodes 𝑤 

together with their scores 𝑃(𝑤|𝑄), as computed by Equation (3). 

We sort all the predictions (𝑄, 𝑤) by the scores in descending order, 

and pick the top-𝑛 words that are not in the input query for QE. In 

our experiments we set 𝑛 = 10 × |𝑄|, where |𝑄| is the length of 

the input query. The terms in the expanded query are weighted us-

ing the method described in [45]. The weights of the terms in the 

original query are set to 2, and the weight of a new term is set to 

1.0 − 0.9 × 𝑖/𝑛, where 𝑖 the rank of the term in the sorted list of 

top-𝑛 candidates. 

We use the unigram language model with Dirichlet smoothing 

to perform document ranking [49]. The model is defined as the sec-

ond term on the right-hand-side of Equation (4).  

4.3 Main Results 

Table 3 summarizes the main results using different QE methods, 

evaluated on the relevance judgment set described in Section 4.1.  



Row 1 in Table 3 (i.e., NoQE) is the baseline that uses the raw 

input queries without expansion. Rows 2 to 6 are the QE methods 

proposed previously. For fair comparison, the number of expansion 

terms for a query 𝑄 is set to 𝑛 = 10 × |𝑄| for all QE methods.  

LCA (Row 2) is local context analysis [45]. RM (Row 3) is 

relevance model [34]. LCA and RM are state-of-the-art PRF meth-

ods, developed respectively for the vector space and language mod-

eling IR frameworks. LCE (Row 4) is latent concept expansion 

[36], which is a generalization of RM in that it explicitly models 

term dependencies for QE. Unfortunately, the generalization does 

not lead to any significant improvement in our experiments (Row 4 

vs. Rows 2 and 3). 

TC (Row 5) is the log-based QE method based on our imple-

mentation of the term correlation model [14]. We see that both TC 

and PRF methods improve the effectiveness of Web search signif-

icantly, and the log-based method outperforms significantly the 

RPF methods that do not use query logs. The results confirm the 

conclusion of [14].  

SMT (Row 6) is a statistical machine translation (SMT) based 

QE system. Following Riezler et al. [41], the system is an imple-

mentation of a standard phrase-based SMT system with a set of fea-

tures derived from a translation model and a language model, com-

bined under the log-linear model framework [29]. To apply the sys-

tem to QE, expansion terms of a query are taken from those terms 

in the 10-best translations of the query that have not been seen in 

the original query string. The results show that SMT is also effec-

tive (Row 6 vs. Row 1), outperforming significantly TC in NDCG 

at 3 and 10 (Row 6 vs. Row 5). This result is more or less consistent 

with what is reported in Riezler et al. [41], despite the difference in 

training data we used, (i.e., Riezler et al. used query-snippet pairs 

while we used query-title pairs). 

TM (Row 7) is the QE method using a clickthrough-based 

translation model [17, 19]. TM and TC models are trained on the 

same clickthrough data that consists of 3 billion query-title pairs. 

The result that TM outperforms TC confirms the conclusion of [19] 

that a translation model trained using the EM algorithm [8, 16] is 

better than a correlation model estimated purely based on frequency 

counting as in TC. 

TC, SMT and TM, considered as state-of-the-art QE methods, 

have been frequently used for comparison in related studies. 

Row 8 is the PCRW-based method, described in Section 3. It 

outperforms significantly the baseline (Row 1) and the other QE 

methods we used for comparison (Rows 2 to 6). Since the PCRW 

model combines a wide variety of features, each encoded by a path 

type, it is instructive to investigate the QE performance of individ-

ual features and the impact of how these features are combined. 

 

ID (path length) NDCG@1 NDCG@3 NDCG@10 

NoQE  0.2648 0.2985 0.3905 

PCRW 0.2959 0.3302 0.4265 

TM1 (1) 0.2837 0.3212 0.4183 

TM2 (3) 0.2714 0.3101 0.3995 

TM3 (5) 0.2705 0.3100 0.3989 

TM4 (3) 0.2680 0.3050 0.4031 

TM5 (5) 0.2688 0.3051 0.4030 

SQ1 (2) 0.2768 0.3139 0.4084 

SQ2 (2) 0.2793 0.3159 0.4127 

SQ3 (4) 0.2806 0.3164 0.4109 

SQ4 (6) 0.2793 0.3146 0.4103 

SQ5 (4) 0.2796 0.3151 0.4107 

SQ6 (6) 0.2778 0.3140 0.4102 

RD1 (3) 0.2844 0.3200 0.4133 

RD2 (3) 0.2893 0.3242 0.4167 

RD3 (3) 0.2871 0.3245 0.4213 

RD4 (5) 0.2873 0.3221 0.4163 

RD5 (7) 0.2870 0.3234 0.4175 

RD6 (5) 0.2841 0.3194 0.4122 

RD7 (7) 0.2835 0.3176 0.4119 

Table 4: Document ranking results using different QE features, 

each encoded by a path type whose ID is defined in Table 2. 

The IDs NoQE, PCRW and TC are defined in Table 3. 

 

 

4.4 Individual Features 

Recall that in Section 3.2 we group path types into three categories: 

(1) TM features, (2) SQ features, and (3) RD features. They gener-

ate expansion terms using different data sources, and thus are ex-

pected to be complimentary. Table 4 presents QE results using in-

dividual features, where the best feature in each category is in bold 

and italic. Comparing the results of individual features with that of 

the PCRW model reveals that combining features significantly im-

proves the QE performance. 

Figures 2 and 3 present respectively two example queries, 

where different QE features give complimentary expansion terms 

and the combined achieves the best result. The query “acme baked 

bread” in Figure 2 is issued to search for the homepage of a bakery 

company in Berkeley, CA. The expanded query based on click-

through-based translation model (TM1 in Table 2) leads to worse 

document ranking results than that of NoQE because the model 

generates expansion terms from query terms in a word-by-word 

fashion, e.g., generating “bakery” or “bread” from “baked”. But, 

without knowing that the entire query refers to an entity (i.e., com-

pany), it cannot generate expansion terms relating to the properties 

of the entity (e.g., the location of the company). However, using 

features based on similar queries (SQ1) location names such as 

“san francisco” and “berkeley” are selected as expansion terms. It 

is also encouraging to see that its relevant document (www.acme-

bread.com) is ranked top in its pseudo-relevant document set ob-

tained via similar queries (RD1). 

The query “waterfall glass in dallax tx” in Figure 3 contain two 

common terms “waterfall” and “glass”. The search intent suggested 

by the two terms when they occur in the same query is very differ-

ent from that when only one of them occurs. As expected, the QE 

method using a word translation model (TM1) fails to improve the 

search performance. Neither do the similar queries retrieved via 

random walks (SQ1 and SQ3) provide very useful expansion terms 

since most of the similar queries are simply different permutations

# QE Methods NDCG@1 NDCG@3 NDCG@10 

1 NoQE 0.2648 0.2985 0.3905 

2 LCA (PRF) 0.2742α 0.3107 α 0.4075 α 

3 RM (PRF) 0.2689α 0.3077 α 0.4068 α 

4 LCE 0.2695α 0.3069 α 0.4098 α 

5 TC 0.2811αβ 0.3198 αβ 0.4132 αβ 

6 SMT 0.2803αβ 0.3230 αβγ 0.4199 αβγ 

7 TM 0.2837 αβ 0.3212 αβ 0.4183 αβγ 

8 PCRW 0.2959αβγ 0.3302 αβγ 0.4265 αβγ 

Table 3: Document ranking results using different QE methods. 

The superscripts 𝛼, 𝛽, and  𝛾 indicate statistically significant im-

provements (𝑝 < 0.05) over NoQE, LCA, and TC, respectively.  

 



recipe 0.03239 

recipes 0.01685 
bake 0.01675 
oven 0.00886 
baking 0.00705 
cooks 0.00611 
company 0.00598 
html 0.00543 
food 0.00451 
set 0.00439 
bakery 0.00432 
breads 0.00324 
rec 0.00317 
search 0.00293 
make 0.00289 
ff 0.00272 
home 0.002168 
markets 0.0018 
honeybaked 0.0014 
… … 

company 0.00280 

co 0.00203 
berkeley 0.00203 
recipes 0.00628 
sf 0.00203 
oven 0.00395 
bakery 0.00167 
home 0.00280 
recipe 0.00280 
san 0.00280 
francisco 0.00280 
fresh 0.00280 
ferry 0.00203 
building 0.00203 
garlic 0.00203 
pudding 0.00280 
pita 0.00203 
mountain 0.00203 
food 0.00167 
… … 

company 0.00280 

markets 0.00199 
groceries 0.00143 
coupons 0.00143 
weekly 0.00143 
ad 0.00143 
recipes 0.00825 
pharmacy 0.00143 
bakery 0.00143 
grocery 0.00167 
stores 0.00167 
homemade 0.00143 
oven 0.00395 
baked 0.00729 
yeast 0.00143 
breads 0.00239 
ehow 0.00333 
grandmothers 0.0017 
recipe 0.00283 
… … 

 texas 0.05671 

waterfalls 0.01893 
falls 0.01093 
water 0.00592 
city 0.00401 
home 0.00362 
dfw 0.00267 
fall 0.00258 
worth 0.00255 
center 0.00238 
fort 0.00220 
company 0.00191 
wikipedia 0.00187 
wiki 0.00186 
park 0.00186 
houston 0.00185 
county 0.00168 
glasses 0.00158 
north 0.00157 
… … 

lounge 3.993E-05 

house 3.424E-05 
club 3.424E-05 
uptown 2.802E-05 
auto 2.031E-05 
stained 2.031E-05 
bar 2.031E-05 
blowing 2.031E-05 
door 2.031E-05 
oregon 2.031E-05 
coldplay 2.031E-05 
hiking 2.031E-05 
flat 2.031E-05 
tile 2.031E-05 
nightclub 2.031E-05 
… … 

windsor 7.85E-05 

texas 6.19E-05 
apartments 4.69E-05 
house 4.69E-05 
communities 4.69E-05 
real 2.39E-05 
estate 2.39E-05 
travel 2.39E-05 
hotels 2.10E-05 
profile 2.03E-05 
population 2.03E-05 
maps 2.03E-05 
averages 2.03E-05 
homes 2.03E-05 
statistics 2.03E-05 
relocation 2.03E-05 
hospitals 2.03E-05 
restaurants 1.99E-05 
events 1.85E-05 
… … 

(a) 
 

(b) (c)  (a) 
 

(b) (c) 

acme bread; acme bread company; acme bread co; acme bread berkeley; acme 
recipes; acme bread sf; baked bread recipes; oven baked bread; acme bakery; 
home baked bread; oven baked bread recipe; acme bread san francisco; oven 
baked bread recipes; home baked bread recipes;  
acme bread company san francisco; acme bread ferry building 
… … 

 glass dallas; dallas glass; glass dallas tx; waterfall glass; glass waterfall;  
dallas auto glass; glass house dallas; stained glass dallas; glass dallas club;  
glass club dallas; glass lounge dallas tx; the glass house dallas; glass bar dallas; 
dallas glass blowing; glass dallas uptown; dallas glass and door; 
dallas glass oregon; coldplay dallas tx; hiking dallas tx; glass lounge dallas 
… … 

(d) 
 

 (d) 

1. the acme bread company   
http://www.acmebread.com 

2. acme markets groceries coupons weekly ad recipes and pharmacy  
http://www.acmemarkets.com 

3. bakery acme markets grocery stores 
http://www.acmemarkets.com/departments/bakery.jsp 

4. acme bread company 
http://www.ferrybuildingmarketplace.com/acme_bread_company.php 

5. homemade oven baked yeast breads 
http://baking.about.com/od/yeastbreads/Yeast_Breads.htm 

6. how to make home baked bread ehow com 
http://www.ehow.com/how_4794468_home-baked-bread.html 

7. grandmothers oven baked bread recipe best recipes 
http://www.bestrecipes.com.au/recipe/... 

8. how to bake bread bread recipes healthy breads 
http://bread-by-yia-yia.com 

9. bread baking 
http://breadbaking.about.com 

10. bread recipes allrecipes com 
http://allrecipes.com/Recipes/Bread 

… … 

 1. welcome to the city of dallas texas city web portal 
http://dallascityhall.com/ 

2. dallas wikipedia the free encyclopedia 
http://en.wikipedia.org/wiki/Dallas 

3. dallas hotels restaurants events and things to do dallas cvb 
http://www.visitdallas.com 

4. dallas tx apartments glass house by windsor windsor communities 
http://www.windsorcommunities.com/apartments/dallas/glasshouse 

5. dallas texas tx profile population maps real estate … 
http://www.city-data.com/city/Dallas-Texas.html 

6. dallas city guide hotels restaurants nightlife attractions real estate 
http://www.dallas.com 

7. glass lounge uptown dallas tx 
http://www.yelp.com/biz/glass-lounge-dallas 

8. glass uptown uptown dallas tx 
http://www.yelp.com/biz/glass-uptown-dallas 

9. the dallas glass club dallas texas dgc home 
http://dallasglassclub.org/ 

10. glass uptown lounge website coming soon 
http://glassuptown.com/ 

… … 

(e) 
 

 (e) 

Figure 2: QE results of 𝑄 = acme baked bread. (a), (b) and (c) 

are top expansion terms and their scores 𝑃(𝑤|𝑄) generated using 

features TM1, SQ1 and RD1, respectively; (d) are top similar que-

ries generated using SQ1; (e) are top pseudo relevant documents 

generated using RD1. Features are defined in Table 2. 
 

 Figure 3: QE results of 𝑄 = waterfall glass in dallas tx. (a), (b) and 

(c) are top expansion terms their scores 𝑃(𝑤|𝑄) generated using fea-

tures TM1, SQ1 and RD1, respectively; (d) are top similar queries 

generated using SQ1; (e) are top pseudo relevant documents gener-

ated using RD1. Features are defined in Table 2. 

of the same set of terms. Fortunately, as shown in Figure 3 (e), these 

permuted queries lead to a set of clicked documents (RD1) from 

which effective expansion terms are generated.  

Results in Table 4 reveal the effectiveness of individual features, 

some of which have not been studied previously. TM1, which is 

also reported in Row 7 in Table 1, is the best among all TM features. 

Although the translation probabilities in TM2, TM3, TM4 and 

TM5 are estimated via random walks, rather than on query-docu-

ment pairs as in TM1, these models still improve the baseline 

NoQE, although not as effective as TM1, thus providing an alter-

native way of obtaining translation models without training data.  



Results of the SQ features suggest that (1) it is more effective 

to retrieve semantically similar queries for QE, and this can be 

achieved either by applying a translation model (SQ2 vs. SQ1) or 

by applying random walks on query-document graph (SQ3 vs. 

SQ1); and (2) taking a 2-step random walk is useful but taking 

longer steps is not (e.g., SQ3 vs. SQ1 and SQ4). 

Results of the RD features show that (1) it is more effective to 

use a translation model to retrieve similar queries (RD2 vs. RD1) 

or to generate expansion terms from pseudo-relevant documents 

(RD3 vs. RD1); and (2) random walks cannot significantly improve 

the quality of the pseudo-relevant document set (e.g., RD6 and 

RD7 vs. RD2).  

4.5 Impact of Parameter Estimation 

Table 5 compares the PCRW model parameterized using one-

weight-per-path-type with two baselines. We see that (1) the trained 

models outperform the untrained model; and (2) one-weight-per-

path-type is slightly better than one-weight-per-edge-label, but the 

difference is not statistically significant, except for NDCG score at 

1, indicating that capturing context information between relations 

in a path is useful, although the impact on QE is marginal. 

 

5. RELATED WORK  

Our work is a significant extension to the random walk models de-

scribed in [11] in two aspects. First, while we use a PCRW model, 

[11] uses a more traditional Markov chain model, similar to [23, 37, 

43], where random walks are not constrained by path types and 

their models are parameterized as one-weight-per-edge-label. As 

discussed in Section 3.5, paths in 𝐺 provide more useful features 

for QE than edges since the former captures more context infor-

mation. Although it is difficult for us to perform a direct compari-

son between our model and the model in [11] due to the dramati-

cally different data sources that these two models are based on re-

spectively, the result in Table 5 suggests that given the same search 

logs as thesauri, our model is likely to perform better. Second, 

while 𝐺  in our model is constructed on search logs, 𝐺  in [11] is 

constructed on thesauri that are compiled manually or derived from 

document collections. Our design decision of using search logs ra-

ther than pre-complied thesauri is motivated by those studies that 

show that log-based QE methods [e.g., 15, 19, 22, 42] often lead to 

a superior performance to the QE methods that use human-com-

piled thesauri [e.g., 24, 38] largely due to the fact that models 

trained on search logs explicitly capture the correlation between 

query terms and document terms, thus bridging the lexical gap be-

tween them more effectively. On the other hand, Web scale thesauri 

such as ConceptNet and Wikipedia have recently been explored for 

QE, leading to some promising results [30, 47]. The graph repre-

sentation and the PCRW-based inference we proposed provide a 

flexible framework to incorporate such new thesauri. We leave it to 

future work.  

In addition to QE, random walk models have also been applied 

on other Web search applications, such image search [12], query 

suggestion [6, 35], query translation for cross-lingual IR [9], click 

model smoothing [21], and email search [37]. Our method bears 

some resemblance to all these previous works. 

Previous studies on QE can be roughly grouped into two cate-

gories: the automatic relevance feedback methods [10, 11, 34, 36, 

40, 45, 48] developed mainly on TREC data and the log-based 

methods [14, 15, 19, 22, 41, 42] where the correlation between 

query terms and document terms is learned from clickthrough data. 

Most of the features used in our PCRW model, as in Table 2, are 

inspired by these QE models. 

Search logs have been proved to be a valuable data source for 

many Web search tasks. In addition to QE, they have also been used 

for document ranking [1, 20, 27], query processing and spelling 

correction [18, 25], user query clustering [3, 4, 44], etc. 

6. CONCLUSIONS 

This paper exploits search logs for QE for Web search ranking. We 

present a QE method based on path-constrained random walks, 

where the search logs are represented as a labeled, directed graph, 

and the probability of selecting an expansion term for an input 

query is computed by a learned combination of constrained random 

walks on the graph. We show that our method is generic and flexi-

ble in that it not only represents most of popular QE models as fea-

tures, but also allows us to easily devise new features, which can 

potentially use much richer information than previous QE models, 

by defining path types with a rich set of walk behaviors. The PCRW 

model also provides a principled mathematical framework in which 

different QE models, i.e., defined as path types or features, can be 

incorporated in a unified way, thus making it less susceptible to the 

sparseness issue of clickthrough data and ambiguous search intent 

of user queries. The evaluation on a real-world data set shows that 

the PCRW-based method significantly outperforms other state-of-

the-art QE methods. 

One area in future work is to adapt the PCRW-based method 

for Web document ranking directly. For example, we might model 

the relevance score of a query 𝑄 and a document 𝐷 as the probabil-

ity, computed by a learned combination of path-constrained ran-

dom walks from 𝑄 to 𝐷, where different document ranking models 

can be incorporated as path types. In addition to clickthrough data, 

we need to incorporate other data source to construct 𝐺, such as link 

graphs and the category structure of Web documents. 
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