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Abstract 
Radiance transfer represents how generic source lighting is 
shadowed and scattered by an object to produce view-dependent 
appearance.  We generalize by rendering transfer at two scales.  A 
macro-scale is coarsely sampled over an object’s surface, provid-
ing global effects like shadows cast from an arm onto a body. A 
meso-scale is finely sampled over a small patch to provide local 
texture.  Low-order (25D) spherical harmonics represent low-
frequency lighting dependence for both scales.  To render, a 
coefficient vector representing distant source lighting is first 
transformed at the macro-scale by a matrix at each vertex of a 
coarse mesh.  The resulting vectors represent a spatially-varying 
hemisphere of lighting incident to the meso-scale.   A 4D func-
tion, called a radiance transfer texture (RTT), then specifies the 
surface’s meso-scale response to each lighting basis component, 
as a function of a spatial index and a view direction.  Finally, a 
25D dot product of the macro-scale result vector with the vector 
looked up from the RTT performs the correct shading integral.  
We use an id map to place RTT samples from a small patch over 
the entire object; only two scalars are specified at high spatial 
resolution.  Results show that bi-scale decomposition makes 
preprocessing practical and efficiently renders self-shadowing and 
interreflection effects from dynamic, low-frequency light sources 
at both scales.    
Keywords: Graphics Hardware, Illumination, Monte Carlo Techniques, 
Rendering, Shadow Algorithms. 

1. Introduction 
Perhaps the greatest challenge in computer graphics is to model 
the interaction of light and matter at all relevant scales, from 
macro-level occlusion and interreflection between large objects 
down to micro-level quantum and diffraction effects.  For effi-
ciency, these scales are traditionally decomposed into geometry, 
texture, and lighting models [Kajiya 1985].   While this decompo-
sition accelerates both Monte Carlo simulation and real-time 
hardware rendering, a gap in quality remains between the two.    

To bridge this gap, recent work precomputes global transport 
effects in a way that can be exploited by fast graphics hardware.  
The idea is to tabulate over an object or small patch how source 
illumination is shadowed and scattered back to the viewer, in 
other words, radiance transfer as a function of spatial location 
and view.  The result can then be quickly rendered from any 
viewpoint in a variety of lighting conditions.  Current techniques 
precompute only at a single scale, and so are limited either to 
coarse [Sloan et al. 2002] or fine [Ashikhmin et al. 2002; Heidrich 
et al. 2000; Liu et al. 2001; Tong et al. 2002] effects. 

Our approach instead models radiance transfer at two scales. A 
macro-scale encompasses coarse, geometry-dependent self-

shadowing and interreflection effects such as shadows from a 
bunny’s ears onto its back.  A meso-scale models finer but still 
macroscopic structure such as snake scales or stuccowork.   The 
first scale is precomputed over a given geometric object, via 
precomputed radiance transfer (PRT) [Sloan et al. 2002].  PRT 
stores a transfer matrix at each mesh vertex p that converts source 
illumination into transferred incident illumination, and so ac-
counts for the object’s global shadowing and interreflection onto 
itself. The second scale is precomputed over a small patch to 
obtain a 4D radiance transfer texture (RTT) which is mapped 
over an object using texture synthesis, as in [Liu et al. 2002].  At 
run-time, the transfer matrix at each p is first applied to a source 
lighting vector to produce transferred radiance at the macro-scale.  
The resulting vector is then dotted with a vector looked up from 
the RTT, indexed by a spatial location and view direction, to 
produce the final shade at p.  The result provides view- and light-
dependent global illumination effects at both scales. 

Bi-scale decomposition has a number of advantages.  It samples 
each scale at the proper rate.  In our experiments, the meso-scale 
is sampled over the surface roughly two orders of magnitude more 
highly than the macro-scale.  Decomposition makes the precom-
putation practical, since global transport simulation at meso-scale 
sampling rates requires enormous computation and storage.  It 
also accelerates run-time performance by performing expensive 
macro-scale computations at coarser sampling rates and retrieving 
meso-scale results from a small texture.  Finally, it allows librar-
ies of meso-textures (e.g., fabric weaves, animal skins, or wall 
surfaces) to be applied to different geometries.   

PRT and RTTs both parameterize appearance by source lighting.  
Unlike previous fine-scale approaches, they use a low-order 
spherical harmonic (SH) basis rather than a directional basis.  This 
allows effects like soft-shadows otherwise prohibited by the cost 
of integrating over many lighting directions.  It also avoids alias-
ing when light sources move.  Rendering is accurate if the lighting 
and BRDF are low-frequency.  The technique thus forms a coun-
terpart to traditional methods handling small (point) light sources. 

Our main contribution is to simulate and render radiance transfer 
at both a coarse and fine scale.  Our RTTs differ from bidirec-
tional texture functions (BTFs) [Dana et al. 1999;Liu et al. 2002; 
Tong et al. 2002] by using an SH basis for lights.  We also evalu-

 
(a) BTF (meso-scale) (b) PRT (macro-scale) (c) Bi-Scale 

Figure 1:  BTFs (a) capture local effects like shading/shadowing over small 
dents.  PRT (b) captures global effects like the bird’s tail shadow, but is only 
practical at a coarse scale.  Bi-scale rendering (c) combines coarse- and fine-
scale global illumination effects for rendering on graphics hardware.   
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ate the RTT using an id map to better leverage texture mapping.  
We generalize PRT [Sloan et al. 2002; Kautz et al. 2002] by 
composing its result with a general RTT rather than a BRDF.  
This produces images where fine features shadow and mask each 
other in a complex, spatially varying way without neglecting 
large-scale effects on a particular object, as shown in Figure 1. 

2. Related Work 
Local Effects:  We first discuss methods for representing texture 
effects, but ignoring global transport.  The most general of these is 
the 6D bidirectional texture function (BTF), which encapsulates 
appearance that varies spatially and with light and view direction.  
It was first introduced by [Dana et al. 1999] for  modeling meso-
structure of real-world surfaces.   

A densely sampled 6D BTF is too expensive to acquire or use for 
fast image generation, prompting many to resort to lower dimen-
sional alternatives.  Polynomial texture maps (PTMs) 
[Malzbender et al. 2001] lower dimensionality to 4D by storing 
coefficients of a bi-quadratic polynomial per texel.  This can 
model surface appearance under varying lighting directions, but 
then must neglect view-dependent effects such as masking, 
foreshortening (parallax), and non-diffuse reflectance.  Ashikhmin 
et al. [2002] also ignore view-dependence but use a steerable basis 
for directional lights that allows smoother lighting rotation.  By 
precomputing visibility inside a height field and repeatedly tiling 
it onto a base geometry, Heidrich et al. [2000] simulate the local 
effects of self shadowing and indirect illumination. 

Starting with a sparsely-sampled BTF, a denser sampling can be 
generated by recovering height fields and applying texture synthe-
sis techniques [Liu et al. 2001].  Novel BTF textures can also be 
generated from synthetic height fields.  These ideas are extended 
in [Tong et al. 2002] to generate BTFs and map them over arbi-
trary surfaces.   BTF indices are synthesized as a per-vertex signal 
over a fine-scale mesh, whereas we use an id map to completely 
decouple the textured signal from the geometry. 

Other methods have been developed to represent fully 6D BTFs 
for rendering on graphics hardware.  Daubert et al. [2001] ap-
proximate a BTF using a product of a spatially-varying function 
of view times a spatially-varying set of parameters to a simple 
lighting model.  Liu et al. [2002] factor 6D BTFs on arbitrary 
surfaces into a 4D point appearance function multiplied by a 2D 
spatial modulation function.  As does ours, this approach param-
eterizes the surface but to create the spatial modulation function 
rather than an id map (see Section 3). 

Spatially-varying BRDFs used for interactive performance typi-
cally represent reflectance change over a smooth surface rather 
than view- and light-dependent effects from texture with “depth”.  
McCallister et al. [2002] is an example, but unlike other methods 
discussed so far, it handles general lighting by prefiltering envi-
ronment maps to avoid on-the-fly light integration.   

Global Effects:  PRT [Sloan et al. 2002] captures shadowing and 
interreflection of an object onto itself.   Fast, hardware-accelerated 
rendering is performed for objects that are diffuse or isotropically 
glossy (but not highly specular), illuminated by low-frequency 
lighting that can be changed on-the-fly.  Much related work, 
including previous use of the SH basis in computer graphics and 
other techniques for representing precomputed appearance, is 
described in that reference.  [Kautz et al. 2002] generalizes the 
idea to surfaces with arbitrary, including anisotropic, BRDFs, and 
also demonstrated 1D spatial variation of a single BRDF parame-
ter using a 3D texture map.  This paper further generalizes PRT 

by incorporating a general 4D RTT capturing meso-scale effects 
mapped over the object. 

3. Bi-Scale Transfer Representation 
We begin by showing how our bi-scale representation both 
combines and decouples coarse (PRT) and fine (BTF) transfer 
methods of previous work.  In the following, subscript p denotes 
that the subscripted variable spatially varies over a surface by 
sampling at the vertices p of a coarse mesh.  up is a 2D texture 
coordinate and vp the unit-length view vector at each vertex p.  
Capital letters denote matrices or large vectors; small letters 
denote scalars or small (2D or 3D) vectors.  Function calls repre-
sent texturing where coarsely-sampled inputs are linearly 
interpolated between mesh vertices but the function is evaluated 
per image sample.  

Macro-scale (PRT) transfer models exiting radiance as  
 B(vp) · (Mp L) (1) 
where L is an n-vector resulting from projecting source lighting 
into the SH basis, Mp is a n×n transfer matrix, and B is a 2D 
function producing an n-vector and represents the BRDF.  Given a 
source lighting function l(s) over the sphere s S∈  (i.e., an envi-
ronment map around the object), L is computed from a spherical 
integral yielding the approximation 
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where yi(s) is the i-th SH basis function.  If the lighting is low-
frequency, a good approximation is obtained using a fifth order 
SH projection having n=25 basis functions [Sloan et al. 2002]. 

The right vector in (1), Mp L, is formed by transforming the 
lighting vector through the transfer matrix and produces incident 
radiance at p including self-shadowing and interreflection effects.  
Mp includes a rotation of the lighting from a global coordinate 
frame into a local frame aligned to the normal and tangent direc-
tions at p [Kautz et al. 2002].  The left vector, B(vp), represents the 
shading response in the view direction vp given incident lighting 
expressed in the SH basis and in the local frame.  Dotting these 
vectors integrates lighting times response over the hemisphere, 
yielding exiting radiance in the direction vp [Sloan et al. 2002]. 

Though PRT captures global effects, recording it at meso-scale 
sampling rates is impractical.  Transfer matrices were computed at 
a few tens of thousands of samples (vertices) in [Sloan et al. 
2002].  At meso-scale sampling rates (~millions of samples over a 
surface), the Monte Carlo simulation would take hundreds of CPU 
hours for a single object.  Real-time rendering would also be 
impossible because of the storage (25×25 matrix at millions of 
vertices) and computation needed (matrix/vector multiply at each 
vertex).   

Meso-scale (BTF) rendering represents transfer from directional 
light sources. A 6D BTF models exiting radiance as b(up,vp,d) 
where d is the light direction.  For real-time rendering, this is 
approximated in [Liu et al. 2002] using a singular value decompo-
sition as 
 ( , ) ( )p pB v d M ui  (3) 

where B and M are vectors having 6-12 component colors (18-36 
total channels).  More channels increase approximation accuracy. 

This representation easily handles lighting from a single lighting 
direction d.  For large lights, B must be repeatedly evaluated and 
summed over many directions, becoming impractical for real-time 
rendering.  Spatial modulation via M occurs only at one scale.  
Though the model is based on a small texture patch which was 
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then synthesized onto an object, recording texture synthesis 
results still requires a very high-resolution texture map M. 

Bi-scale rendering combines effects at both scales via 
 B(q(up),vp) · (Mp L) (4) 
B, Mp, and L are defined as for PRT (Formula (1)), but now B is a 
4D function (radiance transfer texture) which allows spatial 
variation as well as view-dependence, as in a BTF.  This model 
first performs coarse shadowing and interreflection via the light-
ing transformation Mp L, and uses the resulting vector as lighting 
incident on the meso-scale, represented by B.  As shown in the 
figure below, this is not just scalar modulation of two separately 
shaded results from the two scales; the macro-scale produces a 
spatially-varying radiance function over the entire hemisphere 
illuminating the meso-scale. 

The RTT B specifies the 
meso-scale appearance 
of a small patch. Its i-th 
output channel,  Bi(u,v), 
encodes the response at 
location u in the direc-
tion v to incident 
lighting expressed using 
the i-th lighting basis 
function.  Unlike a 
directional lighting 

basis, using the SH basis for lighting effectively pre-integrates the 
lighting response over large, smooth sources.  The other novel 
aspect of  this decomposition is the use of q(up), the id map from 
which B’s spatial index is looked up.  The id map allows us to 
place B’s samples within triangles of a coarse mesh in a fully 
general way, via precomputed texture synthesis (Section 4.3).  
Because spatial variation in B is tabulated using relatively few 
(64×64 or 128×128) samples, each of which is a 25D function of 
the view vector vp, it becomes practical for graphics hardware to 
accelerate rendering using dependent textures. This is much more 
efficient than rendering a finely-sampled mesh [Tong et al. 2002].     

Spatial variation in the bi-scale model occurs in two places: at a 
coarse scale in Mp, and at a fine scale via B’s spatial index q(up). 
The id map, q, contains only two output channels (two coordi-
nates indexing the RTT).  This should be compared to the 36 
channels of the meso-scale map M from Formula (3), since both q 
and M are specified at high (meso-scale) spatial resolution.   
Moreover it is unclear how to extend M to include macro-scale 
effects, but it is likely even more channels would be required.   

4. Precomputing Bi-Scale Radiance Transfer 

4.1 Precomputing Macro-Scale Transfer Matrices 
We precompute transfer matrices at each mesh vertex, using the 
Monte Carlo simulation described in [Sloan et al. 2002].   Essen-
tially, this illuminates the geometry with source lighting at infinity 
represented using each of the SH basis function, and gathers the 
resulting transferred radiance.  The resulting transfer matrices 
capture self-shadowing and self-interreflection but interreflections 
are only correct for lighting at infinity. 

4.2 Building the RTT 
Each spatial sample of the RTT linearly transforms source illumi-
nation into view-dependent exiting radiance. The spatial variation 
of this transformation is tabulated over a small patch.  We use a 
low-order SH basis for lighting, yielding n=25 output channels for 
each view direction and spatial location.  Results are shown in 
Figure 4, where the weave RTT is mapped to a simple square and 
rendered at two different viewpoints and 5 different lighting 

conditions.   Note how the patch responds to area lighting and 
exhibits view-dependent appearance effects. 

We generate B by rendering a small patch and recording images 
over a sampling of views and lighting directions.  Theoretically, 
each channel Bi(up,vp) can be obtained by illuminating the geome-
try using the SH basis function yi(s) as a light source (noting that 
this is a nonphysical emitter of both positive and negative light).  
We compute B by rendering using a number of directional light 
sources, lk=(θk,φk), k=1,2,…,nlights, sampling the hemisphere at 8 
polar and 16 azimuthal directions.  For a given view direction vp, 
each Bi is then obtained by a weighted combination of the result-
ing nlights=8×16 images, Ik,vp(up).  Each weight is the product of 
an SH basis function, yi(lk), times the solid angle, da(lk), evaluated 
at the direction sample lk, yielding 

 ,1
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To produce the images Ik,vp, we 2×2 supersample across the 2D 
spatial parameter up and decimate using a box filter. 

We assume that the patch’s depth variation is much smaller than 
its tangential extent.  Thick meso-structure requires a dense 
sampling of view directions that is impractical for hardware 
rendering.  Given a thin patch, we sample images along a plane 
midway between the patch’s depth extent, using conventional 
global illumination algorithms to generate the images for various 
viewing (vp) and lighting (lk) directions.  For each view direction 
vp, we directly trace rays passing through the sampling points on 
this sampling plane, in the direction vp. 

Patch geometry can be modeled as a height field [Liu et al. 2001].  
Color textures can be applied to produce more vivid effects.  The 
height field images for the “holes” and “bin” samples (Figure 5) 
were created by an image editing tool; the “stucco” wall sample 
used a 2D random process.   Fully 3D models can also be used: 
the “weave” example consists of interleaved, deformed cylinders.  

RTTs can also be acquired rather than generated from synthetic 
geometry.  The RTT sample “plaster” (shown in Figure 5) was 
constructed from an example in the CUReT BTF database [Dana 
et al. 1999]. Because BTF samples in the CUReT data are sparse, 
a denser sampling was generated using the technique of [Liu et al. 
2001].  Then the interpolated BTF data was converted to an RTT 
via Equation (5). 

4.3 Generating the RTT ID Map 
The RTT id map q(up) maps meso-structure samples onto the 
macro geometry/surface. We generate the id map in three steps: 
(1) synthesize meso-scale texture over the 3D surface, (2) param-
eterize the surface, and create a 2D map of its geometry, (3) for 
each point in this 2D geometry map, find its RTT id from (1). 

Synthesizing Meso-Scale Texture over the Surface  straight-
forwardly applies the BTF synthesis algorithm in [Tong et al. 
2002] to the surface. We first retile the surface into a dense mesh, 
called a meso-mesh. Its number of vertices (960k in our examples) 
is comparable to the number of samples in typical textures to 
allow a high frequency mapping.  A texture synthesis algorithm 
[Turk 2001] is then invoked to synthesize a BTF spatial index at 
each meso-mesh vertex. Recall that the RTT is derived from the 
BTF by projecting its directional lighting samples to the SH basis 
via numerical integration (Equation (5)).  Since both maps repre-
sent appearance of the same patch (only the lighting basis 
changes), the spatial index of the BTF can be used on the RTT.  

To use graphics hardware efficiently, we parameterize the surface 
to convert the finely-sampled, per-vertex signal on this meso-
mesh into a 2D texture.  
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Parameterizing the Surface  is done in three steps. The first step 
partitions the mesh into charts, the second parameterizes each 
chart, and the third packs charts together into a single atlas.   A 
very similar technique is used in [Liu et al. 2002] to create the 
modulation map M from Formula (3);  we use it here to texture 
RTT indices. 

To create charts, we manually choose cutting paths using a simple 
UI (see example in Figure 2a).  A user-specified number of 3D 
points along each chart’s boundary are chosen as corner points, pi, 
which map to 2D vertices of the chart’s parameterization polygon, 
vi.  Initially these points uniformly subdivide the length of the 
chart’s boundary, but they can be modified by the user. 

We parameterize each chart into a convex, 2D polygon whose 
vertices vi lie on a circle, and where distance between consecutive 
vertices ||vi - vi+1|| is proportional to path length of the chart 
boundary between pi and pi+1.    The interior of each chart is 
parameterized using the method of [Sander et al. 2001].  

Automatic chart packing is a hard problem, so we do it manually. 
A packing example is shown in Figure 2(b). 

Packed patches should not touch; if they do, bilinear reconstruc-
tion during rendering blends between charts that aren’t neighbors 
on the mesh.  We therefore reserve a one texel space around each 
texture polygon and dilate the texture to this “gutter” space. 

Constructing the ID Map  begins by rendering the 3D surface 
point and normal into each texel of the id map by scan converting 
the mesh triangles into texture space.  That is equivalent to creat-
ing a map of the surface geometry including normal.  

For each id map texel, we use “normal shooting” [Sander et al. 
2001] to find its closest meso-mesh vertex.  Given a texel with 
location P and normal N, we compute this by first finding the k 
vertices nearest to P in the meso-mesh as candidates. We select 
one of these by comparing distances of each candidate to the line 
through P along N.  This nearest candidates’s RTT location (i.e., 

the 2D coordinate of its associated RTT sample) is recorded into 
the id map. The ANN tool [Mount 1998] accelerates the k-nearest-
neighbor query.  We use k=20, to allow at least a 2-ring of 
neighboring vertices assuming an average vertex degree of 6. 

We use id map resolutions of 2048×2048.  A visualization of the 
id map, in texture space and mapped onto the 3D model, appears 
in Figure 2c-d.  This is the synthesis result for the “weave” RTT 
appearing in Figure 5. 

5. Rendering with Bi-Scale Radiance Transfer 
Lighting:  The source lighting vector L can be computed in 
various ways [Sloan et al. 2002].  We can dynamically rotate a 
predefined environment to simulate rigid rotations of the object.  
Graphics hardware can be used to sample radiance near the object 
which is then SH-projected via Equation (2).  Simple light sources 
like circles can be analytically projected.   

Shading:  We compute the per-vertex matrix/vector multiplica-
tion  Mp L on the CPU since the matrix Mp is too large to be 
manipulated by a vertex shader.  The 25D result, representing 
radiance incident on the meso-scale, is interpolated over triangles 
by the rasterization hardware.  The id map and RTT are accessed 
using dependent texture mapping, producing another 25D vector 
B(q(up),vp). The two resulting vectors are dotted in a pixel shader. 

Accessing the RTT: B is a 4D texture sampled using 64×64 
spatial samples (up), and 8×8 view samples (vp).  The view sam-
ples are parameterized over a hemisphere using an area preserving 
map from the unit square to the hemisphere [Shirley et al. 1997]. 

B’s samples are organized as a 2D texture of 8×8 view blocks.  
Contiguous view samples allows texture mapping hardware to 
perform smoother (bilinear) interpolation across views.  Interpola-
tion over spatial samples is prohibited, but the RTT is spatially 
smooth enough to produce good results using nearest-neighbor 
sampling.  Image supersampling improves results. 

Surfaces defined parametrically 
already have a mapping (i.e., a up 
at each vertex) which can be used 
directly rather than as an index to 
an id map. This allows only 
continuous replication of the 
texture square over the surface 
and typically causes stretching 
and shrinking on curved objects.  
The figure on the left shows a 

parametric vase example with a trivially mapped “flower” RTT.  

Diffuse Special Case:  Assuming the local surface is diffuse and 
neglecting local masking effects, we can eliminate B’s depend-
ence on vp.  This greatly reduces texture memory and bandwidth, 
and allows higher spatial sampling.  Dynamic shadowing and 
interreflection effects are retained; but shading is constant regard-
less of view.   Even though the local surface is diffuse, we still 
need a transfer matrix at each point rather than a transfer vector to 
allow local shadowing and interreflection effects from the RTT.  

6. Results 
View-dependent effects of bi-scale rendering can be judged in 
Figure 4 and Figure 6.  The RTT mapped to a simple square in 
Figure 4 changes appearance as the view changes (top row vs. 
bottom).  We can see structure visible underneath the weave in the 
oblique view that’s invisible in the head-on view.  These effects 
are even more striking when the RTT is mapped onto a 3D object 
(Figure 6c-d).  We modified our viewer to optionally switch off 
view-dependence by accessing only the “center” view sample of 

 
(a) charts on 3D model (b) parameterized chart atlas  

 

(c) id map in texture space (d) id map on 3D model 

Figure 2: Surface Parameterization and ID Map Generation.  The 
two id map channels are mapped to red and green in (c) and (d).  

trivial id map  Mapped “flower” 
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the RTT rather than indexing via the actual view direction.  Note 
how the weave texture changes appearance with view angle 
around the body of the bird in (d), but appears pasted on in (c). 

Figure 4a-d shows how the RTT responds to light sources of 
various sizes and directions. The (a) and (c) columns use the 
smallest (highest frequency) light source representable by our 
n=25 SH basis.  The (b) and (d) columns illuminate from the same 
directions but use a bigger light source (analytic circle subtending 
a 110° angle).  Shadows are softened, as if the RTT were illumi-
nated on a cloudy day.  The rightmost column uses a spherical 
lighting environment (“grove”) acquired from high dynamic range 
imagery, providing a realistic appearance.    

Figure 1 and Figure 6a-b show how macro-scale transport im-
proves image realism.  Without macro-scale shadowing, models 
exhibit a “glowing” appearance revealing their synthetic nature 
(Figure 1a, Figure 6a).  PRT fixes these problems (Figure 1c, 
Figure 6b) making the illusion more complete.  Figure 3 shows a 
similar example using a rock model.  This figure compares results 
with no global transport (a), shadowing transport (b), and 
interreflection+shadowing transport (c).   

Our rendering method allows fast manipulation of the view or 
lighting with proper shadowing and interreflection effects at both 
scales. We achieve a frame rate of ~14.5Hz for the 
bird/bunny/rock models with the weave/bin/stucco RTT, render-
ing to a 512×512 screen window.  The macro-scale of the bunny, 
bird, and rock models was represented using a 25×25 PRT trans-
fer matrix at each of ~10,800 vertices.  View-dependent RTTs 
(weave, holes, bin) are sampled at 64×64×8×8 while “diffuse” 
RTTS (plaster, stucco, flower) are sampled at 128×128.  Id maps 
were sampled at 2048×2048.   The vase model renders at 35.3Hz 
with a transfer matrix at each of 4453 vertices.  Timings were 
conducted on a 2.2Ghz Pentium IV with ATI Radeon 9700. 

Addressing preprocessing costs, meso-structure ray tracing to 
build the RTT (Section 4.2) requires 0.7-3.0 seconds per image. It 
is proportional to the meso-mesh complexity, patch size (64×64), 
and supersampling rate (2×2).  8×16×8×8 total images are ray 
traced over light and view direction.  Conversion of the direc-
tional lighting basis to the SH basis is fast: about 5-10 minutes.  
Texton extraction (which precomputes distances between BTF 
sample pairs for synthesis) ranges from 1-3 hours and is propor-
tional to the patch’s spatial size.  Texture synthesis requires about 
4 hours, longer than that reported in [Tong et al. 2002] since we 
use a larger searching window and a denser meso-mesh. Total 
time to create the bunny+weave samples was about 8 hours. PRT 
simulation (Section 4.1) takes about 8 minutes (at ~10k vertices) 
for shadowed transport and about 17 minutes for the rock example 
where we simulated three further light bounces.   

Conclusions and Future Work 

Bi-scale decomposition of radiance transfer provides global 

transport effects, ignored by local (BTF) methods, at spatial 
sampling densities impractical for PRT.  Fully general light and 
view change is supported at interactive rendering rates.  Though it 
limits rendering to distant, low-frequency illumination, our use of 
the spherical harmonic basis eliminates aliasing artifacts for 
dynamic lighting and provides soft shadows cheaply.   

In future work, we are interested in improved filtering over the 
RTTs spatial index.   Rendering into textures which can then be 
filtered spatially before mapping onto an object may help.  We are 
also interested in more rigorous sampling of transfer fields that 
guarantee all “interesting” shadowed areas can be captured with-
out wasteful oversampling.  
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No PRT Shadows Shadows/Interreflections 

Figure 3: Rock model with three types of PRT transport. 
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(a) Light 1, 0° (b) Light 1, 110° (c) Light 2, 0° (d) Light 2, 110° (e) Lighting environment 

Figure 4: RTT mapped to a square, two different views (rows) × 5 different lights (columns). 
 

bin plaster holes stucco weave 

Figure 5: Different RTTs mapped to the same bunny.  
 

  

  
(a) No PRT (b) PRT (c) Masking off (d) Masking on 

Figure 6: Bi-scale Rendering Effects.  The rows are different models in different lighting environments.   Columns (a) and (b) compare results with/without 
macro-scale transport (PRT).  Columns (c) and (d) compare results using a zoomed in view with/without view-dependence (masking) in the RTT. 

 


