
DieHard: Memory Error

Fault Tolerance in C and C++

Ben Zorn
Microsoft Research

In collaboration with

Emery Berger and Gene Novark, Univ. of Massachusetts

Ted Hart, Microsoft Research

Ben Zorn, Microsoft Research 1DieHard: Memory Error Fault Tolerance in C and C++

 Buffer overflow

char *c = malloc(100);

c[101] = ‘a’;

 Dangling reference

char *p1 = malloc(100);

char *p2 = p1;

free(p1);

p2[0] = ‘x’;

a

Focus on Heap Memory Errors

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 2

c

0 99

p1

0 99

p2

x

Ben Zorn, Microsoft Research

Motivation

 Consider a shipped C program with a

memory error (e.g., buffer overflow)

 By language definition, “undefined”

 In practice, assertions turned off – mostly works

 I.e., data remains consistent

 What if you know it has executed an illegal

operation?

 Raise an exception?

 Continue unsoundly (failure oblivious computing)

 Continue with well-defined semantics

3DieHard: Memory Error Fault Tolerance in C and C++

Research Vision

 Increase robustness of installed code base

 Potentially improve millions of lines of code

 Minimize effort – ideally no source mods, no

recompilation

 Reduce requirement to patch

 Patches are expensive (detect, write, deploy)

 Patches may introduce new errors

 Enable trading resources for robustness

 E.g., more memory implies higher reliability

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 4

Ben Zorn, Microsoft Research

Research Themes

 Make existing programs more fault tolerant

 Define semantics of programs with errors

 Programs complete with correct result despite errors

 Go beyond all-or-nothing guarantees

 Type checking, verification rarely a 100% solution

 C#, Java both call to C/C++ libraries

 Traditional engineering allows for errors by design

 Complement existing approaches
 Static analysis has scalability limits

 Managed code especially good for new projects

 DART, Fuzz testing effective for generating illegal test cases

5DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

Approaches to Protecting Programs

 Unsound, may work or abort

 Windows, GNU libc, etc.

 Unsound, might continue

 Failure oblivious (keep going) [Rinard]

 Invalid read => manufacture value

 Illegal write => ignore

 Sound, definitely aborts (fail-safe, fail-fast)

 CCured [Necula], others

 Sound and continues

 DieHard, Rx, Boundless Memory Blocks,

hardware fault tolerance

6DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

Outline

 Motivation

 DieHard
 Collaboration with Emery Berger

 Replacement for malloc/free heap allocation

 No source changes, recompile, or patching, required

 Exterminator
 Collaboration with Emery Berger, Gene Novark

 Automatically corrects memory errors

 Suitable for large scale deployment

 Conclusion

7DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

DieHard: Probabilistic Memory Safety

 Collaboration with Emery Berger

 Plug-compatible replacement for malloc/free in C lib

 We define “infinite heap semantics”

 Programs execute as if each object allocated with

unbounded memory

 All frees ignored

 Approximating infinite heaps – 3 key ideas

 Overprovisioning

 Randomization

 Replication

 Allows analytic reasoning about safety

8DieHard: Memory Error Fault Tolerance in C and C++

Overprovisioning, Randomization

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 9

Expand size requests by a factor of M (e.g., M=2)

1 2 3 4 5

1 2 3 4 5

Randomize object placement

12 34 5

Pr(write corrupts) = ½ ?

Pr(write corrupts) = ½ !

Replication (optional)

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 10

Replicate process with different randomization seeds

1 234 5

P2

12 345

P3

input

Broadcast input to all replicas

Compare outputs of replicas, kill when replica disagrees

1 23 45

P1

Voter

Ben Zorn, Microsoft Research

DieHard Implementation Details

 Multiply allocated memory by factor of M

 Allocation

 Segregate objects by size (log2), bitmap allocator

 Within size class, place objects randomly in address

space

 Randomly re-probe if conflicts (expansion limits probing)

 Separate metadata from user data

 Fill objects with random values – for detecting uninit reads

 Deallocation

 Expansion factor => frees deferred

 Extra checks for illegal free

11DieHard: Memory Error Fault Tolerance in C and C++

Segregated size classes

- Static strategy pre-allocates size classes

- Adaptive strategy grows each size class incrementally

Ben Zorn, Microsoft Research

Over-provisioned, Randomized Heap

2

H = max heap size,
class i

L = max live size ≤

H/2
F = free = H-L

4 5 3 1 6

object size = 16object size = 8

…

12DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

Randomness enables Analytic Reasoning

Example: Buffer Overflows

 k = # of replicas, Obj = size of overflow

 With no replication, Obj = 1, heap no more

than 1/8 full:

Pr(Mask buffer overflow), = 87.5%

 3 replicas: Pr(ibid) = 99.8%

13DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

DieHard CPU Performance (no replication)

Runtime on Windows

0

0.2

0.4

0.6

0.8

1

1.2

1.4

cfrac espresso lindsay p2c roboop Geo. Mean

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e

malloc DieHard

14DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

DieHard CPU Performance (Linux)

15DieHard: Memory Error Fault Tolerance in C and C++

0

0.5

1

1.5

2

2.5
c
fr

a
c

e
s
p

re
s
s
o

lin
d

s
a

y

ro
b

o
o

p

G
e

o
.
M

e
a

n

1
6

4
.g

z
ip

1
7

5
.v

p
r

1
7

6
.g

c
c

1
8

1
.m

c
f

1
8

6
.c

ra
ft

y

1
9

7
.p

a
rs

e
r

2
5

2
.e

o
n

2
5

3
.p

e
rl
b

m
k

2
5

4
.g

a
p

2
5

5
.v

o
rt

e
x

2
5

6
.b

z
ip

2

3
0

0
.t

w
o

lf

G
e

o
.
M

e
a

n

N
o

rm
a

li
z
e

d
 r

u
n

ti
m

e

malloc GC DieHard (static) DieHard (adaptive)

alloc-intensive general-purpose

Ben Zorn, Microsoft Research

Correctness Results

 Tolerates high rate of synthetically injected
errors in SPEC programs

 Detected two previously unreported benign
bugs (197.parser and espresso)

 Successfully hides buffer overflow error in
Squid web cache server (v 2.3s5)

 But don’t take my word for it…

16DieHard: Memory Error Fault Tolerance in C and C++

DieHard Demo

 DieHard (non-replicated)
 Windows, Linux version implemented by Emery Berger

 Available: http://www.diehard-software.org/

 Adaptive, automatically sizes heap

 Detours-like mechanism to automatically redirect malloc/free calls

to DieHard DLL

 Application: Mozilla, version 1.7.3
 Known buffer overflow crashes browser

 Takeaways
 Usable in practice – no perceived slowdown

 Roughly doubles memory consumption

 20.3 Mbytes vs. 44.3 Mbytes with DieHard

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 17

http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.diehard-software.org/

Ben Zorn, Microsoft Research

Caveats

 Primary focus is on protecting heap

 Techniques applicable to stack data, but requires

recompilation and format changes

 DieHard trades space, extra processors for memory

safety

 Not applicable to applications with large footprint

 Applicability to server apps likely to increase

 DieHard requires non-deterministic behavior to be

made deterministic (on input, gettimeofday(), etc.)

 DieHard is a brute force approach
 Improvements possible (efficiency, safety, coverage, etc.)

18DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

Outline

 Motivation

 DieHard
 Collaboration with Emery Berger

 Replacement for malloc/free heap allocation

 No source changes, recompile, or patching, required

 Exterminator
 Collaboration with Emery Berger, Gene Novark

 Automatically corrects memory errors

 Suitable for large scale deployment

 Conclusion

19DieHard: Memory Error Fault Tolerance in C and C++

Exterminator Motivation

 DieHard limitations
 Tolerates errors probabilistically, doesn’t fix them

 Memory and CPU overhead

 Provides no information about source of errors

 Note – DieHard still extremely useful

 “Ideal” addresses the limitations
 Program automatically detects and fixes memory errors

 Corrected program has no memory, CPU overhead

 Sources of errors are pinpointed, easier for human to fix

 Exterminator = correcting allocator
 Joint work with Emery Berger, Gene Novark

 Random allocation => isolates bugs instead of tolerating them

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 20

Exterminator Components

 Architecture of Exterminator dictated by solving

specific problems

 How to detect heap corruptions effectively?

 DieFast allocator

 How to isolate the cause of a heap corruption

precisely?

 Heap differencing algorithms

 How to automatically fix buggy C code without

breaking it?

 Correcting allocator + hot allocator patches

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 21

DieFast Allocator
 Randomized, over-provisioned heap

 Canary = random bit pattern fixed at startup

 Leverage extra free space by inserting canaries

 Inserting canaries

 Initialization – all cells have canaries

 On allocation – no new canaries

 On free – put canary in the freed object with prob. P

 Remember where canaries are (bitmap)

 Checking canaries

 On allocation – check cell returned

 On free – check adjacent cells

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 22

100101011110

1 2

Installing and Checking Canaries

Ben Zorn, Microsoft Research

DieHard: Memory Error Fault Tolerance in C

and C++ 23

Allocate Allocate

Install canaries

with probability P
Check canary Check canary

Free

Initially, heap full of canaries

1

Heap Differencing

 Strategy

 Run program multiple times with different randomized

heaps

 If detect canary corruption, dump contents of heap

 Identify objects across runs using allocation order

 Key insight: Relation between corruption and

object causing corruption is invariant across

heaps

 Detect invariant across random heaps

 More heaps => higher confidence of invariant

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 24

1 2

Attributing Buffer Overflows

Ben Zorn, Microsoft Research

DieHard: Memory Error Fault Tolerance in C

and C++ 25

One candidate!

4 3

corrupted

canary

Which object caused?

delta is constant but unknown
?

12 4 3

Run 2

Run 1

Now only 2 candidates

2 4

41 3

Run 3

2 44

Precision increases exponentially with number of runs

Detecting Dangling Pointers (2 cases)

 Dangling pointer read/written (easy)

 Invariant = canary in freed object X has same

corruption in all runs

 Dangling pointer only read (harder)

 Sketch of approach (paper explains details)

 Only fill freed object X with canary with probability P

 Requires multiple trials: ≈ log2(number of callsites)

 Look for correlations, i.e., X filled with canary => crash

 Establish conditional probabilities

 Have: P(callsite X filled with canary | program crashes)

 Need: P(crash | filled with canary), guess “prior” to compute

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 26

Correcting Allocator

 Group objects by allocation site

 Patch object groups at allocate/free time

 Associate patches with group

 Buffer overrun => add padding to size request

 malloc(32) becomes malloc(32 + delta)

 Dangling pointer => defer free

 free(p) becomes defer_free(p, delta_allocations)

 Fixes preserve semantics, no new bugs created

 Correcting allocation may != DieFast or DieHard

 Correction allocator can be space, CPU efficient

 “Patches” created separately, installed on-the-fly

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 27

Deploying Exterminator

 Exterminator can be deployed in different modes

 Iterative – suitable for test environment

 Different random heaps, identical inputs

 Complements automatic methods that cause crashes

 Replicated mode

 Suitable in a multi/many core environment

 Like DieHard replication, except auto-corrects, hot patches

 Cumulative mode – partial or complete deployment

 Aggregates results across different inputs

 Enables automatic root cause analysis from Watson dumps

 Suitable for wide deployment, perfect for beta release

 Likely to catch many bugs not seen in testing lab

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 28

0

0.5

1

1.5

2

2.5

N
o

rm
a
li
z
e
d

 E
x
e
cu

ti
o

n
 T

im
e

GNU libc Exterminator

allocation-intensive SPECint2000

DieFast Overhead

Ben Zorn, Microsoft Research

DieHard: Memory Error Fault Tolerance in C

and C++ 29

Exterminator Effectiveness

 Squid web cache buffer overflow

 Crashes glibc 2.8.0 malloc

 3 runs sufficient to isolate 6-byte overflow

 Mozilla 1.7.3 buffer overflow (recall demo)

 Testing scenario - repeated load of buggy page

 23 runs to isolate overflow

 Deployed scenario – bug happens in middle of

different browsing sessions

 34 runs to isolate overflow

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 30

Comparison with Existing Approaches

 Static analysis, annotations

 Finds individual bugs, developer still has to fix

 High cost developing, testing, deploying patches

 DieHard reduces threat of all memory errors

 Testing, OCA / Watson dumps

 Finds crashes, developer still has find root cause

 Type-safe languages (C#, etc.)

 Large installed based of C, C++

 Managed runtimes, libraries have lots of C, C++

 Also has a memory cost

Ben Zorn, Microsoft Research DieHard: Memory Error Fault Tolerance in C and C++ 31

Ben Zorn, Microsoft Research

Conclusion

 Programs written in C / C++ can execute safely

and correctly despite memory errors

 Research vision

 Improve existing code without source modifications

 Reduce human generated patches required

 Increase reliability, security by order of magnitude

 Current projects and results

 DieHard: overprovisioning + randomization + replicas =

probabilistic memory safety

 Exterminator: automatically detect and correct memory

errors (with high probability)

 Demonstrated success on real applications

32DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

Hardware Trends

 Hardware transient faults are increasing

 Even type-safe programs can be subverted in
presence of HW errors
 Academic demonstrations in Java, OCaml

 Soft error workshop (SELSE) conclusions
 Intel, AMD now more carefully measuring

 “Not practical to protect everything”

 Faults need to be handled at all levels from HW up the
software stack

 Measurement is difficult
 How to determine soft HW error vs. software error?

 Early measurement papers appearing

33DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

Power to Spare

 DRAM prices dropping
 2Gb, Dual Channel PC 6400 DDR2

800 MHz $85

 Multicore CPUs
 Quad-core Intel Core 2 Quad, AMD

Quad-core Opteron

 Eight core Intel by 2008?

http://www.hardwaresecrets.com/news/709

 Challenge:

How should we use all this

hardware?

34DieHard: Memory Error Fault Tolerance in C and C++

http://www.hardwaresecrets.com/news/709

Additional Information

 Web sites:
 Ben Zorn: http://research.microsoft.com/~zorn

 DieHard: http://www.diehard-software.org/

 Exterminator: http://www.cs.umass.edu/~gnovark/

 Publications
 Emery D. Berger and Benjamin G. Zorn, "DieHard:

Probabilistic Memory Safety for Unsafe
Languages", PLDI’06.

 Gene Novark, Emery D. Berger and Benjamin G.
Zorn, “Exterminator: Correcting Memory Errors
with High Probability", PLDI’07.

Ben Zorn, Microsoft Research 35DieHard: Memory Error Fault Tolerance in C and C++

http://research.microsoft.com/~zorn
http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.diehard-software.org/
http://www.cs.umass.edu/~gnovark/
http://www.cs.umass.edu/~emery/pubs/05-65.pdf

Backup Slides

Ben Zorn, Microsoft Research 36DieHard: Memory Error Fault Tolerance in C and C++

Ben Zorn, Microsoft Research

Related Work
 Conservative GC (Boehm / Demers / Weiser)

 Time-space tradeoff (typically >3X)

 Provably avoids certain errors

 Safe-C compilers
 Jones & Kelley, Necula, Lam, Rinard, Adve, …

 Often built on BDW GC

 Up to 10X performance hit

 N-version programming
 Replicas truly statistically independent

 Address space randomization (as in Vista)

 Failure-oblivious computing [Rinard]
 Hope that program will continue after memory error with no

untoward effects

37DieHard: Memory Error Fault Tolerance in C and C++

