
Siggraph 2003 paper: papers_0260, page 1 of 6

Bi-Scale Radiance Transfer
Peter-Pike Sloan Xinguo Liu Heung-Yeung Shum John Snyder

Microsoft Corporation Microsoft Research Asia Microsoft Research Asia Microsoft Research

Abstract
Radiance transfer represents how generic source lighting is
shadowed and scattered by an object to produce view-dependent
appearance. We generalize by rendering transfer at two scales. A
macro-scale is coarsely sampled over an object’s surface, provid-
ing global effects like shadows cast from an arm onto a body. A
meso-scale is finely sampled over a small patch to provide local
texture. Low-order (25D) spherical harmonics represent low-
frequency lighting dependence for both scales. To render, a
coefficient vector representing distant source lighting is first
transformed at the macro-scale by a matrix at each vertex of a
coarse mesh. The resulting vectors represent a spatially-varying
hemisphere of lighting incident to the meso-scale. A 4D func-
tion, called a radiance transfer texture (RTT), then specifies the
surface’s meso-scale response to each lighting basis component,
as a function of a spatial index and a view direction. Finally, a
25D dot product of the macro-scale result vector with the vector
looked up from the RTT performs the correct shading integral.
We use an id map to place RTT samples from a small patch over
the entire object; only two scalars are specified at high spatial
resolution. Results show that bi-scale decomposition makes
preprocessing practical and efficiently renders self-shadowing and
interreflection effects from dynamic, low-frequency light sources
at both scales.
Keywords: Graphics Hardware, Illumination, Monte Carlo Techniques,
Rendering, Shadow Algorithms.

1. Introduction
Perhaps the greatest challenge in computer graphics is to model
the interaction of light and matter at all relevant scales, from
macro-level occlusion and interreflection between large objects
down to micro-level quantum and diffraction effects. For effi-
ciency, these scales are traditionally decomposed into geometry,
texture, and lighting models [Kajiya 1985]. While this decompo-
sition accelerates both Monte Carlo simulation and real-time
hardware rendering, a gap in quality remains between the two.

To bridge this gap, recent work precomputes global transport
effects in a way that can be exploited by fast graphics hardware.
The idea is to tabulate over an object or small patch how source
illumination is shadowed and scattered back to the viewer, in
other words, radiance transfer as a function of spatial location
and view. The result can then be quickly rendered from any
viewpoint in a variety of lighting conditions. Current techniques
precompute only at a single scale, and so are limited either to
coarse [Sloan et al. 2002] or fine [Ashikhmin et al. 2002; Heidrich
et al. 2000; Liu et al. 2001; Tong et al. 2002] effects.

Our approach instead models radiance transfer at two scales. A
macro-scale encompasses coarse, geometry-dependent self-

shadowing and interreflection effects such as shadows from a
bunny’s ears onto its back. A meso-scale models finer but still
macroscopic structure such as snake scales or stuccowork. The
first scale is precomputed over a given geometric object, via
precomputed radiance transfer (PRT) [Sloan et al. 2002]. PRT
stores a transfer matrix at each mesh vertex p that converts source
illumination into transferred incident illumination, and so ac-
counts for the object’s global shadowing and interreflection onto
itself. The second scale is precomputed over a small patch to
obtain a 4D radiance transfer texture (RTT) which is mapped
over an object using texture synthesis, as in [Liu et al. 2002]. At
run-time, the transfer matrix at each p is first applied to a source
lighting vector to produce transferred radiance at the macro-scale.
The resulting vector is then dotted with a vector looked up from
the RTT, indexed by a spatial location and view direction, to
produce the final shade at p. The result provides view- and light-
dependent global illumination effects at both scales.

Bi-scale decomposition has a number of advantages. It samples
each scale at the proper rate. In our experiments, the meso-scale
is sampled over the surface roughly two orders of magnitude more
highly than the macro-scale. Decomposition makes the precom-
putation practical, since global transport simulation at meso-scale
sampling rates requires enormous computation and storage. It
also accelerates run-time performance by performing expensive
macro-scale computations at coarser sampling rates and retrieving
meso-scale results from a small texture. Finally, it allows librar-
ies of meso-textures (e.g., fabric weaves, animal skins, or wall
surfaces) to be applied to different geometries.

PRT and RTTs both parameterize appearance by source lighting.
Unlike previous fine-scale approaches, they use a low-order
spherical harmonic (SH) basis rather than a directional basis. This
allows effects like soft-shadows otherwise prohibited by the cost
of integrating over many lighting directions. It also avoids alias-
ing when light sources move. Rendering is accurate if the lighting
and BRDF are low-frequency. The technique thus forms a coun-
terpart to traditional methods handling small (point) light sources.

Our main contribution is to simulate and render radiance transfer
at both a coarse and fine scale. Our RTTs differ from bidirec-
tional texture functions (BTFs) [Dana et al. 1999;Liu et al. 2002;
Tong et al. 2002] by using an SH basis for lights. We also evalu-

(a) BTF (meso-scale) (b) PRT (macro-scale) (c) Bi-Scale

Figure 1: BTFs (a) capture local effects like shading/shadowing over small
dents. PRT (b) captures global effects like the bird’s tail shadow, but is only
practical at a coarse scale. Bi-scale rendering (c) combines coarse- and fine-
scale global illumination effects for rendering on graphics hardware.

Siggraph 2003 paper: papers_0260, page 2 of 6

ate the RTT using an id map to better leverage texture mapping.
We generalize PRT [Sloan et al. 2002; Kautz et al. 2002] by
composing its result with a general RTT rather than a BRDF.
This produces images where fine features shadow and mask each
other in a complex, spatially varying way without neglecting
large-scale effects on a particular object, as shown in Figure 1.

2. Related Work
Local Effects: We first discuss methods for representing texture
effects, but ignoring global transport. The most general of these is
the 6D bidirectional texture function (BTF), which encapsulates
appearance that varies spatially and with light and view direction.
It was first introduced by [Dana et al. 1999] for modeling meso-
structure of real-world surfaces.

A densely sampled 6D BTF is too expensive to acquire or use for
fast image generation, prompting many to resort to lower dimen-
sional alternatives. Polynomial texture maps (PTMs)
[Malzbender et al. 2001] lower dimensionality to 4D by storing
coefficients of a bi-quadratic polynomial per texel. This can
model surface appearance under varying lighting directions, but
then must neglect view-dependent effects such as masking,
foreshortening (parallax), and non-diffuse reflectance. Ashikhmin
et al. [2002] also ignore view-dependence but use a steerable basis
for directional lights that allows smoother lighting rotation. By
precomputing visibility inside a height field and repeatedly tiling
it onto a base geometry, Heidrich et al. [2000] simulate the local
effects of self shadowing and indirect illumination.

Starting with a sparsely-sampled BTF, a denser sampling can be
generated by recovering height fields and applying texture synthe-
sis techniques [Liu et al. 2001]. Novel BTF textures can also be
generated from synthetic height fields. These ideas are extended
in [Tong et al. 2002] to generate BTFs and map them over arbi-
trary surfaces. BTF indices are synthesized as a per-vertex signal
over a fine-scale mesh, whereas we use an id map to completely
decouple the textured signal from the geometry.

Other methods have been developed to represent fully 6D BTFs
for rendering on graphics hardware. Daubert et al. [2001] ap-
proximate a BTF using a product of a spatially-varying function
of view times a spatially-varying set of parameters to a simple
lighting model. Liu et al. [2002] factor 6D BTFs on arbitrary
surfaces into a 4D point appearance function multiplied by a 2D
spatial modulation function. As does ours, this approach param-
eterizes the surface but to create the spatial modulation function
rather than an id map (see Section 3).

Spatially-varying BRDFs used for interactive performance typi-
cally represent reflectance change over a smooth surface rather
than view- and light-dependent effects from texture with “depth”.
McCallister et al. [2002] is an example, but unlike other methods
discussed so far, it handles general lighting by prefiltering envi-
ronment maps to avoid on-the-fly light integration.

Global Effects: PRT [Sloan et al. 2002] captures shadowing and
interreflection of an object onto itself. Fast, hardware-accelerated
rendering is performed for objects that are diffuse or isotropically
glossy (but not highly specular), illuminated by low-frequency
lighting that can be changed on-the-fly. Much related work,
including previous use of the SH basis in computer graphics and
other techniques for representing precomputed appearance, is
described in that reference. [Kautz et al. 2002] generalizes the
idea to surfaces with arbitrary, including anisotropic, BRDFs, and
also demonstrated 1D spatial variation of a single BRDF parame-
ter using a 3D texture map. This paper further generalizes PRT

by incorporating a general 4D RTT capturing meso-scale effects
mapped over the object.

3. Bi-Scale Transfer Representation
We begin by showing how our bi-scale representation both
combines and decouples coarse (PRT) and fine (BTF) transfer
methods of previous work. In the following, subscript p denotes
that the subscripted variable spatially varies over a surface by
sampling at the vertices p of a coarse mesh. up is a 2D texture
coordinate and vp the unit-length view vector at each vertex p.
Capital letters denote matrices or large vectors; small letters
denote scalars or small (2D or 3D) vectors. Function calls repre-
sent texturing where coarsely-sampled inputs are linearly
interpolated between mesh vertices but the function is evaluated
per image sample.

Macro-scale (PRT) transfer models exiting radiance as
 B(vp) · (Mp L) (1)
where L is an n-vector resulting from projecting source lighting
into the SH basis, Mp is a n×n transfer matrix, and B is a 2D
function producing an n-vector and represents the BRDF. Given a
source lighting function l(s) over the sphere s S∈ (i.e., an envi-
ronment map around the object), L is computed from a spherical
integral yielding the approximation

1

() () , () ()
n

i i i ii
s

L l s y s ds l s L y s
S

=
∈

= ≈∑∫ (2)

where yi(s) is the i-th SH basis function. If the lighting is low-
frequency, a good approximation is obtained using a fifth order
SH projection having n=25 basis functions [Sloan et al. 2002].

The right vector in (1), Mp L, is formed by transforming the
lighting vector through the transfer matrix and produces incident
radiance at p including self-shadowing and interreflection effects.
Mp includes a rotation of the lighting from a global coordinate
frame into a local frame aligned to the normal and tangent direc-
tions at p [Kautz et al. 2002]. The left vector, B(vp), represents the
shading response in the view direction vp given incident lighting
expressed in the SH basis and in the local frame. Dotting these
vectors integrates lighting times response over the hemisphere,
yielding exiting radiance in the direction vp [Sloan et al. 2002].

Though PRT captures global effects, recording it at meso-scale
sampling rates is impractical. Transfer matrices were computed at
a few tens of thousands of samples (vertices) in [Sloan et al.
2002]. At meso-scale sampling rates (~millions of samples over a
surface), the Monte Carlo simulation would take hundreds of CPU
hours for a single object. Real-time rendering would also be
impossible because of the storage (25×25 matrix at millions of
vertices) and computation needed (matrix/vector multiply at each
vertex).

Meso-scale (BTF) rendering represents transfer from directional
light sources. A 6D BTF models exiting radiance as b(up,vp,d)
where d is the light direction. For real-time rendering, this is
approximated in [Liu et al. 2002] using a singular value decompo-
sition as
 (,) ()p pB v d M ui (3)

where B and M are vectors having 6-12 component colors (18-36
total channels). More channels increase approximation accuracy.

This representation easily handles lighting from a single lighting
direction d. For large lights, B must be repeatedly evaluated and
summed over many directions, becoming impractical for real-time
rendering. Spatial modulation via M occurs only at one scale.
Though the model is based on a small texture patch which was

Siggraph 2003 paper: papers_0260, page 3 of 6

then synthesized onto an object, recording texture synthesis
results still requires a very high-resolution texture map M.

Bi-scale rendering combines effects at both scales via
 B(q(up),vp) · (Mp L) (4)
B, Mp, and L are defined as for PRT (Formula (1)), but now B is a
4D function (radiance transfer texture) which allows spatial
variation as well as view-dependence, as in a BTF. This model
first performs coarse shadowing and interreflection via the light-
ing transformation Mp L, and uses the resulting vector as lighting
incident on the meso-scale, represented by B. As shown in the
figure below, this is not just scalar modulation of two separately
shaded results from the two scales; the macro-scale produces a
spatially-varying radiance function over the entire hemisphere
illuminating the meso-scale.

The RTT B specifies the
meso-scale appearance
of a small patch. Its i-th
output channel, Bi(u,v),
encodes the response at
location u in the direc-
tion v to incident
lighting expressed using
the i-th lighting basis
function. Unlike a
directional lighting

basis, using the SH basis for lighting effectively pre-integrates the
lighting response over large, smooth sources. The other novel
aspect of this decomposition is the use of q(up), the id map from
which B’s spatial index is looked up. The id map allows us to
place B’s samples within triangles of a coarse mesh in a fully
general way, via precomputed texture synthesis (Section 4.3).
Because spatial variation in B is tabulated using relatively few
(64×64 or 128×128) samples, each of which is a 25D function of
the view vector vp, it becomes practical for graphics hardware to
accelerate rendering using dependent textures. This is much more
efficient than rendering a finely-sampled mesh [Tong et al. 2002].

Spatial variation in the bi-scale model occurs in two places: at a
coarse scale in Mp, and at a fine scale via B’s spatial index q(up).
The id map, q, contains only two output channels (two coordi-
nates indexing the RTT). This should be compared to the 36
channels of the meso-scale map M from Formula (3), since both q
and M are specified at high (meso-scale) spatial resolution.
Moreover it is unclear how to extend M to include macro-scale
effects, but it is likely even more channels would be required.

4. Precomputing Bi-Scale Radiance Transfer

4.1 Precomputing Macro-Scale Transfer Matrices
We precompute transfer matrices at each mesh vertex, using the
Monte Carlo simulation described in [Sloan et al. 2002]. Essen-
tially, this illuminates the geometry with source lighting at infinity
represented using each of the SH basis function, and gathers the
resulting transferred radiance. The resulting transfer matrices
capture self-shadowing and self-interreflection but interreflections
are only correct for lighting at infinity.

4.2 Building the RTT
Each spatial sample of the RTT linearly transforms source illumi-
nation into view-dependent exiting radiance. The spatial variation
of this transformation is tabulated over a small patch. We use a
low-order SH basis for lighting, yielding n=25 output channels for
each view direction and spatial location. Results are shown in
Figure 4, where the weave RTT is mapped to a simple square and
rendered at two different viewpoints and 5 different lighting

conditions. Note how the patch responds to area lighting and
exhibits view-dependent appearance effects.

We generate B by rendering a small patch and recording images
over a sampling of views and lighting directions. Theoretically,
each channel Bi(up,vp) can be obtained by illuminating the geome-
try using the SH basis function yi(s) as a light source (noting that
this is a nonphysical emitter of both positive and negative light).
We compute B by rendering using a number of directional light
sources, lk=(θk,φk), k=1,2,…,nlights, sampling the hemisphere at 8
polar and 16 azimuthal directions. For a given view direction vp,
each Bi is then obtained by a weighted combination of the result-
ing nlights=8×16 images, Ik,vp(up). Each weight is the product of
an SH basis function, yi(lk), times the solid angle, da(lk), evaluated
at the direction sample lk, yielding

 ,1
(,) () () ()

p

nlights

i p p k v p i k kk
B u v I u y l da l

=
=∑ (5)

To produce the images Ik,vp, we 2×2 supersample across the 2D
spatial parameter up and decimate using a box filter.

We assume that the patch’s depth variation is much smaller than
its tangential extent. Thick meso-structure requires a dense
sampling of view directions that is impractical for hardware
rendering. Given a thin patch, we sample images along a plane
midway between the patch’s depth extent, using conventional
global illumination algorithms to generate the images for various
viewing (vp) and lighting (lk) directions. For each view direction
vp, we directly trace rays passing through the sampling points on
this sampling plane, in the direction vp.

Patch geometry can be modeled as a height field [Liu et al. 2001].
Color textures can be applied to produce more vivid effects. The
height field images for the “holes” and “bin” samples (Figure 5)
were created by an image editing tool; the “stucco” wall sample
used a 2D random process. Fully 3D models can also be used:
the “weave” example consists of interleaved, deformed cylinders.

RTTs can also be acquired rather than generated from synthetic
geometry. The RTT sample “plaster” (shown in Figure 5) was
constructed from an example in the CUReT BTF database [Dana
et al. 1999]. Because BTF samples in the CUReT data are sparse,
a denser sampling was generated using the technique of [Liu et al.
2001]. Then the interpolated BTF data was converted to an RTT
via Equation (5).

4.3 Generating the RTT ID Map
The RTT id map q(up) maps meso-structure samples onto the
macro geometry/surface. We generate the id map in three steps:
(1) synthesize meso-scale texture over the 3D surface, (2) param-
eterize the surface, and create a 2D map of its geometry, (3) for
each point in this 2D geometry map, find its RTT id from (1).

Synthesizing Meso-Scale Texture over the Surface straight-
forwardly applies the BTF synthesis algorithm in [Tong et al.
2002] to the surface. We first retile the surface into a dense mesh,
called a meso-mesh. Its number of vertices (960k in our examples)
is comparable to the number of samples in typical textures to
allow a high frequency mapping. A texture synthesis algorithm
[Turk 2001] is then invoked to synthesize a BTF spatial index at
each meso-mesh vertex. Recall that the RTT is derived from the
BTF by projecting its directional lighting samples to the SH basis
via numerical integration (Equation (5)). Since both maps repre-
sent appearance of the same patch (only the lighting basis
changes), the spatial index of the BTF can be used on the RTT.

To use graphics hardware efficiently, we parameterize the surface
to convert the finely-sampled, per-vertex signal on this meso-
mesh into a 2D texture.

Siggraph 2003 paper: papers_0260, page 4 of 6

Parameterizing the Surface is done in three steps. The first step
partitions the mesh into charts, the second parameterizes each
chart, and the third packs charts together into a single atlas. A
very similar technique is used in [Liu et al. 2002] to create the
modulation map M from Formula (3); we use it here to texture
RTT indices.

To create charts, we manually choose cutting paths using a simple
UI (see example in Figure 2a). A user-specified number of 3D
points along each chart’s boundary are chosen as corner points, pi,
which map to 2D vertices of the chart’s parameterization polygon,
vi. Initially these points uniformly subdivide the length of the
chart’s boundary, but they can be modified by the user.

We parameterize each chart into a convex, 2D polygon whose
vertices vi lie on a circle, and where distance between consecutive
vertices ||vi - vi+1|| is proportional to path length of the chart
boundary between pi and pi+1. The interior of each chart is
parameterized using the method of [Sander et al. 2001].

Automatic chart packing is a hard problem, so we do it manually.
A packing example is shown in Figure 2(b).

Packed patches should not touch; if they do, bilinear reconstruc-
tion during rendering blends between charts that aren’t neighbors
on the mesh. We therefore reserve a one texel space around each
texture polygon and dilate the texture to this “gutter” space.

Constructing the ID Map begins by rendering the 3D surface
point and normal into each texel of the id map by scan converting
the mesh triangles into texture space. That is equivalent to creat-
ing a map of the surface geometry including normal.

For each id map texel, we use “normal shooting” [Sander et al.
2001] to find its closest meso-mesh vertex. Given a texel with
location P and normal N, we compute this by first finding the k
vertices nearest to P in the meso-mesh as candidates. We select
one of these by comparing distances of each candidate to the line
through P along N. This nearest candidates’s RTT location (i.e.,

the 2D coordinate of its associated RTT sample) is recorded into
the id map. The ANN tool [Mount 1998] accelerates the k-nearest-
neighbor query. We use k=20, to allow at least a 2-ring of
neighboring vertices assuming an average vertex degree of 6.

We use id map resolutions of 2048×2048. A visualization of the
id map, in texture space and mapped onto the 3D model, appears
in Figure 2c-d. This is the synthesis result for the “weave” RTT
appearing in Figure 5.

5. Rendering with Bi-Scale Radiance Transfer
Lighting: The source lighting vector L can be computed in
various ways [Sloan et al. 2002]. We can dynamically rotate a
predefined environment to simulate rigid rotations of the object.
Graphics hardware can be used to sample radiance near the object
which is then SH-projected via Equation (2). Simple light sources
like circles can be analytically projected.

Shading: We compute the per-vertex matrix/vector multiplica-
tion Mp L on the CPU since the matrix Mp is too large to be
manipulated by a vertex shader. The 25D result, representing
radiance incident on the meso-scale, is interpolated over triangles
by the rasterization hardware. The id map and RTT are accessed
using dependent texture mapping, producing another 25D vector
B(q(up),vp). The two resulting vectors are dotted in a pixel shader.

Accessing the RTT: B is a 4D texture sampled using 64×64
spatial samples (up), and 8×8 view samples (vp). The view sam-
ples are parameterized over a hemisphere using an area preserving
map from the unit square to the hemisphere [Shirley et al. 1997].

B’s samples are organized as a 2D texture of 8×8 view blocks.
Contiguous view samples allows texture mapping hardware to
perform smoother (bilinear) interpolation across views. Interpola-
tion over spatial samples is prohibited, but the RTT is spatially
smooth enough to produce good results using nearest-neighbor
sampling. Image supersampling improves results.

Surfaces defined parametrically
already have a mapping (i.e., a up
at each vertex) which can be used
directly rather than as an index to
an id map. This allows only
continuous replication of the
texture square over the surface
and typically causes stretching
and shrinking on curved objects.
The figure on the left shows a

parametric vase example with a trivially mapped “flower” RTT.

Diffuse Special Case: Assuming the local surface is diffuse and
neglecting local masking effects, we can eliminate B’s depend-
ence on vp. This greatly reduces texture memory and bandwidth,
and allows higher spatial sampling. Dynamic shadowing and
interreflection effects are retained; but shading is constant regard-
less of view. Even though the local surface is diffuse, we still
need a transfer matrix at each point rather than a transfer vector to
allow local shadowing and interreflection effects from the RTT.

6. Results
View-dependent effects of bi-scale rendering can be judged in
Figure 4 and Figure 6. The RTT mapped to a simple square in
Figure 4 changes appearance as the view changes (top row vs.
bottom). We can see structure visible underneath the weave in the
oblique view that’s invisible in the head-on view. These effects
are even more striking when the RTT is mapped onto a 3D object
(Figure 6c-d). We modified our viewer to optionally switch off
view-dependence by accessing only the “center” view sample of

(a) charts on 3D model (b) parameterized chart atlas

(c) id map in texture space (d) id map on 3D model

Figure 2: Surface Parameterization and ID Map Generation. The
two id map channels are mapped to red and green in (c) and (d).

trivial id map Mapped “flower”

Siggraph 2003 paper: papers_0260, page 5 of 6

the RTT rather than indexing via the actual view direction. Note
how the weave texture changes appearance with view angle
around the body of the bird in (d), but appears pasted on in (c).

Figure 4a-d shows how the RTT responds to light sources of
various sizes and directions. The (a) and (c) columns use the
smallest (highest frequency) light source representable by our
n=25 SH basis. The (b) and (d) columns illuminate from the same
directions but use a bigger light source (analytic circle subtending
a 110° angle). Shadows are softened, as if the RTT were illumi-
nated on a cloudy day. The rightmost column uses a spherical
lighting environment (“grove”) acquired from high dynamic range
imagery, providing a realistic appearance.

Figure 1 and Figure 6a-b show how macro-scale transport im-
proves image realism. Without macro-scale shadowing, models
exhibit a “glowing” appearance revealing their synthetic nature
(Figure 1a, Figure 6a). PRT fixes these problems (Figure 1c,
Figure 6b) making the illusion more complete. Figure 3 shows a
similar example using a rock model. This figure compares results
with no global transport (a), shadowing transport (b), and
interreflection+shadowing transport (c).

Our rendering method allows fast manipulation of the view or
lighting with proper shadowing and interreflection effects at both
scales. We achieve a frame rate of ~14.5Hz for the
bird/bunny/rock models with the weave/bin/stucco RTT, render-
ing to a 512×512 screen window. The macro-scale of the bunny,
bird, and rock models was represented using a 25×25 PRT trans-
fer matrix at each of ~10,800 vertices. View-dependent RTTs
(weave, holes, bin) are sampled at 64×64×8×8 while “diffuse”
RTTS (plaster, stucco, flower) are sampled at 128×128. Id maps
were sampled at 2048×2048. The vase model renders at 35.3Hz
with a transfer matrix at each of 4453 vertices. Timings were
conducted on a 2.2Ghz Pentium IV with ATI Radeon 9700.

Addressing preprocessing costs, meso-structure ray tracing to
build the RTT (Section 4.2) requires 0.7-3.0 seconds per image. It
is proportional to the meso-mesh complexity, patch size (64×64),
and supersampling rate (2×2). 8×16×8×8 total images are ray
traced over light and view direction. Conversion of the direc-
tional lighting basis to the SH basis is fast: about 5-10 minutes.
Texton extraction (which precomputes distances between BTF
sample pairs for synthesis) ranges from 1-3 hours and is propor-
tional to the patch’s spatial size. Texture synthesis requires about
4 hours, longer than that reported in [Tong et al. 2002] since we
use a larger searching window and a denser meso-mesh. Total
time to create the bunny+weave samples was about 8 hours. PRT
simulation (Section 4.1) takes about 8 minutes (at ~10k vertices)
for shadowed transport and about 17 minutes for the rock example
where we simulated three further light bounces.

Conclusions and Future Work

Bi-scale decomposition of radiance transfer provides global

transport effects, ignored by local (BTF) methods, at spatial
sampling densities impractical for PRT. Fully general light and
view change is supported at interactive rendering rates. Though it
limits rendering to distant, low-frequency illumination, our use of
the spherical harmonic basis eliminates aliasing artifacts for
dynamic lighting and provides soft shadows cheaply.

In future work, we are interested in improved filtering over the
RTTs spatial index. Rendering into textures which can then be
filtered spatially before mapping onto an object may help. We are
also interested in more rigorous sampling of transfer fields that
guarantee all “interesting” shadowed areas can be captured with-
out wasteful oversampling.

Acknowledgments
We thank Dan Ling for suggesting this project, David Thiel for
editing the video, and Jingdan Zhang for help on BTF synthesis.

References
ASHIKHMIN, M, AND SHIRLEY, P, Steerable Illumination Textures, ACM

Transactions on Graphics, 2(3), 2002.
DANA, K, VAN GINNEKEN, B, NAYAR, S, AND KOENDERINK, J, Reflectance

and Texture of Real World Surfaces, ACM Transactions on Graphics,
1999, 18(1):1–34.

DAUBERT, K, LENSCH, H, HEIDRICH, W, SEIDEL, H, Efficient Cloth
Modeling and Rendering, EG Rendering Workshop 2001.

HEIDRICH, W, DAUBERT, K, KAUTZ, J, AND SEIDEL, H, Illuminating Micro
Geometry based on Precomputed Visibility, SIGGRAPH 2000, 455-464.

KAJIYA, J, Anisotropic Reflection Models, SIGGRAPH 1985, 15-21.
KAUTZ, J, SLOAN, P, AND SNYDER J, Fast, Arbitrary BRDF Shading for

Low-Frequency Lighting Using Spherical Harmonics, Eurographics
Workshop on Rendering 2002, 291-296.

LIU, X, YU, Y, AND SHUM, H, Synthesizing Bidirectional Texture Func-
tions for Real-World Surfaces, SIGGRAPH 2001, 97–106.

LIU, X, HU, Y, ZHANG, J, TONG, X, GUO, B, AND SHUM, H, Synthesis and
Rendering of Bidirectional Texture Functions on Arbitrary Surfaces,
submitted for publication to IEEE TVCG, Nov, 2002.

MALZBENDER, T, GELB, D, AND WOLTERS, H, Polynomial Texture Maps,
SIGGRAPH 2001, 519-528.

MCALLISTER, D, LASTRA, A, AND HEIDRICH, W, Efficient Rendering of
Spatial Bi-directional Reflectance Distribution Functions, Graphics
Hardware 2002.

MOUNT, D, ANN Programming Manual, Dept. Comp. Sci., Univ. of
Maryland, College Park, Maryland, 1998. http://www.cs.umd.edu/
~mount/ANN/

SANDER, P, SNYDER, J, GORTLER, S, AND HOPPE, H, Texture Mapping
Progressive Meshes, SIGGRAPH 2001, 409-416.

SHIRLEY, P, AND CHIU, K, A Low Distortion Map between Disk and
Square, Journal of Graphics Tools, vol. 2, no. 3, 1997, 45–52.

SLOAN, P., KAUTZ, J, AND SNYDER J, Precomputed Radiance Transfer for
Real-Time Rendering in Dynamic, Low-Frequency Lighting Environ-
ments, SIGGRAPH 2002, 527-536.

TONG, X, ZHANG, J, LIU, L, WANG, X, GUO, B, AND SHUM, H, Synthesis of
Bidirectional Texture Functions on Arbitrary Surfaces, SIGGRAPH
2002, 665-672.

TURK, G, Texture Synthesis on Surfaces, SIGGRAPH 2001, 347-354.

No PRT Shadows Shadows/Interreflections

Figure 3: Rock model with three types of PRT transport.

Siggraph 2003 paper: papers_0260, page 6 of 6

(a) Light 1, 0° (b) Light 1, 110° (c) Light 2, 0° (d) Light 2, 110° (e) Lighting environment

Figure 4: RTT mapped to a square, two different views (rows) × 5 different lights (columns).

bin plaster holes stucco weave

Figure 5: Different RTTs mapped to the same bunny.

(a) No PRT (b) PRT (c) Masking off (d) Masking on

Figure 6: Bi-scale Rendering Effects. The rows are different models in different lighting environments. Columns (a) and (b) compare results with/without
macro-scale transport (PRT). Columns (c) and (d) compare results using a zoomed in view with/without view-dependence (masking) in the RTT.

