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Abstract—- Resource management problems in systems and
networking often manifest as difficult online decision mak-
ing tasks where appropriate solutions depend on understand-
ing the workload and environment. Inspired by recent ad-
vances in deep reinforcement learning for Al problems, we
consider building systems that learn to manage resources di-
rectly from experience. We present DeepRM, an example so-
lution that translates the problem of packing tasks with mul-
tiple resource demands into a learning problem. Our initial
results show that DeepRM performs comparably to state-of-
the-art heuristics, adapts to different conditions, converges
quickly, and learns strategies that are sensible in hindsight.

1. INTRODUCTION

Resource management problems are ubiquitous in com-
puter systems and networks. Examples include job schedul-
ing in compute clusters [17], bitrate adaptation in video stream-
ing [23, 39], relay selection in Internet telephony [40], virtual
machine placement in cloud computing [20, 6], congestion
control [38, 37, 13], and so on. The majority of these prob-
lems are solved today using meticulously designed heuris-
tics. Perusing recent research in the field, the typical design
flow is: (1) come up with clever heuristics for a simplified
model of the problem; and (2) painstakingly test and tune
the heuristics for good performance in practice. This process
often has to be repeated if some aspect of the problem such
as the workload or the metric of interest changes.

We take a step back to understand some reasons for why
real world resource management problems are challenging:

1. The underlying systems are complex and often impos-

sible to model accurately. For instance, in cluster schedul-
ing, the running time of a task varies with data locality,

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

HotNets-XV, November 09-10, 2016, Atlanta, GA, USA

© 2016 ACM. ISBN 978-1-4503-4661-0/16/11...$15.00

DOI http://dx.doi.org/10.1145/3005745.3005750

50

server characteristics, interactions with other tasks, and
interference on shared resources such as CPU caches,
network bandwidth, etc [12, 17].

2. Practical instantiations have to make online decisions
with noisy inputs and work well under diverse condi-
tions. A video streaming client, for instance, has to
choose the bitrate for future video chunks based on
noisy forecasts of available bandwidth [39], and oper-
ate well for different codecs, screen sizes and available
bandwidths (e.g., DSL vs. T1).

3. Some performance metrics of interest, such as tail per-
formance [11], are notoriously hard to optimize in a
principled manner.

In this paper, we ask if machine learning can provide a
viable alternative to human-generated heuristics for resource
management. In other words: Can systems learn to manage
resources on their own?

This may sound like we are proposing to build Skynet [1],
but the recent success of applying maching learning to other
challenging decision-making domains [29, 33, 3] suggests
that the idea may not be too far-fetched. In particular, Rein-
forcement Learning (RL) (§2) has become an active area in
machine learning research [30, 28, 32, 29, 33]. RL deals with
agents that learn to make better decisions directly from ex-
perience interacting with the environment. The agent starts
knowing nothing about the task at hand and learns by rein-
forcement — a reward that it receives based on how well it
is doing on the task. RL has a long history [34], but it has
recently been combined with Deep Learning techniques to
great effect in applications such as playing video games [30],
Computer Go [33], cooling datacenters [15], etc.

Revisiting the above challenges, we believe RL approaches
are especially well-suited to resource management systems.
First, decisions made by these systems are often highly repet-
itive, thus generating an abundance of training data for RL
algorithms (e.g., cluster scheduling decisions and the result-
ing performance). Second, RL can model complex systems
and decision-making policies as deep neural networks anal-
ogous to the models used for game-playing agents [33, 30].
Different “raw” and noisy signals' can be incorporated as in-

't is usually easy to identify signals that are relevant to a decision-
making task (but not how to filter/combine them to make decisions).
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put to these neural networks, and the resultant strategy can
be used in an online stochastic environment. Third, it is pos-
sible to train for objectives that are hard-to-optimize directly
because they lack precise models if there exist reward sig-
nals that correlate with the objective. Finally, by continu-
ing to learn, an RL agent can optimize for a specific work-
load (e.g., small jobs, low load, periodicity) and be graceful
under varying conditions.

As a first step towards understanding the potential of RL
for resource management, we design (§3) and evaluate (§4)
DeepRM, a simple multi-resource cluster scheduler. DeepRM
operates in an online setting where jobs arrive dynamically
and cannot be preempted once scheduled. DeepRM learns
to optimize various objectives such as minimizing average
job slowdown or completion time. We describe the model in
§3.1 and how we pose the scheduling task as an RL problem
in §3.2. To learn, DeepRM employs a standard policy gradi-
ent reinforcement learning algorithm [35] described in §3.3.

We conduct simulated experiments with DeepRM on a
synthetic dataset. Our preliminary results show that across a
wide range of loads, DeepRM performs comparably or bet-
ter than standard heuristics such as Shortest-Job-First (SJF)
and a packing scheme inspired by Tetris [17]. It learns strate-
gies such as favoring short jobs over long jobs and keeping
some resources free to service future arriving short jobs di-
rectly from experience. In particular, DeepRM does not re-
quire any prior knowledge of the system’s behavior to learn
these strategies. Moreover, DeepRM can support a variety of
objectives just by using different reinforcement rewards.

Looking ahead, deploying an RL-based resource manager
in real systems has to confront additional challenges. To
name a few, simple heuristics are often easier to explain,
understand, and verify compared to an RL-based scheme.
Heuristics are also easier to adopt incrementally. Neverthe-
less, given the scale and complexity of many of the resource
management problems that we face today, we are enticed by
the possibility to improve by using reinforcement learning.

2. BACKGROUND

We briefly review Reinforcement Learning (RL) techniques
that we build on in this paper; we refer readers to [34] for a
detailed survey and rigorous derivations.

Reinforcement Learning. Consider the general setting shown
in Figure | where an agent interacts with an environment. At
each time step ¢, the agent observes some state s;, and is
asked to choose an action a;. Following the action, the state
of the environment transitions to s;4; and the agent receives
reward r;. The state transitions and rewards are stochastic
and are assumed to have the Markov property; i.e. the state
transition probabilities and rewards depend only on the state
of the environment s; and the action taken by the agent a;.
It is important to note that the agent can only control its ac-
tions, it has no apriori knowledge of which state the environ-
ment would transition to or what the reward may be. By in-
teracting with the environment, during training, the agent can

51

Reward r

Agent

state Take action a Environment

O
parameter

Observe state s

Figure 1: Reinforcement Learning with policy repre-
sented via DNN.

observe these quantities. The goal of learning is to maximize
the expected cumulative discounted reward: E >, v'r],
where v € (0, 1] is a factor discounting future rewards.

Policy. The agent picks actions based on a policy, defined as
a probability distribution over actions 7 : 7(s,a) — [0, 1];
7(s, a) is the probability that action a is taken in state s. In
most problems of practical interest, there are many possible
{state, action} pairs; up to 21%° for the problem we consider
in this paper (see §3). Hence, it is impossible to store the pol-
icy in tabular form and it is common to use function approx-
imators [7, 27]. A function approximator has a manageable
number of adjustable parameters, 6; we refer to these as the
policy parameters and represent the policy as my(s,a). The
justification for approximating the policy is that the agent
should take similar actions for “close-by" states.

Many forms of function approximators can be used to rep-
resent the policy. For instance, linear combinations of fea-
tures of the state/action space (i.e., mg(s, a) = 67 ¢(s, a)) are
a popular choice. Deep Neural Networks (DNNs) [18] have
recently been used successfully as function approximators to
solve large-scale RL tasks [30, 33]. An advantage of DNNs
is that they do not need hand-crafted features. Inspired by
these successes, we use a neural network to represent the
policy in our design; the details are in §3.

Policy gradient methods. We focus on a class of RL al-
gorithms that learn by performing gradient-descent on the
policy parameters. Recall that the objective is to maximize
the expected cumulative discounted reward; the gradient of
this objective given by [34]:
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Here, Q™ (s, a) is the expected cumulative discounted re-
ward from (deterministically) choosing action a in state s,
and subsequently following policy my. The key idea in pol-
icy gradient methods is to estimate the gradient by observing
the trajectories of executions that are obtained by following
the policy. In the simple Monte Carlo Method [19], the agent
samples multiple trajectories and uses the empirically com-
puted cumulative discounted reward, v;, as an unbiased es-
timate of Q™ (sy, a;). It then updates the policy parameters



via gradient descent:
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where « is the step size. This equation results in the well-
known REINFORCE algorithm [35], and can be intuitively
understood as follows. The direction V log 7y (s¢, at) gives
how to change the policy parameters in order to increase
mo(st, ar) (the probability of action a, at state s;). Equa-
tion 2 takes a step in this direction; the size of the step de-
pends on how large is the return v;. The net effect is to re-
inforce actions that empirically lead to better returns. In our
design, we use a slight variant [32] that reduces the variance
of the gradient estimates by subtracting a baseline value from
each return v;. More details follow.

3. DESIGN

In this section, we present our design for online multi-
resource cluster scheduling with RL. We formulate the prob-
lem (§3.1) and describe how to represent it as an RL task
(§3.2). We then outline our RL-based solution (§3.3) build-
ing on the machinery described in the previous section.

3.1 Model

We consider a cluster with d resource types (e.g., CPU,
memory, I/O). Jobs arrive to the cluster in an online fashion
in discrete timesteps. The scheduler chooses one or more of
the waiting jobs to schedule at each timestep. Similar to prior
work [17], we assume that the resource demand of each job
is known upon arrival; more specifically, the resource profile
of each job j is given by the vectorr; = (rj1,...,7;q) of
resources requirements, and 7; — the duration of the job. For
simplicity, we assume no preemption and a fixed allocation
profile (i.e., no malleability), in the sense that r; must be al-
located continuously from the time that the job starts execu-
tion until completion. Further, we treat the cluster as a single
collection of resources, ignoring machine fragmentation ef-
fects. While these aspects are important for a practical job
scheduler, this simpler model captures the essential elements
of multi-resource scheduling and provides a non-trivial set-
ting to study the effectiveness of RL methods in this domain.
We discuss how the model can be made more realistic in §5.

Objective. We use the average job slowdown as the primary
system objective. Formally, for each job j, the slowdown is
given by S; = C;/Tj, where Cj is the completion time of
the job (i.e., the time between arrival and completion of ex-
ecution) and T} is the (ideal) duration of the job; note that
S; > 1. Normalizing the completion time by the job’s dura-
tion prevents biasing the solution towards large jobs, which
can occur for objectives such as mean completion time.

3.2 RL formulation

State space. We represent the state of the system — the cur-
rent allocation of cluster resources and the resource profiles
of jobs waiting to be scheduled — as distinct images (see
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Figure 2: An example of a state representation, with two
resources and three pending job slots.

Figure 2 for illustration). The cluster images (one for each
resource; two leftmost images in the figure) show the alloca-
tion of each resource to jobs which have been scheduled for
service, starting from the current timestep and looking ahead
T timesteps into the future. The different colors within these
images represent different jobs; for example, the red job in
Figure 2 is scheduled to use two units of CPU, and one unit
of memory for the next three timesteps. The job slot images
represent the resource requirements of awaiting jobs. For
example, in Figure 2, the job in Slot 1 has a duration of two
timesteps, in which it requires two units of CPU and one unit
of memory.”

Ideally, we would have as many job slot images in the state
as there are jobs waiting for service. However, it is desirable
to have a fixed state representation so that it can be applied
as input to a neural network. Hence, we maintain images
for only the first M jobs to arrive (which have not yet been
scheduled). The information about any jobs beyond the first
M is summarized in the backlog component of the state,
which simply counts the number of such jobs. Intuitively,
it is sufficient to restrict attention to the earlier-arriving jobs
because plausible policies are likely to prefer jobs that have
been waiting longer. This approach also has the added ad-
vantage of constraining the action space (see below) which
makes the learning process more efficient.

Action space. At each point in time, the scheduler may want
to admit any subset of the M jobs. But this would require
a large action space of size 2 which could make learning
very challenging. We keep the action space small using a
trick: we allow the agent to execute more than one action in
each timestep. The action space is given by {0,1,..., M},
where ¢ = ¢ means “schedule the job at the ¢-th slot”; and
a = () is a “void” action that indicates that the agent does not
wish to schedule further jobs in the current timestep. At each
timestep, time is frozen until the scheduler either chooses the

2We tried more succinct representations of the state (e.g., a job’s
resource profile requires only d 4+ 1 numbers). However, they did
not perform as well in our experiments for reasons that we do not
fully understand yet.



void action, or an invalid action (e.g., attempting to schedule
a job that does not “fit” such as the job at Slot 3 in Fig-
ure 2). With each valid decision, one job is scheduled in the
first possible timestep in the cluster (i.e., the first timestep in
which the job’s resource requirements can be fully satisfied
till completion). The agent then observes a state transition:
the scheduled job is moved to the appropriate position in the
cluster image. Once the agent picks a = () or an invalid
action, time actually proceeds: the cluster images shift up
by one timestep and any newly arriving jobs are revealed to
the agent. By decoupling the agent’s decision sequence from
real time, the agent can schedule multiple jobs at the same
timestep while keeping the action space linear in M.

Rewards. We craft the reward signal to guide the agent to-
wards good solutions for our objective: minimizing average
slowdown. Specifically, we set the reward at each timestep to
> jeT }—Jl, where 7 is the set of jobs currently in the system

(either scheduled or waiting for service).® The agent does
not receive any reward for intermediate decisions during a
timestep (see above). Observe that setting the discount factor
v = 1, the cumulative reward over time coincides with (neg-
ative) the sum of job slowdowns, hence maximizing the cu-
mulative reward mimics minimizing the average slowdown.

3.3 Training algorithm

We represent the policy as a neural network (called policy
network) which takes as input the collection of images de-
scribed above, and outputs a probability distribution over all
possible actions. We train the policy network in an episodic
setting. In each episode, a fixed number of jobs arrive and
are scheduled based on the policy, as described in §3.2. The
episode terminates when all jobs finish executing.

To train a policy that generalizes, we consider multiple ex-
amples of job arrival sequences during training, henceforth
called jobsets. In each training iteration, we simulate N
episodes for each jobset to explore the probabilistic space of
possible actions using the current policy, and use the result-
ing data to improve the policy for all jobsets. Specifically,
we record the state, action, and reward information for all
timesteps of each episode, and use these values to compute
the (discounted) cumulative reward, v;, at each timestep ¢
of each episode. We then train the neural network using a
variant of the REINFORCE algorithm described in §2.

Recall that REINFORCE estimates the policy gradient us-
ing Equation (2). A drawback of this equation is that the
gradient estimates can have high variance. To reduce the
variance, it is common to subtract a baseline value from the
returns, vy. The baseline can be calculated in different ways.
The simple approach that we adopt is to use the average of
the return values, v;, where the average is taken at the same

*Note that the above reward function considers all the jobs in the
system; not just the first M. From a theoretical standpoint, this
makes our learning formulation more challenging as the reward de-
pends on information not available as part of the state representation
(resulting in a Partially Observed Markov Decision Process [31]);
nevertheless, this approach yielded good results in practice.

53

for each iteration:

A0+ 0
for each jobset:
run episode ¢=1,...,N:
{si,aﬁ,ri,...,sii,azi,rzi}«w )
compute returns: vi =Y ki sty
for t = 1 to L:
compute baseline: by = %Zf\;1 vg
for i = 1 to N:
Af +— A0+ aVglogmy(s},ay)(vi — b})
end
end
end
0« 0+ A6 ¢ batch parameter update

end

Figure 3: Pseudo-code for training algorithm.

timestep t across all episodes* with the same jobset (a sim-
ilar approach has been used in [32]). Figure 3 shows the
pseudo-code for the training algorithm.

3.4 Optimizing for other objectives

The RL formulation can be adapted to realize other objec-
tives. For example, to minimize average completion time,
we can use —|7 | (negative the number of unfinished jobs in
the system) for the reward at each timestep. To maximize re-
source utilization, we could reward the agent for the sum of
the resource utilizations at each timestep. The makespan for
a set of jobs can also be minimized by penalizing the agent
one unit for each timestep for which unfinished jobs exist.

4. EVALUATION

We conduct a preliminary evaluation of DeepRM to an-
swer the following questions.

e When scheduling jobs that use multiple resources, how
does DeepRM compare with state-of-the-art mechanisms?
Can DeepRM support different optimization objectives?
Where do the gains come from?

How long does DeepRM take to train?

4.1 Methodology

Workload. We mimic the setup described in §3.1. Specif-
ically, jobs arrive online according to a Bernoulli process.
The average job arrival rate is chosen such that the average
load varies between 10% to 190% of cluster capacity. We
assume two resources, i.e., with capacity {1r, 1r}. Job dura-
tions and resource demands are chosen as follows: 80% of
the jobs have duration uniformly chosen between 1t and 3t;
the remaining are chosen uniformly from 10¢ to 15¢. Each
job has a dominant resource which is picked independently
at random. The demand for the dominant resource is chosen
uniformly between 0.25r and 0.5 and the demand of the
other resource is chosen uniformly between 0.05r and 0.17.

DeepRM. We built the DeepRM prototype described in §3
using a neural network with a fully connected hidden layer

“Some episodes terminate earlier, thus we zero-pad them to make
every episode equal-length L.
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Figure 5: Performance for different objectives.

with 20 neurons, and a total of 89, 451 parameters. The “im-
ages” used by the DeepRM agent are 20t long and each ex-
periment lasts for 50¢. Recall that the agent allocates from
a subset of M jobs (we use M = 10) but can also observe
the number of other jobs (“backlog” which we set to 60 jobs).
We use 100 different jobsets during training. In each training
iteration, per jobset we run N = 20 Monte Carlo simulations
in parallel. We update the policy network parameters using
the rmsprop [21] algorithm with a learning rate of 0.001. Un-
less otherwise specified, the results below are from training
DeepRM for 1000 training iterations.

Comparables. We compare DeepRM against a Shortest Job
First (SJF) agent which allocates jobs in increasing order
of their duration; a Packer agent which allocates jobs in in-
creasing order of alignment between job demands and re-
source availability (same as the packing heuristic in [17]);
and Tetris*, an agent based on Tetris [17] which balances
preferences for short jobs and resource packing in a com-
bined score. These agents are all work-conserving, and allo-
cate as many jobs as can be accommodated with the available
resources (in the preference order).

Metrics. We measure the various schemes on a few different
aspects: the average job slowdown (§3.1) and the average
job completion time. To observe the convergence behavior
of DeepRM, we also measure the total reward achieved at
each iteration during training.

4.2 Comparing scheduling efficiency

Figure 4 plots the average job slowdown for DeepRM ver-
sus other schemes at different load levels. Each datapoint is
an average over 100 new experiments with jobsets not used
during training. As expected, we see that (1) the average
slowdown increases with cluster load, (2) SJF performs bet-
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Figure 6: Learning curve showing the training improves
the total reward as well as the slowdown performance.
ter than Packer because it allocates the smaller jobs first, and
(3) Tetris* outperforms both heuristics by combining their
advantages. The figure also shows that DeepRM is compa-
rable to and often better than all heuristics. As we will see
shortly, DeepRM beats Tetris* at higher loads because it au-
tomatically learns to keep some resources free so that small
jobs arriving in the near future can be scheduled quickly;
with Tetris*, small jobs may sometimes have to wait un-
til a (large) existing job finishes because Tetris* enforces
work-conservation, which may not always be the best strat-
egy when jobs cannot be preempted. Remarkably, DeepRM
is able to learn such strategies directly from experience —
without any prior knowledge of what strategies (e.g., favor-
ing shorter jobs) are suitable.

Other objectives. Figure 5 shows the behavior for two ob-
jectives (average job slowdown and average job completion
time) when the cluster is highly loaded (load=130%). Recall
that DeepRM uses a different reward function for each ob-
jective (—|J| to optimize average job completion time, and
Zje 7 }—]1 for average job slowdown; see §3.4). As before
we see that Tetris* outperforms the other heuristics. How-
ever, DeepRM is the best performing scheme on each objec-
tive when trained specifically to optimize for that objective
with the appropriate reward function. Thus DeepRM is cus-
tomizable for different objectives.

4.3 Understanding convergence and gains

Convergence behavior. To understand the convergence be-
havior of DeepRM, we look deeper into one specific data-
point of Figure 4: training DeepRM to optimize the average
job slowdown at a load of 70%. Figure 6(a) plots the aver-
age job slowdown achieved by the policy learnt by the end
of each iteration. To compare, the figure also plots the values
for the other schemes. As expected, we see that DeepRM im-
proves with iteration count; the starting policy at iteration 0
is no better than a random allocation but after 200 iterations
DeepRM is better than Tetris™.

Would running more iterations further improve the aver-
age job slowdown? Figure 6(b) plots the maximum reward
across all of the Monte Carlo runs at each iteration and the
average reward. As expected, both values increase with it-
erations as DeepRM’s policy improves. Further, higher re-
wards, which is what the learning algorithm explicitly opti-
mizes for, correlate with improvements in average job slow-
down (Fig. 6(a)). Finally, recall that the policy is a proba-
bility distribution over possible actions. Hence, a large gap
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between the maximum and average rewards implies the need
for further learning; if some action path (sampled from the
policy output by the neural network) is much better than the
average action path, there is room to increase reward by ad-
justing the policy. Conversely, when this gap narrows, the
model has converged; as we see near the 1000th iteration.
We have thus far measured number of iterations but how
long does one iteration take to compute? Our multi-threaded
implementation took 80 seconds per iteration on a 24-core
CPU server. Offloading to a GPU server may speedup the
process further [10, 2]. Finally, note that the policy need
only be trained once; retraining is needed only when the en-
vironment (cluster or job workload) changes notably.

Where are the gains from? To understand why DeepRM
performs better, we examine the case with load 110%. Re-
call that, unlike the other schemes, DeepRM is not work-
conserving, i.e., it can hold a job even if there are enough
resources available to allocate it. We found that in 23.4% of

timesteps in this scenario, DeepRM was not work-conserving.

Whenever DeepRM withholds a job, we record its length,
and plot the distribution of the length of such jobs in Fig-
ure 7(a). We see that DeepRM almost always withholds only
large jobs. The effect is to make room for yet-to-arrive small
jobs. This is evident in Figure 7(b): the slowdown for small
jobs is significantly smaller with DeepRM than Tetris*, with
the tradeoff being higher slowdown for large jobs. Since in
this workload (§4.1), there are 4 x more small jobs than large
jobs, the optimal strategy to minimize average job slowdown
(Figure 4) in a heavy load is to keep some resources free so
that newly arriving small jobs can be immediately allocated.
DeepRM learns such a strategy automatically.

S. DISCUSSION

We next elaborate on current limitations of our solution,
which motivate several challenging research directions.

Machine boundaries and locality. Our problem formula-
tion assumes a single “large resource pool"; this abstracts
away machine boundaries and potential resource fragmenta-
tion. This formulation is more practical than might appear
since many cluster schedulers make independent scheduling
decisions per machine (e.g., upon a hearbeat from the ma-
chine as in YARN [36]). By having the agent allocate only
one machine’s worth of resources, the same formulation can
be employed in such scenarios. We also currently do not take
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into account data locality considerations [41, 22]. This can
can be done by giving a higher reward to data-local alloca-
tions, or perhaps, enabling the agent to learn the true value
of data locality with appropriate observation signals.

Job models. We did not model inter-task dependencies that
are common in data-parallel jobs. For example, jobs may
consist of multiple stages, each with many tasks and differ-
ent resource requirements [17]. Further, the resource profile
of a job may not be known in advance (e.g., for non-recurring
jobs [4]), and the scheduler might have get an accurate view
only as the job runs [14]. The RL paradigm can in principle
deal with such situations of partial observability by casting
the decision problem as a POMDP [9]. We intend to investi-
gate alternative job models and robustness to uncertainty in
resource profiles in future work.

Bounded time horizon. Notice that DeepRM uses a small
time horizon whereas the underlying optimization problem
has an infinite time horizon. The bounded horizon is needed
for computing the baseline (see §3.3). We hope to overcome
this issue by replacing the time-dependent baseline with a
value network [34] that estimates the average return value.

6. RELATED WORK

RL has been used for a variety of learning tasks, rang-
ing from robotics [25, 24] to industrial manufacturing [26]
and computer game playing [34]. Of specific relevance to
our work is Zhang and Dietterich’s paper [42] on allocat-
ing human resources to tasks before and after NASA shut-
tle missions. Our job scheduling setup has similarities (e.g.,
multiple jobs and resources), but differs crucially in being an
online problem, whereas the NASA task is offline (all input
is known in advance). Some early work uses RL for decen-
tralized packet routing in a switch [8], but the problem sizes
were small and neural network machinery was not needed.
Recently, learning has been applied to designing congestion
control protocols using a large number of offline [37] or on-
line [13] experiments. RL could provide a useful framework
for learning such congestion control algorithms as well.

Motivated by the popularity of data-parallel frameworks,
cluster scheduling has been studied widely recently. Several
scheduler designs address specific issues or objectives, such
as fairness [41, 16], locality [22, 41], packing [17] and strag-
gling tasks [5]. We are not aware of any work that applies
reinforcement learning for data-parallel cluster scheduling.

7. CONCLUSION

This paper shows that it is feasible to apply state-of-the-art
Deep RL techniques to large-scale systems. Our early ex-
periments show that the RL agent is comparable and some-
times better than ad-hoc heuristics for a multi-resource clus-
ter scheduling problem. Learning resource management strate-
gies directly from experience, if we can make it work in
a practical context, could offer a real alternative to current
heuristic based approaches.
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