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1 Introduction

Research on how to efficiently access video content has become increasingly active in the past few
years [1, 2, 3, 4]. Considerable progress has been made in video analysis, representation, browsing,
and retrieval, which are the four fundamental bases for accessing video content. Video analysis deals
with the signal processing part of the video system, including shot boundary detection, key frame
extraction, etc. Video representation is concerned with the structure of the video. An example of
a video representation is the tree structured key frame hierarchy [5, 3]. Built on top of the video
representation, video browsing deals with how to use the representation structure to help viewers
browse the video content. Finally, video retrieval is concerned with retrieving interesting video
objects. The relationship between these four research areas is illustrated in Figure 1.
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Figure 1: Relations between the four research areas

So far, most of the research effort has gone into video analysis. Although it is the basis for
all the other research activities, it is not the ultimate goal. Relatively less research exists on video
representation, browsing and retrieval. As seen in Figure 1, video browsing and retrieval are on the
very top of the diagram. They directly support users’ access to the video content. For accessing
a temporal medium, such as a video clip, browsing and retrieval are equally important. Browsing
helps a user to quickly grasp the global picture of the data, while retrieval helps a user to find a

1



specific query’s results.

An analogy explains this argument. How does a reader efficiently access a 1000-page book’s
content? Without reading the whole book, he can first go to the book’s Table-of-Contents (ToC),
finding which chapters or sections suit his needs. If he has specific questions (queries) in mind,
such as finding a term or a key word, he can go to the Index page and find the corresponding book
sections containing that question. In short, the book’s ToC helps a reader browse, and the book’s
index helps a reader retrieve. Both aspects are equally important in helping users access the book’s
content. For today’s video data, unfortunately, we lack both the ToC and the Index. Techniques
are urgently needed for automatically (or semi-automatically) constructing video ToCs and video
Indexes to facilitate browsing and retrieval.

A great degree of power and flexibility can be achieved by simultaneously designing the video
access components (ToC and Index) using a unified framework. For a long and continuous stream
of data, such as video, a “back and forth” mechanism between browsing and retrieval is crucial.

The goals of this chapter are to develop novel techniques for constructing both the video ToC
and video Index as well as how to integrate them into a unified framework. The rest of the chapter
is organized as follows. In section 2, important video terminologies are first introduced. We review
video analysis, representation, browsing, and retrieval in sections 2 to 5, respectively. In Section
6 we describe in detail a unified framework for video browsing and retrieval. Algorithms as well
as experimental results on real-world video clips are presented. Conclusions and future research
directions are summarized in section 7.

2 Terminologies

Before we go into the details of the discussion, it will be beneficial to first introduce some important
terminologies used in the digital video research field.

o Video shot: is a consecutive sequence of frames recorded from a single camera. It is the
building block of video streams.

e Key frame: is the frame which represents the salient visual content of a shot. Depending on
the complexity of the content of the shot, one or more key frames can be extracted.

e Video scene: is defined as a collection of semantically related and temporally adjacent shots,
depicting and conveying a high-level concept or story. While shots are marked by physical

boundaries, scenes are marked by semantic boundaries .

o Video group: is an intermediate entity between the physical shots and semantic scenes and
serves as the bridge between the two. Examples of groups are temporally adjacent shots [5]
or visually similar shots [3].

In summary, the video data can be structured into a hierarchy consisting of five levels: video, scene,
group, shot, and key frame, which increase in granularity from top to bottom [4] (see Figure 2).

!Some of the early literature in video parsing misused the phrase scene change detection for shot boundary detection.
To avoid any later confusion, we will use shot boundary detection to mean the detection of physical shot boundaries
while using scene boundary detection to mean the detection of semantic scene boundaries.
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Figure 2: A hierarchical video representation

3 Video Analysis

As can be seen from Figure 1, video analysis is the basis for later video processing. It includes shot
boundary detection and key frame extraction.

3.1 Shot boundary detection

It is not efficient (sometimes not even possible) to process a video clip as a whole. It is beneficial
to first decompose the video clip into shots and do signal processing at the shot level.

In general, automatic shot boundary detection techniques can be classified into five categories:
pizel-based, statistics-based, transform-based, feature-based, and histogram-based. Pixel-based ap-
proaches use pixel-wise intensity difference to mark shot boundaries [1, 6]. However, they are
highly sensitivity to noise. To overcome this problem, Kasturi and Jain propose to use intensity
statistics (mean and standard deviation) as shot boundary detection measures [7]. Seeking to
achieve faster processing, Arman, Hsu and Chiu propose to use the compressed DCT coefficients
(e.g., MPEG data) as the boundary measure [8]. Other transform-based shot boundary detec-
tion approaches make use of motion vectors, which are already embedded in the MPEG stream
[9, 10]. Zabih et al. address the problem from another angle. Edge features are first extracted
from each frame. Shot boundaries are then detected by finding sudden edge changes [11]. So
far, the histogram-based approach is the most popular. Instead of using pixel intensities directly,
the histogram-based approach uses histograms of the pixel intensities as the measure. Several re-
searchers claim that it achieves a good tradeoff between accuracy and speed [1]. Representatives
of this approach are [12, 13, 1, 14, 15]. More recent work has been based on clustering and post-



filtering [16], which achieves fairly high accuracy without producing many false positives. Two
comprehensive comparisons of shot boundary detection techniques are [17, 18].

3.2 Key frame extraction

After the shot boundaries are detected, corresponding key frames can then be extracted. Simple
approaches may just extract the first and last frames of each shot as the key frames [15]. More
sophisticated key frame extraction techniques are based on visual content complexity indicators
[19], shot activity indicators [20], and shot motion indicators [21].

4 Video Representation

Considering that each video frame is a 2D object and the temporal axis makes up the third dimen-
sion, a video stream spans a 3D space. Video representation is the mapping from the 3D space to the
2D view screen. Different mapping functions characterize different video representation techniques.

4.1 Sequential Key Frame Representation

After obtaining shots and key frames, an obvious and simple video representation is to sequentially
lay out the key frames of the video, from top to bottom and from left to right. This simple technique
works well when there are few key frames. When the video clip is long, this technique does not
scale, since it does not capture the embedded information within the video clip, except for time.

4.2 Group Based Representation

To obtain a more meaningful video representation when the video is long, related shots are merged
into groups [5, 3]. In [5], Zhang et al. divide the entire video stream into multiple video segments,
each of which contains an equal number of consecutive shots. Each segment is further divided
into sub-segments; thus constructing a tree structured video representation. In [3], Zhong et al.
proposed a cluster-based video hierarchy, in which the shots are clustered based on their visual
content. This method again constructs a tree structured video representation.

4.3 Scene Based Representation

To provide the user with better access to the video, the construction of a video representation at the
semantic level is needed [4, 2]. It is not uncommon for a modern movie to contain a few thousand
shots and key frames. This is evidenced in [22] — there are 300 shots in a 15-minute video segment
of the movie “Terminator 2 - Judgment Day” and the movie lasts 139 minutes. Because of the
large number of key frames, a simple 1D sequential presentation of key frames for the underlying
video (or even a tree structured layout at the group level) is almost meaningless. More importantly,
people watch the video by its semantic scenes rather than the physical shots or key frames. While
shot is the building block of a video, it is scene that conveys the semantic meaning of the video to



the viewers. The discontinuity of shots is overwhelmed by the continuity of a scene [2]. Video ToC
construction at the scene level is thus of fundamental importance to video browsing and retrieval.
In [2], a scene transition graph (STG) of video representation is proposed and constructed. The
video sequence is first segmented into shots. Shots are then clustered by using time-constrained
clustering. The STG is then constructed based on the time flow of the clusters.

4.4 Video Mosaic Representation

Instead of representing the video structure based on the video-scene-group-shot-frame hierarchy as
discussed above, this approach takes a different perspective [23]. The mixed information within a
shot is decomposed into three components:

e FExtended spatial information: this captures the appearance of the entire background imaged
in the shot, and is represented in the form of a few mosaic images.

e FExtended temporal information: this captures the motion of independently moving objects in
the form of their trajectories.

e Geometric information: this captures the geometric transformations that are induced by the
motion of the camera.

5 Video Browsing and Retrieval

These two functionalities are the ultimate goals of a video access system, and they are closely
related to (and built on top of) video representations. The first three representation techniques
discussed above are suitable for video browsing while the last can be used in video retrieval.

5.1 Video Browsing

For “Sequential Key Frame Representation”, browsing is obviously sequential browsing, scanning
from the top-left key frame to the bottom-right key frame.

For “Group Based Representation”, a hierarchical browsing is supported [5, 3]. At the coarse
level, only the main themes are displayed. Once the user determines which theme he is interested
in, he can then go to the finer level of the theme. This refinement process can go on until the leaf
level.

For the STG representation, a major characteristic is its indication of time flow embedded
within the representation. By following the time flow, the viewer can browse through the video
clip.

5.2 Video Retrieval

As discussed in Section 1, both the ToC and Index are equally important for accessing the video
content. Unlike the other video representations, the mosaic representation is especially suitable for



video retrieval. Three components: moving objects, backgrounds, and camera motions, are perfect
candidates for a video Index. After constructing such a video index, queries such as “find me a car
moving like this”, “find me a conference room having that environment”, etc. can be effectively
supported.

6 Proposed Framework

As we have reviewed in the previous sections, considerable progress has been made in each of the
areas of video analysis, representation, browsing, and retrieval. However, so far, the interaction
among these components is still limited and we still lack a unified framework to glue them together.
This is especially crucial for video, given that the video medium is characteristically long and
unstructured. In this section, we will explore the synergy between video browsing and retrieval.

6.1 Video Browsing

Among the many possible video representations, the “Scene Based Representation” is probably the
most effective for meaningful video browsing [4, 2]. We have proposed a scene-based video ToC
representation in [4]. In this representation, a video clip is structured into the scene-group-shot-
frame hierarchy (see Figure 2), which then serves as the basis for the ToC construction. This ToC
frees the viewer from doing tedious “fast forward” and “rewind”, and provides the viewer with
non-linear access to the video content. Figures 3 and 4 illustrate the browsing process, enabled
by the video ToC. Figure 3 shows a condensed ToC for a video clip, as we normally have in a
long book. By looking at the representative frames and text annotation, the viewer can determine
which particular portion of the video clip he is interested in. Then, the viewer can further expand
the ToC into more detailed levels, such as groups and shots. The expanded ToC is illustrated in
Figure 4. Clicking on the “Display” button will display the specific portion that is of interest to
the viewer, without viewing the entire video.

The algorithm is described below. To learn details, interested readers are referred to [24].

[Main procedure]

e Input: Video shot sequence, S = {shot 0, ..., shot i}.
e Output: Video structure in terms of scene, group, and shot.
e Procedure:

1. Initialization: assign shot 0 to group 0 and scene 0; initialize the group counter numGroups
= 1; initialize the scene counter numScenes = 1.

2. If S is empty, quit; otherwise get the next shot. Denote this shot as shot i.
3. Test if shot ¢ can be merged to an existing group:

(a) Compute the similarities between the current shot and existing groups:
Call findGroupSim().
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(b) Find the maximum group similarity:

maxGroupSim; = max GroupSim;y, ,g9 = 1,...,numGroups (1)
g

where GroupSim; 4 is the similarity between shot 4 and group g. Let the group of
the maximum similarity be group gmaz-
(c) Test if this shot can be merged into an existing group:
If maxGroupSim; > groupThreshold, where groupThreshold is a predefined thresh-
old:
i. Merge shot ¢ to group gmaz-
ii. Update the video structure: Call updateGroupScene().
iii. Goto Step 2.
otherwise:
i. Create a new group containing a single shot ¢. Let this group be group j.
ii. Set numGroups = numGroups + 1.
4. Test if shot 4 can be merged to an existing scene:

(a) Calculate the similarities between the current shot ¢ and existing scenes: Call
findSceneSim().
(b) Find the maximum scene similarity:

mazSceneSim; = max SceneSim;, ,s = 1,...,numScenes (2)
S

where SceneSim; s is the similarity between shot ¢ and scene s. Let the scene of the
maximum similarity be scene s,,45-
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(c) Test if shot ¢ can be merged into an existing scene:

If maxSceneSim; > sceneT hreshold, where sceneT hreshold is a predefined thresh-
old:

i. Merge shot 7 to scene sp,q5-

ii. Update the video structure: Call updateScene().
otherwise:

i. Create a new scene containing a single shot 7 and a single group j.
ii. Set numScenes = numScenes + 1.

5. Goto Step 2.

[findGroupSim]

e Input: Current shot and group structure.

e Qutput: Similarity between current shot and existing groups.

e Procedure:
1. Denote current shot as shot 3.

2. Calculate the similarities between shot ¢ and existing groups:
GroupSim; g = ShotSim; g, ., ,9 = 1,...,numGroups (3)

where ShotSim; ; is the similarity between shots ¢ and j; and g is the index for groups
and g4 is the last (most recent) shot in group g. That is, the similarity between current
shot and a group is the similarity between the current shot and the most recent shot in



the group. The most recent shot is chosen to represent the whole group because all the
shots in the same group are visually similar and the most recent shot has the largest

temporal attraction to the current shot.

3. Return.

[findSceneSim]

e Input: The current shot, group structure and scene structure.
e Qutput: Similarity between the current shot and existing scenes.
e Procedure:

1. Denote the current shot as shot 3.

2. Calculate the similarity between shot 7 and existing scenes:

1 numGroupss
SceneSim; 3 = —————— Z GroupSim; 4
numGroupsg 7

(4)

where s is the index for scenes; numGroups, is the number of groups in scene s; and
GroupSim; g4 is the similarity between current shot 4 and g"" group in scene s. That is,
the similarity between the current shot and a scene is the average of similarities between

the current shot and all the groups in the scene.

3. Return.

[updateGroupScene]

e Input: Current shot, group structure, and scene structure.
e Output: An updated version of group structure and scene structure.

e Procedure:

1. Denote current shot as shot ¢ and the group having the largest similarity to shot ¢ as

group gmaz- Lhat is, shot ¢ belongs to group ¢gmaz-

2. Define two shots, top and bottom, where top is the second most recent shot in group

Imaz and bottom is the most recent shot in group gpmqq (i-e., current shot).

3. For any group g, if any of its shots (shot g;) satisfies the following condition

top < shot g; < bottom

(5)

merge the scene that group g belongs to into the scene that group gn,.. belongs to. That
is, if a scene contains a shot which is interlaced with the current scene, merge the two
scenes. This is illustrated in Figure 3 (shot ¢ = shot 4, g4 =0, g = 1, top = shot 1,
and bottom = shot 4).

4. Return.

[updateScene]
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e Input: Current shot, group structure, and scene structure.
e Output: An updated version of scene structure.
e Procedure:

1. Denote current shot as shot ¢+ and the scene having the largest similarity to shot 7 as
scene smqr- That is, shot ¢ belongs to scene $y,q4-

2. Define two shots, top and bottom, where top is the second most recent shot in scene s,;,4,
and bottom is the current shot in scene sy, (i.e., current shot).

3. For any scene s, if any of its shots (shot s;) satisfies the following condition
top < shot s; < bottom (6)

merge scene s into scene Sp,q.. That is, if a scene contains a shot which is interlaced
with the current scene, merge the two scenes.

4. Return.

Extensive experiments using real-world video clips have been carried out. The results are
summarized in Table 1 [4], where “ds” (detected scenes) denotes the number of scenes detected by
the algorithm; “fn” (false negatives) indicates the number of scenes missed by the algorithm; and
“fp” (false positives) indicates the number of scenes detected by the algorithm, although they are
considered scenes by humans.

Some observations can be summarized as follows:

e The proposed scene construction approach achieves reasonably good results in most of the
movie types.

e The approach achieves better performance in “slow” movies than in “fast” movies. This fol-
lows since in the “fast” movies, the visual content is normally more complex and more difficult
to capture. We are currently integrating closed-captioning information into the framework to
enhance the accuracy of the scene structure construction.



Table 1. Scene structure construction results.
| movie name | frames | shots | groups | ds | fn | fp |

Moviel 21717 133 16 5 0 0
Movie2 27951 186 25 710 1
Movie3 14293 86 12 6 1 1
Movie4 35817 195 28 10 | 1 2
Movieb 18362 7 10 6 0 0
Movie6 23260 390 79 24 | 1 |10
Movie7 35154 329 46 14 |1 2

e The proposed approach seldom misses a scene boundary, but tends to over-segment the video.
That is, “false positives” outnumber “false negatives”. This situation is expected for most
of the automated video analysis approaches and has also been observed by other researchers
[22, 2].

6.2 Video Retrieval

Video retrieval is concerned with how to return similar video clips (or scenes, shots, and frames) to
a user given a video query. This is a little explored research area. There are two major categories
of existing work. One is to first extract key frames from the video data, then use image retrieval
techniques to obtain the video data indirectly. Although easy to implement, it has the obvious
problem of losing the temporal dimension. The other technique incorporates motion information
(sometimes object tracking) into the retrieval process. Although this is a better technique, it
requires the computationally expensive task of motion analysis. If object trajectories are to be
supported, then this becomes more difficult.

Here we view video retrieval from a different angle. We seek to construct a video Index to suit
various users’ needs. However, constructing a video Index is far more complex than constructing an
index for books. For books, the form of an index is fixed (e.g., key words). For videos, the viewer’s
interests may cover a wide range. Depending on his or her knowledge and profession, the viewer
may be interested in semantic level labels (building, car, people), low level visual features (color,
texture, shape), or the camera motion effects (pan, zoom, rotation). In the system described here,
we support all three Index categories:

e Visual Index

e Semantic Index

e Camera motion Index

To support semantic level and visual feature-based queries, frame clusters are first constructed
to provide indexing. Our clustering algorithm is described as follows:

1. Feature extraction: color and texture features are extracted from each frame. The color
feature is an 8 x 4 2D color histogram in Hue-Saturation-Value (HSV) color space. The V
component is not used because of its sensitivity to lighting conditions. The H component is
quantized finer than the S component due to the psychological observation that the human



visual system is more sensitive to Hue than to Saturation. For texture features, the input
image is fed into a wavelet filter bank and is then decomposed into de-correlated sub-bands.
Each sub-band captures the feature of a given scale and orientation from the original image.
Specifically, we decompose an image into three wavelet levels; thus 10 sub-bands. For each
sub-band, the standard deviation of the wavelet coefficients is extracted. The 10 standard
deviations are used as the texture representation for the image [25].

2. Global clustering: based on the features extracted from each frame, the entire video clip is
grouped into clusters. A detailed description of the clustering process can be found in [19].
Note that each cluster can contain frames from multiple shots and each shot can contain
multiple clusters. The cluster centroids are used as the visual Index and can be later labeled
as a semantic Index (see section 6.3.). This procedure is illustrated in Figure 6.

‘ shot 1 ‘ shot 2 ‘ shot 3 shot 4 ‘ shot n ‘ Video clip
%B ( Clusters
[ People J [House Truck . Dog J Index

Figure 6: From video clip to cluster to index

After the above clustering process, the entire video clips are grouped into multiple clusters.
Since color and texture features are used in the clustering process, all the entries in a given cluster
are visually similar. Therefore these clusters naturally provide support for the visual queries.

In order to support semantic level queries, semantic labels need to be provided for each cluster.
There are two techniques that have been developed in our research lab. One is based on the
Hidden Markov Model (HMM) and the other is an annotation based approach. Since the former
approach also needs training samples, both approaches are semi-automatic. To learn details of the
first approach, readers are referred to [16]. We will introduce the second approach here. Instead
of attempting to attack the unsolved automatic image understanding problem, semi-automatic
human assistance is used. We have built interactive tools to display each cluster centroid frame
to a human user, who will label that frame. The label will then be propagated through the whole
cluster. Since only the cluster centroid frame needs labeling, the interactive process is fast. For
a 21,717 frame video clip (Moviel), about 20 minutes is needed. After this labeling process, the
clusters can support both visual and semantic queries. The specific semantic labels for Moviel are
people, car, dog, tree, grass, road, building, house, etc.

To support camera motion queries, we have developed techniques to detect camera motion
in the MPEG compressed domain [26]. The incoming MPEG stream does not need to be fully
decompressed. The motion vectors in the bit stream form good estimates of camera motion effects.
Hence, panning, zooming, and rotation effects can be efficiently detected [26].



6.3 A Unified Framework for Browsing and Retrieval

The above two subsections described video browsing and retrieval techniques separately. In this
section, we integrate them into a unified framework to enable a user to go “back and forth” between
browsing and retrieval. Going from the Index to the ToC, a user can get the contert where the
indexed entity is located. Going from the ToC to the Index, a user can pin point specific queries.
Figure 7 illustrates the unified framework.

ToC Index
| link | |
! < weight Visud 1
Lo T v ]
| Groups /3| Semartic
Shots
Key frames = Cameramotion| |

Figure 7: A unified framework

An essential part of the unified framework is the weighted links. The links can be established
between Index entities and scenes, groups, shots, and key frames in the ToC structure. As a first
step, in this paper we focus our attention on the links between Index entities and shots. Shots are
the building blocks of the ToC. Other links are generalizable from the shot link.

To link shots and the wvisual Index, we propose the following techniques. As we mentioned
before, a cluster may contain frames from multiple shots. The frames from a particular shot form
a sub-cluster. This sub-cluster’s centroid is denoted as ¢y, and the centroid of the whole cluster is
denoted as c. This is illustrated in Figure 8.

Here c is a representative of the whole cluster (and thus the visual Index) and cgyp is a rep-
resentative of the frames from a given shot in this cluster. We define the similarity between the
cluster centroid and sub-cluster centroid as the link weight between Index entity ¢ and that shot.

wy (i, j) = similarity(csup, ¢j) (7)

where i and j are the indices for shots and clusters, respectively, and w,(i,j) denotes the link
weight between shot 4 and visual Index cluster c;.

After defining the link weights between shots and the visual Index, and labeling each cluster,
we can next establish the link weights between shots and the semantic Index. Note that multiple
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Figure 8: Sub-clusters

Table 2. From the semantic, visual, camera Index to the ToC.
shot id 0 2 10 12 14 31 33
ws 0.958 | 0.963 | 0.919 | 0.960 | 0.957 | 0.954 | 0.920

shot id 16 18 20 22 24 26 28
Wy 0.922 | 0.877 | 0.920 | 0.909 | 0.894 | 0.901 | 0.907

shot id 0 1 2 3 4 5 6
We 0.74 0.03 0.28 0.17 0.06 0.23 0.09

clusters may share the same semantic label. The link weight between a shot and a semantic Index
is defined as:

ws (i, k) = maz;j(wy (i, 7)) (8)
where k is the index for the semantic Index entities; and j represents those clusters sharing the
same semantic label k.

The link weight between shots and a camera motion Indez (e.g., panning) is defined as:

. 1
we(t,l) = — 9
D= 5 )
where [ is the index for the camera operation Index entities; n; is the number of frames having that
camera motion operation; and N; is the number of frames in shot 3.

Extensive tests have been carried out using real-world video clips. The video streams are
MPEG compressed, with the digitization rate equal to 30 frames/s. Table 2 summarizes example
results over the video clip Moviel. The first two rows are an example of going from the semantic
Index (e.g., car) to the ToC (shots) (also in Figure 9). The middle two rows are an example of
going from the visual Index (e.g., Figure 10) to the ToC (shots) (also in Figure 11). The last two
rows are going from the camera operation Index (panning) to the ToC (shots).

By just looking at each isolated Index alone, a user usually cannot understand the context.
By going from the Index to the ToC (as in Table 2), a user quickly learns when and under which

Table 3. From the ToC (shots) to the Index.
| Index | fence | mail box | human hand | mirror | steer wheel |

| Weight | 0927 | 0959 [ 0918 ] 0959 | 0916 |
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Figure 9: Interface for going from the semantic Index to the ToC

circumstances (e.g., within a particular scene) that Index entity is happening. Table 2 summarizes
how to go from the Index to the ToC to find the context. We can also go from the ToC to the Index
to pin point a specific Index. Table 3 summarizes which Index entities appeared in shot 33 of the
video clip Moviel.

For a continuous and long medium such as video, a “back and forth” mechanism between
browsing and retrieval is crucial. Video library users may have to browse the video first before they
know what to retrieve. On the other hand, after retrieving some video objects, the users will be
better able to browse the video in the correct direction. We have carried out extensive subjective
tests employing users from various disciplines. Their feedback indicates that this unified frame-
work greatly facilitated their access to video content, in both home entertainment and educational
applications.

7 Conclusions and Promising Research Directions

This chapter covered the following topics:

e Reviewed and discussed recent research progress in video analysis, representation, browsing,
and retrieval;



a

Figure 10: Frame 2494 as a visual Index

e Introduced the video ToC and the Index and presented techniques for constructing them;

e Proposed a unified framework for video browsing and retrieval; and proposed techniques for
establishing the link weights between the ToC and the Index.

We should be aware that video is not just a visual medium. It contains text and audio
information in addition to visual information and is thus “true” multimedia. Multi-model and
multimedia processing is usually more reliable and robust than processing a single medium. We
need to further extend our investigation to the integration of closed-captioning and audio track
information into our algorithm to enhance the construction of ToCs, Indexes and link weights.
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