DieHard: Memory Error
Fault Tolerance in C and C++

Ben Zorn
Microsoft Research

In collaboration with
Emery Berger and Gene Novark, Univ. of Massachusetts
Ted Hart, Microsoft Research

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

Focus on Heap Memory Errors

= Buffer overflow

char *c¢c = malloc(100) ;

c[101] = ‘a’;

= Dangling reference

char *pl

= malloc(100) ;
char *p2 = pl; \T;//

free (pl);
p2[0] = ‘x’;

99

99

Ben Zorn, Microsoft Research

DieHard: Memory Error Fault Tolerance in C and C++

Motivation

Consider a shipped C program with a
memory error (e.g., buffer overflow)
o By language definition, “undefined”

o In practice, assertions turned off — mostly works
|.e., data remains consistent

What if you know it has executed an illegal
operation?

o Ralse an exception?

o Continue unsoundly (failure oblivious computing)
o Continue with well-defined semantics

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

Research Vision

Increase robustness of installed code base
o Potentially improve millions of lines of code

a2 Minimize effort — ideally no source mods, no
recompilation

Reduce requirement to patch
o Patches are expensive (detect, write, deploy)
o Patches may introduce new errors

Enable trading resources for robustness
o E.g., more memory implies higher reliability

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

Research Themes

Make existing programs more fault tolerant
o Define semantics of programs with errors
o Programs complete with correct result despite errors

Go beyond all-or-nothing guarantees

o Type checking, verification rarely a 100% solution
C#, Java both call to C/C++ libraries

o Traditional engineering allows for errors by design

Complement existing approaches

o Static analysis has scalability limits
o Managed code especially good for new projects
o DART, Fuzz testing effective for generating illegal test cases

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

Approaches to Protecting Programs

Unsound, may work or abort
o Windows, GNU libc, etc.

Unsound, might continue

o Failure oblivious (keep going) [Rinard]
Invalid read => manufacture value
lllegal write => ignore

Sound, definitely aborts (fail-safe, fail-fast)
o CCured [Necula], others

Sound and continues

o DieHard, Rx, Boundless Memory Blocks,
hardware fault tolerance

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

Outline

DieHard

o Collaboration with Emery Berger

o Replacement for malloc/free heap allocation

o No source changes, recompile, or patching, required

Exterminator

o Collaboration with Emery Berger, Gene Novark
o Automatically corrects memory errors

o Suitable for large scale deployment

Conclusion

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

DieHard: Probabilistic Memory Safety

Collaboration with Emery Berger
Plug-compatible replacement for malloc/free in C lib

We define “infinite heap semantics”

o Programs execute as if each object allocated with
unbounded memory

o All frees ignored

Approximating infinite heaps — 3 key ideas
o Overprovisioning

o Randomization

o Replication

Allows analytic reasoning about safety

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

‘ Overprovisioning, Randomization

Expand size requests by a factor of M (e.g., M=2)

_ T | prwite comupts) = 2

Randomize object placement

B B B E O, K

Pr(write corrupts) = %2 !

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

‘ Replication (optional)

Replicate process with different randomization seeds

P1

input

Broadcast input to all replicas Voter

Compare outputs of replicas, kill when replica disagrees

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 10

DieHard Implementation Details

Multiply allocated memory by factor of M

Allocation
o Segregate objects by size (log2), bitmap allocator

o Within size class, place objects randomly in address
Space
Randomly re-probe if conflicts (expansion limits probing)

o Separate metadata from user data

o Fill objects with random values — for detecting uninit reads
Deallocation

o Expansion factor => frees deferred

o Extra checks for illegal free

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 11

Over-provisioned, Randomized Heap

Segregated size classes

H/2 A A
4 Y A
2 |4 5 3 1 6
k)bject size =8 / object size = 16

\

H = max heap size,
class i

- Static strategy pre-allocates size classes
- Adaptive strategy grows each size class incrementally

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

Randomness enables Analytic Reasoning
Example: Butter Overtlows

Be

Obj
Pr(Mask Buffer Overflow) = 1 — [1 _ (E)

n Zorn

r k

k = # of replicas, Obj = size of overflow

With no replication, Obj = 1, heap no more
than 1/8 full:
Pr(Mask buffer overflow), = 87.5%

3 replicas: Pr(ibid) = 99.8%

, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

13

DieHard CPU Performance (no replication)

Runtime on Windows

O malloc @ DieHard

»

-
N

-

0.8

0.6

Normalized runtime

0.4

0.2

cfrac

espresso lindsay p2c

roboop

Geo. Mean

Ben Zorn, Microsoft Research

DieHard: Memory Error Fault Tolerance in C and C++

14

‘DieHard CPU Performance (Linux)

Emalloc ®GC mDieHard (static) ™ DieHard (adaptive)

2.5
alloc-intensive general-purpose

Normalized runtime

cfrac
espresso
lindsay
roboop
Geo. Mean
164.gzip
175.vpr
176.gcc
181.mcf
186.crafty
197.parser
252.eon
253.perlbmk
254.gap
255.vortex
256.bzip2
300.twolf

c
@
[
=
o
3]
o

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

15

Correctness Results

Tolerates high rate of synthetically injected
errors in SPEC programs

Detected two previously unreported benign
bugs (197.parser and espresso)

Successfully hides buffer overflow error in
Squid web cache server (v 2.3s5)

But don’t take my word for it...

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

16

DieHard Demo

DieHard (non-replicated)

Windows, Linux version implemented by Emery Berger

Avallable: http://www.diehard-software.org/

Adaptive, automatically sizes heap

Detours-like mechanism to automatically redirect malloc/free calls

to DieHard DLL
Application: Mozilla, version 1.7.3
o Known buffer overflow crashes browser

Takeaways
o Usable in practice — no perceived slowdown
o Roughly doubles memory consumption

20.3 Mbytes vs. 44.3 Mbytes with DieHard

o o O 0O

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 17

http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.diehard-software.org/

Caveats

Primary focus Is on protecting heap

o Techniques applicable to stack data, but requires
recompilation and format changes

DieHard trades space, extra processors for memory
safety

a2 Not applicable to applications with large footprint

o Applicability to server apps likely to increase

DieHard requires non-deterministic behavior to be
made deterministic (on input, gettimeofday(), etc.)

DieHard is a brute force approach
o Improvements possible (efficiency, safety, coverage, etc.)

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 18

Outline

Q
Q

Q

Exterminator

o Collaboration with Emery Berger, Gene Novark
o Automatically corrects memory errors

o Suitable for large scale deployment

Conclusion

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

19

Exterminator Motivation

DieHard limitations

o Tolerates errors probabilistically, doesn’t fix them
o Memory and CPU overhead

o Provides no information about source of errors

o Note — DieHard still extremely useful

“Ideal” addresses the limitations

o Program automatically detects and fixes memory errors
o Corrected program has no memory, CPU overhead
o Sources of errors are pinpointed, easier for human to fix

Exterminator = correcting allocator

o Joint work with Emery Berger, Gene Novark
o Random allocation => isolates bugs instead of tolerating them

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

20

Exterminator Components

Architecture of Exterminator dictated by solving
specific problems

How to detect heap corruptions effectively?
o DieFast allocator

How to isolate the cause of a heap corruption
precisely?

o Heap differencing algorithms

How to automatically fix buggy C code without
breaking it?

o Correcting allocator + hot allocator patches

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 21

DieFast Allocator

Randomized, over-provisioned heap

o Canary = random bit pattern fixed at startup
o Leverage extra free space by inserting canaries

Inserting canaries

o Initialization — all cells have canaries

2 On allocation — no new canaries

o On free — put canary in the freed object with prob. P
o Remember where canaries are (bitmap)

Checking canaries
2 On allocation — check cell returned
o On free — check adjacent cells

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 22

‘ Installing and Checking Canaries

Initially, heap full of canaries

Free
Allocate Allocate

*

\I/C|§1R§F a%%rﬂi%s,\’p Check canary

DieHard: Memory Error Fault Tolerance in C
Ben Zorn, Microsoft Research and C++

23

Heap Ditterencing
Strategy

o Run program multiple times with different randomized
heaps

o If detect canary corruption, dump contents of heap
o ldentify objects across runs using allocation order

Key insight: Relation between corruption and
object causing corruption Is invariant across
heaps

o Detect invariant across random heaps

o More heaps => higher confidence of invariant

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

24

‘ Attributing Butfer Overtlows

corrupted
delta is constant but W#KHGWN

Now only 2 candidates

One candidate!

Precision increases exponentially with number of runs

DieHard: Memory Error Fault Tolerance in C
Ben Zorn, Microsoft Research and C++ 25

Detecting Dangling Pointers (2 cases)

Dangling pointer read/written (easy)

o Invariant = canary in freed object X has same
corruption in all runs

Dangling pointer only read (harder)

o Sketch of approach (paper explains details)
Only fill freed object X with canary with probability P
Requires multiple trials: = log,(number of callsites)
Look for correlations, i.e., X filled with canary => crash

Establish conditional probabilities
0 Have: P(callsite X filled with canary | program crashes)

0 Need: P(crash | filled with canary), guess “prior” to compute

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

26

Correcting Allocator

Group objects by allocation site
Patch object groups at allocate/free time

Associate patches with group

o Buffer overrun => add padding to size request
malloc(32) becomes malloc(32 + delta)

o Dangling pointer => defer free
free(p) becomes defer_free(p, delta_allocations)

o Fixes preserve semantics, no new bugs created

Correcting allocation may != DieFast or DieHard
o Correction allocator can be space, CPU efficient
o “Patches” created separately, installed on-the-fly

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 27

Deploying Exterminator

Exterminator can be deployed in different modes

lterative — suitable for test environment
o Different random heaps, identical inputs
o Complements automatic methods that cause crashes

Replicated mode

o Suitable in a multi/many core environment

o Like DieHard replication, except auto-corrects, hot patches

Cumulative mode — partial or complete deployment

o Aggregates results across different inputs

o Enables automatic root cause analysis from Watson dumps

o Suitable for wide deployment, perfect for beta release
o Likely to catch many bugs not seen in testing lab

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

28

Normalized Execution Time

DieFast Overhead

B GNU libc O Exterminator
2.5 - - -
allocation-intensive SPECint2000
2 —
15 |_ []
1 a - - ||
0.5 A — | | ||
0 - ||
% &
é@c P 8"& & &K q'b\Q <& . §$ &) %(c\ é‘_,e,‘ S \0&{' R (\,+ ,L\Qq' S &
AN O R S S PN - G- S A SO
®) (3,9 5 g A\
0 606‘
[©
DieHard: Memory Error Fault Tolerance in C
Ben Zorn, Microsoft Research and C++ 29

Exterminator Effectiveness

Squid web cache buffer overflow
o Crashes glibc 2.8.0 malloc
o 3 runs sufficient to isolate 6-byte overflow

Mozilla 1.7.3 buffer overflow (recall demo)
o Testing scenario - repeated load of buggy page
23 runs to isolate overflow

o Deployed scenario — bug happens in middle of
different browsing sessions

34 runs to I1solate overflow

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

30

Comparison with Existing Approaches

Static analysis, annotations

o Finds individual bugs, developer still has to fix

o High cost developing, testing, deploying patches
o DieHard reduces threat of all memory errors

Testing, OCA / Watson dumps

o Finds crashes, developer still has find root cause
Type-safe languages (C#, etc.)

o Large installed based of C, C++

o Managed runtimes, libraries have lots of C, C++
o Also has a memory cost

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 31

Conclusion

Programs written in C / C++ can execute safely
and correctly despite memory errors

Research vision

o Improve existing code without source modifications
o Reduce human generated patches required

o Increase reliability, security by order of magnitude

Current projects and results

o DieHard: overprovisioning + randomization + replicas =
probabilistic memory safety

o Exterminator: automatically detect and correct memory
errors (with high probability)

o Demonstrated success on real applications

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 32

Hardware Trends

Hardware transient faults are increasing

o Even type-safe programs can be subverted in
presence of HW errors
Academic demonstrations in Java, OCaml

o Soft error workshop (SELSE) conclusions
Intel, AMD now more carefully measuring
“Not practical to protect everything”

Faults need to be handled at all levels from HW up the
software stack

o Measurement is difficult
How to determine soft HW error vs. software error?
Early measurement papers appearing

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

Power to Spare

= DRAM prices dropping

o 2Gb, Dual Channel PC 6400 DDR2
800 MHz $85

= Multicore CPUs

o Quad-core Intel Core 2 Quad, AMD
Quad-core Opteron

o Eight core Intel by 20087

http://www.hardwaresecrets.com/news/709

= Challenge:
How should we use all this
hardware?

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

34

http://www.hardwaresecrets.com/news/709

Additional Information

Web sites:

o Ben Zorn: http://research.microsoft.com/~zorn

o DieHard: http://www.diehard-software.org/

o Exterminator: http://www.cs.umass.edu/~gnovark/

Publications

o Emery D. Berger and Benjamin G. Zorn, "DieHard:

Probabilistic Memory Safety for Unsafe
Languages", PLDI'06.

o Gene Novark, Emery D. Berger and Benjamin G.
Zorn, "Exterminator: Correcting Memory Errors
with High Probability", PLDI’07.

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

35

http://research.microsoft.com/~zorn
http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.cs.umass.edu/~gnovark/
http://www.cs.umass.edu/~emery/pubs/05-65.pdf

‘ Backup Slides

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

36

Related Work

Conservative GC (Boehm / Demers / Weiser)
o Time-space tradeoff (typically >3X)
o Provably avoids certain errors

Safe-C compilers

o Jones & Kelley, Necula, Lam, Rinard, Adve, ...
o Often built on BDW GC

o Up to 10X performance hit

N-version programming

o Replicas truly statistically independent
Address space randomization (as in Vista)

Failure-oblivious computing [Rinard]

o Hope that program will continue after memory error with no
untoward effects

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++

