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Abstract

Confidence annotation allows a spoken dialog system to
accurately assess the likelihood of misunderstandingeatith
terance level and to avoid breakdowns in interaction. We de-
scribe experiments that assess the utility of features fitwen
decoder, parser and dialog levels of processing. We algstinv
gate the effectiveness of various classifiers, includingeBan
Networks, Neural Networks, SVMs, Decision Trees, AdaBoost
and Naive Bayes, to combine this information into an utteean
level confidence metric. We found that a combination of a
subset of the features considered produced promisingtsesul
with several of the classification algorithms considered,,e
our Bayesian Network classifier produced a 45.7% relative re
duction in confidence assessment error and a 29.6% reduction
relative to a handcrafted rule.

1. Introduction. Related work

The CMU Communicator system is a telephone-based dialog
system that handles multiple travel tasks, including flight
rangement and hotel and car reservation [1]. The system-is im
plemented as a distributed architecture, consisting ofri@se
of parallel modules, such as speech recognition, parsiapgl
management, natural language generation, and speeclesynth
sis. As the control point of the entire system, the dialog man
ager is responsible for analyzing the inputs from variouslimo
ules, understanding their meaning, keeping track of iotera
with the user, and determining the next operation (i.e.orsg)
necessary to complete the task.

Unfortunately, machine recognition of speech is imperfect
at best. Even small changes in the environment, telephone
line quality, and the user’s pronunciation may seriouslpain
recognition performance. The parsing module can also cause
trouble by providing an incorrect result or failing to elimaite
ambiguity. In many cases the system not only misunderstands
the user, but it takes this misunderstanding as fact andnces
to act using invalid information. When this happens a simple
parsing error can grow until the entire interaction is rdin€he
system is unaware of the problem because it has no means to
judge how well the conversation is proceeding.

To avoid such situations, the CMU Communicator currently
employs a model based on information about recognizer confi-
dence and parse goodness. It also incorporates simplestiesiri
that monitor other dialog characteristics that are symptimn
of breakdown. We would like a more accurate confidence an-
notation scheme that integrates information from the diecpd
parsing and dialog level into a single framework. The model

should assign a confidence score as a continuous variable de-

scribing the probability that a certain utterance was alye
perceived by the system.

rongz+,

dbohus+, air+}@s. cnu. edu

The confidence metric problem has been investigated previ-
ously[2, 3, 4, 5]. Most of this work has focused on how to dietec
the decoding errors made by the speech recognizer, andihus t
proposed schemes work mainly at the frame, phoneme, or word
level. For instance, word-level confidence annotationgassi
a reliability tag to each word token in the decoder hypothesi
Typically a two-class annotation scheme is used, which mark
the word instance correct or incorrect. However, this type o
model is not always sufficient for dialog systems.

More recently, attempts have been made to use features
from the other levels of the dialog system in deriving coniice
metrics. For example [6] reports a study using decoder, lan-
guage model and parsing features with a neural networkiclass
fier. Others [7] have used confidence metrics in the uppeldeve
of language understanding and dialog management in order to
achieve more flexible dialog and clarification strategiesur O
work considers additional high-level features derivedrfrine
dialog manager and systematically compares several eliffer
classifiers.

We considered several machine learning techniques (e.g.,
Bayesian networks, boosting, decision trees, neural m&syo
support vector machines and naive Bayes classification) and
tried to establish which of these is best suited for the tdask a
hand. In Section 2 we describe the data and features that were
used in training the classifiers. Section 3 starts with airpiel
nary analysis of the training set, and then describes inldieéa
experiments we performed and the results obtained. Segtion
does a comparative analysis of the results obtained by fiee-di
ent classifiers, and Section 5 concludes the paper and blescri
several directions for future work.

2. Data collection and feature extraction
2.1. Data collection and cleanup

We selected 2 successive months of CMU Communicator dialog
data (logs and transcriptions) to work with. This inforroatis
logged automatically during telephone conversationsebky

the Communicator system. Each utterance in this dataset was
hand-labeled as either OK or BAD. The OK label was assigned
only to utterances free of all errors (e.g., parsing, rettagn

etc.); otherwise the turn was labeled BAD.

Not all data were used, as a significant number of dialogs
in this corpus were not well-formed. These were usually tshor
conversations with no meaningful conclusion (e.g., hapg-u
calls, wrong numbers, etc.) We therefore established erimnit
which required dialogs to have a minimum of 5 turns, others
were discarded. Of the remaining data approximately 6% was
further discarded because they contained a mix of OK and BAD
labels. The cleaning process yielded a total of 4550 trémedr



and labeled utterances.

2.2. Feature extraction

Choosing good features is paramount for the success of a clas
sifier. From the multitude of features logged by the system we
identified 12 that seemed most relevant for the task at hand.
Generally speaking, these features can be grouped inte3 cat
gories:decoding parsinganddialog. To illustrate each feature
clearly, we first present a sample extracted from the log file.
The system prompt and user response are presented below, fol
lowed by the automatically generated hypothesis of the'siser
utterance and the parsing result.

System traveling to San Francisco International...
and departing Pittsburgh on what day ?

User: no | want to fly to Africa

Hypot hesi s:  NOI|WANT A FLIGHT .?TO.?
.?AFTER?. COME HOME

Par si ng: Respond Jno] ( NO ) Reserverlight

[list] (1 WANT A FLIGHT )

Sphinx, the Communicator speech recognition component,
provides word-level confidence annotation for each words Th
is denoted by the markers .? and ?. indicating that the tagged
word is likely a misrecognition. The best hypothesis is then

passed to the Phoenix parser [8] which produces a sequence of

slots containing the concepts extracted from the utterance
Decoding Features

1. Word number (word_num): The number of words in an
utterance.

2. Unconfident Percentage(unconf): The percentage of
the words tagged with the low confidence marker. The
intuition is that a high unconfident percentage is often
an indication of unreliable input. In the above example,
"TO” and "AFTER” are tagged as unconfident words, so
unconf = 2/9.

Parsing Features

1. Uncovered Percentagduncov): The percentage of un-
covered (or unparsed) words in a sentence. Similar to
unconfident percentage, high uncovered percentage of-
ten means an unreliable input. In the above sample, the
words "TO”, "AFTER”, "COME” and "HOME” are re-
jected by the parser, therefore uncov = 4/9.

2. Fragment Transitions (frag-num): The number of tran-
sitions between parsed fragments and unparsed frag-
ments in a sentence. This feature describes the fragmen-
tation degree of the parsing result. Fragm is 1 for the
sample sentence since there is one transition from the
parsed fragment "NO | WANT A FLIGHT” to the un-
parsed fragment "TO AFTER COME HOME".

3. Gap Number (gapnum): The number of unparsed frag-

ments in a sentence. In the sample sentence the second

half part, "TO AFTER COME HOME”", makes up a gap.

4. Slot Number (slotnum): The number of slots in the
parsing result. There are two slots in the sample sentence
above ([no] and [list]).

5. Slot Bigram (bigram): The bigram score for the se-
qguence of slots is computed from a bigram language
model built for the parsing result considering the slots.

Intuitively, an utterance with a high language model
score is more likely to be a correctly decoded and parsed
result.

6. Garble (garble): An input utterance is labeled as "[Gar-
ble]” by a post-parsing module if it has low coverage
and high fragmentation (this is the current utterance level
confidence metric used in the system).

Dialog Features

1. Dialog State (state): The current state of the dia-
log manager. The state for the sample sentence is
querydepartdate.

2. State Duration (stayhere): The number of consecutive
turns that the system remains in the same state. High
values for this feature are also a good indicator of mis-
understanding.

3. Turn Number (turn): The number of turns from the start
of the conversation. Under normal conditions (no misun-
derstanding), there should be a correlation between the
dialog state and turn number.

4. Expected Slots(expectedslot): This indicates whether
or not the slots in the parsing result correspond to the
current expectation of the dialog manager. For example,
when the system is in the state quelgpartdate, its ex-
pected slots are [date] or [time] .

3. Experiments

Deriving an utterance level confidence metric is essentgall
classification task: given a set of features which chareeter
an utterance and its context, predict whether this utterdas
perceived by the system) is free of errors or not.

We explored several machine learning techniques and clas-
sifiers. The focus was on analyzing the capacity of thesaielas
fiers to correctly predict the binary target value of OK/BA@ f
each utterance. Most of the classifiers are neverthelesst@bl
provide a continuous score, which is more fit for a true confi-
dence metric (see Section 5 for future work).

As we wanted to be able to compare the performance of the
classifiers, all the experiments described below were pegd
under the same conditions, on the same dataset, using d 0-fol
cross-validation. The dataset consisted of 4550 instaeeesh
characterized by the 12 features described previous|yL66%.
of these instances were labeled OK, thus giving a baseline er
ror rate of 32.84% (when always considering the utterance as
correct.)

The performance of each classifier is characterized by the
mean and variance of the error rates in the cross-validation
cess. Another important factor is tlrrect detection rate
(CDR) i.e., the proportion of BAD utterances that are correctly
identified. This number can be computed in terms of the false
positives rate of each classifier, or in terms of the fallagtthe
formula below illustrates (NBAD represents the total nuntfe
BAD utterances):

FpP

NBAD @

Note that there is a tradeoff between the correct detection
rate and the number of false negatives (false alarms). A high
correct detection rate can be achieved at the cost of intiogu
more false negatives. Therefore, to build the completauggct
of the performance of the classifiers and their usefulness fo
confidence annotation we also report the false positive @lsd f

CDR =1 — Fallout =1 —



negative rates. Correct use of this information furtheuness
the specification of a model that accurately captures tlaivel
cost (to dialog efficiency) of false positives and false rniega.
This cost will vary depending on the specific design of a djalo
system. For example, the relative cost of a false negatize in
system that requires an explicit backtrack or undo is higfieen
for a system that provides an over-write feature. A disaussi
of cost modeling is beyond the scope of the current paper.

3.1. Evaluation of individual features

We began by evaluating how well each individual feature is ab
to predict the target labels. The results are shown in Taple 1
sorted with the best predictors on top.

Table 1:Single Feature Prediction.

Feature Mean Var. F/P F/N
Err.Rate Rate Rate
[Baseline [ 03284 | - | - | - ]
uncov 0.1993 | 0.0012| 0.1760| 0.0233
expectedslot | 0.2097 | 0.0006 | 0.1224 | 0.0873
gapnum 0.2301 | 0.0014| 0.1451| 0.0851
bigram 0.2314 | 0.0017| 0.1580| 0.0734
garble 0.2532 | 0.0021| 0.2530| 0.0002
slot.num 0.2569 | 0.0020| 0.2552 | 0.0018
unconf 0.2734 | 0.0014| 0.2618| 0.0116
state 0.3103 | 0.0011| 0.2582| 0.0521
word_.num 0.3233 | 0.0020| 0.3207 | 0.0026
frag-num 0.3273 | 0.0015| 0.2778 | 0.0495
stayhere 0.3284 | 0.0022| 0.3202| 0.0081
turn 0.3314 | 0.0021| 0.3240| 0.0075

As the table above illustrates, the features that best pre-
dict the target labels arencov, expectedslot and gap_num,
while the worst argvord_num, frag_num, stay_hereandturn .
garble is a handcrafted rule incorporatingpnconf, uncov and
frag_num information and is clearly inferior to some of the sin-
gle features, including one of its components, in overaibrer
rate. It does however provide by far the best false negaditee r
Since this is the current confidence metric used in the Commu-
nicator system, we will consider the classification perfance
of garble (25.32%) as the baseline for the subsequent experi-
ments.

3.2. Bayesian network classifier

Bayesian networks provide a probabilistic approach torinfe

ence. Bayesian reasoning assumes that our variables are de-

scribable by probability distributions, and that optimacid
sions can be made by reasoning about these probabilities com
bined with observed data. This technique fits well with our
problem because it provides a quantitative approach tdrgdg
the evidence supporting several hypotheses.

We used a very basic network structure in which each fea-
ture related directly to the classification, since we arereggted
in how the features affect the classification, not in how taky

fect each other. From Table 1 we can see that some features are

more predictive than others. Accordingly, we placed thetmos
predictive features together in the network, but obseresdlts
not much better than with individual features. This is likbk-
cause the features shared a large amount of mutual infamati
The trick was to discover which features worked best togethe

(i.e., which features shared the least mutual informatiaffe
conducted further experiments using various subsets tfries
in our networks.

After some experimentation we discovered the combination
of features that worked best: slot bigram, uncovered péagen
dialog state, garble, and expected slots. Training anthtesh
the network revealed an error rate of 17.82%, equivalert avit
29.62% relative reduction in error rate from tharble baseline
(or 45.74% from the original baseline).

Table 2:Performance of different classifiers

Classifier Mean Var. F/P F/N
Err.Rate Rate Rate
| Garble (baseline] 0.2532 | 0.0021 | 0.2530 | 0.0002 |
AdaBoost 0.1659 | 0.0006| 0.1143| 0.0516
Decision Tree 0.1732 | 0.0008 | 0.1182| 0.0549
Bayesian Net. 0.1782 | 0.0008 | 0.0941 | 0.0842
SVM 0.1840 | 0.0015| 0.1501| 0.0339
Neural Net. 0.1890 | 0.0008| 0.1508| 0.0382
Naive Bayes 0.2165 | 0.0014| 0.1424| 0.0741

3.3. AdaBoost classifier

Boosting is a voting technique which combines a set of weak
learners (the performance of each individual learner neede
slightly better than random) and iteratively boosts theirfqr-
mance by changing the distribution over the training exasipl
to "focus” the learners on the hard instances. A more infdept
description of boosting can be found in [9].

A typical AdaBoost algorithm was employed. We consid-
ered the set of predictors based on each individual feahses
the weak learners. The relatively high error rate of eacli ind
vidual predictor (see Table 1) reduces the risk of overfitind
makes them good candidates for weak learners in AdaBoost.

The algorithm was run for 750 boosting stages. The mean
error rate of the combined hypothesis was 16.59% (as itltexdr
in Table 2). This is equivalent with a 34.48% relative redhrct
of error from ourgarble baseline (or 49.48% from the original
baseline). The variance was relatively low, indicatingt tha
significant overfitting had occurred.

3.4. Decision tree classifier

Another widely used classification technique we decided to
explore was decision trees. In this approach classificaon
performed by dividing the feature space into many small sub-
spaces, and ultimately identifying each sub-space withra co
responding class. The partitioning process is implemehyed
iteratively choosing the next best feature based on infona
gain.

The average number of nodes in the resulting trees was
around 300. The mean error rate and variance are relatively
low, making decision trees one of the best classifiers in gur e
periments. We obtained a mean error rate of 17.31%, and thus
a 31.64% reduction in error rate over tharble baseline.

3.5. Neural network classifier

Next, we turned to Artificial neural networks (or multi-laye
perceptrons). This type of classifier is able to learn comple
functions with continuous valued outputs, and is genenally
bust to noise in the training set. In our experiments, we used



a typical three-layered feed-forward network architestfuvith
50 nodes in the hidden layer). Training was done using the
backpropagation algorithm.

Compared with the other classifiers, the performance of the
neural network is slightly worse. The classification errater
of 18.90% puts it in fifth place. Moreover, the neural network
exhibits a high false positives rate (15.01%) which makesit
suitable for use in confidence annotation, as this trarsiate
a correct detection rate significantly lower than that of ghe
vious classifiers.

3.6. Support vector machine classifier

Support vector machines have received a great deal of atten-
tion in recent years. It has been shown that on some domains
the performance of this approach is equivalent to thoseasf tr
ditional approaches as neural networks and decision tfems.
many problems, it is difficult to find a classification boundar
directly in the feature space. SVMs accomplish this by magpi
the samples to a higher dimensional space using a kernel func
tion, and then seeking a simple, linear separator in thatespa
[10].

We examined several kernel functions such as dot, polyno-
mial, radial, neural and anova in our experiments. Someekern
functions are more sensitive than others to the trainingofesn
We report the results of the dot function, which had the miast s
ble performance. Using this kernel function, the SVM acbdkv
a 18.40% error rate, equivalent with a 27.33% reductionriorer
rate. Nevertheless, the false positives rate (and thusotieat
detection rate) of the SVM classifier is similar to that of the
neural network, making it an unlikely candidate for use inco
fidence annotation.

3.7. Naive Bayes classifier

Finally, we constructed a naive Bayes classifier. The 21.65%
error rate placed this classifier on the last position. Ast-te
showed that its performance was significantly worse tharatha
the top three classifiers, but statistically indistingaisle from
that of the SVM and Neural Network at the 0.05 level of confi-
dence.

4. Results analysis

The results for the various classifiers are shown in Table 2.
When judged by classification error, all the classifiers pkce
the Naive Bayes perform similarly, achieving error ratesiad
18%. At-test showed that there is no statistically signiftadif-
ference between the mean error rates of these classifidrs at t
0.05 level of confidence. Naive Bayes performs the worst. We
suspect that this is due to the feature independence assampt
made by this classifier. This assumption is clearly violated
our experiments with the Bayesian network have indicated.

As mentioned in Section 3, in the context of building a con-
fidence annotator another very important indicator is the co
rect detection rate (CDR). From this perspective, the Bayes
Network classifier has the best result. It gives a 9.41% false
positives rate, which is equivalent with being able to cciiye
detect 71.35% of the BAD utterances. This correct detection
rate is achieved in the context of a 8.42% false negative rate

5. Conclusion

We described the development of an utterance-level cordien
annotator scheme for the CMU Communicator spoken dialog

system. Features from the decoder, parser, and dialogslevel
were used together with several classifiers and machina-lear
ing techniques to derive a predictor of the reliability o thput.

In terms of classification error rate, with the notable eticep

of Naive Bayes, all the classifiers returned statisticaibjistin-
guishable results in the 16.5-19% range. The Bayesian Nktwo
classifier had the best correct detection rate (71.35%).0ll
these performed better than a handcrafted rule.

We regard the development of an accurate confidence anno-
tator as an essential step towards a higher-level framefeork
confirmation and clarification in dialog systems. With a eare
fully designed scheme, the opportunity exists for seleatitror
recovery techniques, including reminding, warning, agkime
user to repeat, asking the user to confirm, or launching more
sophisticated clarification sub-dialogs.
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