
Authentication primitives and their compilation

Mart́ın Abadi∗

Bell Labs Research
Lucent Technologies

Cédric Fournet
Microsoft Research

Georges Gonthier†

INRIA Rocquencourt

Abstract

Adopting a programming-language perspective, we study
the problem of implementing authentication in a distributed
system. We define a process calculus with constructs for au-
thentication and show how this calculus can be translated to
a lower-level language using marshaling, multiplexing, and
cryptographic protocols. Authentication serves for identity-
based security in the source language and enables simpli-
fications in the translation. We reason about correctness
relying on the concepts of observational equivalence and full
abstraction.

1 Authenticity from a programming-language perspective

Establishing the origins and the destinations of messages is
a common problem in distributed systems. When security
matters, the solutions to the problem rely on sophisticated
mechanisms such as authentication protocols, digital signa-
tures, and encryption [25]. From the perspective of pro-
gramming languages [28], we may rephrase the problem and
its solutions in the following general terms:

• First, we have a language with a primitive notion of
principal and related operations. A principal may rep-
resent a location (e.g., an IP address) or an entity that
owns that location (e.g., a user). A typical operation
may enable the recipient of a message to determine the
origin of the message.

• A compiler implements those primitives by mapping
them to security mechanisms. For example, principals
of a source program may be associated with crypto-
graphic keys in the corresponding target program.

• The output of the compiler is lower-level code, writ-
ten in a lower-level vocabulary that permits expressing

∗Part of this work was done at Compaq’s Systems Research Center.
†Partly supported by ESPRIT CONFER-2 WG-21836 and by

RNRT project MARVEL 98S0347.

To appear in the Proceedings of the 27th ACM Sym-
posium on Principles of Programming Languages (Jan-
uary 2000), pages 302–315. This version includes minor
corrections in Figure 7.

or at least invoking cryptographic algorithms and pro-
tocols. The lower-level code may be harder to under-
stand, but closer to an executable distributed imple-
mentation since it does not rely on high-level authen-
tication primitives.

• Attackers may write high-level code and compile it to
low-level code, or may write low-level code directly.

This perspective brings to bear ideas and methods from
programming languages on security issues. Some of these
issues are mundane but important. For example, current
descriptions of security mechanisms are often imprecise and
confusing; notations from programming languages should
help (e.g., [24]). Other issues, like the correctness of au-
thentication protocols, are notoriously subtle and challeng-
ing. When we view authentication protocols in context, as
part of the output of a compiler, we have an opportunity to
shed some new light on their correctness. We demonstrate
such advantages of the programming-language perspective
in this paper.

We define a distributed process calculus with principals
and related operations, show how this calculus can be com-
piled into another calculus with cryptographic operations,
and study the properties of the compilation method. Thus,
we build on recent work on the secure implementation of
channel abstractions [2, 3]. The main contribution of this
paper is the treatment of authentication, which has at least
two benefits. First, high-level programs can use principal
identities for security, for example in access-control lists.
The second benefit is more surprising: the treatment of prin-
cipal identities allows a lighter, cheaper implementation, as
explained below.

Overview

As source language, we adopt a variant of the join-calculus
[15, 14]. In addition to constructs for channel definitions,
parallel composition, and conditionals, which are part of
the core join-calculus, this variant also includes a syntactic
category of principals and the following process forms:

• x〈a : v2, . . . , vn〉 is an authenticated message on chan-
nel x, with origin a and contents v2, . . . , vn. (As in
secure network objects [33], the first argument of every
authenticated message conveys the emitter; we write
a : v2, . . . , vn instead of a, v2, . . . , vn in order to stress
this convention.)

• let a = prin(x) in P determines the identity a of the
unique destination of channel x, then executes the pro-
cess P .

• a[P] represents the principal a executing the process P .

As target language, we adopt another variant of the join-
calculus, without principals but with constructs for cryptog-
raphy. In mapping the source language to the target lan-
guage, we associate each principal with a public-key pair.
Naively, we may try the following implementations:

• x〈a : v2, . . . , vn〉 corresponds to a message signed with
a’s signature key.

• let a = prin(x) in P obtains a from a certificate that
associates x with a, signed with a’s signature key.

• a[P] corresponds to P plus some layers of communica-
tions processing with access to a’s keys.

With sufficient care, this sketch can be turned into a precise
translation. In addition, the translation can be optimized,
for example by multiplexing messages of several high-level
channels on a unique low-level location-to-location channel.

We pursue this approach using concepts and techniques
from programming-language theory. In particular, as in our
recent work, our main results are full-abstraction theorems
which say that our translations preserve observational equiv-
alence. Intuitively, these results do not rule out the possibil-
ity of attacks against the programs in the source language,
but they imply that the translations do not enable new at-
tacks [1]. They mean that reasoning about the security of
programs in the source language, which is relatively simple
and clear, applies also to the corresponding programs in the
target language.

Full abstraction can be expensive. In our recent work,
the pursuit of full abstraction led us to implement point-to-
point messages by a combination of broadcasts, public-key
decryption, and filtering, in order to thwart traffic-analysis
attacks. Similarly, it led us to the use of independent keys
for each channel or even for each message in order to allow
the mutual anonymity of emitters and receivers. (In the join-
calculus, which was not originally designed with security in
mind, an emitter need not know whether two channels have
the same destination and a receiver need not know whether
two messages have the same origin. These properties must
be preserved by any fully abstract implementation.)

In this paper, we avoid many of those costs without giv-
ing up full abstraction. We achieve this simplification by a
careful choice of the source calculus, by noticing that cer-
tain inessential observational equivalences do not hold in
the new source calculus because of the presence of identity
information, and by the cautious application of standard
implementation techniques. For example, the presence of
identity information removes the mutual anonymity of emit-
ters and receivers, and enables some reuse of keys. Thus,
although our method remains unimplemented and still re-
quires optimization, we take a substantial step toward a re-
alistic and correct implementation of a process calculus with
secure communication.

The next section introduces our source calculus. Sec-
tion 3 introduces our target calculus and a simple network
model. Section 4 describes the structure of our translations.
This section leaves open the choice of a low-level crypto-
graphic protocol, which is the subject of section 5. Sec-
tion 6 presents our results. Finally, section 7 discusses some

related work and concludes. All proofs and many technical
details are omitted.

2 A calculus with authentication

In this section we describe the variant of the join-calculus
that serves as our high-level language. It has an explicit
model of distribution and of principals. An appendix con-
tains a review of a standard join-calculus, which has been
presented in several previous papers and which is the point
of departure for this section.

2.1 Syntax and semantics

The syntax of our source calculus is given in Figure 1.
A distributed computation is modeled as a configura-

tion, that is, as an assembly of processes. Each process
corresponds to a principal or location (in the sense of the
distributed join-calculus and of other process calculi with
locations, e.g., [12, 31, 6]).

We let A be a countable set of principal names, and
(Na)a∈A be a family of countable, disjoint sets of channel
names indexed by principals. Hence, every channel name
corresponds to one principal. We implicitly rely on a type
system (see the appendix), assume that every set Na con-
tains infinitely many names for each type, and consider only
well-typed processes. We write Principal for the type of prin-
cipal names, and 〈τ1, . . . , τn〉 for the type of a channel that
carries tuples of values with types τ1, . . . , τn.

The grammar for processes is fairly standard. Some of
its constructs have already been discussed in the overview.
In the process defS D in P , the subscript S is the subset
of the names defined in D that is exported to the context.
The scope of the names in S is unrestricted. The scope of
the other names defined in D is restricted to the process P
and to the guarded processes in D. (This use of exported
names and the construct defS D in P come from the open
join-calculus [11].)

Throughout, we consider only processes P that satisfy
the following well-formedness conditions which restrict the
use of exported names:

• If a name is exported by a definition defS D in Q in-
side P , it cannot be exported by any other definition
in P ; names defined by D cannot be exported by any
definition in Q.

• Definitions that appear in subexpressions of P of the
forms J . Q, if u = v then Q else Q′, or let a =
prin(x) in Q do not export any names. (In the termi-
nology of Figure 2, only definitions in evaluation con-
texts may export names.)

We write rv(J) for the formal parameters in J , dv(D) for
the names defined in D, fv(P) for the names free in P , and
xv(P) for the names exported by P . For instance, we have:

xv(P | Q)
def
= xv(P)] xv(Q)

fv(P | Q)
def
= (fv(P) \ xv(Q)) ∪ (fv(Q) \ xv(P))

where S] S′ represents the union of S and S′ plus the
requirement that S and S′ be disjoint sets. We omit the
other scoping rules.

The sets fv(P) and xv(P) are disjoint; they form the in-
terface of P . The interface of a process can evolve during

u, v ::= values
x channel

| a principal

P, Q ::= processes
x〈a : u2, . . . , un〉 authenticated message

| defS D in P local definition
| P | Q parallel composition
| if u = v then P else Q comparison
| let a = prin(x) in P principal extraction
| 0 null process

D ::= definitions
J . P reaction rule

| D ∧ D conjunction

J ::= join patterns
x〈a : u2, . . . , un〉 authenticated message

| J | J synchronization

A, B, C ::= configurations
a[P] running principal

| C \ S restriction
| C ‖ C′ parallel composition

Figure 1: Grammar of the high-level calculus.

Structural equivalence ≡ for processes is the smallest
equivalence such that:

1. P ≡ Q when P is α-convertible to Q

2. ∧ and | are associate-commutative modulo ≡,
with unit 0 for |

3. ≡ is closed by application of evaluation contexts

E(·) ::= (·) | P |E(·) | defS D in E(·)

4. P | defS D in Q ≡ defS D in P | Q
when fv(P) ∩ dv(D) ⊆ S

5. defS D in defS′ D′ in P ≡ defS]S′ D ∧ D′ in P
when fv(D) ∩ dv(D′) ⊆ S′

Reduction → for processes is the smallest relation closed
by application of evaluation contexts such that:

Join defS D in Jσ | Q → defS D in Pσ | Q
when D = J . P or D = J . P ∧ D′

and dom(σ) = rv(J)

Test if u = u then P else Q → P

if u = v then P else Q → Q when u 6= v

Prin let a = prin(x) in P → P{b/a}
when x ∈ Nb

Struct
P ≡ Q Q → Q′ Q′ ≡ P ′

P → P ′

Structural equivalence ≡ for configurations is the smallest
equivalence such that:

1. A ≡ B when A is α-convertible to B

2. ‖ is associative-commutative modulo ≡

3. ≡ is closed by application of configuration contexts

G(·) ::= (·) | A ‖ G(·) | G(·) \ S

4. a[defS D in P] ≡ a[defS∪S′ D in P] \ S′

when S′ ⊆ Na ∩ dv(D) \ S

5. C \ S ‖ b[Q] ≡ (C ‖ b[Q]) \ S

6. (C \ S) \ S′ ≡ C \ S] S′

7.
P ≡ Q

a[P] ≡ a[Q]

Reduction → for configurations is the smallest relation closed
by application of configuration contexts such that:

Local
P → P ′

a[P] → a[P ′]

Comm a[P | x〈c : ev〉] ‖ b[Q] → a[P] ‖ b[Q | x〈a : ev〉]
when x ∈ Nb

Struct
A ≡ A′ A′ → B′ B′ ≡ B

A → B

Figure 2: Operational semantics for processes and configurations in the high-level calculus.

s

�
def{entry,query}

entry〈a : x〉 | open〈s :〉 . won〈s : a, x〉
∧ query〈a : y〉 | won〈s : b, x〉 . y〈s : b, x〉 | won〈s : b, x〉 in open〈s :〉

�
‖ p [let s′ = prin(entry) in if s = s′ then entry〈p : v〉 else 0]

Figure 3: An example.

computation: names in xv(P) can be used for receiving mes-
sages, which may contain additional free names; conversely,
names in fv(P) can be used for sending messages, which may
export additional defined names.

The grammar for configurations describes the parallel
composition of principals. It also has a restriction operator
for names exported by these principals: in the configuration
C \ S, the scope of the names in S is exactly C.

We also adopt well-formedness conditions on configura-
tions:

• Each principal is defined at most once.

• Principal names are never restricted.

• A definition in a principal a may define or export a
name only if the name is in Na.

• In a configuration that defines a principal a, all the
names in Na that appear elsewhere in the configuration
must be exported by a.

• In a configuration that contains a restricted configura-
tion C \ S, all the names in S must be exported by C
and can appear only in C.

These conditions can be lifted to well-formedness conditions
for configuration contexts; when we apply a context we
implicitly assume that the resulting configuration is well-
formed.

The operational semantics of the source calculus is given
in Figure 2, first for processes within a principal, then for
configurations of principals. The rule Local models local
computation steps; these steps may involve the synchroniza-
tion of several messages, but they concern a single principal.
The rule Comm models the transmission of a message. In
it, we write ev for a tuple v2, . . . , vn. Comm overwrites the
first argument of the transported message c : ev with the
true name of the sending principal a. Thus, it offers built-
in, reliable authentication of the message. In addition, the
rule guarantees that the message goes only to the principal
b that exports the channel x (rather than to an attacker),
thus helping with the secrecy of the message. Complemen-
tarily, the rule Prin serves to identify the destination of a
channel.

Thus, the syntax and semantics of the source calculus
contain substantial constraints on the context of a process
and what this context can do. When we view the context
as potentially hostile, these constraints amount to built-in
security properties. In this paper, we are interested in trans-
lations that enforce those properties.

2.2 Examples

As a small example, we show a variant of the contest of a
previous paper [3] with authentication. The contest relies
on a server that creates a channel and exports its name; the
winner is simply the participant whose entry arrives first on

this channel. Using authentication primitives, the partici-
pants and the server can establish each other’s identity.

The first running principal of Figure 3 defines the server
at location s. The second one is a simple participant at lo-
cation p. The names open and won are local to the server.
The message open〈s :〉 represents that the contest is open.
The first message on entry causes it to be closed, with the
sender as winner. Subsequent messages on query return the
identity of the winner and the winning entry on a continu-
ation channel y.

Other principals may run in parallel with these. Some of
them may be legitimate participants in the contest. Others
may be attackers; they may act as participants some of the
time, but they may also attempt to intercept or falsify mes-
sages. We are interested in the properties of our system in
an arbitrary (implicit) context that includes such principals.

Informally, we have the following properties:

• Each entry is accompanied by the identity of its sender,
so the server knows which participant is responsible for
the first entry and should get credit for it.

• The participants can determine the destination of the
channels entry and query, so they can know where their
entries and queries go.

• Each result of a query is accompanied by the identity
of the server, so the participant that receives the result
knows that it is authentic.

It is easy to see that a participant is communicating with
the server if it uses, literally, the names entry and query and
the names of fresh continuation channels. These properties
apply equally in more intricate situations where a partici-
pant uses other channel names (which could be dynamically
instantiated to entry and query) for communicating with
the server.

It is also possible to recast bigger programming examples
in this setting. For instance, imitating the client-server ex-
amples of secure network objects [33], we could define a file
server that identifies its client when it receives a request to
open a file, and returns a handle for a file object that per-
forms no further identity checks; or a terminal server and
a client that identify each other before starting a shell. Of
course, as the examples become more elaborate, they call for
the use of a full programming language with libraries rather
than a small process calculus.

3 A lower-level calculus with cryptography

In this section, we present a slight variant of the sjoin-
calculus [2], which we use as a low-level implementation lan-
guage; it includes primitives for public-key and shared-key
cryptography. As a low-level counterpart of configurations,
we describe a (trivial) public-key infrastructure. We also
introduce a low-level network model.

u, v ::= values
a, b, a+, a−, x, y names

| {u}v encryption : BitString
| (u)v signature : BitString
| τ type representation : BitString
| 0, u + 1 integer representations : BitString
| u.v concatenation : BitString

P, Q ::= processes
x〈u1, . . . , un〉 message

| defS D in P local definition
| if u = v then P else Q comparison
| repl P replication
| decrypt v using v′ to V in P else Q decryption
| check v authenticates v′ using v′′ in P else Q signature verification
| P | P ′ parallel composition
| P \ S restriction
| 0 null process

D ::= definitions
J . P reaction rule

| fresh x fresh name
| key x fresh shared key
| keys x+, x− fresh pair of keys
| D ∧ D′ conjunction

J ::= join patterns
x〈V1, . . . , Vn〉 message pattern

| J | J ′ synchronization

V ::= value patterns
x formal parameter

| V.V decomposition
| ‘v’ quoted value

Figure 4: Grammar of the low-level calculus.

3.1 Syntax and semantics

This calculus is an open variant of the sjoin-calculus with
signatures, with type representations of type BitString, and
with compound BitString values. Its syntax is in Figure 4;
it is constrained by well-formedness conditions on exported
names and on restrictions, as in section 2.1 (e.g., decryp-
tions and signature verifications cannot export names, and
only exported names may be restricted). Its operational
semantics is in Figure 5.

Values of type BitString can be concatenated. We rely on
pattern-matching syntax in join-patterns in order to extract
the parts of the resulting compound values. So we distin-
guish formal parameters x from value patterns ‘v’ in the
grammar for join-patterns, and require that the substitu-
tion used to match a message against a join-pattern should
not affect the value patterns in the join-pattern. Formal pa-
rameters are bound, while value patterns may contain free
variables.

The value {u}v represents the result of encrypting u
using v as encryption key; {u}v, u, and v are all of type
BitString. The process

decrypt v using v′ to V in P else Q

attempts to decrypt v using v′ as decryption key. If the

decryption succeeds and yields the cleartext V σ for some
substitution σ, then Pσ runs. Otherwise, Q runs. The else
branch can be omitted.

Similarly, the value (u)v represents the result of signing
u using v as signature key; (u)v, u, and v are all of type
BitString. The process

check v authenticates v′ using v′′ in P else Q

runs P if v is the result of signing v′ with the inverse of
v′′; otherwise, it runs Q. (This addition of signatures is
convenient but not essential; with some care, signatures can
be identified with encryptions.)

In our translations, we use data structures that can be
coded in this calculus, in particular association tables (assoc
. . ., from [3]). We postpone the specification of association
tables to an appendix.

3.2 Trivial public-key infrastructure

Informally, we assume given a public-key infrastructure that
can reliably deliver the public key and the network address
for every principal name. In our low-level model, we keep
this assumption implicit: we directly use the public key a+

as the name of the principal a and as its network address.

Structural equivalence ≡ for low-level processes is the smallest equivalence such that:

1. P ≡ Q when P is α-convertible to Q

2. ∧ and | are associate-commutative modulo ≡, with unit 0 for |

3. ≡ is closed by application of evaluation contexts E(·) ::= (·) | P |E(·) | E(·) \ S | defS D in E(·)

4. P | defS D in Q ≡ defS D in P | Q when fv(P) ∩ dv(D) ⊆ S

5. defS D in defS′ D′ in P ≡ defS]S′ D ∧ D′ in P when fv(D) ∩ dv(D′) ⊆ S′

6. defS D in P ≡ (defS∪S′ D in P) \ S′ when S′ ⊆ dv(D) \ S

7. P \ S | Q ≡ (P | Q) \ S when fv(Q) ∩ S = ∅

8. (P \ S) \ S′ ≡ P \ (S] S′)

Reduction → for low-level processes is the smallest relation closed by application of evaluation contexts such that:

Join defS D in Jσ → defS D in Pσ when D = J . P or D = J . P ∧ D′ and dom(σ) = rv(J)

Repl repl P → P | repl P

Test if u = u then P else Q → P

if u = v then P else Q → Q when u 6= v

Decrypt defS keys x+, x− in decrypt {V σ}x+ using x− to V in P else P ′ → defS keys x+, x− in Pσ when dom(σ) = rv(V)

defS keys x+, x− in decrypt v using x− to V in P else P ′ → defS keys x+, x− in P ′ when v 6= {V σ}x+ for all σ

Check defS keys x+, x− in check (v)x− authenticates v using x+ in P else P ′ → defS keys x+, x− in P

defS keys x+, x− in check u authenticates v using x+ in P else P ′ → defS keys x+, x− in P ′ when u 6= (v)x−

Struct
P ≡ Q Q → Q′ Q′ ≡ P ′

P → P ′

The semantics of key x is that of keys x+, x− in the case x+ = x− = x.

Figure 5: Operational semantics for the low-level calculus.

(Alternatively, we could maintain a local cache that maps a
to a+ and to a’s address, and have our protocols query the
public-key infrastructure whenever the data is not present
in the cache.)

For each principal a that we translate, we generate a
pair of keys a+, a−. The public key a+ is available to all
principals who refer to a or have free variables belonging to
a, and also to any attacker. On the other hand, the private
key a− is never communicated outside the translation of the
principal, although it may appear as part of the signature
of a message to be verified using a+.

3.3 Encoding of channel names

Next we define the wire format for communicating chan-
nel names. Channel names represent abstract communica-
tion capabilities; to communicate such capabilities, we use
a combination of identifiers and certificates.

For a ∈ A, each channel name x ∈ Na of type τ is
encoded as a compound value of type BitString

[[x]]
def
= a+.bx.(bx.τ)a−

that contains the public key a+ of principal a, a local id bx,
and a certificate that consists of bx and τ signed with a’s
private key a−.

The certificate proves that a says that the channel name
that [[x]] represents really is defined at a with type τ and
was originally exported by a. Thus, it permits a sound im-
plementation of the principal extraction operation. In our
approach, the certificate is checked when [[x]] is received at
a location; but a lazier check would suffice.

Because [[x]] includes this unguessable certificate, the con-
straints on the choice of the local id bx are fairly weak: the
choice must not be correlated in any way with the execution
of a, and bx must be different from by for any other channel y
of type τ exported by a. In particular, we could allow an
attacker to guess bx since the certificate still guarantees the
authenticity of [[x]]. For simplicity, however, we generate a
fresh name for each local id.

3.4 Network model

Our model of the low-level network corresponds to a wide-
area IP network. Messages are idealized packets with an ori-
gin address, a destination address, and some payload data.
These three components are arbitrary BitString values.

We model as a single process the network that intercon-
nects all locations and the presence of hostile locations that
can intercept and emit any message on the network, inde-
pendently of its origin and destination address.

Let A be a finite subset of A. Informally, A contains the

names of honest principals. For every a ∈ A, the low-level
network exports a name senda : 〈BitString, BitString〉 and
imports a name recva : 〈BitString, BitString〉 as its interface
to the implementation of principal a.

An attacker may have access to some certificates, and
may try to use those certificates for impersonating some
principals. Yet, the attacker should not be given direct ac-
cess to the secret keys of the principals. In addition, for
syntactic sanity, the attacker should not export the keys of
a principal a ∈ A or a name x that a exports. These as-
sumptions are the subject of the following definition.

Definition 1 (Restrained process) A process N is re-
strained (with respect to A and X) when it does not export
names a+, a− with a ∈ A or x̂ with x ∈ X, and when names
a− with a ∈ A occur free in N only in values of the form
(bx.τ)a− with x ∈ X ∩Na of type τ .

In addition, we introduce some explicit assumptions on
the behavior of the low-level network. These assumptions
imply that, for example, an attacker cannot permanently
disconnect two honest principals. The attacker can emit and
intercept any number of messages, for all addresses, but it
cannot entirely prevent messages between honest principals
to pass through the network unnoticed, at least from time to
time. Thus, the low-level network should have a persistent
routing property.

Definition 2 (Valid network) The set IP of valid net-
works is the largest set of processes such that N ∈ IP im-
plies:

Routing For all a, b ∈ A and every BitString name m,

N | senda〈b+, m〉 →∗ N | recvb〈a+, m〉

Exports recva 6∈ xv(N) for all a ∈ A (that is, N does not
export any of the names recva).

Closure under reduction If N → N ′, then N ′ ∈ IP.

Closure under parallel composition For all P , if N |
P is well-formed and recva 6∈ xv(P) for all a ∈ A, then
N | P ∈ IP.

Closure under extrusion If N ≡ (N ′ | recva〈u, v〉) \ X,
with X ⊆ fv(u) ∪ fv(v), then N ′ ∈ IP.

For instance, a reliable implementation of the network
could simply perform the multiplexing for all addresses a+

with a ∈ A, as described in the process below.

N
def
= def{senda|a∈A}

^
a,b∈A

senda〈‘b+’, x〉 . recvb〈a+, x〉

in 0

This process N is a valid network. Our results apply to this
particular process, but also to any other valid network.

3.5 Traffic analysis

It is prudent to have some kind of background traffic on the
network in order to protect against trivial traffic-analysis
attacks. As background traffic, we will use messages that
propagate public keys.

It is also prudent to emit every encrypted message just
once, so that traffic observed by an attacker is a flow of

pairwise-disjoint values that are also different from any
value that the attacker may build. Accordingly, we de-
fine some syntactic sugar that helps in preserving message
distinctness; whenever we write a value v containing the
placeholder in a message x〈v〉, this abbreviates a process
def fresh d in x〈v{d/ }〉 for some name d that does not occur
in x〈v〉. Conversely, whenever we write a placeholder in
a pattern, this stands for a variable that does not appear
elsewhere.

4 Translation structure

In this section, we describe a mapping from the high-level
calculus to the low-level calculus. In particular, we show how
to translate a high-level process within a running principal
and how cryptographic protocols can be used for commu-
nication between principals. We also describe filtering and
multiplexing “glue” code. Although we specify the inter-
face for point-to-point communication protocols, we leave
the presentation of actual protocols for the next section.

4.1 Framework

We describe a translation framework for principals with
names in a given, finite set A. The translation of each prin-
cipal does not rely on the translation of any other princi-
pal in A. To translate a configuration that contains prin-
cipals with names in A, we independently map every prin-
cipal a[P] to an implementation running P at a network
address a+ : BitString, and ensure that communication be-
tween principals occurs only through a public network.

Within a given principal, we translate a process compo-
sitionally, by substituting a+ : BitString for a : Principal and
let a+. = tτ (x) in [[P]] for let a = prin(x) in P when x has
type τ . The name tτ will be provided by the context; it gives
access to the table of network representations for exported
or remote channels of type τ .

Our translation of a configuration C is also composi-
tional. It is parameterized by a family (Ba)a∈A of finite sets
of principal names, where A contains at least the names of
all the principals defined in C.

[[a[P]]]
def
= Fa:xv(P)

Ba:fv(P)([[P]])

[[C C′]]
def
= [[C]] | [[C′]]

[[C \ S]]
def
= [[C]] \ bS

The context Fa:X
B:S (·), defined in Figure 7, serves as a wrap-

per (or firewall) that takes care of filtering, multiplexing,
and cryptographic operations; it is explained below.

4.2 The context Fa:X
B:S (·)

Next we detail the stack of filters and protocols that locally
implement communications processing with authentication.
We assume that a is the name of the principal being im-
plemented, and that Σ is a set of channel types that con-
tains all the types of channel names in S ∪ X and that is
closed under decomposition (that is, if 〈τ1, . . . , τn〉 ∈ Σ then
τ1, . . . , τn ∈ Σ ∪ {Principal}).

The context Fa:X
B:S (·) uses mechanisms similar to those

of [3], but it does much more processing (e.g., multiplexing
steps from typed channels to global uids, then to remote
locations). Its overall structure is sketched in Figure 6; its
definition is given in Figure 7, top-down.

Location hosting principal a

high-level process

x1, . . . , xm : τ ∈ Na

y1, . . . , yn : τ ∈
S
Nb

local names??y marshal / unmarshal
x?? for all types

τ ∈ Σ
network representations

tτ t′τ
mτ deliver〈. . . , ‘τ ’. . . .〉

multiplexing on types and remote addresses

deliver〈b+, . . .〉
postb

a

Eb
a

point-to-point
protocols

Rb
a

for all remote
principals b

recvb
a

senda〈b+, . . .〉

multiplexing on remote addresses

recva

senda

Public network (with attacker)

Figure 6: Protocol stack for a’s communications: interfaces.

Typed interface to the source process The upper part of
the context contains tables that record the association be-
tween local channels x and their wire representations [[x]], for
each type τ . For a given set of names S, for every τ ∈ Σ, we
let Sτ be the set of names of type τ in S. The table for type τ
contains representations for all channels in Sτ ∪Xτ . The ta-
bles are accessed bidirectionally. The representation of a
channel x is looked up for output on x, for exporting x, and
for extracting the identity of x’s destination. Conversely, the
channel x associated with a representation [[x]] is looked up
for input on x and for importing x. The tables are extended
with [[x]] when they are queried with a new local channel
name x ∈ Na, and conversely with a new local surrogate
when they are queried with a new representation. The va-
lidity of representations (and of the certificates within) must
always be checked before accessing the tables in order to en-
sure the integrity of the principal extraction operation.

Multiplexing on types and remote addresses Going down,
mτ gathers wire representations for all arguments, and
passes a concatenation of BitString values to the emission
protocol running for the remote address b+. Conversely, on
the way up, deliver extracts a type representation from its
BitString argument, and uses it to drive the unmarshaling
of the channel and of its arguments.

Interface to the point-to-point communication protocol
The local components running at a of a communication pro-
tocol between a and b consist of two independent processes,
one for handling high-level messages from a to b (the emitter,
written Eb

a), and one for handling high-level messages from
b to a (the receiver, written Rb

a). The process Eb
a exports

postb
a, for handling outgoing high-level messages from a to b,

and uses the channel senda, for sending low-level messages.
Conversely, the process Rb

a exports recvb
a, for receiving low-

level messages, and uses the channel deliver for delivering
incoming messages to a. (For more elaborate protocols, we
would supply each end of the protocol with both input and
output capabilities, so that receivers may also issue control
messages toward emitters.)

Multiplexing on remote addresses The lower part of the
protocol stack simply uses the alleged address b+ of an in-
coming message to select the relevant reception protocol Rb

a.
Self-addressed messages are discarded, in order to avoid live-
locks.

Distribution of public keys to peers This name-service sub-
protocol organizes the dissemination of public keys. It is
grafted just above Eb

a and Rb
a. It mostly consists of a ta-

ble DB that associates with every known remote princi-
pal b the names recvb

a, postb
a exported by the running pro-

tocol for communication with b. The first rule of the def-
inition Dns intercepts messages of the form ‘ns’.c+ deliv-
ered by Rb

a, then it looks up the protocol interface for c.
If c+ was not in DB beforehand, this lookup will register
c+ and start two new processes Ec

a and Rc
a. Finally, there

are messages port〈postb
a〉 and addr〈b+〉 for every registered

remote principal b; the second rule of the definition Dns non-
deterministically selects two such messages, port〈postb

a〉 and
addr〈c+〉, and sends c+ to b through postb

a. With these defi-
nitions, for every pair of translated principals a and b, there
is a possibility that the implementation of a sends a message
to the implementation of b.

Fa:X
B:S (·) def

=

�
defa+,a−, bX keys a+, a− ∧

V
x∈X fresh bx in

defrecva Da ∧ DB ∧ Dns ∧
V

τ∈Σ Dτ in(·) |
Q

b∈B(Eb
a | Rb

a | P b
a)

�
\X ∪ {recvb

a, postb
a | b ∈ B}

Dy:τ
def
= y〈 , v2, . . . , vn〉 . mτ 〈y, v2, . . . , vn〉

Dτ
def
= assoc {(x, [[x]]) | x ∈ Sτ ∪Xτ},

tτ (x) = def fresh j in enter x, a+.j.(j.τ)a− ,
t′τ (w) = def Dy:τ in enter y, w

∧
V

y∈Sτ
Dy:τ

∧ mτ 〈x, y2, . . . , yn〉 .
let b+.w = tτ (x) in let recvb

a, postb
a = t(b+) in

let v2 = tτ2(y2) in . . . let vn = tτn(yn) in
postb

a〈τ.w.v2. · · · .vn〉
∧ deliver〈b+, ‘τ ’.(j.s).(b+

2 .j2.s2). · · · .(b+
n .jn.sn)〉 .

check s authenticates j.τ using a+ in let x = t′τ (a+.j.s) in
check s2 authenticates j2.τ2 using b+

2 in let y2 = t′τ2(b
+
2 .j2.s2) in

...
check sn authenticates jn.τn using b+

n in let yn = t′τn
(b+

n .jn.sn) in
x〈b+, y2, . . . , yn〉

Dns
def
= deliver〈b+, ‘ns’.c+〉 . let recvc

a, postc
a = t(c+) in 0

∧ port〈post〉 | addr〈c+〉 . port〈post〉 | addr〈c+〉 | post〈ns.c+〉

P b
a

def
= port〈postb

a〉 | addr〈b+〉

DB
def
= assoc {(b+, recvb

a, postb
a) | b ∈ B} ∪ {(a+, dropa, dropa)},

t(b+) = (Eb
a | Rb

a | P b
a | enter b+, recvb

a, postb
a) \ {recvb

a, postb
a}

Da
def
= recva〈b+, v〉 . let recvb

a, postb
a = t(b+) in recvb

a〈v〉
∧ dropa〈v〉 . 0

In Dns, ns is a BitString constant distinct from any channel type representation τ . In Dτ and Dy:τ , τ abbreviates the channel
type 〈Principal, τ2, . . . , τn〉. The definition assoc {(x, [[x]]) | . . . }, tτ = . . . , t′τ = . . . introduces a two-way association table
with current content {(x, [[x]]) | . . . } and with lookup functions tτ and t′τ . There are no lookup functions tPrincipal and t′Principal.
If τi = Principal in Dτ , then in the rule for mτ we omit the lookup of vi and output yi instead; and in the rule for deliver we
input yi instead of b+

i .ji.si, so omit the check of si and the lookup of yi.

Figure 7: Protocol stack for a’s communications: implementation.

This part of our model is rather abstract; it could be
refined to save some bandwidth, for instance by giving a
low priority to these background messages. On the other
hand, it seems hard to model a more realistic name-server
that would resist all traffic-analysis attacks.

5 Point-to-point communication protocols

Point-to-point communication protocols are responsible for
communicating messages reliably from one location to an-
other. A single instance of a protocol can convey all traffic
from one location to another, independently of how many
high-level channels might be in use; there is no need to fork
new instances as names are created or exported (cf. [2, 3]).
Here we focus on two particular protocols; we omit a more
general treatment of correctness conditions for protocols.

It is common for authentication protocols to protect
against replay attacks, for example by the use of nonces.
Our protocols integrate protection against high-level replay
attacks that are seldom considered explicitly in the authen-
tication literature; they avoid a situation where an emitter
believes incorrectly that an application message was lost,
and resends it with the consequence that the message is
accepted twice. Our protocols are designed so that each

message is delivered exactly once to its intended recipient.
Robust authentication protocols incorporate precautions

of several other sorts (e.g., [5, 7]). In particular, a prin-
ciple of explicitness helps in avoiding confusions between
messages or sessions [5]. In one of our protocols (shown in
Figure 9), for example, this principle dictates that a signed
message should include the address of its intended recipient,
even if this address may (incorrectly) be deemed evident
from context. Another helpful principle is “sign before en-
crypting” [7]. It is also relevant for the protocol of Figure 9.

In our protocols, we use both public-key cryptography
and shared-key cryptography (for session keys). Using pure
public-key cryptography, message contents are signed and
encrypted by the sender for the receiver. With a key shared
by two parties, on the other hand, encryption suffices to en-
sure both authenticity and secrecy. One drawback of shared
keys is that they must be established, then kept on both
sides, so both parties must maintain some state.

Next we present two small protocols. These protocols
have the same structure. They use replication to withstand
interceptions, and simple sequence numbers to prevent re-
play attacks. In both protocols, the emitter and the receiver
maintain a counter, whose value tags every message. The
emitter increments the counter when a message is posted;

Eb
a

def
= defkb

a,postb
a

key kb
a

∧ state〈i〉 | postb
a〈v〉 . state〈i + 1〉 | repl senda〈b+, { .i.v}kb

a
〉

in state〈0〉

Ra
b

def
= defrecva

b
recva

b 〈m〉 . decrypt m using kb
a to .i.v in krecva

b 〈i, v〉
∧ state〈i〉 | krecva

b 〈i′, v〉 .
if i′ = i then state〈i + 1〉 | deliver〈a+, v〉 else state〈i〉

in state〈0〉

Figure 8: A protocol with a shared key.

Eb
a

def
= defpostb

a
state〈i〉 | postb

a〈v〉 . state〈i + 1〉 | repl senda〈b+,
�

.i.v.(b+.i.v)a−
	

b+
〉

in state〈0〉

Ra
b

def
= defrecva

b
recva

b 〈m〉 . decrypt m using b− to .i.v.s in
check s authenticates b+.i.v using a+ in pkrecva

b 〈i, v〉
∧ state〈i〉 | pkrecva

b 〈i′, v〉 .
if i′ = i then state〈i + 1〉 | deliver〈a+, v〉 else state〈i〉

in state〈0〉

Figure 9: A protocol with public-key cryptography.

the receiver checks it and increments it as the message is
delivered.

• The first protocol is given in Figure 8. It relies on
a shared key kb

a. The emitter Eb
a encrypts under this

key. The receiver Ra
b filters low-level incoming messages

twice, first as messages encrypted under the key, then
as messages with the expected sequence number.

• The second protocol is given in Figure 9. It relies on
public-key cryptography. The emitter Eb

a signs and en-
crypts its messages. The receiver Ra

b decrypts each
message, checks its signature, and finally checks its se-
quence number.

We have considered more substantial, realistic protocols
that combine public-key and shared-key cryptography. They
include, in particular, key-agreement exchanges, secure ac-
knowledgments (so that message repetition is unnecessary),
and techniques for minimizing state. The definitions of those
protocols fit in our framework but are considerably more
complex.

6 Correctness

In the statements of our results, we rely on a fairly stan-
dard notion of observational equivalence, ≈. For the high-
level calculus, we let observational equivalence be the largest
weak bisimulation on configurations that is closed by ap-
plication of any well-formed configuration context and pre-
serves barbs and extruded names. (As usual, a barb is the
presence of any message on a channel whose name is free.)
For the low-level calculus, we adopt the same definition, sub-
stituting “evaluation context” for “configuration context”.

We also rely on a compatibility condition for low-level
interfaces:

Definition 3 (Compatible low-level interface) Let C
be a configuration of the high-level calculus. A low-level in-
terface compatible with C is a triple A, X, (Ba)a∈A that con-
sists of the finite set A ⊂ A of principals defined in C, the
finite set X = xv(C) of names exported by C, and a family
Ba ⊂ A \ {a} of finite sets indexed by A such that:

1. For any b ∈ A and x ∈ Nb, if b or x appears in the
process located at a within C, then b ∈ Ba.

2. The undirected graph on A with edges {(a, b) | b ∈ Ba}
is connected.

The conditions on the sets Ba guarantee that the filters ini-
tially bind the free names for every translated principal of A,
and that the translated principals of A may all know about
one another by transitivity.

Our results relate configurations of principals to their
translations, placed in a context that represents the net-
work. They are full-abstraction properties. Roughly, they
say that two configurations of the high-level calculus are
observationally equivalently if and only if their translations
are. (Roughly, C ≈ C′ if and only if [[C]] ≈ [[C′]].) We
specify that the translations have access to a valid network
N by elaborating the observational equivalence in the low-
level calculus. Nevertheless, we do not fix an attacker in the
low-level calculus, or assume that the attacker is particularly
benign: we quantify over N ’s, and observational equivalence
has a further, built-in quantification over arbitrary contexts.
Crucially, we do not assume that every public key is asso-
ciated with a trusted principal, and we translate each prin-
cipal independently of its context. Thus, the attacker can
use any free principal name, and any number of additional
principals with values of its choice as public keys.

The following theorem is for the public-key protocol of
Figure 9. We write A− for the set {a− | a ∈ A}.

Theorem 1 Let C and C′ be two high-level configurations
with the same compatible low-level interface A, X, (Ba)a∈A.
Let [[·]] be the translation using the public-key protocol, with
parameter (Ba)a∈A.

Then C ≈ C′ if and only if, for every valid network N
restrained with respect to A and X,

(N | [[C]]) \A− ≈ (N | [[C′]]) \A−

Analogous theorems deal with other protocols, in partic-
ular with the shared-key protocol of Figure 8. Theorem 2
handles the case where the translations of two principals a
and b have a shared key kb

a and use the shared-key protocol
instead of the public-key protocol; for simplicity it does not
treat the establishment of kb

a. Since the network should not
have access to the key kb

a exported by Eb
a, the statement of

the theorem contains a restriction on a set of keys K that
includes kb

a.

Theorem 2 Let C and C′ be two high-level configurations
with the same compatible low-level interface A, X, (Ba)a∈A.
Let K be a subset of {kb

a | (a, b) ∈ A2, a ∈ Bb, b ∈ Ba}, and
let [[·]] be the translation using the shared-key protocol with
key kb

a when kb
a ∈ K and the public-key protocol otherwise,

with parameter (Ba)a∈A.
Then C ≈ C′ if and only if, for every valid network N

restrained with respect to A and X,

(N | ([[C]] \K)) \A− ≈ (N | ([[C′]] \K)) \A−

7 Related work and conclusion

There has been much work on the design and analysis of
authentication protocols (e.g., [29, 18, 26, 23, 13, 9, 8, 21, 22,
4, 30, 20, 25]). Some of that work, like ours, relies on process
calculi. There has also been significant work on the design
of programmable systems with authentication (e.g., [10, 19,
33, 32]), but much less on the analysis of those systems. As
this paper illustrates, process calculi provide a useful basis
for important parts of that analysis.

As mentioned in the introduction, the correctness of au-
thentication protocols is a notoriously subtle and challeng-
ing issue. The literature describes many attacks on authen-
tication protocols (e.g., [5, 7]). Some of those expose true
security flaws. Others, it has been argued, may lead to unex-
pected results but do not actually permit security breaches.
(For example, if a key-establishment protocol can be de-
railed so that it terminates with two parties knowing differ-
ent “shared” keys, then the attack can be discovered and
neutralized when the two parties try to use the keys.) In
such arguments, experts typically have in mind a particular
context in which the protocols should be used. In our set-
ting, the context is explicit: the protocols are part of the
output of a compiler for high-level programs with a precise
semantics. Therefore, we can define and prove correctness
properties of our complete translation method, validating
the protocols and also the rest of the method. Indeed, there
is more to implementing authentication than designing an
authentication protocol.

Appendix

Review of the join-calculus

This appendix contains a review of the join-calculus; much
of it is borrowed verbatim from a previous paper [3]. This

review does not cover the authentication constructs, which
are the subject of the main body of the paper.

The join-calculus is a calculus of concurrent processes
that communicate through named, one-directional chan-
nels [15]. It can express functional and imperative con-
structs, and constitutes the core of a distributed program-
ming language [17, 14]. From a security perspective, we
may say that the channels of the join-calculus have a strong
secrecy property: only the process that creates a channel
can receive messages on the channel. They also have a use-
ful integrity property: for sending a message on a channel,
it is necessary to have its name, which is an unforgeable
capability. Any process that knows the name of a channel
may transmit the name to other processes, possibly sending
the name outside the lexical scope of its definition. In this
important respect, the join-calculus resembles the pi-cal-
culus [27]; it also resembles object-oriented languages where
object references are capabilities for invoking methods.

Each channel has an associated arity—a fixed, integer
size for the tuples passed on the channel. We require that
names be used consistently in processes, respecting their ari-
ties, and enforce this requirement by adopting a type system.
While there exists a rich, polymorphic type system for the
join-calculus [16], a simple monomorphic type system suf-
fices for our present purposes. We write 〈τ1, . . . , τn〉 for the
type of channels that carry tuples with n values of respective
types τ1, . . . , τn, and restrict attention to types of this form.
We allow types to be recursively defined (formally, using a
fixpoint operator), so we may have for example τ = 〈τ, τ〉.
We assume that each name is associated with a type (al-
though we usually keep this type implicit), and that there
are infinitely many names for each type. Throughout, we
consider only well-typed processes.

In the pure join-calculus, as we describe it here, names
are used only as names of channels, and the set of values
is defined to be the set of names. In extensions, names are
included in a larger set of values. In any case, the contents
of messages are values. We use lowercase identifiers x, y,
foo, bar , . . . to represent names, and u, v, . . . to represent
values.

Intuitively, the semantics of processes is as follows.

• x〈v1, . . . , vn〉 sends the tuple v1, . . . , vn on the channel
named x. This message is asynchronous, in the sense
that it does not require any form of handshake or ac-
knowledgment.

• defS D in P is the process P in the scope of the local
definitions given in D, exporting the set of names S.
(The set of names S would not appear in the basic join-
calculus, but here we are using an open variant [11].)

• if u = v then P else Q tests whether u = v, and then
runs the process P or the process Q depending on the
result of the test.

• P | Q is the parallel composition of the processes P
and Q.

• 0 is the null process, which does nothing.

A join-pattern is a non-empty list of message patterns,
each of the form x〈y1, . . . , yn〉. The names y1, . . . , yn are
bound, and should all be distinct. The name x is also bound;
intuitively, it is the name of a channel being defined. A join-
pattern is much like a guard for a definition, in the sense that
a definition J . P says that the process P may run when

Assoc defS D ∧ assoc U] {(v, v1, . . . , vn)}, t(x) = T, t′(x1) = T ′ in Q | let y1, . . . , yn = t(v) in P

→ defS D ∧ assoc U] {(v, v1, . . . , vn)}, t(x) = T, t′(x1) = T ′ in Q | P{v1/y1 , . . . ,vn/yn}

Assoc’ defS D ∧ assoc U] {(v, v1)}, t(x) = T, t′(x1) = T ′ in Q | let y = t′(v1) in P

→ defS D ∧ assoc U] {(v, v1)}, t(x) = T, t′(x1) = T ′ in Q | P{v/y}

Alloc defS D ∧ assoc U, t(x) = T, t′(x1) = T ′ in Q | let y1, . . . , yn = t(v) in P (See the text for side conditions.)

→ defS D ∧ D′σ ∧ assoc U] {(v, v1σ, . . . , vnσ)}, t(x) = T, t′(x1) = T ′ in Q | Q′σ | P{v1σ/y1 , . . . ,vnσ/yn}

Alloc’ defS D ∧ assoc U, t(x) = T, t′(x1) = T ′ in Q | let y = t′(v1) in P (See the text for side conditions.)

→ defS D ∧ D′σ ∧ assoc U] {(vσ, v1)}, t(x) = T, t′(x1) = T ′ in Q | Q′σ | P{vσ/y}

Figure 10: Operational semantics of the auxiliary association tables for the low-level calculus.

there are messages that match the join-pattern J . (If there
are messages that match the join-pattern J several times,
then as many instances of P may run.) Next we explain the
notion of matching through a few special cases.

• Let us consider first the case where J is simply the
join-pattern x〈y〉. The join-pattern J is matched when
a message v has been sent on x. When this happens,
the message is consumed, and P is run, with the ac-
tual argument v substituted for the formal argument y.
(Thus, x〈y〉 . P is analogous to the definition of a func-
tion with name x, formal argument y, and body P .)

• In the more general case where J is the join-pattern
x〈y1, . . . , ym〉, we say that J is matched when a tu-
ple v1, . . . , vm has been sent on x (with the same m).
When this happens, the message is consumed, and P is
run, with the actual arguments v1, . . . , vm substituted
for the formal arguments y1, . . . , ym.

• Finally, in the case where J is the join-pattern x〈y1,
. . . , ym〉 | x′〈y′1, . . . , y′m′〉, we say that J is matched
when there are messages on both of the channels x
and x′, and these messages have m and m′ compo-
nents, respectively. When this happens, the messages
are consumed, and P is run, with the actual arguments
substituted for the corresponding formal arguments.

In addition to definitions of the form J . P , the grammar
allows definitions of the form D ∧ D′. A definition D ∧ D′

is simply the conjunction of the definitions D and D′. A
conjunction like x〈y〉 . P ∧ x〈z〉 . Q, where the same defined
name x appears in two conjuncts, is legal; when there is a
message x〈v〉, either P or Q may run—the choice between
them is non-deterministic.

Association tables

Our filters use association tables to keep track of the cor-
respondences between names and their wire formats, and
between keys and protocol interfaces. These association ta-
bles are auxiliary data structures that can be encoded in
the join-calculus and a fortiori in the sjoin-calculus. We
omit their encoding, and describe only their interface.

• The definition assoc U, t(x) = T, t′(x1) = T ′ intro-
duces an association table with content U . This defini-
tion binds two lookup functions t and t′, and attaches
the processes T and T ′ to them; t′ is optional.

• The content U is a finite set of tuples (v, v1, . . . , vn)
where v, v1, . . . , vn are values; n is fixed for the table,
and t′ can be present only if n = 1.

• In a definition assoc U, t(x) = T, t′(x1) = T ′ of an
association table, the processes T and T ′ are both of
the form def D in Q | enter v, v1, . . . , vn (up to ≡). The
process enter v, v1, . . . , vn, which appears once in T
and once in T ′, has the role of entering the association
between v and v1, . . . , vn in the table, adding the tuple
(v, v1, . . . , vn) to U . In T , v must be x and must be
free, and each of v1, . . . , vn must contain some name
defined in D. Conversely, if T ′ is present, n must equal
1 and, in T ′, v1 must be x1 and must be free, and v
must contain some name defined in D.

• The process let y1, . . . , yn = t(v) in P looks for a tu-
ple associated with v in U . If one is found, then P
is executed with the tuple substituted for y1, . . . , yn.
Otherwise, the process T attached to t is executed; it
creates a tuple and enters it in the table, and P is ex-
ecuted with the tuple substituted for y1, . . . , yn.

• Similarly, the process let y = t′(v1) in P ′ looks for a
value associated with v1, and creates one if required.
In any case P ′ is executed with that value substituted
for y.

• The construct let V = t(v) in P , which also does
pattern-matching on the (BitString) value returned by
the table, is just shorthand for

def κ〈V 〉 . P in let y = t(v) in κ〈y〉

where κ is a fresh name.

The operational semantics of association tables is given
by the four rules of Figure 10. (Simpler versions apply when
D is missing; we do not need them.) Assoc represents
the case where the value v in the query t(v) already ap-
pears in a tuple (v, v1, . . . , vn) in the table; then v1, . . . , vn

are substituted for the formal parameters y1, . . . , yn in P .
Alloc represents the case where no tuple is associated
with v and a new tuple is added to the table. It has
the side conditions that the process T attached to t(x) is
def D′ in Q′ | enter x, v1, . . . , vn (up to ≡), that there is no
tuple in U whose first element is v, that σ is a substitution
that maps x to v and names in dv(D′) to fresh and distinct
names. Assoc and Alloc apply when t′(x1) = T ′ is omit-
ted. Assoc’ and Alloc’ only apply for tables with n = 1;
the side conditions of Alloc’ are similar to those of Alloc.

References

[1] Mart́ın Abadi. Protection in programming-language
translations. In Proceedings of the 25th International
Colloquium on Automata, Languages and Program-
ming, pages 868–883, July 1998.

[2] Mart́ın Abadi, Cédric Fournet, and Georges Gonthier.
Secure implementation of channel abstractions. In Pro-
ceedings of the Thirteenth Annual IEEE Symposium on
Logic in Computer Science, pages 105–116, June 1998.

[3] Mart́ın Abadi, Cédric Fournet, and Georges Gonthier.
Secure communications processing for distributed lan-
guages. In Proceedings of the 1999 IEEE Symposium
on Security and Privacy, pages 74–88, May 1999.

[4] Mart́ın Abadi and Andrew D. Gordon. A calculus for
cryptographic protocols: The spi calculus. Informa-
tion and Computation, 148(1), January 1999. An ex-
tended version appeared as Digital Equipment Corpo-
ration Systems Research Center report No. 149, Jan-
uary 1998.

[5] Mart́ın Abadi and Roger Needham. Prudent engineer-
ing practice for cryptographic protocols. IEEE Trans-
actions on Software Engineering, 22(1):6–15, January
1996.

[6] Roberto M. Amadio. On modelling mobility. To appear
in Theoretical Computer Science, 1998.

[7] Ross Anderson and Roger Needham. Robustness prin-
ciples for public key protocols. In Proceedings of Crypto
’95, pages 236–247, 1995.

[8] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. A
modular approach to the design and analysis of authen-
tication and key exchange protocols. In Proceedings of
the 30th Annual ACM Symposium on Theory of Com-
puting, pages 419–428, May 1998.

[9] Mihir Bellare and Phillip Rogaway. Entity authentica-
tion and key distribution. In Advances in Cryptology—
CRYPTO ’93, volume 773 of Lecture Notes in Com-
puter Science, pages 232–249. Springer Verlag, August
1993.

[10] Andrew D. Birrell. Secure communication using remote
procedure calls. ACM Transactions on Computer Sys-
tems, 3(1):1–14, February 1985.

[11] Michele Boreale, Cédric Fournet, and Cosimo Lan-
eve. Bisimulations in the join-calculus. In IFIP Work-
ing Conference on Programming Concepts and Methods
(PROCOMET’98), pages 68–86. Chapman and Hall,
June 1998.

[12] Gérard Boudol, Ilaria Castellani, Matthew Hennessy,
and Astrid Kiehn. A theory of processes with localities.
Formal Aspects of Computing, 6:165–200, 1994.

[13] Michael Burrows, Mart́ın Abadi, and Roger Needham.
A logic of authentication. In Proceedings of the 12th
ACM Symposium on Operating System Principles, vol-
ume 23, 5, pages 1–13, December 1989.

[14] Cédric Fournet. The Join-Calculus: a Calculus for Dis-
tributed Mobile Programming. PhD thesis, Ecole Poly-
technique, Palaiseau, November 1998.

[15] Cédric Fournet and Georges Gonthier. The reflexive
chemical abstract machine and the join-calculus. In
Proceedings of POPL ’96, pages 372–385. ACM, Jan-
uary 1996.

[16] Cédric Fournet, Cosimo Laneve, Luc Maranget, and
Didier Rémy. Implicit typing à la ML for the join-
calculus. In Antoni Mazurkiewicz and Jòzef Winkowski,
editors, Proceedings of the 8th International Conference
on Concurrency Theory, volume 1243 of Lecture Notes
in Computer Science, pages 196–212. Springer-Verlag,
July 1997.

[17] Cédric Fournet and Luc Maranget. The join-calculus
language (version 1.03). Source distribution and doc-
umentation available from http://join.inria.fr/,
June 1997.

[18] Richard A. Kemmerer. Analyzing encryption protocols
using formal verification techniques. IEEE Journal on
Selected Areas in Communications, 7(4):448–457, May
1989.

[19] Butler Lampson, Mart́ın Abadi, Michael Burrows, and
Edward Wobber. Authentication in distributed sys-
tems: Theory and practice. ACM Transactions on
Computer Systems, 10(4):265–310, November 1992.

[20] Pat Lincoln, John Mitchell, Mark Mitchell, and Andre
Scedrov. A probabilistic poly-time framework for pro-
tocol analysis. In Proceedings of the Fifth ACM Confer-
ence on Computer and Communications Security, pages
112–121, November 1998.

[21] Gavin Lowe. Breaking and fixing the Needham-
Schroeder public-key protocol using FDR. In Tools
and Algorithms for the Construction and Analysis of
Systems, volume 1055 of Lecture Notes in Computer
Science, pages 147–166. Springer Verlag, 1996.

[22] Gavin Lowe. A hierarchy of authentication specifica-
tions. In Proceedings of the 10th IEEE Computer Se-
curity Foundations Workshop, pages 31–43, 1997.

[23] Catherine Meadows. A system for the specification and
analysis of key management protocols. In Proceedings
of the 1991 IEEE Symposium on Research in Security
and Privacy, pages 182–195, 1991.

[24] Catherine Meadows. Panel on languages for formal
specification of security protocols. In Proceedings of the
10th IEEE Computer Security Foundations Workshop,
page 96, 1997.

[25] Alfred J. Menezes, Paul C. van Oorschot, and Scott A.
Vanstone. Handbook of Applied Cryptography. CRC
Press, 1996.

[26] Jonathan K. Millen, Sidney C. Clark, and Sheryl B.
Freedman. The Interrogator: Protocol security analy-
sis. IEEE Transactions on Software Engineering, SE-
13(2):274–288, February 1987.

[27] Robin Milner, Joachim Parrow, and David Walker. A
calculus of mobile processes, parts I and II. Informa-
tion and Computation, 100:1–40 and 41–77, September
1992.

http://join.inria.fr/

[28] James H. Morris, Jr. Protection in programming lan-
guages. Communications of the ACM, 16(1):15–21,
January 1973.

[29] Roger M. Needham and Michael D. Schroeder. Using
encryption for authentication in large networks of com-
puters. Communications of the ACM, 21(12):993–999,
December 1978.

[30] Steve Schneider. Verifying authentication protocols in
CSP. IEEE Transactions on Software Engineering,
24(9):741–758, September 1998.

[31] Peter Sewell and Jan Vitek. Secure composition of in-
secure components. In Proceedings of the 12th IEEE
Computer Security Foundations Workshop, pages 136–
150, 1999.

[32] Sun Microsystems, Inc. RMI enhancements. Web
pages at http://java.sun.com/products/jdk/1.2/
docs/guide/rmi/, 1997.

[33] Leendert van Doorn, Mart́ın Abadi, Mike Burrows, and
Edward Wobber. Secure network objects. In Proceed-
ings of the 1996 IEEE Symposium on Security and Pri-
vacy, pages 211–221, May 1996.

http://java.sun.com/products/jdk/1.2/docs/guide/rmi/
http://java.sun.com/products/jdk/1.2/docs/guide/rmi/

	Authenticity from a programming-language perspective
	A calculus with authentication
	Syntax and semantics
	Examples

	A lower-level calculus with cryptography
	Syntax and semantics
	Trivial public-key infrastructure
	Encoding of channel names
	Network model
	Traffic analysis

	Translation structure
	Framework
	The filtering context

	Point-to-point communication protocols
	Correctness
	Related work and conclusion

