Compiling Information-Flow Security
to Minimal Trusted Computing Bases

Cédric Fournet?! and Jérémy Planul!

! MSR-INRIA
2 Microsoft Research

Abstract. Information-flow policies can express strong security requirements
for programs run by distributed parties with different levels of trust. However,
this security is hard to preserve as programs get compiled to distributed systems
with (potentially) compromised machines. For instance, many programs involve
computations too sensitive to be trusted to any of those machines. Also, many
programs are not perfectly secure (non-interferent); as they selectively endorse
and declassify information, their relative security becomes harder to preserve.
We develop a secure compiler for distributed information flows. To minimize trust
assumptions, we rely on cryptographic protection, and we exploit hardware and
software mechanisms available on modern architectures, such as secure boots,
trusted platform modules, and remote attestation.

We present a security model for these mechanisms in an imperative language with
dynamic code loading. We define program transformations to generate trusted
virtual hosts and to run them on untrusted machines. We obtain confidentiality
and integrity theorems under realistic assumptions, showing that the compiled
distributed system is at least as secure as the source program.

1 Programming with TPMs

When designing or reviewing the security of a system, a first step is to identify its trusted
computing base (TCB), that is, the set of components that need to be trusted to achieve
a given level of security. For general-purpose networked machines, this set is large and
complex; it includes the hardware, an operating system, a runtime environment and their
libraries (maybe 10% LOCs overall) plus drivers, applications, and dynamically loaded
code. This leads to a best-effort approach to security, at odds with formal verification,
which provides strong guarantees only for smaller, simpler systems.

Minimal TCBs. Modern computer architectures provide hardware support for reduc-
ing TCBs and protecting privileged operations. Thus, most computers come bundled
with some form of secure coprocessor with a dedicated secure instruction set—for ex-
ample, most laptops now embed a Trusted Platform Module (TPM) (TCG, 2005) and
many high-end processors feature a special late launch functionality (AMD’s Secure
Virtual Machine Architecture, 2005, and Intel’s Trusted Execution Technology, 2009).
These instructions can run a given piece of code in isolation, with strong code-based
identity and privileged cryptographic operations, for instance to seal persistent state or
to perform remote attestation. Such hardware mechanisms can greatly reduce the TCB
of security applications, by removing the need to trust the host operating system and
other applications, and thus help protect critical data and computations from malicious

To appear in the proceedings of Programming Languages and Systems,
20th European Symposium on Programming, ESOP 2011.

software. TPMs are routinely used for secure booting, e.g. BitLocker (Microsoft, 2006)
guards access to the master keys for disk encryption, so that the disk content may be
read only after authenticating the user and the operating system. Research papers also
describe e.g. how to build secure online payment systems (Balfe and Paterson, 2008)
and how to use late launches to run small pieces of application code in isolation (Mc-
Cune et al., 2008, 2009). Still, the secure instructions are remarkably seldom used in
practice. We believe that the complexity of their low-level interface and the lack of pro-
gramming tools are major obstacles to their mainstream adoption for writing security
applications.

Information-flow security. Atamore abstract level, language-based security often relies
on information flow policies (Denning, 1976; Myers and Liskov, 2000). Each variable
is assigned a level in a security lattice; this level indicates the intended integrity and
confidentiality of any information stored in this variable. Thus, a program is deemed
completely secure (non-interferent) if an adversary that can access only low-level in-
formation cannot gain (or influence) any higher-level information by executing the pro-
gram. Static analyses and type systems have been developed to verify that a program is
secure with regards to a given policy. Further, it is sometimes possible to compile such
programs to a given system while preserving their security properties. Hence, Jif (Myers
et al., 2001) and FlowCaml (Pottier and Simonet, 2003) provide security typechecking
for Java and Caml, respectively. Further, Jif/Split (Zdancewic et al., 2002; Zheng et al.,
2003) and Swift (Chong et al., 2009) automatically partition distributed programs into
local code, each running at a given security level, representing the level of trust granted
to each host in a distributed system. As can be expected, program partitioning fails when
no host is sufficiently trusted to run some parts of the computation, such as code that
operates on secrets provided by mutually-suspicious parties. Cryptographically-blinded
evaluation techniques (Diffie and Hellman, 1976) can sometimes solve this problem,
but with a high performance overhead. Instead, in this paper, we systematically rely
on secure hardware to virtually ‘boot’ short-lived, trusted environments for executing
privileged code.

Example: applying for a loan. Consider a program involving two parties, a bank that
offers loans, and a client that wishes to apply for a loan without disclosing private
information (at least until the loan is granted). Suppose also that the bank does not want
to disclose the parameters used for evaluating loan applications. Although the client and
the bank do not trust one another, they may agree to securely run the loan-evaluation
code on a TPM-enabled client machine. This simple computation is depicted below.
The bank sends its (encrypted, signed) secret input (xp) to the client; the client
forwards it to the code running the loan evaluation, together with its own input (y.),
using shared local memory; after securely booting, the TPM-protected code decrypts
its input, evaluates the loan, and returns its results; finally, the client gets its result (y/,)
and may forward the (encrypted, signed) output (z}) to the bank if the loan is granted.
The messages passed between the bank and TPM-protected code must be crypto-
graphically protected, so that for instance the bank input may be read and processed
only by that code—not by the client or the network. The code protected by the TPM
is short but complex as regards information flows: the inputs are endorsed (letting the
client accept the bank input and vice versa) then the outputs are declassified (releas-

(3) b, Y TIE
Bank (b) 2 TPM (v)

@)z} x, Yo = f (v, ye)
I/ A
N 1
/7
public *' @ x6,Ye /" shared
network (1) zp Client () .-~ memory

ing partial information from the client input to the bank and vice versa). Also, this
code must refuse to run multiple loan evaluations for different client inputs without the
bank’s consent, as this may enable the extraction of the bank input.

Compiling with minimal TCBs. We compile imperative programs with security and lo-
cality annotations to distributed programs using cryptography and TPMs, and we show
that our compilation scheme preserves information-flow security under standard cryp-
tographic assumptions.

To this end, we specify a subset of the TPM instructions within a core imperative
programming language. Our model aims at formal simplicity while still reflecting the
main security features of hardware and cryptographic specifications, at a level of detail
sufficient for reasoning about information flows. We model secure instructions to man-
age monotonic counters; measure code; run code in isolation; cryptographically sign
data using the private attestation key of the TPM; and cryptographically seal and unseal
data associated with some code.

We use this imperative language as the target of a new security-preserving compiler,
built by adapting and extending recent work on cryptographic support for enforcing
information-flow policies (Fournet and Rezk, 2008; Fournet et al., 2009). In their work,
imperative commands are annotated with a host location, indicating where to run the
command. Each location is also given a security level, used to type the source program.
Their compiler, CFLOW, generates a protocol for securing the transfer of control be-
tween locations, as specified by the control flow of the source program, and selective
encryption and authentication for securing the exchange of data.

We add support for dynamic code linking and a more permissive type system, en-
abling us to compile source programs that perform almost arbitrary declassifications
and endorsements. We also provide runtime support for implementing highly-trusted
locations by relying on secure instructions on relatively less trusted machines. Hence,
we obtain distributed systems composed of ordinary application code and privileged
code, with custom cryptographic support to coordinate their execution, such that all
information-flow properties of the source program are preserved.

In summary, our main contributions are:

1. An operational semantics for modelling TPM-based security, focusing on TCB re-
duction by higher-order programming, with sample code and security properties.

2. A robust, flexible extension of CFLOW, enabling endorsement and declassification
in typed source programs, with improved security definitions and theorems.

3. A compilation scheme for booting trusted hosts on demand, taking advantage of
TPM attestation, with correctness and security theorems.

Contents. Section 2 defines an imperative, probabilistic, higher-order programming
language. Section 3 defines information-flow policies, active adversaries, and target
security properties. Section 4 describes and formalizes secure hardware instructions.
Section 5 presents the CFLOW compiler and its theorems. Section 6 shows how to use
TPM capabilities to implement secure virtual hosts, such as those produced by CFLOW.

An extended paper, the CFLOW compiler, and various code samples are available at
http://msr—-inria.inria.fr/projects/sec/cflow. The extended paper
presents additional materials, including proofs; experimental results obtained by adapt-
ing CFLOW to generate statically-linked C code and running it on several small virtual
machines; discussions on our shared memory model and scheduling; and additional re-
sults on attested boot sequences when the adversary can schedule, reboot, and corrupt
host machines (but not their TPMs).

2 An imperative higher-order language

We define a probabilistic while-language with a command to turn data into executable
code, used later to model dynamic code loading and TPM capabilities. The grammar
for expressions and commands is

ex=ua|opler,...,en)
Piu=gx:=el|x:=f(x1,...,2,) | skip | P; P
| if e then P else P | while e do P | linke [P] ¢ | X

where op and f range over deterministic and probabilistic n-ary functions, respectively,
with arity n > 0. Expressions e consist of variables and operations. We write op for
nullary constructors op(). We assume given (polynomial-time) functions for standard
boolean and arithmetic constants (0, 1, ...) and operators (||, +, ...). Commands P
consist of variable assignments, using deterministic expressions and probabilistic func-
tions, composed into sequences, conditionals, and loops, plus a link command for dy-
namically loading, linking, and running code. We write P for a tuple of commands
Py,..., P, for some n > 0. Command variables X are placeholders for commands,
bound in command contexts and when running link commands. As usual, we often
use anonymous command variables in command contexts, writing P[Q)] instead of
P[C,j/)a For instance, (X1;X2;X1)[P1,P»] stands for P;;P;P;.

Commands as Data. We use data constructors to represent commands (and their ex-
pressions) as expressions, such as op_if{e;,ez,e3) for conditionals and op_x for vari-
able x. For instance, the command ¢ := ¢ + 5 is represented by op_assign(op., (op_plus
(0pe,5))). To ease the writing of expressions representing commands, we let {P) be the
expression that represents command P. Command expressions can also contain vari-
ables; these variables are quoted within (P). For instance, the expression op_assign(op.,
(op-plus(op..t))) is written (¢ := ¢ + ‘1).

The command link e [ﬁ] ¢ dynamically checks that the result of expression e repre-
sents a valid command at level /£ (the role of £ is explained below) parameterized by
subcommand variables P, and then runs that command after replacing each X; with

the command P;. We write link e £ instead of link e [| £ when Pis empty. These checks
occur at link-time, before running the command, as would be the case with a high-level
virtual machine. In contrast, low-level protection for executable and data memory is
usually enforced later, at runtime (e.g. by triggering memory page faults). Thus, for in-
stance, information flows due to low-level memory error handling are outside the scope
of our model. See also Askarov and Sabelfeld (2009) for a information-flow model of
dynamic loading with run-time monitoring.

Probabilistic Semantics. The full paper details our operational semantics; in this pre-
sentation we only present our main notations. We use a probabilistic semantics mainly
to model cryptographic algorithms as commands.

Program configurations are of the form (P, 1) where P is a program and y is a mem-
ory, that is, a function from variables to values. Our operational semantics is defined by
a probabilistic reduction step relation ~, between configurations, with 0 < p < 1. We
give below our rule for link commands (with p = 1).

(LINK)

[[e]](~,u (Py FP:tL

) =
(link e [P] £, 1) ~>1 (P[P/X], 1)

We write Pr[(P, u); @] for the probability that P terminates with a final memory that
meets condition . When P always terminates, that is, Pr[(P, u); rrue] = 1, we write
Poo((P, 1)) for the final distribution of memories obtained by running P with initial
memory u. For a given domain X, we write px for p restricted to X and p|x for the

projection of p on X, that is, px (¢ x) = ZN'W\)FNIX p(u).

Cryptographic assumptions. We consider only polynomial-time commands, and rely
on standard computational definitions and assumptions for cryptography primitives; see
the full paper for the details.

We use functions G., £, D and Gsg, SE, SD for public-key and symmetric-key
generation, encryption, and decryption; functions Gs(), S, and V for public-key gener-
ation, signing, and verification; functions G, M, and YV for MAC key generation,
computation, and verification; and functions G and ‘H for pseudo-random hash function
initialization and application.

3 Information flow security

Next, we define information-flow policies, we describe their enforcement by typing,
and we discuss support for potentially-unsafe information flows. We then model ac-
tive adversaries as command contexts, and give the general form of our target security
properties.

Security labels. We annotate each variable with a security label. These labels specify
the programmer’s security intent. Except for dynamic links, they do not affect the op-
erational semantics of programs. The security labels form a lattice (£, <) obtained as
the product of two lattices, for confidentiality levels (Lo, <¢) and for integrity levels
(L1, <r). We write | and T . for the smallest and largest elements of £, and LI and 1

(TSuBC) (TFUN) (TSEQ)

FPie O < -y () Pl FP (TSKIP)
FP: /Y Fz=f(7) : I'(z) FP;P .4 Foskip: T
(TCoND) (TWHILE)
Fe:l FP:l Pt Feil Pt (TVAR)
 if e then Pelse P’ : ¢ - whileedo P : ¢ FX:(Lle,Tr)
(TASSIGN STRICT) (TLINK STRICT)
. Fe:I'(x) Fe:? FP:(Lle,Tr)
Strict rules: - =
Fz:=e: () Flinke [P] £ : ¢
Lax rules:
(TASSIGN ENDORSE) (TASSIGN ROBUST) (TLINK PRIVILEGED)
Fe:(c,) c¢<C(x) Fe:(c,) ¢ Clx) Fe:l FP:t </t
Fx:=c: I (x) Fz:=e:'(z)N(Te, R(c)) - linke [P] ¢ : ¢

Fig. 1. Security type system (for a fixed policy I")

for the least upper bound and greatest lower bound of two elements of £, respectively.
We write Lo, 1;, T, and T for the smallest and largest elements of Lo and L,
respectively. In examples, we often use a four-point lattice defined by LH < HH < HL
and LH < LL < HL, where LH for instance is low-confidentiality high-integrity.

For a given label £ = ({c,¢;) of L, the confidentiality label ¢ specifies a read
level for variables, while the integrity label ¢; specifies a write level; the meaning of
£ < ¢ is that ¢ is at least as confidential (can be read by fewer entities) and at most as
trusted (can be written by more entities) than ¢ (Myers et al., 2006). We let C'(¢) = {¢
and I(¢) = {; be the projections that yield the confidentiality and integrity parts of
a label. Hence, the partial order on £ is defined as ¢ < ¢ iff C(¢) <¢ C(¢') and
I(¢) <7 I(¢"). We overload <¢ and <p, letting { <¢ ¢/ be C(£) <¢c C(¢')and ¢ < ¢’
be I(¢) <; I(¢). Welet ¢! = (L, I(¢))be the label with low confidentiality and the
integrity of £.

Policies. Memory policies are functions I" from variables to security labels. We define
low equality between memories, memory distributions, and distributions, relative to a
label £ € L: letting S = {x | I'(z) < (}, we define pp =, p as pg = ”TS’ p =y p as
pls = pTS, andd =, d" as d|g = dTS.

A strict type system for non-interference. As a starting point, we equip our language
with a type system that enforces (termination-insensitive) non-interference. Typing judg-
ments for commands are of the form I" - P : £. We often omit the policy I" when it is
clear from the context.

The typing rules for commands appear in Figure 1 (excluding the ‘lax’ rules). We
omit the standard typing rules for expressions, such that - e : ¢ when I'(z) < ¢ for
each variable z read in e. This type system is similar to those typically used for non-
interference (see e.g. Sabelfeld and Myers, 2003). The only new rule is TLINK STRICT:
the command link e [P] ¢, when executed, will check that the expression e represents

a valid command at level ¢ before running it. Accordingly, we type the command also
at level ¢, after checking that its actual auxiliary commands have level (Lo, Ty), as
anticipated by rule TVAR. (We considered typing auxiliary commands and command
variables at other levels, but this is not needed for our present purpose.) We also check
that the expression e has level /, to keep track of the implicit flow from command values
to their runtime effects. To illustrate this rule, consider two variables secret and x at
levels ¢, = I'(secret) and ¢, = I"(z) such that £ £ ¢,. We have:

1. x := secret is not typable.

2. b link (x := secret) ¢ : £ but runtime type checking will fail.

3. link (x := ‘secret) £, is not typable (preventing a flow from the command expres-
sion).

4. F link (x := ‘secret) {5 : L5 but runtime type checking will fail.

link (if secret then X)[x := 0] £, is not typable unless £, = (L¢, Tr).

6. + link (if secret then X)[x :=0] {5 : {5 if £, = (L, T) but runtime type check-
ing will also fail (preventing an implicit flow from running the auxiliary command).

d

With the strict typing rules, typing guarantees non-interference:

Theorem 1 (Non-interference). Let I" be a security policy, P a (strictly) well-typed
command, { € L, and 1y and (1 two initial memories such that P always terminates.

If pro =¢ pa, then poo((P, p10)) =t poo((P; p11)).

Declassifications and endorsements. Our strict type system thus excludes many useful
programs that (by design) selectively declassify secrets or endorse untrusted values.

Example 1 (Password protection). Consider a program that releases a secret after veri-
fying a password entered in variable guess:

if guess = pwd then r := secret

with I'(guess) = LL, I'(pwd) = HH, I'(r) = LH, and I'(secret) = HH. Although
this program is arguably secure, it endorses guess (which is a priori untrusted), declas-
sifies the outcome of the test (which is secret, since pwd is), then possibly declassi-
fies secret.

Consider now a system that provides a subcommand that conditionally releases a
secret after verifying a password, and tolerates up to three failed attempts (to protect
against brute-force attacks on the password):

c:=0;
link a[if ¢ < 3 && guess = pwd then r := secret else c++] LL

using a counter variable ¢ with I'(¢) = LH and a variable a with I'(a) = LL for dy-
namically loading code that may call this subcommand. Intuitively, a contains arbitrary
low-level code, representing an active adversary, that cannot leak pwd or secret and
cannot write pwd, secret, or c. If linking succeeds, this code can only access the se-
cret by calling its privileged subcommand, and only the first three calls may succeed.
For instance, running the command above with an initial memory where a is set to the
command

guess = 0; while guess < 10 && r=0do { X; guess++ }

leaks secret to r only if pwd is 0, 1, or 2. More generally, if we also assume that pwd is
sampled at random, the probability that any adversary command learns anything about
secret is bounded by the sum of the probabilities of the three most probable passwords
(3/N if there are N uniformly distributed passwords).

We intend to compile such programs, letting the programmer take responsibility for
the source properties of her program, but still ensuring that the compilation process
does not introduce any further potentially-unsafe information flows.

Robustness. In the example above, the programmer deliberately declassifies informa-
tion. Moreover, the declassification depends on the low-integrity variable guess, thereby
letting the adversary influence what is declassified. This is generally dangerous; for in-
stance, our example would be entirely broken with I'(pwd) = HL. Conversely, a de-
classification is robust when it does not depend on low-integrity data, and thus cannot
be influenced by active adversaries (Zdancewic and Myers, 2001; Sabelfeld and My-
ers, 2004; Chong and Myers, 2006; Askarov and Myers, 2010). We support non-robust
declassifications, treating them as a high-integrity endorsement followed by a robust
declassification, and we rely on a robustness function, R : Lo — L, that indicates
the minimum integrity level required to declassify each confidentiality level. Although
we allow endorsement and non-robust declassification, in the following, we still usually
demand that our security policies be robust:

Definition 1 (Robust policies). For a given robustness function R, { € L is robust
when I({) < R(C(¥)); I is robust for R when I"(x) is robust for all x € dom(I").

A more permissive type system. For typing source programs, we define a new type sys-
tem, whose typing rules allow declassifications and endorsements but take them into
account to compute the level of the command (sometimes called its ‘program counter’
level). The typing rules appear in Figure 1, using three new ‘lax’ typing rules instead
of the ‘strict’ ones. The rules TASSIGN ENDORSE and TASSIGN ROBUST are two general-
ization of rule TASSIGN STRICT. TASSIGN ENDORSE is TASSIGN STRICT only when e has
at least the integrity of x; otherwise, the assignment endorses e. Irrespective of e, the
command is typed at the level of x. TAssIGN ROBUST enables the declassification of e
into z (¢ £ C(x)) but it records this privileged operation by raising the command type
up to the associated robust integrity level R(c). The rule TLINK PRIVILEGED general-
izes TLINK STRICT by allowing the caller to link e with auxiliary commands at arbitrary
levels of integrity, but it records those levels in the type of the command. This endorses
at link-time any calls to the auxiliary commands, since dynamic typing of the callee
ignores the integrity of auxiliary command variables (rule TVAR).

The lax type system enforces two fundamental properties. First, if a command has
level ¢, then it does not write variables below ¢. Second, a command at level ¢ may
declassify values of confidentiality c only if I(¢) < R(c).

Theorem 2 (Containment). Let I be a policy, £ € L, P a command, and ji a memory
such that P terminates. If = P : 0/ and V' £ ¢, then poo ((P, 1)) =¢ .

Theorem 3 (Robust non-interference). Let I" be a policy, { € L, ¢ € Lo such that
I(¢) £ R(c),and L = {x | ¢ £ C(x)}. Let P be a command and juy, j11 memories such
that P terminates. If = P : £ and po|, = ji1|1, then poo ({(P, 110)) |2 = poo({P; p11))|L-

Active adversaries. In the following, our security properties are parameterized by the
power of the adversary, defined by a security level o € £. We say that a command A
is an adversary command (respectively an adversary command context) if it reads only
variables of lower confidentiality than C(«), write only variables of higher integrity
than I(«), and use links only with a level above o. We are interested in robustness
functions that ensure adversaries can read any variable they can write, at least when the
policy I is robust.

Definition 2. R is robust against an adversary level o when, for all confidentiality
levels c € L, if I(a) < R(c), then ¢ < C(a).

Our next theorem guarantees that, with R robust against « and with a robust security
policy, an adversary command does not gain additional expressiveness by using link.
This justifies our condition on link in the definition of adversary commands.

Theorem 4. Let o be an adversary level, R be a robustness function robust against «,
I be a security policy robust for R, and A an adversary command. There exists an
adversary command A’ with no link commands such that, for all memory u, if A termi-
nates on (i, then A’ terminates on p and poo({A, 1)) = poo ((A, 1)).

Properties of program transformations. We finally present the main properties we es-
tablish for our compiler, as regards both security and functional correctness. The prop-
erties are stated below for an abstract program transformation between source and target
programs; they are instantiated before each of our main theorems in Sections 5 and 6.

We are interested in transformations that operate on programs that are (possibly) not
perfectly secure, so we cannot define security as the preservation of non-interference.
Instead, for each of our transformations, we demand that there is an inverse map from
target adversaries to source adversaries, essentially showing how to ‘decompile’ each
attack into an attack already present before the transformation is applied.

We consider system configurations obtained by composing an imperative program
P € P, an adversary (e.g. a command context) A € A, and an initial state (e.g. a
memory) 1 € M. Their semantics is given by an evaluation function, written ((-)) :
P - A — M — M, and an observational equivalence on states, written ~= C M?.
For a given program and an arbitrary adversary, we are interested in the properties of
final states up to . For instance, if we consider commands for a client and a bank
scheduled by an adversary that controls the network, we may let programs range over
pairs of commands Q.., @y, let adversaries range over binary command contexts, let ~
be low-equality on memory distributions, and use the evaluation function

((Qcs Qo) A, 1) = poo({AlQe, Qul, 1)

Given definitions for source (P, A, M, =, (())) and target (P’, A', M',~' (())’)
configurations, we consider program transformations, written [-] : P — P’, together

with state projections (that is, surjective functions), written 7 : M’ — M. (The role
of 7 is to erase any auxiliary variable introduced by the transformation.) We arrive at
the following definitions:

Definition 3 (Security). ([-], 7) is secure when, for every source program P € P and
target adversary A’ € A', there is a source adversary A € A such that, for every target
initial memory p' € M’, we have (P, A, w(1')) =~ w([P], A, u"))’.

Definition 4 (Correctness). ([-],) is correct when, for every source program P € P
and source adversary A € A, there is a target adversary A" € A’ such that, for every
target initial memory ' € M', we have (P, A, w(u))) = w{([P], A", ')’

The two definitions differ in their quantification on adversaries. Informally, all at-
tacks must be reflected, but not all of them need to be preserved, so we expect functional
correctness only for a well-behaved subset of adversaries, acting for instance as reliable
networks and fair schedulers, and we will use a smaller set .A for Definition 4 than for
Definition 3.

4 Command semantics for secure instructions

We model a core subset of the security features available on modern processors with a
TPM. Aiming at formal simplicity, we do not account for all the details of their hard-
ware specification, but still intend to reflect their gist. We set an (intuitively high) robust
security level £7py, for the hardware, and assign that level to fixed variables that model
parts of the hardware-protected memory, together with fixed commands that model se-
cure instructions and have privileged access to these variables. (Their initialization is
described at the end of the section.) We then model software as commands linked to
these privileged subcommands, thereby gaining indirect access to protected variables.

Related work. We briefly discuss prior models and analyses for TPMs. Abadi and Wob-
ber (2004) give an authorization logic for a precursor of the TPM. Giirgens et al. (2008)
analyze several TCG protocols. Millen et al. (2007) study remote attestation using a
model-checker. Datta et al. (2009) develop a logic for reasoning about attestation and
secure boots. Our model of the TPM differs from theirs in its use of information flows,
memory policies, and cryptographic assumptions. It also covers confidentiality proper-
ties and deals with sealing and unsealing.

Monotonic counters. The TPM features a collection of monotonic counters, that is,
persistent protected memory whose contents can only be read and incremented, but not
reset (TCG, 2006, p 681). Such counters are essential for protection against replays.

We model just one of these counters, using a public variable c at the integrity level of
the TPM. Thus, our counter can be read by any command but it is exclusively assigned
by the fixed command INC below. In particular, ¢ cannot be reset or decremented.

INC = c:i=c+l I(c) = lipy

(Concretely, TPMs manage a few independent counters with finer access control, and
the operating system is in charge of restricting increments to prevent denial of service.)

10

Example 2. Continuing with our password example, we may use the monotonic counter
to reliably keep track of guessing attempts:

link a[if ¢ < 3 && guess = pwd then r := secret else INC] LL

Platform configuration registers. The TPM also features a collection of Platform Con-
figuration Registers (PCR), which are cleared when the machine reboots, then selec-
tively written by TPM commands. As detailed in the full paper, these registers usually
contain measurements of the code running on the machine. PCRs are specialized: the
first PCRs are used for static root of trust measurements as the machine boots (SRTM)
(Grawrock, 2007), while PCRs 17-19 are used for dynamic root of trust measurements
(DRTM) and may be selectively reset without rebooting (TCG, 2006; AMD, 2005).
PCRs are read as high-integrity implicit parameters for many other TPM commands,
such as attestation and seals. We model PCRs as variables h; at level ¢1,,,. For simplic-
ity, we use just two registers, hy for SRTM, modified only by EXTEND;, and h;7 for
DRTM, initialized by SKINIT and modified by EXTEND; 7, as explained below.

EXTEND; appends some code identity to h; and can be used to record a delegation
chain starting from a secure kernel (TCG, 2006, p 284). To keep the size of h; constant,
the chain is implemented as a nested hash, using a cryptographic hash functions . We
model it as

EXTEND; = h; := H(h;|identity) — I'(h;) = Chpy, I'(identity) = (L, Tp)

where ‘|’ is bitstring concatenation and identity is a public-untrusted variable .

SKINIT sets the code identity in h;7 to (the hash of) a new command passed as
input, usually called a ‘secure kernel’, then runs that command, and finally clears h;7
(AMD, 2005, p 53). We model it as an assignment to h17 from the content of a public-
untrusted variable kernel, followed by a link of kernel with subcommands parameters
that pass to the new kernel the rest of the TPM interface (written 7PM), then a reset
of hy7. We let TPM = {INC,EXTEND;7,ATTEST;7,SEAL;7,UNSEAL;7}.

SKINIT = hy7 := H(kernel); link kernel[TPM] ¢ hi7:=0

T .
system>
Thus, hi7 either is at its default value O or it holds the identity of the kernel that is
currently running, possibly extended by a chain of hashes that records further identity
information. Concretely, the command SKINIT loads code at a privileged (kernel) level.
This is reflected in our model by the link label egystm. It is the responsibility of the op-
erating system to validate the kernels passed by user commands before calling SKINIT
e.g. to prevent privilege escalation. In the following, we assume that the hash function
used for all assignment to PCRs is collision-resistant and yields fixed-sized hash values

(so that concatenation of a hash with another value is injective).

Remote attestation. Each TPM uses a fixed public-key-signature keypair, set during
manufacturing, and used to uniquely identify and authenticate this particular TPM.
ATTEST signs an input value and a subset of the PCRs with the private signing key
(TCG, 2006). The resulting signature guarantees that this value has been ‘attested’ by
a command running on a machine with this TPM and these PCR values. This signature

11

can be verified by any command that knows the verification key for the TPM, typically
running on a remote machine; the verifier can then interpret the authenticated value and
PCRs. We model attestation with two variables for the TPM keypair, ki, of level ¢1,,,,
and k7p,, of level £7py, and two commands

ATTEST; = tag := S(i|hs|plain, kipy,)
VERIFY; = if V(i|source|plain, tag, k7)) then X

with public-untrusted inputs source and plain for the presumed value of h; and the
attested value, and output tag for the signature. These commands rely on public-key
signing (S) and signature-verification (V) functions. Since the verification key is public,
VERIFY need not be a privileged command; its variable X stands for the command
guarded by the cryptographic verification.

Sealing. SEAL encrypts and signs the content of a variable together with the current
identity of the sender and the intended identity of the receiver (TCG, 2006, p 298).
Conversely UNSEAL decrypts a variable and verifies its signature, then verifies the
identity of the sender and the current identity of the receiver (TCG, 2006, p 364). The
TPM can handle several nonmigratable keys, but we only model sealing and unsealing
keyed with fixed hardware secrets s.ke and s.ka, both at level {7py.

SEAL; = enc := S&(plain,s.ke); mac := M(i|h;|target|enc,s.ka);
cipher := enc|mac; enc := 0; mac := 0

UNSEAL; = enc|mac := cipher;
if Vq(i|source|h;|enc, mac, s.ka)
then plain := SD(enc,s.ke) else plain := 0;
enc :=0; mac :=0

where enc|mac := cipher is syntactic sugar for assigning to enc and mac substrings of
cipher at fixed indexes (since the size of mac is fixed). As illustrated in the rest of the
paper, SEAL and UNSEAL can be used to emulate a persistent, secure memory, and to
communicate securely between TPM commands.

Security and functionality properties for seals. We specify the cryptographic properties
of SEAL and UNSEAL by relating them to an ideal implementation that maintains a
global table for all values sealed so far and encrypts Os instead of the actual plaintexts.
(The full paper define similar security and functionality properties for attestation.)

SEAL? = enc = 8E(0,5.ke); mac = M(i|h;|target|enc,s.ka);
cipher = enc|mac; log; = log; + ((h;|target|enc),plain)
enc :=0; mac =0

UNSEAL! = if V((i|source|h;|enc, mac, s.ka)
then plain := assoc(log;(source|h;|enc)) else plain = 0;
enc :=0; mac =0

Security means that, provided s is generated uniformly at random and no other part
of the code accesses s or log, no probabilistic polynomial program can distinguish

12

between (SEAL, UNSEAL) and (SEAL?,UNSEALD?). This property can be reduced
to indistinguishability against chosen plaintext attacks for encryption and resistance
against forgery attacks for signing.

Functionality means that UNSEAL is a partial inverse of SEAL: unsealing a value
sealed with matching source and target hashes always yields the plain sealed value.

Auxiliary notations. For convenience, we define simple macros for calling SEAL and
UNSEAL. (The full paper defines similar macros for our other security commands.)

x:=SEAL;(e,,e;) = target := ey; plain := e,; SEAL,;
X := cipher; target := 0; plain := 0; cipher :=0

x:= UNSEAL;(e.,e5) = source := e; cipher := e.; UNSEAL;;
X := plain; source = 0; cipher := 0; plain := 0

Example 3. Continuing with our password example, we define code that seals the secret
and the password to itself (using the current value of hy7) within a public-untrusted
variable. Thus, protected by the TPM key, the secret and the password can only be
retrieved by re-running this code. When re-run, the code behaves as in the password
example, retrieving the password and the secret then granting access to the secret if the
password is guessed in less than three attempts.

kernel = (
if ¢ = 0 then store := SEAL((pwd,secret),h17)
else { pwd,secret := UNSEAL(store,h17);
if ¢ < 4 && guess = pwd then r := secret};
INC; pwd := 0; secret := 0);
SKINIT;A [SKINIT]

Assuming that, initially, ¢ = 0 and pwd is sampled at random, the probability that a
polynomial adversary learns anything about secret is bounded by the sum of the prob-
abilities of the three most probable passwords plus the (negligible) probabilities that
the adversary finds a collision in the hash function or breaks the cryptography used in
SEAL and UNSEAL.

Initialization. The protected variables of the TPM must be initialized before use. We
write TPM, for the initialization command. Informally, this command runs once as the
TPM is manufactured. It generates cryptographic keys and sets hy, hi7, and ¢ to zero.
For cryptographic reasons, we also need to randomly sample # in a family of universal
one-way hash functions; this is modelled as an implicit parameter v for 7. Concretely,
the public key of the TPM may also be certified by some authority, so that its high
integrity can be dynamically verified.

TPMy = kipykipy = GeQ; s-ke = Gse(); s.ka = GO v = GO);
hy:=0;h17:=0;¢:=0

5 CFLOW revisited

We describe the CFLOW compiler, giving its specification and outlining its algorithms;
we refer to Fournet et al. (2009) for a detailed presentation. The compiler takes a source

13

program plus security and locality policies, and outputs a cryptographically-protected
distributed program. We improve on earlier work by handling more source programs,
with endorsements and declassification, and by providing more precise theorems.

Source language, with locations. We consider a finite set of hosts, or locations, {1, 2,
..yi,b,¢,v,...,n} intended to represent units of trust (principals) and of locality
(runtime environments). The source language is the language of Section 2 extended
with host annotations:
P:=...]b:P

The locality command b : P states that command P should run on host b. Locality com-
mands can be nested, as in ¢ : {P.;v : P,}. We assume that every source program has
a locality command at top level, setting an initial host. Since variables are transparently
shared between hosts, locality annotations do not affect our semantics for commands.

Typing locality commands rules. We extend our security policy to assign a level I'(b) to
each host b; this level indicates which variables b can read and write. We only consider
robust hosts, such that 7(b) < R(C'(b)). We use the typing rule

(TLOCALITY)
FP0 I(b) < I(0)
F(b:P): (L, I(0)

The rule states that locality commands are public, thereby reflecting that the transfer of
control between hosts can be observed by the adversary.

We illustrate CFLOW for the example in the introduction. The source code and its
policy specify levels of protection, but leave the choice of cryptographic mechanisms
to the compiler. The actual source and compiled programs are available online.

Example 4 (Applying for a loan: source code). The code is

b:{zy :=ep}; c{ye ==ec ks vi {xy, vl == f(@p, ye) }s b: {print(xy)}; c: {print(yl)}

It involves three hosts: a client ¢ with I'(c¢) = (C¢, I.), a bank b with I'(b) =
(Cp, Iy), and a ‘virtual’ host v with I'(v) = (C. U Cy, I. M I,) for the TPM-attested
code on the client machine. All variables indexed by b, ¢ or v are private to b, ¢ or v,
respectively. For instance, I'(x.) = (C¢, I.). The bank and the client first write their
secret values (in z;, and y.); then v computes the two results (z}, and y.); finally, the
bank and the client print them (locally). With this source command, for instance, an
adversary at the level of the bank cannot read the client secret, and vice versa.

Compiler transformation. The compiler inputs a command with localities P and a se-
curity policy I", and outputs an initialization command, (), used to specify initial trust
assumptions, plus a series of commands () that include one command @; for each host ¢
that occurs in the source program. We write I for the security policy of these com-
mands. Informally, @; is a single command that implements and schedules all code
fragments of P located on ¢. After type checking, the compilation proceeds in 4 passes:

1. The source program is sliced into local threads, each running on a single host.

14

2. The distributed control flow between threads is protected, using dynamic checks on
auxiliary program-counter variables, so that the adversary cannot run high-integrity
threads out of schedule.

3. Relying on a single-static-assignment transformation, each variable shared between
different hosts (including the program counters) is replaced by a series of local
replicas, with explicit transfers between replicas.

4. Depending on their security levels, memory transfers between replicas are cryp-
tographically protected, by inserting encryptions to transfer instead low-confiden-
tiality encrypted values, and inserting authentication primitives to transfer instead
low-integrity values. The compiler determines which symmetric keys to use for
these operations, and generates an initial key-exchange protocol to distribute them.
After this pass, the only variables shared between different hosts are (1) the signa-
ture verification keys used by the initial protocol, and (2) public-untrusted variables
at level (L, T). (The compiler also generates untrusted code for scheduling these
commands and transferring public-untrusted data.)

These 4 passes define a program transformation Qg, = [P] such that each com-
mand Q; has type ¢!. Next, we instantiate Definitions 3 and 4 for this transformation.

Source programs and their adversaries. We let source programs range over well-typed
polynomial commands with locality annotations Informally, source programs enable
their active adversaries to run whenever they pass control between hosts (since the ad-
versary controls at least the network). To each source command P, we associate the
command context P obtained from P by replacing every subcommand of the form
b : P' by a command context with two command variables X; P’; X'. For a given ad-
versary level a, we let A range over tuples of polynomial adversary commands, with
one command for each command variable. Hence, P[A] ranges over commands that
interleave the code of P with adversary commands. (This is analogous to models of
non-interference for concurrency, where the adversary runs between any two program
steps.) Thus, we define source evaluation by

(P A,m) = poolPIA], 1)

Implementations and their adversaries. Implementation programs range over our com-
piler outputs Qg, Q. Once Qg has run, we simulate concurrency by letting the adversary
explicitly schedule commands () that represent parallel threads of computation (rather
than having P schedule A). The resulting low-level model realistically accounts for all
interleavings of these threads. Implementation adversaries range over adversaries com-
mand contexts A’ with one hole for each host. Thus, we define target evaluation by

((Qo,Q), A", 1Y) = poo(Qo; A'[Q, 1)

We let m be the erasure of all variables added in I": m(1') = p1]y,,,,(,, and we
define equivalence on final memory distributions (pp ~ p1) as computational indistin-
guishability: for all polynomial commands T, | Pr[(T’, po); g = 0] — Pr[(T, p1), g = 0]|
is negligible. (We use indistinguishability instead of distribution equality because our
compiler relies on cryptographic security assumptions.)

With the definitions above, our new compilation theorem for CFLOW is

15

Theorem 5. Let o € L be such that R is robust against . Let I be a robust policy.
(I-], ™) is secure; and ([-],) is correct when o = (L¢, T).

The theorem demands that the source policy I be robust (Definition 1), so that the ad-
versary can read any shared variable that it can write. This hypothesis stems from our
decision to support endorsements in source programs. In particular, the control flow
integrity enforced by pass 2 may otherwise fail to protect programs that combine en-
dorsements and declassifications, as illustrated below.

Example 5 (Non-robust shared variables). Consider a source program that writes a se-
cret s with I'(s) = HH into a (non robust) variable x with I'(x) = HL, then erases the
content of z, and finally declassifies by copying it to p with I"(p) = LL:

P = 1{z:=s}h2{z:=0}3:{p:=x}

Let o« = LL. With our source semantics, the command context

P = Xy;0:=5Xr:=0;X3;p:=2; X4
ensures that p finally contains either 0 or a value written by the adversary, but not
the value of s. In the implementation, however, the two local commands at hosts 1
and 2 have low integrity, so pass 2 does not guarantee their sequential execution, and an
implementation adversary that schedules ()5 before (1 lead Q5 to declassify s into p.

Cryptographic protection (pass 4) is also problematic for programs that share non-
robust variables, such as x in Example 5. Although their confidentiality is protected by
encryption, an implementation adversary can swap their contents (by swapping their
encrypted values) and similarly lead the program to declassify the wrong data.

Simulation vs non-interference. Instead of Theorem 5, Fournet et al. (2009) show that
two classes of information-flow properties of the source program are preserved in the
implementation. Our security result is more precise; it guarantees that, for any attack
against our implementation, there is also an attack against the source program, with the
same information leakage. The theorem below confirms that our new result generally
subsumes theirs, and thus yields strong computational non-interference properties. (We
refer to Fournet et al. (2009) and to the full paper for the definitions and discussion of
their notion of computational non-interference for confidentiality and for integrity.)

Theorem 6 (Computational Non-Interference). If a transformation ([-],) is secure,
then it preserves computational confidentiality and integrity.

Example 6 (Simplified implementation). Continuing with our example, and in prepara-
tion for the next section, we give a simplified, hand-written implementation of Exam-
ple 4 that illustrates the main mechanisms of CFLOW while avoiding those irrelevant
here. For instance, the ordering of x; := e, and y, := e, is irrelevant; the ordering of
xp =ep and x}, Y, := f(xp,y.) is protected because z,y. = f(xp,y.) does not run
unless z;, has been verified. So, instead of the globally shared and signed programs
counter, we use one local anti-replay counter for each host. Communications between
b and v are cryptographically protected, but we let v and ¢ share local memory (since v
will run on ¢’s machine). Otherwise, all the new (communication) variables are public
and untrusted; the only shared high-integrity variables are the public keys (kzlf and k1).
The commands are :

16

0o = Fky ki =Ge0; ky k=G0
Q, = if ep=1then { cp++; xpi=ep; xe := E(ap, k) w5 := S(e, ky) }
else if ¢, = 2 then { cp++; if V(2L), k) then print(D(z., k,) }

Q.= ifc.=1then { co++; y. :=e. } else if ¢.=2 then { c.++; print(y,) }

Q, = ifc,=1then
{ Cyt+; ifV(xux& k) then { J"U = D(Z‘e, kv) Z‘
=E(x), k)); @

v Y / = f(%,yc)'
= (x€7 v) } }

6 Implementing virtual hosts on TPMs

Section 5 shows how to compile an imperative program with shared access-controlled
memory into a distributed program protected by cryptography. The resulting program
runs on a series of machines, and preserves the security properties of the source pro-
gram, subject to the assumption that each local command @} of the distributed im-
plementation runs on a machine with (at least) the security of its declared level ¢.
However, for many useful programs, it is difficult to find such machines for the most
trusted parts of the computation.

This section introduces a transformation that relies on secure instructions to boot
trusted virtual machines. This transformation applies to any distributed programs, in-
cluding those produced by CFLOW in Section 5. Before giving general definitions and
theorems, we illustrate the transformation on Example 6.

Example 7 (Securely booting @Q),). The command @, requires a machine trusted by
both the client and the bank. Assume that the bank trusts the client TPM for running @,
and knows its public key for attestation. We may use the code

0o = ky ki = Ge0; kppypktpy = Ge(; ¢ := 0
Q, = if cp=1then { cp++; xp:= ep;
if VERIFY(H((K).k}, certy)
[b.kf =k} z. :—S(xb,k;}'); Ts =8 (xe, ky)1}
else if ¢,=2 then { cp++; if V(a,, 2/, k;7) then print(D(x, k,) }

Q.= ifc.=1then { c.++; y. :=e. } else if c¢.=2 then { print(y,) }
Q, = kernel := (K,); SKINIT

K, = if c=0then
{ING; k,, .k := G.(); cert, :== ATTEST(k;"); key := SEAL(k,, ,h) }
else if c=1 then
{INGC; k;, := UNSEAL(key,h);
if V(2e, x5, ky) then { z,, := D(z., k)); ;,yé = f(Tv, Ye)s
al = E(al, k)s alyi= Saly by) })

er v

In contrast with the host commands of Section 5, TPM-attested host commands do
not have a persistent, protected local memory to keep their trusted key pair. Instead,

17

as we dynamically set up host v, we generate its key pair, we use remote attestation
to convince the bank to encrypt its secret towards the implementation of @,, and we
simulate the persistent local memory using seal/unseal and the TPM counter to protect
against replays.

A general transformation. Our transformation takes as input a policy I', a tuple of
typed commands @ for hosts b, including the command of a virtual host v, and a subset
of the variables x of @, (informally, Z represents the private, trusted local state of v).
It assumes the existence of a TPM on host a, at least as trusted as v and not used in the
source program. It generates an implementation policy I'"” and a series of implementa-
tion commands Qj,, ', defined below. We let) range over commands such that

no command in Q \ @, accesses T (i.e. the variables of z are local to Q),,);

@, does not read x before initializing them;

FQy: EI forb € b

F Q. : £y, (i.e. the TPM is as trusted as Q,,); and

R(C(€1pp1)) £ I(Ly) for b € b (i.e. no host can access the TPM private variables).

M NS

Initialization. Recall that the commands @ (including @,,) rely on trusted variables
formally initialized in Q. In contrast, our implementation of @, uses SKINIT, so its
own initialization is deferred until runtime and must be explicitly coded. For simplicity,
we assume that, for each host b € g, initialization is a command of the form Qg =
k., k;‘:: Ge();. .. that writes private variables and generates a single keypair, with v
initialized last. We also assume that the keys written in Qg are not overwritten in Q).
(These assumptions hold with the CFLOW compiler, up to a reordering of hosts.)

6. QO - (QO b;)b;évv QO v
7. no command in Q \ @y accesses variables written in (g 5, except for k:+ forbcb
(i.e. the variables initialized in Q) 5 are local to Qp);

8. no command in @ writes k:{f Kk, forbe b.

Implementation of (Qy. Initialization is obtained from @)y by adding initialization for
the TPM and removing initialization for v: Q) = TPMo; (Qo p:b.k; = 0)p-£e.

Implementation of Q,,. The command @/, uses SKINIT to dynamically launch a secure
kernel K, that implements Q,:

Q! = kernel :=(K,); a.SKINIT
K, = alINC;
if a.c = O+1 then { v.c := a.c; Q. 0; cert, := a.ATTEST7(k;)}
else { k, |k} |v.clv.Z := a.UNSEAL;7(store,, a.h17);
ifv.ie=a.cthen Q, {v.z/z,z € T}{* k+/k b#v}l};
store, = a.SEALy7((k, k}|v.c+1|v.Z), a.h17)); ky , ve, 0.2 := 0

The variables v.Z (and v.c) are volatile for each run of Q. ; they can be public and
untrusted, but must be cleared before returning. By eliminating trusted and confidential
variables, the transformation lowers the level of (), hence the level required to run it.

18

The identity of K, is verified by the other hosts, so the command @/, itself need
not be trusted. The other new variables kj , cert,, store, are also (formally) public
and untrusted. They need not be trusted for security, although an adversary that can
overwrite them may cause the system to fail. The value c? is a constant of the program
and corresponds to the initial value of the TPM monotonic counter.

Implementation of Qp for b # v, b € b. As it runs for the first time, each host com-
mand @), verifies the attested public key for v and stores it in a new local variable, b.k;f,
a local trusted copy to be used instead of &, in Q. To this end, Q] recomputes the ex-
pected value of A, including the values for ¢ and any other keys k;ﬁ used in @,, and
verifies its concatenation with the received public key k;" using the trusted verification

key of the supporting TPM.
b = if b.k} = 0 then { if a.VERIFY (0. H((K,)).k;" ,cert,)[b.k} :=k}]}
else { Qui{b.k7 /K } }

Implementation of I'. The formal implementation of I is I'" = I'{v.Z, v.c, k;}, cert,,
store, — (L, TYHb.kI — £y, b # v}

Security and functional correctness. We express the security and functional correctness
of our transformation as instances of definitions 3 and 4. Source programs range over
commands () that meet conditions 1-8 above. Source adversaries are parameterized
by a and range over adversary command contexts for I". The commands of the dis-
tributed programs are scheduled by the adversary after the execution of QQq; formally:

Implementation programs [[é]] range over @’ , as defined above. Implementation
adversaries are parameterized by « and range over valid adversary command contexts
for I"'. The commands of the distributed program are scheduled by the adversary after
the execution of @, but additionally, the adversary and @, have access to protected
versions of the subroutine SKINIT,: we let

§' = Qh; A'[a.SKINIT,,1,Q’, Q!,[a.SKINIT;]

(Q A W) = poo((S, 1))
where a.SKINIT, runs a.SKINIT after testing that kernel contains code typed at level £.
We let m be the erasure of all variables added in I": m(1') = 1]y, (,) and we
define equivalence on final memory distributions (py ~ p1) as computational indistin-
guishability: for all polynomial commands 7 such that T' does not read {7, k. , k" },
| Pr[(T, po); g = 0] — Pr[(T, p1); g = 0] is negligible. Relying on these definitions,
our main theorem for virtual hosts on TPMs is

Theorem 7. Let o € L be such that R is robust against o. Let I' be a robust policy.
(I-], ™) is secure; ([-],) is correct when o = (Lc, Tr).

Since its input and output are in the same format, the transformation and its theorem
can be applied several times to implement a series of virtual hosts using different TPMs.

Acknowledgments. We thank Karthik Bhargavan, Gurvan le Guernic, Jean-Jacques
Lévy, Himanshu Raj, Tamara Rezk, and the anonymous reviewers for their help.

19

References

M. Abadi and T. Wobber. A logical account of NGSCB. In FORTE 2004, pages 1-12, 2004.

AMD. AMD64 virtualization: Secure virtual machine architecture reference manual.

A. Askarov and A. Myers. A semantic framework for declassification and endorsement. Prog.
Languages and Systems, pages 64-84, 2010.

A. Askarov and A. Sabelfeld. Tight enforcement of information-release policies for dynamic
languages. In CSF, 20009.

S. Balfe and K. G. Paterson. e-EMV: Emulating EMV for internet payments using trusted com-
puting technology. STC 2008, pages 81-92, 2008.

S. Chong and A. C. Myers. Decentralized robustness. 19th IEEE CSFW, 2006, page 12, 2006.

S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng. Secure web applica-
tions via automatic partitioning. CACM, 2009.

A. Datta, J. Franklin, D. Garg, and D. Kaynar. A logic of secure systems and its application to
trusted computing. In S&P’09, 221-236, 2009.

D. E. Denning. A lattice model of secure information flow. In CACM, 1976.

W. Diffie and M. E. Hellman. New directions in cryptography. IEEE TIT, 1976.

C. Fournet and T. Rezk. Cryptographically sound implementations for typed information-flow
security. In POPL’08, pages 323-335. Jan. 2008.

C. Fournet, G. Le Guernic, and T. Rezk. A security-preserving compiler for distributed programs:
from information-flow policies to cryptographic mechanisms. In CCS’09, ACM, 2009.

D. Grawrock. TCG Specification Architecture Overview, Rev. 1.4, 2007.

S. Giirgens, C. Rudolph, D. Scheuermann, M. Atts, and R. Plaga. Security evaluation of scenarios
based on the TCGs TPM specification. Computer Security—ESORICS 2007.

J. Halderman, S. Schoen, N. Heninger, W. Clarkson, W. Paul, J. Calandrino, A. Feldman,
J. Appelbaum, and E. Felten. Lest we remember: cold-boot attacks on encryption keys.
CACM 2009.

Intel. Intel Trusted Execution Technology Software Development Guide, 2009.

J. McCune, B. Parno, A. Perrig, M. Reiter, and H. Isozaki. Flicker: An execution infrastructure
for TCB minimization. In 3rd ACM SIGOPS/EuroSys, pages 315-328. ACM, 2008.

J. McCune, N. Qu, Y. Li, A. Datta, V. Gligor, and A. Perrig. Efficient TCB Reduction and
Attestation. CMU-CyLab-09-003, 9, 2009.

Microsoft. Windows BitLocker drive encryption, 2006.

J. Millen, J. Guttman, J. Ramsdell, J. Sheehy, B. Sniffen, and M. Bedford. Analysis of a measured
launch, MITRE, 2007.

A. C. Myers and B. Liskov. Complete, safe information flow with decentralized labels. In /9th
IEEE Symposium on Research in Security and Privacy (RSP), Oakland, California, May 1998.

A. C. Myers and B. Liskov. Protecting privacy using the decentralized label model. TOSEM 2000.

A. C. Myers, L. Zheng, S. Zdancewic, S. Chong, and N. Nystrom. Jif: Java information flow,
2001.

A. C. Myers, A. Sabelfeld, and S. Zdancewic. Enforcing robust declassification and qualified
robustness. JCS, 14(2):157-196, 2006.

F. Pottier and V. Simonet. Information flow inference for ML. ACM TOPLAS, 2003.

A. Sabelfeld and A. C. Myers. Language-based information-flow security. /IEEE J-SAC, 2003.

A. Sabelfeld and A. C. Myers. A model for delimited information release. Software Security-
Theories and Systems, pages 174—191, 2004.

Trusted Computing Group. Client Specific TPM Interface Specification (TIS), Version 1.2.,2005.

Trusted Computing Group. TCG Software Stack (TSS 1.2). Trusted Computing Group, 2006.

S. Zdancewic and A. C. Myers. Robust declassification. In CSFW’01, pages 15-23, 2001.

S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Secure program partitioning. TOCS 2002.

L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using replication and partitioning to build
secure distributed systems. In /5th IEEE Symposium on Security and Privacy, 2003.

20

