
Person Resolution in Person Search Results: WebHawk
Xiaojun Wan*

Institute of Computer Science and
Technology,

Peking University
Beijing 100871, China

wanxiaojun@icst.pku.edu.cn

Jianfeng Gao, Mu Li
Natural Language Computing Group

Microsoft Research Asia
Beijing 100080, China

{jfgao, muli}@microsoft.com

Binggong Ding*
Department of Computer Science

and Engineering
Dalian University of Technology

Dalian 116023, China
dbg_dlut@hotmail.com

ABSTRACT
Finding information about people on the Web using a search en-
gine is difficult because there is a many-to-many mapping be-
tween person names and specific persons (i.e. referents). This
paper describes a person resolution system, called WebHawk.
Given a list of pages obtained by submitting a person query to a
search engine, WebHawk facilitates person search in three steps:
First of all, a filter removes those pages that contain no informa-
tion about any person. Secondly, a cluster groups the remaining
pages into different clusters, each for one specific person. To
make the resulting clusters more meaningful, an extractor is used
to induce query-oriented personal information from each page.
Finally, a namer generates an informative description for each
cluster so that users can find any specific person easily. The archi-
tecture of WebHawk is presented, and the four components are
discussed in detail, with a separate evaluation of each component
presented where appropriate. A user study shows that WebHawk
complements most existing search engines and successfully im-
proves users’ experience of person search on the Web.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval –clustering, information filtering.

General Terms
Design, Experimentation

Keywords
Person Resolution, Person Search, Clustering, Junk Filtering

1. INTRODUCTION
Person search is one of the most popular search types on the

Web. For example, according to [6], 5-10% of the English queries
from AllTheWeb include person names. However, most of the
current search engines (e.g. Google, Yahoo, MSN and AllTheWeb,
etc.) do not provide any specific function aiming at person search.
They treat a person query the same as a general query, and return

all web pages that contain one or more terms in the person query.
It is difficult for users to find the expected person in such retrieval
results due to following reasons.

First of all, some pages may not contain any person information,
referred to as junk pages in this paper, because person names may
refer to non-person entities, such as products, companies, or
places. For example, “Ford” may refer to the Ford Company.
Those junk pages should be removed from person search results.

Secondly, there are a lot of ambiguities in person search. As
Taffet [17] pointed out, those ambiguities can be categorized into
two kinds. One is called the multi-referent ambiguity due to the
fact that many persons (i.e. referents) may have the same name.
The other is called the multi-morphic ambiguity due to the fact
that one name may have different written forms.

Multi-referent ambiguity is very common. For example, given
a person query “David Lee”, there are more than ten referents in
the top-100 pages retrieved by MSN. Some examples are shown
below:

1. David (L.) Lee – lawyer
2. David (A.) Lee – surgeon
3. David (H.) Lee – professor
4. David Lee – coach

To investigate how severe the multi-referent ambiguity is in re-
ality, we selected the 200 most-frequent person queries from the
log of MSN. We issued these queries to MSN, and manually
counted for each query the number of different referents that oc-
cur in top-100 retrieved pages. The statistics are shown in Figure
1. We see that 68% of person queries retrieve two or more refer-
ents, and about 20% retrieve more than ten referents. The worst
case is the query “Michael”, which retrieves 48 referents.

Figure 1: Distribution of the numbers of referents, estimated
from the retrieved results of 200 person queries using MSN.

* This work was done while the authors were visiting Microsoft
Research Asia.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.

CIKM’05, October 31-November 4, 2005, Bremen, Germany.

Copyright 2005 ACM 1-59593-140-6/05/0010...$5.00.

Multi-morphic ambiguity is also common because the same
person usually goes by different names in different contexts such

as “Susan Dumais” and “Susan T. Dumais”. This would also an-
noy users when they browse search results.

Unfortunately, the issues in person search mentioned above
have not been dealt with successfully in most of the existing
search engines. They treat person queries the same as other ge-
neric queries, and simply present the retrieval results as a mixed
list of non-person (or junk) pages and person pages with different
referents. Thus, users have to browse those pages one at a time to
find the expected person, making person search a painful experi-
ence. Usually, veteran users can get refined results by adding
appropriate contextual words (e.g. title, organization, etc.) into the
query and elaborating the query expression. However, most users
are not experienced search experts and the inappropriate contex-
tual words and query expression will ever deteriorate the results
e.g., lose relevant web pages and introduce irrelevant web pages.

 Recently, some meta-search engines have been developed to
handle ambiguities in search results. Some representative exam-
ples include Vivisimo (www.vivisimo.com), Dogpile
(www.dogpile.com) and iBoogie (www.iBoogie.com). However,
they focus on general information organization, and can only
partially resolve the two kinds of ambiguities in person search.

In this paper we present a person resolution system, called
WebHawk. Given a list of pages obtained by submitting a person
query to a search engine (i.e. MSN in this study), WebHawk fa-
cilitates person search by re-organizing the search results in three
steps: First of all, a filter removes junk pages that contain no per-
son information. Secondly, a cluster groups the remaining pages
into different clusters, each for one specific person (i.e. referent).
To make the resulting clusters more meaningful in the context of
person search, an extractor has been developed for inducing
query-oriented personal information from each page. Finally, a
namer generates an informative description (which consists of a
name and a set of key words) for each cluster so that users can
easily determine the specific person to which each cluster refers.
Note that the system is currently focusing on English name reso-
lution.

Figure 2: Referent list for the query “David Lee” in

WebHawk.

Consider the example of “David Lee” aforementioned. The re-
sult of WebHawk, generated from the top-100 retrieved pages, is
shown in Figure 2. We see that there are 11 junk pages being
removed. For the remaining 89 pages, WebHawk groups them
into a list of clusters, each for one referent. The clusters are
ranked by the number of pages contained. The cluster named
“Other topics” is a collection of single-page clusters. Each cluster
is described by its name (i.e. person name like “David Lee Mur-
phy”) and a set of keywords that can best distinguish the referent
from all of the others (e.g. David Lee Murphy is an “Artist”).

Now, users can easily find the referent of each cluster (e.g. the
professor named “David M. Lee” in Figure 2) without browsing
pages.

In the rest of this paper, we first review related work in Section
2. Section 3 describes the corpora we used in our study. In Sec-
tions 4 to 7, we describe each of the four components (i.e., filter,
cluster, extractor and namer) in detail, presenting a separate
evaluation of each component where appropriate. In Section 8, we
present a pilot user study, where WebHawk is compared with
another state-of-the-art system. Results show that WebHawk
complements most existing search engines and successfully im-
proves users’ experience of person search on the Web. Finally, we
conclude the paper in section 9.

2. RELATED WORK
Mann and Yarowsky [11] employ a bottom-up centroid ag-

glomerative clustering algorithm to generate person clusters based
on extracted biographic features. However, the algorithm can only
handle a small number of clusters, and has only been tested on
some artificial test data. So it is questionable how well the method
generalizes to real world problems.

Al-Kamha and Embley [1] also use an approach that clusters
search results. But they use a different feature set, including at-
tributes, links and page similarity. Then, a so-called relatedness
confidence matrix is constructed for each page-pair using a prob-
abilistic model. Clustering is performed by merging pairs whose
matching confidence value is larger than a preset threshold.

Guha and Garg [6] follow a different scenario. Instead of the
clustering algorithm, they use a re-ranking algorithm to disam-
biguate people. The algorithm requires a user to select one of the
returned web pages as a start point. Then, through comparing the
person descriptions, the algorithm re-ranks the entire search re-
sults in such a way that pages referring to the same person de-
scribed in the user-selected page are ranked higher. In this sce-
nario, a user needs to browse the documents in order to find one
which matches the user’s intended referent, which is inconvenient
to the user.

Bekkerman and McCallum [3] present two unsupervised
frameworks for finding those web pages referring to a particular
person: one based on link structure and another using Agglomera-
tive/Conglomerative Double Clustering (A/CDC). But their sce-
nario focuses on simultaneously disambiguating an existing social
network of people, or lists of people who are known to be some-
what connected, which is not the case for person search in reality.

On the one hand, WebHawk can be viewed as an extension of
the above approaches. For example, WebHawk also uses a clus-
tering algorithm to group pages based on extracted personal in-
formation, referred to as biographic features in [1, 6, 12]. On the
other hand, WebHawk differs from the above work in that it has
been designed as a pragmatic system where we take into account
more pragmatic factors, among which three of the most important
ones are as follows. First, we remove junk pages by a filter. This
problem is not discussed thoroughly in previous works, but we
think that it is very critical for any pragmatic person search sys-
tem that is based on re-organizing search results of general search
engines. Second, we perform an in-depth study of user-interface
issues, such as how to provide an informative title/description for
each cluster. Finally, WebHawk is tested on real data, and evalu-
ated by real users, in comparison with other search systems.

In practice, some commercial systems, such as Zoominfo
(www.zoominfo.com), have been developed to find people infor-

mation. But these systems have high cost and low scalability be-
cause the person information in the systems is collected mainly by
human labors.

In addition, our work is generally related to a number of other
researches, e.g. object identification in [14, 16], citation matching
in [12], and name matching in [7]. Search result clustering has
been discussed in [4, 19, 20]. Person name resolution can also be
formulated as a general co-reference resolution problem discussed
in [8]. In particular, Wacholder et al. [18] describe how to resolve
person names within one document. It has also been extended to
the multi-document case in [2, 5, 13, 15].

3. DATA SET
We have selected the 200 most-frequent person queries from

the log of MSN. For each page, we collected the top 100 web
pages that are retrieved successfully by MSN.

Those pages have been manually annotated as follows. All junk
pages (as defined in Section 4) have been labeled. We also as-
sumed that one page refers to one referent, and removed all pages
that refer to two or more referents. As a result, 2% of pages have
been removed. All remaining person pages have been grouped
into different clusters, each for one referent. For each person page,
we have manually extracted a set of personal information features,
including full person name, title, organization, email address, and
phone number. The distribution of the numbers of referents for
the 200 person queries is shown in Figure 1. The average number
is 6.88.

We have separated the person queries into two data sets: 160
queries as the training set and the remaining 40 queries as the test
set. The following evaluations are based on these two data sets,
unless stated otherwise.

4. FILTER: REMOVING JUNK PAGES
4.1 Method

A junk page, in the context of person search, refers to a re-
trieved web page, with respect to a person query, where no occur-
rence of the person query in the page occurs as a (part of) person
name.

Junk pages are retrieved because person names may refer to
non-person entities such as products (e.g. Abercrombie,
Bloomberg), companies (e.g. Ford, Disney), places (e.g. Ed-
munds), and nature/law systems (e.g. Claudette, White, Aarne).
According to our study, junk pages amount to 35% in the top-100
retrieved pages, with respect to a person query. Therefore, junk
page filtering is not only a critical initial step for subsequent
processes such as clustering, but also prevents users from being
detracted. Unfortunately, this problem has not been studied thor-
oughly in a systematic manner previously.

In WebHawk, a component called filter has been developed
for this purpose, where junk page filtering is formulated as a bi-
nary classification problem. In our implementation, the filter em-
ploys a particular SVM classifier, SVMlight [9]. In the next subsec-
tion, we will discuss the features used in the classifier.

4.2 Evaluation
We evaluate the performance of the filter using the data set de-

scribed in Section 3. In particular, we denote manually labeled
junk pages as positive examples and other pages as negative ex-
amples. The evaluation metrics are standard precision (p), recall
(r) and F1=2pr/(p+r). We explore the effectiveness of different
feature sets in the filter. These feature sets are

1. Simple lexical features: These features include title words,
meta words1, and body text words. We use frequency as their
real-valued weight.

2. Stylistic lexical features: These features include words in
bold font, words in anchor text, and words in heading text.
We use frequency as their real-valued weight.

3. Query-relevant lexical features: These features include
words adjacent to any of the query terms (i.e. previous word
and next word). We use frequency as their real-valued
weight.

4. Linguistic features: These features include three real-
valued numbers, which are the counts of person names, or-
ganizations, and locations extracted by an in-house named
entity recognition (NER) tool.

5. Query-relevant possessive feature: This feature refers to
the frequency of those occurrences of “’s” after query terms,
e.g., “Bill’s”.

6. Query-relevant abbreviation feature: This feature refers to
the number of those cases where a token of the form “X” or
“X.” appears before or next to any of the query terms. Here,
X refers to any capital letter from “A” to “Z”.

In our experiments, only the simple lexical features are used in
the baseline system. Table 1 shows the results, where “w/o”
means that we use all features except the specified features. We
can observe from that both the lexical features (1-3) and the lin-
guistic features (4) have a substantial positive impact on the per-
formance while the query-relevant features (5 and 6) bring only
marginal improvements. To further improve the performance of
the filter, we will also employ new features such as link informa-
tion and annotate more data for training.

Table 1: Results of junk page filtering

Feature Set P R F1

Baseline (w/ 1) 0.740 0.751 0.745
All features 0.803 0.774 0.788
w/o 1 0.712 0.738 0.725
w/o 2 0.751 0.802 0.776
w/o 3 0.778 0.773 0.776
w/o 4 0.746 0.775 0.760
w/o 5 0.783 0.777 0.780
w/o 6 0.785 0.775 0.780

5. EXTRACTOR: INDUCING PERSONAL
INFORMATION

5.1 Method
Personal information includes person name, title, organization,

email address and phone number. Intuitively, a combination of the
above five biographical features can almost uniquely characterize
a specific referent, and thus contribute most to the subsequent
processes in WebHawk, such as clustering and naming.

1 Meta words denote the words in the description metadata and

keywords metadata in a web page, e.g. the italic words in the
following html source: <meta name="description" content="car
company…"> <meta name="keywords" content="car…">

Extracting personal information is similar to the problem of
named entity recognition (NER), which is a long-standing re-
search topic in natural language processing (NLP). However, it is
challenging to extend traditional NER techniques to our case for
two reasons. First, our task is query-oriented. That is, we only
extract biographical attributes of a specific referent in a page,
with respect to a person query. The second reason is that web
data is very noisy, so traditional NLP techniques may not be ro-
bust enough. Our method uses a hybrid approach based on two
techniques: pattern matching and mutual reinforcement learning.

Now, we discuss in detail how to extract each of the five bio-
graphical features.

We assume that terms in a person query form (partially) the
person name and are key clues for person name extraction. Full
English person names are usually composed of three fields: first
name, middle name and last name, e.g. “Michael Jeffrey Jordan”.
Person names with two words or one word also appear frequently
in documents, e.g. “Michael Jordan” and “Jordan”. We prefer
person names with more words because those names are more like
full names and have a better distinguishing capability.

We can simply extract the full names from web pages given
person queries with three words, but the difficult case lies in the
person queries composed of only one or two words (e.g. “David”
and ”“David Lee”). We employ the technique of mutual rein-
forcement learning. Person names are extracted from a web page
in the following three steps.

(1) To extract candidate person names from web text. Candi-
date names are those substrings that are composed of capitalized
words and contain the query terms. These candidate person names
may include incorrect names (e.g. “David Lee Homepage”) and
names of different persons (e.g. “David H. Lee”, “David M. Lee”
and “David Lee Arnold”).

(2) To assign each candidate person name a saliency score. The
score is a linear combination of heuristic score (see Table 2) and
normalized frequency, with equal weights. The higher the score,
the better the candidate name is.

Table 2: Heuristic scores for candidate person names
Query Cap Words Score

A B C

[David Murphy Lee]
X Y Z (XYZ=ABC) [David Murphy Lee] 0.4

X Y Z (X=A, Z=B) [David Murphy Lee] 0.3

X Y Z (XY=AB or YZ=AB)

[David Lee Arnold, David Lee Homepage]
0.1

A B

[David Lee]

 X Y (XY=AB) [David Lee] 0.2

X Y Z (Y = M.) [David M. Lee] 0.3

X Y Z

[David Murphy Lee, David Lee Arnold]
0.1

X Y [David Lee, David Homepage] 0.1

A

 [David]

 X [David] 0.0

3) To adjust the scores of candidate names and choose the one
with the highest score. We employ mutual reinforcement learning
to simultaneously compute the scores of the bi-names (person
name with two words) and the tri-names (person name with three
words). The scores of uni-names (person name with one word) are

not changed in this step. The technique of mutual reinforcement
learning is based on the following assumption.

A bi-name should have a high saliency score if it appears in
many tri-names with high saliency scores and if its two terms are
boundaries of a tri-name with high saliency scores. Conversely, a
tri-name should have a high saliency score if it contains many bi-
names with high saliency scores and if its boundary words are just
the two terms of a bi-name with high saliency score.

For each web page, we generate two sets of candidate names:
the set of bi-names B={b1,…,bn} and the set of tri-names
T={t1,…,tm}. We build a weighted bipartite graph from B and T as
follows: we create an edge between bi and tj and specify nonnega-
tive weights wij on the edge indicating the relation between them
(wij=0.1 if bi appears in tj and wij=0.5 if terms in bi are boundaries
of tj). We denote the weighted bipartite graph by G(B,T,W) where
W=[wij] is the m-by-n weight matrix containing all the pairwise
edge weights. For each bi-name bi and each tri-name tj we wish to
compute their saliency scores u(bi) and v(tj), respectively. So the
above principle is rendered as

∑∑ ∝∝
i iijjj jiji buwtvtvwbu)()(,)()(

We collect the saliency scores for bi-names and tri-names into
two vectors u and v, respectively. The above equation can then be
written in the following matrix format

uWvWvu T

σσ
1,1

==

where
σ
1 is the proportionality constant.

We alternate computing and normalizing scores of bi-names
and tri-names according to the above equation until convergence.
At last we choose the person name with the highest saliency score.

Different from person name extraction, title, organization,
email address and phone number are extracted using pattern
matching. We manually author a set of extraction patterns for
email address and phone number due to their simplicity. As for
title and organization, we employ a simple learning method to
collect extraction patterns. First, we select sentences in the anno-
tated training corpus and tokenize them, smooth variations, and
then subject them to simple generalization to constitute candidate
patterns. For example, in this sentence “David Lee is a painter”,
“painter” is annotated as a title, so we replace “David Lee” by
“<person>” and generate a candidate pattern like “<person> is a
<title>”. Then, all these patterns are applied to the same training
corpus to evaluate their accuracies. Those patterns with high ac-
curacy are adopted to extract title and organization. The numbers
of patterns for title, organization, email address and phone num-
ber are 13, 11, 5 and 4, respectively.

Some patterns can handle most cases except a few peculiar in-
stances, e.g. “webmaster@x..x” is not an appropriate email ad-
dress though it conforms to the pattern of “x..x@x..x”. Here, x
represents any character. These negative examples are manually
induced to form total 25 patterns, named anti-patterns, and we use
these patterns to avoid similar extraction errors.

With these patterns, we might extract more than one title or or-
ganization for a web page in that various patterns could be applied
appropriately. Then we use anti-patterns to filter the inappropriate
instances. In order to improve the accuracy of title extraction, we
have built a person title gazetteer beforehand, and those extracted
titles not in this gazetteer will be excluded. Lastly we rank the
remaining instances by frequency and select the best ones.

5.2 Evaluation
In our experiments, standard precision (p), recall (r) and

F1=2pr/(p+r) are used as evaluation metrics. The baseline method
of extracting personal information is to select the most frequent
one from the corresponding set of candidate entities. The candi-
date sets for different types of personal information are produced
as follows, respectively:

 Person name candidates are those names which are ex-
tracted by the in-house NER tool and contain query terms;

 Organization candidates are all organizations extracted by
the in-house NER tool;

 Title candidates are those terms co-occur both in the web
page and in the person title gazetteer;

 Email address candidates are those substrings containing
character “@”;

 Phone number candidates are those substrings containing
only numbers and hyphen and having at least 6 characters.

Table 3 compares the performance of the baseline methods
with our methods. In the first column, # denotes the number of
names (or titles, etc.) in the test set. For name extraction, “w/o
step 3” means that we only apply the first two steps to assign
saliency scores to candidate names, and “w/ step3” means that
mutual reinforcement learning is employed to adjust those scores.
We can see that the learning step improves the performance of
name extraction.

Table 3: Results of Personal Information Extraction
category P R F1

baseline 85.8% 58.8% 0.698

w/o step 3 91.0% 90.0% 0.905

Name

(# =133)

w/ step 3 93.0% 92.3% 0.926

baseline 30.7% 30.7% 0.307Title

(# =127) WebHawk 62.5% 55.1% 0.586

baseline 5.6% 9.5% 0.070Organization

(# = 88) WebHawk 22.1% 33.0% 0.265

baseline 50.4% 66.7% 0.574Email Address

(# =27) WebHawk 92.3% 88.9% 0.906

baseline 12.0% 25.0% 0.162Phone Number

(# =48) WebHawk 84.3% 89.6% 0.869

As shown in Table 3, our approaches significantly outperform

the baseline methods. In our pilot study, we have found that
though the in-house NER tool achieves a good performance on
the WSJ corpus, it performs much worse on web pages due to the
complexity and irregularity of web pages. For example, a web
page has a person name “Ashton Kutcher” in heading text, but
there are no contextual words surrounding it and the terms in this
name do not exist in the name list of the NER tool. So, the NER
tool cannot recognize it as a person name. While in our approach,
the query “Ashton Kutcher” is a good contextual clue for distin-
guishing this person name. Overall, the performance of the pattern
matching approach to extraction of title, email address and phone
number benefits from the use of query terms as contextual clues
and the use of anti-patterns for filtering noisy answers. However,
organization extraction is still a difficult task because it is hard to
determine the boundary of organization.

6. CLUSTER: RESOLVING REFERENTS
6.1 Method

Cluster is used to group person pages into different clusters,
each for one specific person. We use the agglomerative clustering
algorithm to produce clusters in a bottom-up way as follows:

Initially, each web page is an individual cluster; then we itera-
tively merge two clusters with the largest similarity value to form
a new cluster until this similarity value is below a pre-set merging
threshold. The merging threshold can be determined through
cross-validation. We employ the widely used average-link method
to compute the similarity between two clusters as follows:

nm

ppsim
ccsim

m

i

n

j
ji

×
=
∑ ∑
= =1 1

21

),(
),(

where pi, pj are web pages in cluster c1 and cluster c2, and m is the
number of web pages in cluster c1 and n is the number of web
pages in cluster c2.

The principal problem of using the clustering algorithm de-
scribed above is how to measure the similarity between two web
pages pi and pj. Different types of features extracted from web
pages are explored in the experiments, including lexical features,
linguistic features and personal information (i.e. PersonInfo) ex-
tracted as described in Section 5. The lexical features include title
words, meta words and text words (We consider both unigrams
and bigrams). The linguistic features include baseNP (base Noun
Phrase) and NE (Named Entity, including person, organization
and location), which are produced by the in-house NER and
baseNP recognizer. Here, the NE features refer to all named enti-
ties extracted from the web page by the tool, no matter whether
they are correct or who they are related to. The baseNP features
refer to all baseNPs extracted from the web page.

For each type of features, we generate a feature vector for a
web page and the weight of a feature unit is its frequency. Take
NE features as an example. The vector is composed of all named
entities in a web page. Having generated those feature vectors for
two web pages, we use the cosine measure to calculate similarity
value between each pair of the same typed feature vectors. We
then linearly combine such similarity values to get the final simi-
larity value. The weights for different types of features are hard to
be estimated empirically, so we use the perceptron algorithm with
uneven margins (PAUM) [10] to estimate them. The PAUM is an
extension of the perceptron algorithm specially designed to cope
with two class problems where positive examples are rare com-
pared to negative ones, which is suitable for the clustering context.

6.2 Evaluation
6.2.1 Metrics

In the test set, each query corresponds to several non-
overlapping clusters annotated by hand. For simplicity, the manu-
ally annotated clusters are called classes and the automatically
generated clusters are called clusters. Our evaluation involves two
steps: First, we evaluate the performance for each query. Second,
we average the results over the 40 queries in test set.

For each cluster of one query, we calculate the recall and preci-
sion of that cluster for each given class. More specifically, for
cluster j and class i

Recall(i,j) = nij/ni, Precision(i,j) = nij/nj
where nij is the number of common members in class i and cluster
j, nj is the number of members of cluster j and ni is the number of
members of class i.

The F measure of cluster j and class i is then calculated by
F(i,j) = (2*Precision(i,j)*Recall(i,j))/(Precision(i,j)+Recall(i,j))

For an entire clustering for the query, the F measure of any
class is the maximum value it attains at any cluster and an overall
value for the F measure is computed by taking the weighted aver-
age of all values for the F measure as follows.

{ }∑=
i

i jiF
n
n

F),(max

where the max is taken over all clusters and n is the number of all
web pages for the query.

After we get the performance values of all 40 queries, we aver-
age the values to produce the overall performance value.

6.2.2 Results
In the experiments, we compare the performance of the clusters

using different types of features and explore the influence of the
filter on the performance. The comparison results are shown in
Figure 3. In the figure, “all data” refers to all retrieved web pages
including junk pages, “clean data” refers only to person pages and
“auto-cleaned data” refers to the remaining web pages after apply-
ing filtering, which may include both person pages and junk pages.

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

clean data auto-cleaned
data

all data

W
ei
g
ht
e
d
A
ve
r
ag
e

F

Lexical
Lexical+Linguistic
Lexical+Linguistic+PersonInfo

Figure 3: Performance comparison for different feature sets

over different data sets.
 From Figure 3 we can see that linguistic features slightly im-
prove the performance, while automatically extracted personal
information contributes substantially to the performance over all
kinds of data. With linguistic features and personal information,
the performance on clean data is 7% higher than that with only
lexical features. The results validate the intuition that personal
information can almost uniquely characterize a specific referent.

We can observe that given the same feature set, the gap be-
tween the performance on clean data and the performance on all
data is large. It demonstrates that junk pages deteriorate signifi-
cantly the performance and junk page filtering is necessary for
person resolution. The filter that we have developed, though by
no means perfect, can already improve the visible performance
across all types of features.

7. NAMER: GENERATING DESCRIPTION
Namer is used to generate for each cluster an informative de-

scription so that users can find any specific person easily.
Here we propose a method to name the cluster concisely and

informatively. We define a name template which consists of two
parts: full person name and informative term. The informative

term is content-focused and contains information unique to a par-
ticular referent. Title is used as a preferential informative term.
The filling of this template consists of two steps: candidate gen-
eration and ranking.

1) In the candidate generation process, we collect those names
and titles, which have been extracted from web pages, as the can-
didates.

2) In the ranking process, we rank the candidate names and ti-
tles by their frequencies in the cluster and then fill the template
with the most frequent ones. Note that the extractor may not ex-
tract any title from the web pages in some clusters. In such a case,
as backoff, we use the most salient word or phrase in the cluster
as the informative term. For example, for “David Lee Murphy”,
we use the title “Artist” as the informative term, but for “David
Lee Smith”, we use the phrase “Fan Sites” as the backoff informa-
tive term. The most salient term is the highest weighted term in
the set of uni-grams and bi-grams extracted from those web pages,
after excluding stop words and all bi-grams containing stop words.
We assign the weight of a uni-gram as its frequency and the
weight of a bi-gram as the double of its frequency.

The name for a cluster is very concise. Users may want to take
a look in more detail at the cluster. So we provide a short sum-
mary as a supplement. The summary is produced based on a sim-
ple sentence extraction method. The details are skipped due to the
page limit. The summary is located in the top of the right frame of
the user interface of WebHawk as shown in Figure 4.

8. USER STUDY
In order to assess how easily and effectively to use WebHawk

for person search on the web, we perform a pilot user study. We
compare WebHawk with traditional MSN and the award-winning
Vivisimo. MSN returns a ranked list of search results while both
Vivisimo and WebHawk show clusters in the left pane and a
ranked list of documents in the right pane (as shown in Figures 4-
5). Because Vivisimo can combine various results returned by a
variety of search engines, in order to evaluate the three systems
on the same data source, we select MSN as the underlying search
engine for Vivisimo in the user study. Note that previous work in
[1, 3, 6, 11] does not provide available pragmatic systems for
person search, the comparison between WebHawk and those
works through user study is impossible. The WebHawk’s system
implementation details, which are important for real-time person
search, are omitted due to the space limit.

Figure 4: The user interface of WebHawk.

Figure 5: The user interface of Vivisimo.

Prior to the user study, a list of 12 tasks was developed. Each of
them was to find a specific piece of information about a specific
person. Each task had only one correct answer. The person que-
ries were selected from MSN’s logs and the specific information
need for each person query was designed. It was guaranteed that
the correct answer could be found from the top 100 web pages
returned by MSN. For example, one of the tasks was to find the
name of the college where a person named “Michael Williams”,
the vice president of Viral Products, got his B.S. degree, and the
correct answer was Lynchburg College.

The usability study metrics were as follows:
1) Effectiveness metric - accuracy: This was the percentage of

tasks successfully completed by a system. A task could be com-
pleted successfully, completed unsuccessfully or aborted. All
these occurrences were recorded. A successfully completed task
was the one where a user completed the task and obtained the
correct answer. An unsuccessfully completed task was the one
where a user completed the task but obtained the incorrect answer.
An aborted task was the one that a user quit while performing the
task.

2) Efficiency metric - completion time: This was the time taken
for a user to complete a task using the system.

3) Subjective acceptance: This relates a user’s subjective satis-
factory level by asking the user to fill out pre-designed question-
naires.

36 students from different departments were employed as sub-
jects for performing person searches and filling out questionnaires.
A Graeco-Latin Square was used to establish task order for each
participant and to confound task order effects. According to the
task order, each subject carried out all 12 searches, four on MSN,
four on Vivisimo and four on WebHawk. Note that besides the
provided person name query, subjects were allowed to design and
use any other queries they wished on MSN or Vivisimo during a
search task. Each search task had to be finished in 10 minutes2;
otherwise the task was considered to be aborted. If the user al-
ready knew the answer, she or he still had to perform the search
and find it. The start time and the end time of each task were re-

2 The time limit of 10 minutes is defined in the TREC 2002 Inter-

active Track Guidelines
(http://trec.nist.gov/data/t11_interactive/guidelines.html).

corded to measure the completion time if the task was not aborted.
The obtained answer for each task was saved and then compared
with the correct answer. The averaged completion time and the
accuracy were obtained for each participant and then the values
were averaged across all the participants, as shown in Table 4.

As a complement to the objective measures, an exit-system
questionnaire was designed to gauge a user’s overall acceptance
of a system after the user performed four tasks on it. The ques-
tionnaire asked subjects to assess each system in the following
four aspects:

 Ease of use: How easy the system was to use?
 Informativeness: Were the cluster descriptions pro-

duced by the system (i.e. Vivisimo or WebHawk) infor-
mative enough to help the search?

 Satisfaction: Were you satisfied with your search ex-
perience with the system?

 Preference: Did you prefer to use the system when you
searched specific information about a person?

Subjects were required to express an opinion over a 5-point
scale for each of the above questions, where 1 stood for “not at
all”, 3 for “somewhat” and 5 for “extremely”. We collected the
responses of subjects and averaged them, as shown in Table 5.

Table 4 shows that completion time for WebHawk was the
lowest and the accuracy for WebHawk was a little higher than
other systems. As can be seen in Table 5, both Vivisimo and
WebHawk were a little more difficult to use than traditional MSN
in that the two-pane-based user interface was more complex than
the simple ranked list. WebHawk produced an informative per-
son description for each cluster and these descriptions helped the
person search. Lastly, users were more satisfied with WebHawk
and preferred to use WebHawk for person search.

This user study showed that WebHawk was efficient and ef-
fective and could improve users’ search experience for person
search, which could be attributed to its good performance for
person resolution and its ability to provide an informative inter-
face.

Table 4: Averaged completion time and accuracy

 MSN Vivisimo WebHawk
Accuracy 78.2% 79.5% 82.0%
Complete time (Sec) 203.5 185.6 144.4

Table 5: Subject’s responses per system to exit-system

questionnaires averaged across query and subject on a scale of
1 (worst) to 5 (best)

 MSN Vivisimo WebHawk
Ease of use 4.3 3.4 3.3
Informativeness – 2.9 3.8
Satisfaction 3.2 3.6 4.1
Preference 3.5 3.7 4.1

9. CONCLUSIONS AND FUTURE WORK
We have presented an effective system for person resolution in

person search results, called WebHawk. It is composed of four
components: filter, extractor, cluster and namer. The experi-
ments and results have shown the performance of each component
and demonstrated that personal information extracted by the ex-
tractor improves the performance substantially and the filter does
benefit the system by removing noisy data. It is verified through a

user study that users’ person search experience is indeed im-
proved by WebHawk. Either by simply providing a search option
on the search interface indicting whether the search is a person
search or a general search, or by providing an automatic person
query identification mechanism, general search engines can inte-
grate with WebHawk easily and issue person queries to the per-
son search engine-WebHawk.

We have attempted a new method where we categorized person
pages into more elaborate sub-categories (e.g. newswire, citation
list, short bios, etc.), clustered web pages within each category,
and combined these clusters. The intuition underlying this method
is that each kind of web pages has their own characteristics and
has better be clustered using their own distinguishing features.
This method however did not improve the performance as we
expected in our pilot experiments.

We will explore new clustering scenarios in our future work.
New features, e.g. link information, will also be explored for dif-
ferent components in WebHawk. At present, WebHawk focuses
only on English person names and we will adapt the system to
other languages in the near future.

10. ACKNOWLEDGMENTS
We thank Tom Huang, Chuan Lin and John Chen for their ear-

lier work and are grateful to Jian-Yun Nie and the anonymous
reviewers for their helpful suggestions. We also thank Mary D.
Taffet for her kindly help to provide her dissertation proposal and
other valuable references. Lastly, we thank those part-time stu-
dents for data annotation and user study.

11. REFERENCES
[1] R. Al-Kamha and D. W. Embley. Grouping search-engine

returned citations for person-name queries. In Proceedings of
WIDM’04, Washington, DC, USA, pp. 96-103, 2004.

[2] A. Bagga and B. Baldwin. Entity-based cross-document co-
referencing using the vector space model. In Proceedings of
COLING-ACL’98, pp. 79–85, 1998.

[3] R. Bekkerman and A. McCallum. Disambiguating web ap-
pearances of people in a social network. In Proceedings of
WWW’05, pp. 463-470, 2005.

[4] D. Cutting, D. Karger, J. Pedersen and J. W. Tukey. Scat-
ter/Gather: a cluster-based approach to browsing large docu-
ment collections. In Proceedings of SIGIR’92, Copenhagen,
1992.

[5] M. B. Fleischman and E. Hovy. Multi-document person
name resolution. In Proceedings of the Workshop on Refer-

ence Resolution and its Applications: ACL’04, Barcelona,
2004.

[6] R. Guha and A. Garg. Disambiguating people in search.
Stanford University, 2004.

[7] H. Han, L. Giles, H. Y. Zha, et al. Two supervised learning
approaches for name disambiguation in author citations. In
Proceedings of JCDL’ 04, Tucson, Arizona, USA, pp. 296-
305, 2004.

[8] J. R. Hobbs. Resolving pronoun references. Readings in
Natural Language Processing, Los Altos, CA: Morgan
Kaufmann Publishers, pp. 339-352, 1978.

[9] T. Joachims. Making large-scale svm learning practical. In
Advances in Kernel Methods – Support Vector Learning.
MIT-Press, 1999.

[10] Y. Y. Li, H. Zaragoza, R. Herbrich, et al. The perceptron
algorithm with uneven margins. In Proceedings of ICML’02,
2002.

[11] G. S. Mann and D. Yarowsky. Unsupervised personal name
disambiguation, In Proc. of CoNLL’03, Edmonton, Canada,
2003.

[12] A. McCallum, K. Nigam, and L. H. Ungar. Efficient cluster-
ing of high-dimensional data sets with application to refer-
ence matching. In Knowledge Discovery and Data Mining,
pp. 169–178, 2000.

[13] C. Niu, W. Li and R. K. Srihari. Weakly supervised learning
for cross-document person name disambiguation supported
by information extraction. In Proceedings of ACL’2004.

[14] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser.
Identity uncertainty and citation matching. In Advances in
Neural Information Processing Systems 15, MIT Press, 2003.

[15] Y. Ravin and Z. Kazi. Is Hillary Rodham Clinton the Presi-
dent? Disambiguating names across documents. Proceed-
ings of the ACL '99 Workshop on Coreference and its Appli-
cations, pp. 9-16, 1999.

[16] S. Russell. Identity uncertainty. In Proceedings of IFSA’01,
Vancouver, 2001.

[17] M. D. Taffet. Person resolution: resolving multireferent and
multimorphic person names within and across full text
documents. Dissertation Proposal, Syracuse University,
2004.

[18] N. Wacholder, Y. Ravin, and M. Choi. Disambiguation of
proper names in text. In Proceedings of ANLP’1997.

[19] O. Zamir and O. Etzioni. Web document clustering: a feasi-
bility demonstration, In Proceedings of SIGIR’1998.

[20] H. J. Zeng, Q. C. He, Z. Chen, W. Y. Ma and J. W. Ma.
Learning to cluster web search result. In Proceedings of
SIGIR’04, Sheffield, UK, 2004.

