
A Hierarchy of Equivalences
for Asynchronous Calculi?

Cédric Fourneta, Georges Gonthierb

a Microsoft Research, 7 J J Thomson Avenue, Cambridge CB3 0FB, UK
b INRIA Rocquencourt, BP 105, 78153 Le Chesnay, France

Abstract

We generate a natural hierarchy of equivalences for asynchronous name-passing process
calculi from simple variations on Milner and Sangiorgi’s definition of weak barbed bisim-
ulation. Theπ-calculus, used here, and the join calculus are examples of such calculi.

We prove that barbed congruence coincides with Honda and Yoshida’s reduction equiva-
lence, and with asynchronous labeled bisimulation when the calculus includes name match-
ing, thus closing those two conjectures.

We also show that barbed congruence is coarser when only one barb is tested. For the
π-calculus, it becomes a limit bisimulation, whereas for the join calculus, it coincides with
both fair testing equivalence and with the weak barbed version of Sjödin and Parrow’s
coupled simulation.

? A preliminary extended abstract appeared in [16]

To appear in JLAP special issue on the Pi-Calculus 10/2001 (revised:7/2003)



Contents

1 Introduction 3

2 An Asynchronous Pi Calculus (Review) 5

3 Congruences, Tests, and Bisimulations 7

3.1 May Testing 7

3.2 Bisimulations and Congruences 8

4 Fair Testing and Coupled Simulations 11

4.1 Fair Testing 11

4.2 Coupled Simulations 13

5 Equivalences with a Single Observation 17

5.1 Equivalence Classes for Existential Bisimilarity 18

5.2 Limit Characterization 20

6 Committed Barbs 24

6.1 Bisimilarity and Fair Testing 25

6.2 The Semantics of Coupled Simulation 26

7 Double-Barbed Bisimilarity 28

7.1 Some Equivalence Classes 29

7.2 Pi Calculus Interpreters 33

7.3 Universal Context 41

8 Labels instead of Barbs and Contexts 44

9 A Family Portrait (Summary) 47

References 49

2



1 Introduction

There is a large number of proposals for the “right” equivalence for concurrent
processes—see for instance van Glabbeek’s impressive overview of weak equiva-
lences [20]. Choosing the proper equivalence to state a correctness argument often
means striking a delicate balance between intuitively compelling statements and
manageable proof techniques. For instance, there are many effective, sometimes au-
tomated techniques for proving bisimulation-based equivalences, even for infinite
systems, but it can be quite hard to prove that two processes arenot bisimilar—and
to interpret this situation—because bisimulation does not directly correspond to an
operational model. On the other hand, the proof that two processes are not testing
equivalent is simply a failure scenario, but it can be quite hard to directly prove a
testing equivalence.

In this paper, we cast some of these equivalences in a simple unifying hierarchy—
summarized in Figures 3–5 of Section 9. While the equivalences are hardly new, our
results relate different styles of definition: trace-based versus bisimulation-based,
labeled semantics versus reduction semantics, fairness versus coupled simulations,
limit bisimulations versus co-inductive bisimulations. We identify four main equiv-
alences, with increasing discriminating power. In this hierarchy, one can start a
proof effort at the upper tier with a simple labeled bisimulation proof; if this fails,
one can switch to a coarser equivalence by augmenting the partial proof; if the proof
still fails for the testing equivalences in the last tiers, then meaningful counter-
examples can be found. The hierarchy is backed by several new results:

• We close a conjecture of Honda and Yoshida [23] by showing that barbed equiv-
alence equals their reduction-based equivalence, with or without name matching
(Theorem 1).

• We close a conjecture of Milner and Sangiorgi [32] by showing that labeled
bisimilarity equals barbed equivalence for all processes in the presence of name
matching (Theorem 5).

• We show that barbed equivalence with a single test is strictly coarser than the cor-
responding reduction-based equivalence. In theπ-calculus, it yields a surprising
limit bisimulation (Theorem 2). In the join calculus, or in theπ-calculus with an
adapted definition of observation, it yields fair testing equivalence (Theorem 3).

• We bridge the gap between bisimulation and testing equivalences by showing
that fair testing [9,34,10] coincides with a form of coupled simulation [37] (The-
orem 4).

• Conversely, we provide counter-examples that establish several strict inclusions
between equivalence relations.

Before discussing these technical subtleties, we spend some time to sketch a general
picture and to motivate our choices. Our framework is based on abstract reduction
systems(P ,→, ↓x ), whereP is a set of processes,→ ⊆ P ×P is a reduction

3



relation on processes, and↓x is a family of predicates on processes. The predi-
cates↓x are syntactic properties meant to detect the outcome of the computation
(e.g., “success”, convergence,. . . ). This style of definition is relatively independent
of syntactic details, is adapted for higher-order settings, and is especially conve-
nient to relate different calculi. The most studied reduction system is probably the
λ-calculus. In process calculi based on labeled transition systems, such as CCS or
theπ-calculus, the reductions are the internal (τ ) transitions and the predicates are
immediate communication capabilities—the barbs [32]. These predicates induce
equivalences and preorders on processes, which can then be refined by additional
requirements such as context-closure or bisimulation.

We are interested in equivalences for asynchronous concurrent systems. This mo-
tivates our choice of equivalences, exclusively defined in terms of weak reductions
(→∗) and weak barbs (→∗↓x ). However, many results on those equivalences do not
depend on asynchrony. Although our results were first obtained in the join calculus,
they are stated here in the more familiar asynchronousπ-calculus [6], which enjoys
similar properties in this respect. (The main exceptions are discussed in Section 6.)
Some inclusions between equivalences are general and easily established; others
are less immediate and more specific to theπ-calculus; their proofs typically rely
on some encoding.

The paper is organized as follows. In Section 2, we review the syntax, operational
semantics, and types for the asynchronousπ-calculus. In Section 3, we define
evaluation contexts and barbs, introduce two basic equivalences, may testing and
barbed congruence, and discuss context-closure properties. In Section 4, we study
intermediate equivalences, fair testing and barbed coupled congruence. In Sections
5 and 6, we reconsider our choice of observations: we defineexistential testsand
committed tests, respectively, and explore the resulting variants for all our equiv-
alences. In Section 7, we focus on an auxiliary notion of equivalence, doubled-
barbed bisimilarity, and use it to prove Theorem 1. In Section 8, we finally con-
sider labeled semantics. In Section 9, we summarize our results as a hierarchy of
equivalences, for reduction systems in general and for the asynchronousπ-calculus
in particular.

Notations We write t̃ for a tuple of termst1, . . . , tn of lengthn ≥ 0. All our
relations are binary. We usually adopt an infix notation for relations. We writeId
for the identity relation. LetR andR′ be two relations. We writeRR′ for the
composition of relations{(x, y) | ∃z.x R z R′ y}, R−1 for the converse relation
{(y, x) | x R y}, Rn for the repeated relation inductively defined byR0 = Id
andRn+1 = RRn,R= for the reflexive closureId ∪ R, andR∗ for the reflexive-
transitive closure

⋃
n≥0 Rn. We usually adapt postfix notations for predicates. Every

relationR defines an existential predicate, also writtenR, defined byxR = ∃y |
xR y. Let ↓ be a predicate; the relationR refines↓ when for allP, Q such that
P R Q, P ↓ impliesQ ↓.

4



2 An Asynchronousπ-calculus (Review)

In this paper, we focus on a core, polyadic, asynchronousπ-calculus. We assume
some knowledge of theπ-calculus, and refer to [30,31,43] for more details and ex-
planations. Our notations and definitions are mostly standard. We use the following
grammar for processes:

P, Q,R ::= processes
x〈z1, . . . , zn〉 asynchronous emission

|| x(y1, . . . , yn).Q reception
|| 0 null process
|| P |P ′ parallel composition
|| !Q replication
|| νy.P scope restriction

|| [x = z]Q name matching (optional)

where the namesy1, . . . , yn are pairwise distinct. We say that a process isguarded
when it occurs under a reception, a replication, or a name matching (processesQ
above). We use the following abbreviations for processes:x for x〈〉, x.P for x().P ,
x(ỹ) for x(ỹ).0, andνy1, . . . , yn.P for νy1. . . . .νyn.P .

We assume given a countable set of namesx, y, z, . . . ∈ N . Names appearing in
a process can either be free, or be bound by a reception or a restriction (names
y1, . . . , yn andy in the grammar above). We writefv(P ) for the free names ofP .
As for λ-terms, we say that a process has sortS whenfv(P ) ⊆ S.

The operational semantics follows those given in [43]. Structural equivalence,≡, is
the smallest equivalence on processes that meets the equations below and is closed
by application of evaluation contexts and renamings of bound names:

P ≡ P | 0

P |(Q |R) ≡ (P |Q) |R

P |Q ≡ Q |P

!P ≡ P |!P

νx.0 ≡ 0

νx.νy.P ≡ νy.νx.P

P | νx.Q ≡ νx.(P |Q) whenx 6∈ fv(P )

Reduction steps→, input transitions
x(ỹ)−−→, and output transitions

(z̃)x〈ỹ〉−−−−→ are the
smallest relations on processes that meet the equations below. (We use here the
asynchronous input rule initially proposed by Honda and Yoshida [23].) In the
equations,α−→ ranges over any of these relations, andfv(α) andbv(α) are the free
names and bound names ofα, respectively.

5



x〈ỹ〉 |x(z̃).Q → Q{ỹ/̃z}

[x = x]Q → Q

0
x(ỹ)−−→ x〈ỹ〉

x〈ỹ〉 x〈ỹ〉−−→ 0

P ≡ α−→≡ Q

P
α−→ Q

P
α−→ Q fv(R) ∩ bv(α) = ∅

P |R α−→ Q|R

P
α−→ Q x 6∈ fv(α) ∪ bv(α)

νx.P
α−→ νx.Q

P
(z̃)x〈ỹ〉−−−−→ Q t ∈ fv((z̃)x〈ỹ〉) \ {x}

νt.P
(t,z̃)x〈ỹ〉−−−−−→ Q

We will need name matching and labeled transitions only in Sections 7 and 8. By
default, we always consider processes and contexts without the name matching
prefix. Otherwise, we explicitly mention terms in the “π-calculus with matching”.

Although the presence of a type system is usually irrelevant, some encodings de-
pend on its expressiveness. We rely on the (simple, recursive, pure) type system
given in [43, sections 6.4–6.7]. We use the following grammar for the types of
names:

σ, τ ::= communication types
〈σ1, . . . , σn〉 channel type

|| α, o, . . . type variable
|| µo.σ recursive type

We identify types that are equal by renaming ofµ-bound variables, by folding, and
by unfolding of recursive types. We always assume that our terms are well-typed,
even though we usually omit type annotations; when we need to be explicit (e.g., in
Lemma 36), we only annotate the scope restriction construct, as in [43]. Likewise,
we usually keep the typing context implicit. We say that a name is nullary when it
has type〈〉 in this implicit context.

Our calculus does not have a primitive choice operator, or a silent action. Instead,
we define a derivedinternal choiceoperator

⊕
i∈I Pi

def
= νt. (t |∏i t.Pi) whereI is a

finite set andt is a name that does not appear in anyPi. We writeP1⊕ · · · ⊕Pn for⊕
i=1...n Pi, and writeτ.P1 for

⊕
i=1 P1. More generally, we say thatP =

⊕
Pi∈P Pi

is an internal choice onP for some equivalenceφ when:

(1) for all Pi ∈ P, we haveP →∗φ Pi.
(2) if P →∗ P ′, then eitherP ′ is an internal choice onP with P φ P ′, or there

existsPi ∈ P with Pi →∗φ P ′.
(3) P does not communicate on free names.

For finiteP, with the implementation above, this property holds for strong labeled
bisimilarity.

6



3 Congruences, Tests, and Bisimulations

In order to define observational equivalences, we first set up notions of context
closure and basic observation. As usual, contexts are processes with a hole, writ-
tenC[ ]. For some given family of contexts, and to every relationφ on processes, we
associate its congruence closureφ◦

def
= {(P, Q) | ∀C[ ].C[P ] φ C[Q]}. A relation

(resp. an equivalence)φ is a precongruence (resp. a congruence) whenφ = φ◦.

We define our notions of congruence and precongruence for a particular class of
contexts: anevaluation contextis a context where the hole[ ] occurs exactly once,
and not under a guard— these contexts are called static contexts in [29]. Evaluation
contexts describe environments that can communicate with the process being ob-
served, but can neither replicate it nor prevent its internal reductions. Since we are
mostly interested in congruences for evaluation contexts, we will use plain relation
symbols (',≈,. . . ) for them, and dotted relation symbols (

.',
.≈,. . . ) otherwise.

In theπ-calculus, evaluation contexts are given by the grammar:

C[ ] ::= [ ] || Q |C[ ] || C[ ] |Q || νx.C[ ]

In this paper, all context closure properties refer to these contexts. Up to structural
equivalence, they are of the formC[ ] = νỹ.([ ] |Q): for all C[ ] that bind the
names̃x, and for all processesP , there exist a processQ and distinct names̃y such
thatC[P ] ≡ νỹ.(P{ỹ/̃x} |Q).

Ourπ-calculus is asynchronous in the sense of [8,6]: in a given process, emission on
a free namex can be observed using, for instance, an evaluation contextx(ỹ).P |[ ]
with a reception onx that can trigger any processP . Conversely, reception onx
is not directly observable using an emission onx, because emissions don’t have
guarded processes; for example, the processx.x is not detectable. We define our
observation predicates accordingly:

Definition 1 The predicate↓x—the strong barb onx—detects whether a process
emits on namex in an evaluation context:P ↓x if and only ifP ≡ νỹ.(x〈z̃〉 |Q)
with x 6∈ {ỹ}.

The barbs only detect the superficial behavior of a process—for instance they do
not separatex〈y〉 from x〈z〉—but in combination with the congruence property
they provide a behavioral account of processes.

3.1 May Testing

Testing semantics have a long history, which can be traced back to the Morris equiv-
alence for theλ-calculus [33]. As regards process calculi, they have been proposed

7



for CCS in [12,21,29] then extended to theπ-calculus [7] and the join calculus [24].

Testing semantics are usually defined as a preorder relationv (the corresponding
equivalence beingv ∩ v−1). This preorder is commonly interpreted as the “cor-
rect implementation” relation: an implementation can rule out some traces, but not
exhibit traces whose behavior is not captured by their specification. This direct in-
terpretation is an advantage of testing equivalences over bisimulations, which are
typically strictly finer [29].

In general, a test is an observer plus a way of observing; here, observers are evalu-
ation contexts and observations are barbs:

Definition 2 Themay predicate⇓x—the barb onx—detects whether a process can
emit onx, possibly after performing some internal reductions. Themay testing
equivalence'may (resp. themay testing preordervmay) is the largest congruence
(resp. precongruence) that respects the barbs⇓x .

P ⇓x
def
= ∃P ′.P →∗ P ′ ↓x

P vmay Q
def
= ∀C[ ], x. C[P ] ⇓x impliesC[Q] ⇓x

P 'may Q
def
= ∀C[ ], x. C[P ] ⇓x if and only ifC[Q] ⇓x

A typical example of may testing equivalence isP ⊕ 0 'may P for any processP .
May testing is most useful to prove safety properties: the specification of a program
says that bad things should never happen. Thus suitable behaviors are characterized
as those with no bad barbs. For example, it is adequate to specify security properties
in cryptographic protocols [4]. However, may testing says nothing on the presence
of suitable behaviors. In Section 4, we consider other testing semantics that address
this issue.

3.2 Bisimulations and Congruences

Bisimulation-based equivalences [36,29] are often preferred to testing semantics
for the π-calculus. Independently of their theoretical appeal, they can be estab-
lished by co-induction, by considering only a few reduction steps at a time instead
of whole traces. Moreover, numerous sophisticated techniques lead to smaller can-
didate bisimulations, and to modular proofs (see [41,43] for some examples).

Definition 3 A relationR ⊆ P × P is a (weak, reduction-based) simulationif, for
all P, P ′, Q such thatP R Q andP →∗ P ′, there existsQ′ such thatQ→∗ Q′ and
P ′ R Q′. In short:R−1→∗ ⊆ →∗R−1.

8



Barbed bisimilarityhas been proposed by Milner and Sangiorgi [32] as a uniform
basis to define behavioral equivalences on different process calculi:

Definition 4 A simulationR is a barbed simulationwhen it refines all barbs: if
P R Q andP ⇓x , thenQ ⇓x . A relationR is an barbed bisimulation when bothR
andR−1 are barbed simulations. The largest barbed bisimulation is calledbarbed
bisimilarity, and is written

.≈.

This style of definition is not entirely unrelated to testing semantics:

Proposition 5 In any reduction system(P ,→, ↓x ), (1) the largest barbed simula-
tion is the preorder that refines all barbs⇓x ; (2) its precongruence, the may testing
preordervmay, is the largest precongruence that is a barbed simulation.

PROOF. (1) The preorder that refines all barbs is a weak simulation, since any
reduction steps can be trivially simulated by no step. Conversely, the largest weak
simulation is also a preorder.

(2) By definition,vmay is a precongruence; using the first part of the theorem, it is
also a barbed simulation, hence it is included in the largest precongruence that is a
barbed simulation. The converse inclusion holds by definition.

Unlike may testing, however, barbed bisimulation reveals the internal branching
structure of processes, and thus it induces congruences finer than testing semantics.
Remarkably, there are at least two reasonable ways of ensuring the congruence
property:

• either take the largest congruence included in the largest barbed bisimulation;
this is the two-stage definition traditionally chosen for CCS and theπ-calculus,
e.g. [32,39,43];

• or take the largest congruence that is a barbed bisimulation; this is essentially
the “reduction-based” equivalence chosen for theν-calculus in [22,23], and the
barbed congruence used in our previous works [15,3,2,1].

Definition 6 Barbed equivalence, written
.≈◦, is the largest congruence included in

barbed bisimilarity.Barbed congruence, written≈, is the largest congruence that
is a barbed bisimulation.

By definition, the two congruences coincide if and only if
.≈◦ is itself a bisimulation,

but this is not necessarily the case (we give counterexamples in Sections 5, 6, and 7)
and in general we only have≈ ⊆ .≈◦. The two diagrams below stress the difference
between the two definitions:

9



P
.
≈◦

Q

C[P ]

��

.
≈ C[Q]

∗

��
T

.
≈

T ′

is coarser than

P
≈ Q

C[P ]

��

≈ C[Q]

∗

��
T

≈
T ′

(As usual in bisimulation diagrams, we use plain and dotted lines to represent
universally- and existentially-quantified relations, respectively.) For processes re-
lated by

.≈◦, the relation that is preserved in bisimulation diagrams after applying
the congruence property is

.≈, and not
.≈◦; on the contrary, the congruence property

of ≈ is preserved through repeated applications of bisimulation and congruence
properties.

Technically, the two definitions also induce different kinds of candidate relations in
co-inductive proofs. As illustrated in this paper,≈ seems easier to establish than

.≈◦.
Fortunately, the two equivalences coincide in our setting:

Theorem 1 In theπ-calculus, we have
.≈◦ = ≈.

The proof relies on a variant of bisimilarity with two barbs and a series of encod-
ings. It is detailed in Section 7.

To conclude this section, we recall standard but useful properties of barbed congru-
ence. We omit their proofs. We begin with a convenient proof technique (see [43,
section 2.4]):

Lemma 7 To establishR ⊆ ≈, it suffices to show that, for allP R Q:

(1) if P ↓x , thenQ ⇓x ; conversely ifQ ↓x , thenP ⇓x ;
(2) if P → P ′, then there isQ′ such thatQ→∗ Q′ andP ′ ≡R=≈ Q′ ;

if Q→ Q′, then there isP ′ such thatP →∗ P ′ andP ′ ≈R=≡ Q′ ;
(3) For all evaluation contextsC, we haveC[P ] ≈R=≈ C[Q].

The next proposition introduces Honda and Yoshida’s “equators” [23], that is, pro-
cesses that make two names indistinguishable by forwarding any messages sent on
one of those names to the other.

Proposition 8 (Equators) LetEy
x

def
= !x(z̃).y〈z̃〉 |!y(z̃).x〈z̃〉. For all π-calculus pro-

cessesP such thatP |Ey
x is well-typed, we haveνx.(P |Ey

x) ≈ P{y/x}.

The equation above relies on a key property of asynchronous systems: the pres-
ence of intermediate buffers on communication channels cannot be observed. As
discussed in Section 8, this equation holds only in the absence of name matching.

10



In our definition of congruence, we consider only evaluation contexts. However,
we can systematically use the equation above to obtain stronger context-closure
properties for congruences coarser than barbed congruence:

Corollary 9 In theπ-calculus, (1) letφ be a precongruence such that≈ ⊆ φ. Then
φ is also closed by substitutions on free names. (2) The relationsvmay,

.≈◦, and≈
are closed by application of arbitraryπ-calculus contexts.

PROOF. (1) Since any given processes related byφ have a finite number of free
names, it suffices to prove thatφ is closed by all single substitutions{y/x}. If P φ Q,
thenνx.(Ey

x |P ) φ νx.(Ey
x |Q) using the precongruence property ofφ. By Propo-

sition 8, we haveνx.(Ey
x |P ) ≈ P{y/x}, henceνx.(Ey

x |Q) φ P{y/x} and, by
transitivity,P{y/x} φ Q{y/x}.

(2) The proofs are standard; they rely on (1) for the input guards.

4 Fair Testing and Coupled Simulations

In this section, we attempt to reconcile testing semantics and bisimulation-based
semantics by considering intermediate equivalences between'may and≈.

4.1 Fair Testing

We first consider how may testing can be refined to capture the positive behavior of
processes. The usual approach is to observe messages that are always emitted, in-
dependently of internal choices: themust predicatedetects outputs that are present
on all finite traces (P ↓x def

= ∀P ′ . P →∗ P ′ 6→ impliesP ′ ↓x ) and can be used
to define must testing and may-and-must testing equivalences as in Definition 2.
These relations, however, are not asynchronous, and they are unduly sensitive to
diverging behaviors: they interpret all infinite computations in the same manner.
Instead, one can modify the must predicate to incorporate a notion of “abstract fair-
ness”, and obtain a fine testing equivalence, initially proposed for variants of CCS
by Brinksma, Rensink, and Vogler [9,10] and Natarajan and Cleaveland [34].

Definition 10 The fair-must predicate ⇓x detects whether a process always re-
tains the possibility of emitting onx. Thefair testing preordervfair is the largest
precongruence whose inverse refines the fair-must predicates⇓x . The fair test-
ing equivalence'fair is the largest congruence that refines the fair-must predi-
cates ⇓x .

11



P ⇓x
def
= ∀P ′ . P →∗ P ′ impliesP ′ ⇓x

P vfair Q
def
= ∀C[ ], x. C[Q] ⇓x impliesC[P ] ⇓x

P 'fair Q
def
= ∀C[ ], x. C[Q] ⇓x if and only ifC[P ] ⇓x

For all processesP , if P ⇓x thenP ⇓x , and if there are no infinite computations,
P ↓x andP ⇓x coincide. Fairness is hidden in the fair-must predicate:P ⇓x

succeeds if there is still a way to emit onx after any reduction. Intuitively, the
model is the set of barbs present on all finite and infinite fair traces. For instance,
we haveνz.(z | z.x | !z.z) 'fair x, although the left-hand-side process has infinite
reductions that never triggerx.

By definition, may testing and fair testing equivalences are generally unrelated, but
in theπ-calculus fair testing is in fact strictly finer:

Proposition 11 In theπ-calculus, we havevfair ⊂ vmay and'fair ⊂ 'may.

PROOF. vfair ⊆ vmay: we only have to prove thatvfair refines the barbs⇓x .
We use the evaluation contextC[ ]

def
= νr, z.(r〈y〉 |x(ṽ).r〈z〉 | r(u).u |[ ]) that trans-

forms the presence of the barb⇓x into the absence of the fair-must barb⇓y .
For any processesP and Q of sort S with r, z, y 6∈ S ∪ ṽ, we haveP ⇓x if
and only ifC[P ] 6 ⇓y . If P vfair Q andP ⇓x then, by context-closure property,
C[P ] vfair C[Q], C[P ] 6 ⇓y , henceC[Q] 6 ⇓y andQ ⇓x .

The inclusions are strict, sincex⊕ 0 'may x andx⊕ 0 6vfair x.

Fair testing equivalence is also the largest congruence that refines both may- and
fair-must- predicates. This property of fair testing also holds in CCS, in the join
calculus, and for Actors, where a similar equivalence is proposed as the main se-
mantics [5]. Conversely, we will establish that fair testing is strictly coarser than
barbed congruence (≈ ⊂ 'fair). Similar inclusions are established in [9,34]; the
authors remark that weak bisimulation equivalences incorporate a particular notion
of fairness, they identify sensitivity to the branching structure as an undesirable
property of bisimulation, and they propose simulation-based sufficient conditions
to establish fair testing.

In terms of discriminating power, fair testing is an appealing equivalence for asyn-
chronous systems: it is stronger than may testing, detects deadlocks, but remains in-
sensitive to termination and livelocks. (A process has a deadlock when it can reach
a state with no observable behavior; in an asynchronous setting, this is indepen-
dent of livelocks and termination.) In [10], for instance, distributed communication
protocols are studied using the fair testing preorder as an implementation relation.

12



Note, however, that “abstract fairness” is not enforced by practical scheduling poli-
cies. Fair testing suffers from another technical drawback: direct proofs of equiva-
lence are very difficult because they involve nested inductions for all quantifiers in
the definition of fair-must tests in all evaluation contexts. The redeeming feature of
fair testing is that it can be established using finer simulation-based equivalences.
Precisely, we will establish a tight characterization of fair testing usingcoupled
simulationsin Section 6.

4.2 Coupled Simulations

Independently of fair testing, labeledcoupled simulationhas been proposed in [37]
to address similar issues; this simulation-based preorder does not require an ex-
act correspondence between the internal choices, and thus abstracts some of the
branching structure revealed by bisimulation.Weakly-coupled simulationis a vari-
ant that is insensitive to divergence [38]. It is used in [35] to establish the correct-
ness of an encoding of the choice operator in the asynchronousπ-calculus. (Here,
we use barbed weakly-coupled simulations, and we consider a single, self-coupled
simulation, rather than a pair of coupled simulations.)

Definition 12 A relationR is a barbed coupled simulationwhen it is a barbed
simulation that satisfies the coupling property: ifP R Q, thenQ→∗R P .

Barbed coupled similarity, written
.
6, is the largest barbed coupled simulation.

Barbed coupled precongruence, written 6, is the largest precongruence that is a
barbed coupled simulation.

We write
.
1

def
=

.
6−1,

.
≶

def
=

.
6 ∩

.
1, and 1

def
= 6−1. Barbed coupled congruence,

written≶, is 6 ∩1.

Using diagrams, the simulation and coupling requirements of the definition are:

SIM

Rpppppp

pppppp ∗
��

∗
��

R

CPL

Rpppppp

pppppp

∗

��
R−1

''

If a coupled simulationR is also symmetric (R = R−1), the coupling property is
trivially verified, andR is in fact a bisimulation. Thus, for any reduction system,
we have the inclusions

.≈ ⊆
.
≶ and≈ ⊆ ≶.

Typically, the discrepancy between6 and1 is used to describe processes that are
in a transient state, bisimilar neither to the initial state nor to any final state. For
example, for any processesP , Q, R (and up to≈ after reducing⊕):

13



(P ⊕Q)⊕R
≶

��

P ⊕ (Q⊕R)

��

P ⊕Q

��

6
nnnnnnnnnnnnnn

1

P
≶

P

In theπ-calculus, we obtain that the inclusions are strict (
.≈ ⊂

.
≶ and≈ ⊂ ≶) by

comparing, for instance,(x⊕ y)⊕ z to x⊕ (y ⊕ z).

The “upward-reduction closure” relation←∗ is always a barbed coupled simula-
tion. We give a more general proof technique for establishing barbed coupled sim-
ilarity using smaller candidate coupled simulations:

Lemma 13 (coupled simulation up to) To establishR ⊆
.
6, it suffices to show

thatR refines the barbs⇓x and satisfies the diagram R

∗

��

∗

��(R−1)= · ∗ // ·
.
≈

.

PROOF. We show thatφ def
=

.≈←∗R= .≈ is a barbed coupled simulation:

• The relations
.≈,←, andR all refine barbs, hence so doesφ.

• By bisimulation on the left
.≈, we have←∗φ ⊆ φ, soφ is a simulation.

• The diagram of the lemma trivially holds withR= instead ofR at the top. If
P

.≈ (←∗R=)
.≈ Q then, using this diagram,P

.≈ (R−1)= →∗ .≈←∗ .≈ Q and,
by bisimulation on the right

.≈, we obtainQ′ such thatP
.≈ (R−1)= →∗ .≈ Q′ ←∗

Q, that is,P φ−1 Q′ ←∗ Q.

As in the case of barbed bisimilarity in Section 3.2, there are two notions of con-
gruence for barbed coupled similarity, but with a different outcome here:

Lemma 14 In theπ-calculus, we have≶ ⊂
.
≶◦.

PROOF. The inclusion≶ ⊆
.
≶◦ holds by definition, as usual.

The discrepancy between the two congruences stems from internal choices that are
spawned between visible actions. For instance, we prove that:

(1) a.b⊕ a.c
.
≶◦ a.(b⊕ c)

(2) a.b⊕ a.c 6≶ a.(b⊕ c)

14



Our proof illustrates the difficulty of dealing directly with
.
≶◦, even for simple

equations. We letAB andAC be the processes defined by reducing the first sum:
a.b ⊕ a.c → AB ≈ a.b anda.b ⊕ a.c → AC ≈ a.c. We begin with the second
statement.

(2) Assume that we hada.b⊕a.c ≶ a.(b⊕c). Then, the reductiona.b⊕a.c→ AB
above must be simulated by no reduction (sincea.(b ⊕ c) 6→). Moreover,
AB 6→, hence the two processes are coupled, and we havea.b ≶ a.(b⊕ c). By
congruence property, for the evaluation contextνab.(a |[ ]), we obtain

νab.(a | a.b) ≶ νab.(a | a.(b⊕ c))

and this equation is clearly false: only the process on the right has a barb⇓c

in two steps, hence these processes are not even may testing equivalent.
(1) After choosing a particular evaluation contextC[ ], however, the visible ac-

tion yields a potential internal reduction. In our processes, interaction with
the context is limited to reception ona; the contextC[ ] may interact with
our processes if and only if there is another evaluation contextC ′[ ] such that
C[ ]→∗ C ′[a |[ ]]. We abbreviate this property asC ⇓.
We establish the equivalence above in a mostly co-inductive style by apply-
ing Lemma 13. We letR be the relation that contains the following pairs of
processes: for every evaluation contextC[ ],

C[a.b⊕ a.c] R C[a.(b⊕ c)] (3)

C[a.(b⊕ c)] R C[a.b⊕ a.c] (4)

C[a.(b⊕ c)] R C[AB] when notC ⇓ (5)

C[a.(b⊕ c)] R C[AC] when notC ⇓ (6)

In (5) and (6), the condition onC[ ] makes all related processes behave as
C[0] (up to≈). In particular, the requirements of Lemma 13 are easily met.

In (3,4), the requirement on barbs can be reformulated as the simple may
testing equationa.b ⊕ a.c 'may a.(b ⊕ c). The diagram requires more work.
In (3), assumeC[a.b⊕ a.c]→∗ T ; We distinguish several cases:
(a) the suma.b ⊕ a.c is not reduced. Hence the enclosing context cannot

interact with this process and, for some other contextC ′[ ], we have
C[ ] →∗ C ′[ ] and T ≡ C ′[a.b ⊕ a.c]. The same series of reductions
applied on the other side yields the processC ′[a.(b ⊕ c)]. These two re-
sulting processes are related by (4).

(b) the processa.b⊕ a.c is reduced, e.g.a.b⊕ a.c→ AB, and
(i) either the enclosing context does not interact with thisAB, and in-

stead we haveC[ ] →∗ C ′[ ] 6⇓ andT ≡ C ′[AB]. We perform the
same series of reductions on the other side, and the two resulting
processes are related by (5).

(ii) or the context emitsa that interacts with the resulting processAB.
In that case,C[a.(b ⊕ c)] →∗≈ T by using the same series of re-

15



ductions, except for the internal choice which has to be deferred un-
til communication ona enables it. The two resulting processes are
bisimilar.

(iii) or this interaction does not occur, but the context can still emit ona:
we haveT ≡ C ′[AB] →∗ C ′′[a |AB], thusT →∗≈ C ′′[b], and we
obtain reductionsC[a.b⊕ a.c]→∗≈ C ′′[b] as in the previous case.

In (4), we perform a similar case analysis, but the situation is simpler:
(a) The context does not interact with the process (which is inert in isolation);

the two resulting processes are related by (3).
(b) The context provides a messagea received by the process, and

(i) either the sumb ⊕ c is reduced in the following reductions. We an-
ticipate the right choice in the left process by reducing toAB or
AC, then apply the same series of reductions and obtain bisimilar
processes.

(ii) or the internal choice is not reduced. We select any branch of the
sum in the left process, then perform the same series of reductions.
The two resulting processes are related by the reduction ofb⊕ c that
chooses the same branch in the right process, up to bisimilarity.

The exact relation between fair testing and barbed coupled congruence is intrigu-
ing. These equivalences are applied to the same problems, typically the study of dis-
tributed protocols where high-level atomic steps are implemented as a negotiation
between distributed components, with several steps that perform a gradual commit-
ment. Yet, their definitions are very different, and both have their advantages; fair
testing is arguably more natural than coupled congruence, but lacks efficient proof
techniques.

It is not too hard to establish that (the inverse of) barbed coupled simulations also
refine fair-must barbs. The proof uses simulations in both directions, which some-
how reflects the alternation of quantifiers in the definition of fair-must barbs.

Lemma 15 In any reduction system, (1) the inverse of barbed coupled simulations
refine all fair-must barbs: letR be a barbed coupled simulation. IfP R−1 Q
and P ⇓x , then alsoQ ⇓x . Hence, (2) the precongruence of barbed coupled
similarity is finer than fair testing:

.
6◦ ⊆ vfair.

PROOF. (1) If Q→∗ Q′, these reductions can be simulated byP →∗ P ′ R−1 Q′.
Using the coupling condition, we also haveP ′ →∗ P ′′ R Q′. By definition of
P ⇓x , we haveP ′′ ⇓x . Finally,R refines weak barbs, and thusQ′ ⇓x .

(2)
.
1 refines all fair tests ⇓x , hence

.
1◦ refines them in any evaluation contexts.

In theπ-calculus, this precongruence is strictly finer than fair testing:

16



Lemma 16 In theπ-calculus, we have
.
6◦ ⊂ vfair and

.
≶◦ ⊂ 'fair.

PROOF. For instance, we have (1)a 'fair a⊕ 0 but (2)a 6
.
1◦ (a⊕ 0):

(1) Sincea⊕ 0→≈ a, if C[a⊕ 0] ⇓x , then alsoC[a] ⇓x . Conversely, assume
C[a] ⇓x . By induction on the number of reduction stepsn ≥ 0, we show that
C[a⊕ 0]→n Q impliesQ ⇓x for all evaluation contextsC.
• n = 0: we haveQ = C[a⊕ 0]→≈ C[a] andC[a] ⇓x , henceQ ⇓x .
• Inductive case: ifC[a⊕ 0]→ R→n Q, then one of the following holds:

(a) R ≡ C ′[a ⊕ 0] andC[a] → C ′[a] for some evaluation contextC ′. We
haveC ′[a] ⇓x and conclude by induction hypothesis.

(b) R ≈ C[a], henceQ ⇓x by hypothesisC[a] ⇓x .
(c) R ≈ C[0], henceQ ⇓x by hypothesisC[a] ⇓x and the general prop-

erty thatC ′[a] ⇓x impliesC ′[0] ⇓x (with the same reductions except
the one that consumes the inputa and a messagea).

(2) Otherwise, by applying the contexta |[ ], we would havea | a
.
1 a |(a ⊕ 0).

The stepa |(a ⊕ 0) →≈ a is simulated by somea | a →∗ T and, sincea ⇓a ,
we haveT ≡ a | a. By coupling and simulation, we obtain the contradiction
0

.
≶ a.

Nonetheless, the distance between fair testing and barbed coupled precongruence
is rather small. As we shall see in Section 6, both relations coincide in the join cal-
culus, and can be made to coincide in theπ-calculus with a small restriction on the
barbs.

5 Equivalences with a Single Observation

We complete our exploration of asynchronous equivalences with a discussion of
alternate definitions of observation. So far, we have used a specific output predi-
cate↓x for every name, but there are other natural choices. In the initial paper on
barbed equivalences [32], and in most definitions of testing equivalences, a single
predicate is used instead of an indexed family. Either there is a special observable
actionω, or all barbs are merged into one. Accordingly, for every family of ob-
servation predicates (e.g.,⇓x ), we define an existential observation predicate that
tests any of these predicates (e.g.,P ⇓ def

= ∃x.P ⇓x ) and, for every equivalence, we
define its existential variant (e.g.,

.≈◦∃) that refines only⇓, at least by definition.

Existential equivalences that are closed by application of evaluation contexts usu-
ally coincide with their base equivalence. In theπ-calculus, for example, for any
processP of finite sortS, we haveν(S \ {x}).P ⇓ if and only if P ⇓x , and thus

17



we easily prove'may,∃ = 'may,'fair,∃ = 'fair, ≶∃ = ≶, and≈∃ = ≈ using evalu-
ation contextsνx̃.[ ]. In contrast, when bisimulation and congruence are not jointly
required in the definition, existential equivalences can be significantly coarser. The
question arises for the existential variants of

.≈◦ and
.
≶◦. Next, we establish the

strict inclusion
.≈◦∃ ⊂ ≈∃. Precisely, we show that weak∃-barbed congruence is

an inductive, or limit, bisimulation.

5.1 Equivalence Classes for
.≈∃

We first characterize the equivalence classes for existential barbed bisimilarity
.≈∃.

In Section 7, we show that observing barbs on just two different names created a
rich hierarchy of equivalence classes, from which an infinite set of prefix codes
could be selected (Lemma 31). If only a single test is available, then this construc-
tion collapses.

In the π-calculus, besides the obviously-different processesT0 = 0 andT1 = x,
we have the processT2 = x |x whose only and peculiar behavior is to rescind
its ↓x -barb to become0. Starting from these three processes, one can construct a
quasi-linear sequence of processes, settingTi+3 = Ti ⊕ Ti+1.

...⊕
��

��?
??

??
??

??
??

??
??

...
...⊕

��

~~~~
~~

~~
~~

~~
~~

~~
~

T6⊕
��

��@
@@

@@
@@

@@
@@

@@
@@

T5

x⊕ (x |x)

��

��~~
~~

~~
~~

~~
~~

~~
~

T4

x⊕ 0

��

  @
@@

@@
@@

@@
@@

@@
@@

@ T3

x |x

��

T2

x T1

0 T0

In addition, we can code a limit processTω ≈
⊕

i∈N Ti, as detailed below—by
induction onn, the equivalence given after the definition holds for anyn ≥ 0.

Tω
def
= νs, t0, t1, t2.(s(t).t |

∏2
i=0(s〈ti〉 | ti.Ti) |

νg.(g〈t0, t1, t2〉 |!g(a, b, c).νd.(g〈b, c, d〉 | s〈d〉 | d.(a⊕ b))))

Tω ≈ νs, t0, . . . , tn+2.(s(t).t |
∏n+2

i=0 (s〈ti〉 | ti.Ti) |
νg.(g〈tn, tn+1, tn+2〉 |!g(a, b, c).νd.(g〈b, c, d〉 | s〈d〉 | d.(a⊕ b))))

18



We use these processes to partition processes, as follows:

Definition 17 The signatureT (P ) of a processP is the set of indices of theTi

reachable fromP up to bisimilarity:

T (P ) = {i ∈ N | P →∗ .≈∃ Ti }

By definition,
.≈∃-equivalent processes must have the same signature; the converse

also holds, because the sequence(Ti)i≤ω spans exactly the equivalence classes
of

.≈∃:

Proposition 18 For anyπ-calculus processP , there is a uniquej ∈ N∪{ω} such
thatP

.≈∃ Tj and, moreover, ifj = ω thenT (P ) = N; if j < ω thenj = max T (P )
andT (P ) = {0, . . . , j − 2, j}.

PROOF. First, note that by construction of the(Tn)n∈N, we haveTn →∗ T ′ if and
only if T ′ ≈ Ti for somei ∈ {0, . . . , n− 2, n}; also,Tω →∗ T ′ if and onlyT ′ ≈ Ti

for somei ≤ ω. The second half of the proposition therefore follows directly from
the first half.

Let P be any process; ifP 6⇓ thenP ≈ T0. Otherwise, we show that ifT (P ) 6= N,
thenP

.≈∃ Tn+1, wheren = min(N \ T (P )), by induction onn. Assuming this
holds for alli < n, we define the relationRn = {(P, Tn+1)|P ⇓ andn = min(N \
T (P ))} and show thatRn∪ .≈∃ is a barbed existential bisimulation. SupposeP Rn

Tn+1; then bothP ⇓ andTn+1 ⇓. If P →∗ P ′, then eitherP ′ Rn Tn+1, orP ′ .≈∃ Ti

for somei ≤ n: take i = 0 if P ′ 6⇓ and i = 1 + min(N \ T (P ′)) otherwise.
Furthermorei ∈ T (P ), so actuallyi < n, and thenTn+1 →≈ Ti. Conversely, if
Tn+1 →∗ T ′ thenT ′ ≈ Ti for somei < n, hencei ∈ T (P ), that is,P →∗ .≈∃
Ti. Similarly, the relation{(P, Tω) | T (P ) = N} ∪ .≈∃ is a barbed existential
bisimulation.

This shows the existence of aj such thatP
.≈∃ Tj; this j is unique, becauseT0 is

the onlyTi 6⇓, Tω is the onlyTi such thatT (Ti) = N, andTn+1 is the onlyTi such
thatn + 1 ∈ T (Ti) butn 6∈ T (Ti).

Next, we provide a shortcut for computingmax T (P ) for a set of processesP ∈ A
without actually performing a bisimulation proof. Intuitively, the setsBi contain
processes thatmustbe reached fromA, whereas theB′i contain additional processes
that maybe reached fromA. Moreover, all processes in any given setBi, B′i are
equivalent.

Lemma 19 For k > 0 and k′ ≥ 0, letA,B1, . . . ,Bk,B′1, . . . ,B′k′ be sets of pro-
cesses such that

19



(a) for anyP ∈ A, and anyi, 1 ≤ i ≤ k, we haveP →∗ Q for someQ ∈ Bi;
(b) for anyP ∈ A, if P → Q, thenQ ∈ A ∪ B1 ∪ . . . ∪ Bk ∪ B′1 ∪ . . . ∪ B′k′;
(c) there are integersj1, . . . , jk, j′1, . . . , j

′
k′ such that

max T (Q) = ji for all Q ∈ Bi, and
max T (Q) = j′i for all Q ∈ B′i.

Let J = {j1, . . . , jk}, J ′ = {j′1, . . . , j′k′}, j = max J ∪ J ′, and assumej > 0. We
have:

(1) if j − 1 6∈ J ∪ J ′ andj ∈ J thenmax T (P ) = j for all P ∈ A;
(2) if j− 1 6∈ J ∪ J ′ and bothj − 2, j− 3 ∈ J thenmax T (P ) = j for all P ∈ A;
(3) if both j, j − 1 ∈ J thenmax T (P ) = j + 2 for all P ∈ A.

PROOF. Let j′ stand forj in cases (1) and (2), andj + 2 in case (3). We will
successively establish thatj′ ∈ T (P ) for all P ∈ A, then thatj′ − 1 6∈ T (P ) for
all P ∈ A. Then for anyP ∈ A, the only possibility allowed by Proposition 18 for
T (P ) is {0, . . . , j′ − 2, j′}, whencemax T (P ) = j′.

To show thatj′ ∈ T (P ) for anyP ∈ A, we first note that conditions(a) and(c)
imply T (P ) ⊇ J . Thus in case (1) we havej′ = j ∈ T (P ); in cases (2) and (3) we
only get{j′−2, j′−3} ⊆ T (P ), but then Proposition 18 implies that we must also
havej′ ∈ T (P ).

Now assume thatj′−1 ∈ T (P ) for someP ∈ A; by definition there must be some
P ′ .≈∃ Tj′−1 such thatP →∗ P ′. Now T (P ′) = T (Tj′−1) 63 j′, soP ′ 6∈ A by the
first part of the proof. LetQ be the first process in the reductionP →∗ P ′ that is not
in A, then by condition (b)Q is in someBi or B′i; in either case, by condition (c)
we havemax T (Q) = j′′ for somej′′ ∈ J ∪ J ′, andT (Q) = {0, . . . , j′′− 2, j′′} by
Proposition 18. Butj′ − 1 ∈ T (Q) sinceQ→∗ P ′, and sincej′ ≥ j ≥ j′′ we must
havej′ − 1 = j′′. In cases (1) and (2) this would meanj′′ = j − 1, which is ruled
out, and in case (3),j′′ = j + 1, which is also impossible.

5.2 Limit Characterization

Definition 20 Inductive bisimilarity is the limit of the monotone operator associ-
ated with the definition of barbed bisimulation:

P
.≈0 Q

def
= ∀x . P ⇓x iff Q ⇓x

P
.≈n+1 Q

def
= P →∗ P ′ impliesQ→∗ .≈n P ′ and, conversely,

Q→∗ Q′ impliesP →∗ .≈n Q′

P
.≈ω Q

def
= ∀n . P

.≈n Q

20



By definition, this limit bisimilarity is coarser than the co-inductive one:
.≈ ⊆ .≈ω.

In the π-calculus, as usual, this inclusion is strict, although the two equivalences
coincide for all image-finite processes. Consider, for instance,Pj

def
= Tj ⊕ y, P ≈⊕

i∈N Pi, andQ ≈ ⊕
i∈N∪{ω} Pi (wherey 6= x, and the infinite sum can be coded

as above). The reductionQ → .≈ Tω cannot be simulated byP , henceP
.
6≈ Q.

Conversely, for anyj > n, we haveTj
.≈n Tω, and thusP

.≈ω Q.

There are several other ways to define limit bisimilarity and its congruence. For in-
stance, one can define a “reduction-based” limit equivalence with a context-closure
property,≈ω, such that, at every level, an evaluation context can be applied before
bisimulation. In fact, our limit bisimilarity is very weak. A variant of the above
example shows that(

.≈ω)◦ is strictly weaker than≈ω, and thus weaker than the
classical (labeled) limit bisimilarity, as defined for CCS by Milner [28].

Theorem 2 In theπ-calculus, we have
.≈◦∃ = (

.≈ω)◦.

The proof that
.≈◦∃ ⊇ (

.≈ω)◦ is fairly easy, since by induction onn, P
.≈n Q

.≈∃ Tn

impliesP
.≈∃ Tn. For the converse, we need to show that for any processesP , Q,

if C[P ]
.≈∃ C[Q] for all execution contextsC[ ], thenP

.≈ω Q. Clearly it is enough
to show this for allP , Q whose free names lie in a fixed, finite, but arbitrary setS.
Let U be the set of these processes. Having fixedS, we can use contexts of the
form νS̃.(C|[ ]); in the following, we writeC‖P for the processνS̃.(C|P ). We
also assume without loss of generality that the channelx used in the construction
of theTn is not inS.

We thus need to find processesC that will allow us to refine the equivalence classes
of

.≈∃ into those of
.≈ω. We use the definition below:

Definition 21 A subsetA of U is separableat someN ∈ N, using a sequence
(Cm)m≥N+2 of processes, when, for anyP ∈ U and any integerm ≥ N + 2, we
havemax T (Cm‖P ) = m if P ∈ A andmax T (CA

m‖P ) = N if P 6∈ A.

For example, we have:

(1) The setU itself is separable atNU = 0, usingCU
m = Tm.

(2) For anyy ∈ S, the setAy = {P ∈ U | P ⇓y} is separable atNAy = 0, using
CAy

m = y(z̃).Tm.
(3) Any separable setA is closed by inverse reduction: ifA is separable atN

using (Cm)m≥N+2 andP → Q ∈ A, thenN + 2 = max T (CN+2‖Q) ≤
max T (CN+2‖P ), somax T (CN+2‖P ) 6= N , henceP ∈ A.

Furthermore, the separation indexN can always be increased:

Lemma 22 If A is separable at someN , using(Cm)m≥N+2, it is also separable at
anyN ′ ≥ N + 2, using(C ′

m)m≥N ′+2 = (Cm ⊕ TN ′)m≥N ′+2.

21



PROOF. We use Lemma 19 to compute the signatures. For anym ≥ N ′ + 2,
considerA′ = {C ′

m‖P | P 6∈ A}; any C ′
m‖P ∈ A′ must must have reduc-

tions to bothTN ′‖P and Cm‖P ; all other derivatives remain inA′, sinceA is
closed by inverse reduction. By assumptionmax T (Cm‖P ) = N for any P 6∈
A, andmax T (TN ′‖P ) = N ′ ≥ N + 2, so by Lemma 19, case (1), we have
max T (Cm‖P ) = N ′.

Now considerA′′ = {C ′
m‖P | P ∈ A}; anyCm‖P ∈ A′′ must must have reduc-

tions to bothTN ′‖P andCm‖P ; it may also reduce to someCm‖Q ∈ A′. By as-
sumptionmax T (Cm‖P ) = m ≥ N ′+2 for anyP ∈ A, andmax T (TN ′‖P ) = N ′,
and we have just shown thatmax T (Cm‖Q) = N ′, so again by Lemma 19, case
(1), we havemax T (Cm‖P ) = m.

Let us denote by[A]⇐ the closure under inverse reduction ofA ⊆ U , i.e., [A]⇐ =
{P | ∃Q ∈ A, P →∗ Q}. Up to this closure, separable sets are closed under set
theoretical operations:

Proposition 23 If A andB are separable, thenA ∪ B, A ∩ B, and [A \ B]⇐ are
separable.

PROOF. Using Lemma 22, we can assume thatA andB are separable at the
sameN ≥ 2, using(CA

m)m and(CB
m)m, respectively.

This immediately implies thatA ∪ B is separable atN , using(Cm)m = (CA
m ⊕

CB
m)m: as in Lemma 22, we directly apply Lemma 19 to compute the signatures.

For the intersection, the contexts(Cm)m need to be defined recursively, using the
formulaCm+3 = Cm⊕Cm+1, except for the base cases appearing in the first column
of the table below.

The four other columns of the table give the value ofmax T (Cm‖P ), for P in
U \ (A ∪ B), A \ B, B \ A, andA ∩ B, respectively. The table can be filled in
top-down, left-to-right, using Lemma 19. The lines for the base casesCN+2, CN+3,
CN+4, andCN+6 can be filled in directly from the assumptions. For the other lines,
we note thatCm‖P must reduce to bothCm−2‖P andCm−3‖P , and may reduce
to someCm‖Q, if P → Q, which is in a different cell only ifQ ∈ U \ (A ∪ B)
or P ∈ A ∩ B. Extending, by induction onm, the pattern established in the last
three lines of the table completes the proof thatA ∩ B is separable atN + 6 using
(Cm)m≥N+8.

The computation for[A\B]⇐ is similarly summarized in the table below. Note that
theA∩B column has been partitioned intoA\ [A\B]⇐ andB∩ [A\B]⇐ columns:
obviouslyA \ [A \ B]⇐ ⊆ B, and[A \ B]⇐ ⊆ A because of the closure property
of A. The latter inclusion also implies[A \ B]⇐ = (A \ B) ∪ (B ∩ [A \ B]⇐). The

22



separating sequence U \ (A ∪ B) A \ B B \ A A ∩ B

CN+2 ≡ CA
N+2 N N + 2 N N + 2

CN+3 ≡ CB
N+3 N N N + 3 N + 3

CN+4 ≡ CA
N+4 N N + 4 N N + 4

CN+5 ≡ CN+2 ⊕ CN+3 N N + 2 N + 3 N + 5

CN+6 ≡ TN+6 N + 6 N + 6 N + 6 N + 6

CN+7 ≡ CN+4 ⊕ CN+5 N N + 4 N + 3 N + 7

CN+8 ≡ CN+5 ⊕ CN+6 N + 6 N + 6 N + 6 N + 8

CN+9 ≡ CN+6 ⊕ CN+7 N + 6 N + 6 N + 6 N + 9

CN+10 ≡ CN+7 ⊕ CN+8 N + 6 N + 6 N + 6 N + 10

separating sequence U \ (A ∪ B) A \ B B \ A A \ [A \ B]⇐ B ∩ [A \ B]⇐

CN ≡ CB
N+6 N N N + 6 N + 6 N + 6

CN+1 ≡ CA
N+3 N N + 3 N N + 3 N + 3

CN+2 ≡ CA
N+2 N N + 2 N N + 2 N + 2

CN+3 ≡ CN ⊕ CN+1 N N + 3 N + 6 N + 6 N + 6

CN+4 ≡ CA
N+4 N N + 4 N N + 4 N + 4

CN+5 ≡ CN+2 ⊕ CN+3 N N + 5 N + 6 N + 6 N + 8

CN+6 ≡ TN+6 N + 6 N + 6 N + 6 N + 6 N + 6

CN+7 ≡ CN+4 ⊕ CN+5 N N + 7 N + 6 N + 6 N + 10

CN+8 ≡ CN+5 ⊕ CN+6 N + 6 N + 8 N + 6 N + 6 N + 8

CN+9 ≡ TN+9 N + 9 N + 9 N + 9 N + 9 N + 9

CN+10 ≡ CN+7 ⊕ CN+8 N + 6 N + 10 N + 6 N + 6 N + 10

CN+11 ≡ CN+8 ⊕ CN+9 N + 9 N + 11 N + 9 N + 9 N + 11

CN+12 ≡ CN+9 ⊕ CN+10 N + 9 N + 12 N + 9 N + 9 N + 12

CN+13 ≡ CN+10 ⊕ CN+11 N + 9 N + 13 N + 9 N + 9 N + 13

signature computations are similar to those for theA ∩ B table; however they rely
on the fact that ifP ∈ B ∩ [A \ B]⇐, thenCm‖P mustreduce to someCm‖Q with
Q ∈ A\B, while if P ∈ A\ [A\B]⇐ therecannotbe a transitionP → Q ∈ A\B.
Again, the table is extended by induction to establish that[A \ B]⇐ is separable at
N + 9 using(Cm)m≥N+11.

23



Proof of Theorem 2 For anyQ ∈ U , we show by induction onn that the set
In(Q) = {P ∈ U | P →∗ .≈n Q} is separable, and that there is a finite number of
such sets (that is,{In(Q)|Q ∈ U} is finite). Forn = 0, we just have

I0(Q) =
[(
U ∩ ⋂

Q⇓y
Ay

)
\

(⋃
Q6⇓z
Az

)]
⇐

which is separable by the above, and there are2|S| such sets. For the inductive case,
we have

In+1(Q) =
[(⋂

Q→∗Q′ In(Q′)
)
\

(⋃
Q6∈In(R) In(R)

)]
⇐

and there are at most3|{In(Q)|Q∈U}| such sets.

We conclude by contradiction: assumeP
.≈◦∃ Q and notP (

.≈ω)◦ Q. For some
P ′ = C[P ], Q′ = C[Q], andn ≥ 0, we haveP ′

.
6≈n+1 Q′ andP ′ .≈◦∃ Q′. (Since.≈◦∃ ⊆

.≈0, we cannot haveP ′
.
6≈0 Q′.)

By definition of
.≈n+1, there exists some processR such thatQ′ →∗ R and not

P ′ →∗ .≈n R, henceQ′ ∈ In(R) andP ′ 6∈ In(R) (or conversely some processR
such thatP ′ ∈ In(R) andQ′ 6∈ In(R)). The setIn(R) is separable at someN
using some(Cm)m≥N+2, hence for anym ≥ N + 2 we haveCm‖P ′ .≈∃ TN and
Cm‖Q′ .≈∃ Tm.

Using P ′ .≈◦∃ Q′ with the contextνS.(Cm|[ ]) finally yields TN
.≈∃ Tm, which

contradicts Proposition 18.

6 Committed Barbs

Another variation on barbs is directly inspired by the join calculus. Assuming that
the basic observation predicates reveal the outcome of a computation, rather than
its transient state, one may be interested only incommitted observationsthat cannot
be rescinded by the process being observed. As regards asynchronous equivalences,
this can be abstractly achieved by adding a requirement to the definition of barbs:

Definition 24 A strong barb↓x is committedwhenP ↓x impliesP ⇓x .

By extension, we say that a barb⇓x is committedwhen its defining strong barb is
committed. In the join calculus, the locality property guarantees that messages sent
on free names are never used in internal reductions. Hence, strong barbs are refined
by the reduction relation (P ↓x andP →∗ P ′ impliesP ′ ↓x ), and barbs are always
committed.

In the π-calculus, the situation is not so simple. Consider the processT2 = x |x
used in Section 5: we haveP ↓x andT2 → 0, hence clearly notP →∗ ⇓x . This

24



phenomenon is unfortunate, since names in theπ-calculus are typically either in-
tended for internal steps or for interaction with the environment, but not both. In
the rest of this section, we therefore only test and compare processes that comply
with a locality restriction that excludes communication on free names.

Definition 25 A π-calculus process islocal when reception occurs only on names
bound by a restriction (not on free names and not on received names).

The localπ-calculus is the subcalculus of local processes. It is closed by structural
equivalence, reduction, and application of local contexts. All barbs in the local
π-calculus are committed.

The localπ-calculus is not as limited as it may seem. In fact, most of the encodings
appearing in this paper are expressed using only local terms. Except for Sections 5.1
and 5.2, reconsidered below, and Section 8, which requires a labeled semantics, all
our definitions, results, and proofs apply unchanged to localπ-calculus processes.
Besides, one can design labeled semantics that are compatible with locality, then
obtain results similar to those of Section 8 [27,17].

6.1 Bisimilarity and Fair Testing

We first reconsider the existential bisimilarity,
.≈∃, with a single committed barb.

The resulting equivalence is far less exotic than with transient barbs; it has only
three classes. The situation is displayed below for the localπ-calculus:

x⊕ 0

!!C
CC

CC
CC

CC

}}{{
{{

{{
{{

{

x 0

Theorem 3 In any reduction system, the barbed bisimilarity
.≈∃ that refines a sin-

gle, committed barb⇓ partitions processes into at most three classes characterized
by ⇓, 6⇓, and⇓∧ 6 ⇓. In the localπ-calculus, we have

.≈◦∃ = 'fair.

PROOF. The three predicates of the lemma induce a partition on processes; letR
be the corresponding equivalence relation. We check thatR ⊆ .≈∃ by establishing
thatR is a single-committed-barbed bisimulation.

• R refines the barb⇓ by construction: it refines{⇓,6⇓} by splitting the first class
in two, according to the predicate⇓, which always implies⇓.

• R is a weak bisimulation: the two lower classes⇓ and 6⇓ are closed by reduc-
tion, hence processes in these classes are trivially bisimilar. Besides, processes
in the upper class always have reductions leading to both lower classes:P ⇓

25



impliesP →∗ P ′ ⇓ follows from the definition of committed barbs, andP 6 ⇓
is P →∗ P ′ 6⇓.

In the localπ-calculus,0
.
6≈∃ x and all three classes are separated by

.≈∃, hence.≈∃ = R. Fair testing equivalence refines⇓ by definition and⇓ by Lemma 11,
hence'fair ⊆

.≈◦∃. Conversely, the number of barbs makes no difference for'fair,
which is a congruence, hence'fair = 'fair,∃ ⊇

.≈◦∃.

6.2 The Semantics of Coupled Simulation

Next, we provide another, more useful characterization of the'fair equivalence. We
establish that, in the localπ-calculus, we havevfair =

.
6◦. To provevfair ⊆

.
6◦,

we develop a semantic model of coupled similarity with committed barbs. We first
consider processes whose behavior is especially simple. We say that a processP
is committedwhen, for all tests⇓x , we haveP ⇓x if and only if P ⇓x . Then, no
reduction may visibly affectP : let S be the set of names

S
def
= {x | P ⇓x} = {x | P ⇓x}

For allP ′, if P →∗ P ′, thenP ′ is still committed toS. In a sense,P has converged
to S, which entirely captures its behavior.

To every processP , we now associate the semanticsP [, defined as the set of sets
of namesS, for all committed derivatives ofP :

P [ def
= {S ⊆ N | ∃P ′. P →∗ P ′ andS = {x | P ′ ⇓x} = {x | P ′ ⇓x}}

For example,0[ is the singleton{∅} and(x⊕ y)[ is {{x}, {y}}. As is the case for
weak barbs,P [ decreases with reduction.

Remark 26 In theπ-calculus,P [ 6= ∅.

PROOF. Although we use the remark only for local processes, our proof applies
to any pi calculus processP . Consider all series of processesPi for i = 0 . . . n
(n ≥ 0) such that

P = P0 →∗ P1 →∗ · · · →∗ Pi →∗ · · · →∗ Pn = P ′

and such that the size of{x | Pi ⇓x} strictly decreases withi. We have at least one
such series,P0 for n = 0, andn is bounded by the number of free names inP ,
so there exists a series of maximal length. By construction, the processP ′ is then
committed and yields an element ofP [.

26



By definition, our semantics is closely related to the testing preorders:

Lemma 27 Let⊆[ be the preorder defined asP ⊆[ Q
def
= P [ ⊆ Q[. In the local

π-calculus, we have⊆◦[ = vfair.

PROOF. The predicates⇓x and ⇓x can be recovered as follows: we haveP ⇓x

if and only if x ∈ ⋃
P [, andP ⇓x if and only if x ∈ ⋂

P [. By definition of may
testing and fair testing preorders, we thus obtain⊆◦[ ⊆ vfair ⊆ vmay.

In the localπ-calculus, the first inclusion is an equality. For any finite sets of names
S andN such thatS ⊆ N andt, t′ 6∈ N , we use the evaluation context:

TN
S [ ]

def
= νS, t.

(
[ ] |∏x∈S(t |x.t) |∏x∈N\S x.(x | t) | t.t′

)
We check thatTN

S [ ] fair-tests exactly one set of names in our semantics. InTN
S [ ],

each process in the first parallel product sendst until it receivesx and performs a
stept | t→ 0; each process in the second parallel product sendst when it receivesx;
finally, t.t

′ forwards a message fromt to t′. Hence, untilP commits toS and pro-
vides

∏
x∈S x, the processTN

S [P ] can send the messaget
′ For all P of sortN , we

haveTN
S [P ] ⇓t ′ if and only if S 6∈ P [. We conclude by definition ofvfair.

We now establish that our semantics corresponds to barbed coupled similarity:

Lemma 28 In the localπ-calculus, we have⊆[ =
.
6.

PROOF. We successively check that⊆[ refines the barbs, is a simulation, and
meets the coupling condition. AssumeP ⊆[ Q.

• P ⇓x if and only if x ∈ ⋃
P [ and, sinceP [ ⊆ Q[, we also haveQ ⇓x .

• SinceP [ decreases with reductions,⊆[ is trivially a simulation: ifP →∗ P ′, then
P ′ ⊆[ P ⊆[ Q′.

• Using Remark 26, there is someS ∈ P [. By hypothesis,S ∈ Q[ and, for some
processQ′, we haveQ→∗ Q′ andQ′[ = {S} ⊆ P [, that isP ⊇[ Q′.

From Lemmas 27 and 28, we conclude that the precongruence of barbed coupled
similarity yields fair testing, and is thus strictly coarser than barbed coupled pre-
congruence.

Theorem 4 In the localπ-calculus, we have
.
6◦ = vfair,

.
6◦ ⊂ 6, and thus

.
≶◦ =

'fair and
.
≶◦ ⊂ ≶.

27



7 Double-Barbed Bisimilarity

We now give a proof of
.≈◦ ⊆ ≈ in the asynchronousπ-calculus. Our proof holds

for both theπ-calculus and for the localπ-calculus; it depends on the presence or
absence of name matching only in Lemma 34, which handles both cases.

We rely on several encodings of values into theπ-calculus. These standard contin-
uation-passing-style encodings use only a deterministic fragment of theπ-calculus,
see, e.g., [30]. In theπ-calculus, messages carry only names; hence, a processx〈V 〉
that sends a message carrying the valueV in the domain of the encoding is trans-
lated asνu.(〈〈V 〉〉u |x〈u〉) whereu is a fresh name and〈〈V 〉〉u is a replicated input
onu that receives continuations̃c and, depending on the structure ofV , sends back
(name-encoded) values̃ui on one of those continuationsci ∈ c̃.

We first give an encoding for integers and their operations. Letu, u′, v range over
names representing integers in processes (with communication typeι

def
= µ ι .〈〈〉, 〈ι〉〉)

and letn ≥ 0 represent integer constants. We use the encoding:

〈〈0〉〉u
def
= !u(z, s).z

〈〈v + 1〉〉u
def
= !u(z, s).s〈v〉

〈〈n + 1〉〉u
def
= νv.(〈〈n〉〉v | 〈〈v + 1〉〉u)

match u with 0 7→ P or v + 1 7→ Q
def
= νz, s.(u〈z, s〉 | z.P | s(v).Q)

if u = u′ then P else Q
def
=

νe.(e〈u, u′〉 | !e(i, j).match i j with
0 0 7→ P
0 j′ + 1 7→ Q

i′ + 1 0 7→ Q
i′ + 1 j′ + 1 7→ e〈i′, j′〉)

In the definition above, the multiple matching is the usual shorthand for nested
primitive matchings, and we assume thatz, s, e, i, j, i′, j′ do not occur inP or Q.

We also use an injective function[[ ]] from namesz ∈ N to integers[[z]] ∈ N.

Next, we define a series of auxiliary equivalences:

Definition 29 Let (xi)i∈N be a family of distinct nullary names. We let
.≈n be the

largest symmetric bisimulation that refines the barbs⇓x1 , . . . ,⇓xn , and let≈n be the
largest such bisimulation that is preserved by application of evaluation contexts.

By construction, we have
.≈ ⊆ .≈n, ≈ ⊆ ≈n ⊆

.≈◦n, and
.≈◦ ⊆ .≈◦n, and the

discriminating power of thesen-barb equivalences increases withn. Obviously,
.≈◦0

relates all processes. In theπ-calculus, we have
.≈◦1 =

.≈◦∃ and≈n = ≈ for any

28



n ≥ 1. In addition, we are going to show that, for anyn ≥ 2, we have in fact.≈◦n = ≈. To this end, we focus on
.≈2, and letx andy be the two nullary names

associated with the barbs⇓x and⇓y refined by
.≈2.

7.1 Some Equivalence Classes for
.≈2

We first build a family of processes that are not
.≈2-equivalent and retain this prop-

erty by reduction. Informally, these processes represent infinitely many ways of
hesitating between two messages in a branching semantics. The construction is
general, and relies on an operatorS(·) that maps every set of processesPi ⊆ P to
the set of its (strict, finite) internal sums:

Lemma 30 LetS(Pi)
def
= {⊕P∈P ′ P | P ′ is a finite subset ofPi and|P ′| ≥ 2}. For

some given set of processesP0 ⊆ P, let Pn+1 = S(Pn) for n ≥ 0 andPω =⋃
n≥0Pn.

We say thatS ⊆ P isR-discrete when, for allP, Q ∈ S, P R Q impliesP = Q.

If P0 is (→∗ .≈2)-discrete, then (1)P1 is (→∗ .≈2)-discrete, and (2)Pω is
.≈2-discrete.

PROOF. We first show that:

(3) If P, Q ∈ P0, P →∗ .≈2 R, andR→∗ .≈2 Q, thenP = Q.
By bisimulation, we can compose the relations above and obtainP →∗ .≈2 Q.
By hypothesis onP0 we obtainP = Q.

(4) If P ∈ P0 andR ∈ P1, then we cannot haveP →∗ .≈2 R.
By construction ofP1, we haveR→∗ .≈2 Qi for at least two differentQi ∈ P0,
whereas, by(3), P →∗ .≈2 R yieldsP = Qi for all Qi.

To prove(1), considerP, Q ∈ P1 such thatP →∗ .≈2 Q, that is,P →∗ P ′′ .≈2 Q
for someP ′′. SinceP is an internal choice on some subset ofP0 for

.≈2, and(4)
excludesP ′ →∗ .≈2 P ′′ .≈2 Q for anyP ′ ∈ P0, we actually haveP

.≈2 P ′′ .≈2 Q.
Let Q′ ∈ P0 be a summand ofQ. By bisimulation, we haveP →∗ .≈2 Q′. Since
(4) excludesQ′ .≈2 P , there existsP ′ ∈ P0 such thatP →∗ .≈2 P ′ →∗ .≈2 Q′.
By hypothesis onP0, we obtainP ′ = Q′, and thusQ′ is also a summand ofP .
Symmetrically, every summand ofP is a summand ofQ, and finallyP = Q.

To prove(2), by induction onn, we show that everyPn is →∗ .≈2-discrete, that
P ∈ Pn, Q ∈ Pn+m, andP →∗ .≈2 Q imply P = Q, and that, in particular,
P, Q ∈ Pω andP

.≈2 Q imply P = Q.

We apply Lemma 30 to the setP0
def
= { 0, x, y }. This set is clearly(→∗ .≈2)-

discrete, since its processes have distinct barbs and no reductions. The size of each

29



layerPn grows exponentially, and thusPω contains infinitely many processes unre-
lated by

.≈2. (Of course,
.≈2 has more classes than those represented inPω, such as

processes that can reach an infinite number of classes inPω.) Note that the construc-
tion also applies to the existential bisimilarities of Sections 5.1 and 6, but quickly
converges. Starting from the set{0, x}, we obtain a third, unrelated process0 ⊕ x
at rank 1, then the construction yields no further classes.

The next lemma states that, thanks to the discriminating power of
.≈2, a process can

effectively pass any integer to its context by hesitating between the two exclusive
barbs⇓x and⇓y , without actually sending messages onx andy. To every integer,
we associate a particular equivalence class of

.≈2 in the hierarchyPω (as depicted
in Figure 1 below), then we write a process that receives an integer encoding and
conveys its value by conforming to its characteristic class. Hence, the contextN [·]
transforms integer-indexed barbsint〈n〉 (whereint is an ordinary name of theπ-
calculus) into the barbs⇓x and⇓y .

Lemma 31 There is aπ-calculus evaluation contextN [ ] such that:

(1) N [ ] has sort{x, y}, binds{int}, and receives a single message on int.
(2) LetNn

def
= N [int〈n〉]. For all n, m ∈ N, if Nn →∗ .≈2 Nm, thenn = m.

(3) For all n ∈ N, we haveNn 6
.≈2 N [0].

PROOF. We program the evaluation contextN [ ] as follows, and we locate the
derivatives of eachNn in the family(Pk)k<ω obtained from Lemma 30.

I
def
= !c(u, x, y, z).match u with 0 7→ x

or v + 1 7→ (c〈v, z, x, y〉 ⊕ c〈v, y, z, x〉)

Ju
def
= c〈u, x, y, z〉 ⊕ c〈u, z, x, y〉 ⊕ c〈u, y, z, x〉

N [ ]
def
= ν int.([ ] | int(u).νc, z.(I | Ju))

Intuitively, messages onc carry an integer loop indexu and a permutation of the
namesx, y, andz; the replicated inputI is used to iterate a binary internal choice
from u to 1, whereasJu is a single, initial, ternary internal choice.

Let ρ be the substitution that maps(x, y, z) to (z, x, y). Let σ range overρk, k ≥ 0.
Let Qσ

n
def
= νc, z.(I | c〈n, xσ, yσ, zσ〉), with Qn

def
= QId

n . By construction, for any
n > 0, we have:

Qσ
n≈Qσρ

n−1 ⊕Qσρρ
n−1 (7)

Nn≈Qn−1 ⊕Qρ
n−1 ⊕Qρρ

n−1 (8)

The equivalence classes and their reductions are displayed in Figure 1, up to the
permutation ofQ2n+1 andQρρ

2n+1 for n ≥ 0.

30



Nn

������
��

��
��

��
��

�

��>
>>

>>
>>

>>
>>

>>
.≈2∈ Pn+1

Qn

��   A
AA

AA
AA

AA
AA

AA
Qρ

n

~~}}
}}

}}
}}

}}
}}

}

  A
AA

AA
AA

AA
AA

AA
Qρρ

n

��~~}}
}}

}}
}}

}}
}}

}

.≈2∈ Pn

...
...

...

⊕

�� ��>
>>

>>
>>

>>
>>

>>
⊕

����
��

��
��

��
��

�

��>
>>

>>
>>

>>
>>

>>
⊕

������
��

��
��

��
��

�
P2

x⊕ 0

�� ��>
>>

>>
>>

>>
>>

>>
x⊕ y

��>
>>

>>
>>

>>
>>

>>

����
��

��
��

��
��

�
0⊕ y

������
��

��
��

��
��

�
P1

x 0 y P0

Fig. 1. Reduction classes forNn, n ≥ 0.

We say thatP ∈ Pn is a binary processwhen eithern = 0 or P is the sum of
two distinct binary processes inPn−1. Binary processes are closed by reduction up
to≈.

By induction onn, we show thatQn ≈ Pn for some binary processPn ∈ Pn. At
rank0, we haveQ0 ≈ x, Qρ

0 ≈ 0, andQρρ
0 ≈ y. For the inductive case, we apply (7)

to our hypotheses, and the substitutionρ guarantees that the two summands are
distinct. By composing this result with (8), we obtainNn ≈ N ′

n for some process
N ′

n ∈ Pn+1 that is a ternary sum of binary processes.

Property(1) directly follows from our definitions. For property(2), if Nn →∗ .≈2

Nm then alsoN ′
n ≈→∗ .≈2≈ N ′

m for some ternary sumsN ′
n ∈ Pn+1 andN ′

m ∈
Pm+1. Since≈ ⊆ .≈2 and

.≈2 is a bisimulation, we haveN ′
n →∗ .≈2 N ′

m. Either
N ′

n

.≈2 N ′
m, and thusn = m by Lemma 30(2), orN ′

n →∗ .≈2 Pn →∗ .≈2 N ′
m

for some binary processPn. The latter case implies thatN ′
m is also a binary pro-

cess, and contradicts the construction ofN ′
m. Finally, property(3) follows from

Lemma 30(2), sinceNn ≈ N ′
n ∈ Pn+1 andN [0]

.≈2 0 ∈ P0.

The next lemma uses this result to restrict the class of contexts being considered in
congruence properties to contexts with at most two free nullary variables. (State-

31



ments(2) and(3) of the lemma are specifically used in the proof of Lemma 39.)

Lemma 32 LetS be a finite set of names. LetN [ ] be the context of Lemma 31 for
some int6∈ S. There are evaluation contextsFS[ ] of sort{int} andBS

def
= N [FS[ ]]

such that, for all processesP andQ of sortS, we have:

(1) If BS[P ]
.≈2 BS[Q], thenP

.≈ Q.
(2) If BS[P ]→∗ T →∗ .≈2 BS[Q] thenP →∗ P ′ andT ≡ BS[P ′] for someP ′.
(3) For somek ∈ N, if BS[P ]→∗ .≈2 Nn, thenn < k.

PROOF. Let a, b 6∈ S be two nullary names. For allz ∈ S ] {a, b}, let w̃z be a
tuple of fresh names whose length matches the arity ofz. To build BS[ ], we use
the additional terms:

X
def
=

⊕
z∈S]{a,b} z(w̃z).int〈[[z]]〉

FS[ ]
def
= νS, a, b.

(
[ ] | a | b |X

)
(where[[ ]] is our injective function from names to integers). By construction, for
anyP of sortS, we haveFS[P ] of sort{int} andBS[P ] of sort{x, y}. As soon as
a messageint〈[[z]]〉 is sent by a derivative ofX, the resulting process is bisimilar
to N[[z]], independently of the rest of the process enclosed inN [ ]. For anyP of
sortS, we thus always have the reductions:

BS[P ] →∗ B′
z[P ] for anyz ∈ S

BS[P ] →∗ B′
z[P ]

.≈2 N[[z]] for at leastz = a andz = b

whereB′
z[ ] is obtained fromBS[ ] by choosingz(w̃z).int〈[[z]]〉 in X.

We first show that, for all reductionsBS[P ]→∗ T , there existsP ′ such thatP →∗

P ′ and one of the following holds:

(X) T ≡ BS[P ′].
(z?) For somez ∈ S, T ≡ B′

z[P
′].

(z) For somez ∈ S ∪ {a, b}, N[[z]] →∗ .≈2 T and(P ′ | a | b) ↓z .

The proof is by induction on the length of the derivation, and case analysis on the
first reduction step that reducesX. Before this step,BS[ ] does not interact withP
and we remain in case (X). After this step, ifz ∈ S, the contextB′

z[ ] interacts
with P only if P sends a message onz andz(w̃z).int〈[[z]]〉 receives it. Until this
step occurs, we remain in case (z?). When it occurs, we arrive in case (z). After the
step that leaves (X), ifz = a or z = b is chosen, communication onz can always
occur independently ofP , so we are already in case (z).

32



We now establish property(3) of the lemma. LetP be a process of sortS such that
BS[P ]→∗ T

.≈2 Nn. In case (X) and case (z?) withP ′ ⇓z , we haveT →∗ .≈2 N[[z]]

for somez ∈ S ∪ {a, b}, and thenn = [[z]] by Lemma 31(2). In case (z), we
haveN[[z]] →∗ .≈2 T and similarlyn = [[z]]. In case (z?) withP ′ 6⇓z , we have
T

.≈2 N [0], which contradicts Lemma 31(3). Thus,n is bounded by the largest[[z]]
for z ∈ S ∪ {a, b}.

To prove property(2), assumeBS[P ] →∗ T →∗ .≈2 BS[Q]. We rely on the case
analysis above for the reductionsBS[P ] →∗ T . To conclude, we show that we are
always in case (X). Otherwise, letz be the name chosen inBS[P ] →∗ B′

z[P
′] →∗

T . We haveBS[Q] →∗ .≈2 Nn for at least one valuen 6= [[z]] (eithern = [[a]] or
n = [[b]]). By bisimulation, we obtainB′

z[P
′]→∗ T →∗ T ′ .≈2 Nn.

We use our case analysis again, for the reductionsBS[P ] →∗ B′
z[P

′] →∗ T ′. In
case (z), we haveN[[z]] →∗ .≈2 T ′, henceN[[z]] →∗ .≈2 Nn and, by Lemma 31, we
obtain the contradiction[[z]] = n. In case (z?), we haveT ′ ≡ B′

z[P
′′], with two

subcases. IfP ′′ ⇓z , thenT ′ →∗ .≈2 N[[z]] andT ′ .≈2 Nn also yields the contradiction
[[z]] = n. Otherwise (P ′′ 6⇓z ), we haveT ′ .≈2 N [0] and thusNn

.≈2 N [0], which
contradicts Lemma 31(3).

To prove property(1), let R be the relation that contains all pairs(P, Q) with
fv(P ) ∪ fv(Q) ⊆ S andBS[P ]

.≈2 BS[Q]. We show thatR is a barbed bisimu-
lation, and thusR ⊆ .≈. For anyP R Q:

Barbs Let z ∈ S. If P ⇓z , thenBS[P ] →∗ .≈2 N[[z]]. By hypothesis,BS[P ]
.≈2

BS[Q], hence, by bisimulation, we obtainBS[Q] →∗ .≈2 N[[z]]. Using the case
analysis above,BS[Q]→∗ .≈2 N[[z]] yieldsQ ⇓z .

Bisimulation: If P →∗ P ′, thenBS[P ] →∗ BS[P ′] and, sinceBS[P ]
.≈2 BS[Q],

we haveBS[Q] →∗ T with BS[P ′]
.≈2 T . Using property(2), we obtain reduc-

tionsQ→∗ Q′ such thatT ≡ BS[Q′], henceP ′ R Q′.

7.2 π-calculus Interpreters

For a given finite sortS, we define an interpreter processRu with free variables
S]{u} that interpretsu as the integer-coded representation of aπ-calculus process.
Wheneveru encodes a processP with sort S, the interpreter behaves likeP up
to labeled bisimilarity (Ru ≈l P ). As opposed to most lemmas in Section 7, the
actual definition of the interpreter is sensitive to small variations in the calculus,
including its type system. We first give a finite interpreter for processes that use
only replicated input and a finite number of channel types, then use preliminary
internal encodings to extend the interpreter to arbitrary processes.

Definition 33 Let Σ be a finite set of types; we say that a processP is Σ-proper
when (1) all free and bound names ofP are typed inΣ, and (2) for all subterms

33



of P of the form!Q, Q is of the formx(ỹ).Q′.

Next, we give an integer encoding for the syntax ofΣ-proper processes. We write
[[P ]] for the integer that represents the (typed) abstract syntax tree forP , as defined
in Section 2. The encoding relies on our injective function from namesx to inte-
gers[[x]] and on an arbitrary injective function from the typesσ ∈ Σ to integers[[σ]].

The process syntax encoding is basically a Gödel numbering with type indexes
inserted for input, output and restriction constructs. We use anN × N → N bijec-
tion, defined byη(j, k)

def
= 2j(2k + 1) − 1; we also useη(j1, . . . , jn) as shorthand

for η(j1, η(j2, . . . , η(jn−1, jn) . . . )). If the channel namex has typeσ ∈ Σ in the
context of the translation, we take:

[[0]]
def
= 0

[[P |Q]]
def
= η(1, [[P ]], [[Q]])

[[νx : σ.P ]]
def
= η(5[[σ]] + 2, [[x]], [[P ]])

[[x〈ỹ〉]] def
= η(5[[σ]] + 3, [[x]], [̃[y]])

[[x(ỹ).P ]]
def
= η(5[[σ]] + 4, [[x]], [̃[y]], [[P ]])

[[!x(ỹ).P ]]
def
= η(5[[σ]] + 5, [[x]], [̃[y]], [[P ]])

[[[x = x′]P ]]
def
= η(5[[σ]] + 6, [[x]], [[x′]], [[P ]])

Since[[0 |P ]] > [[P ]], for anyk andP , there exists someQ ≡ P with [[Q]] > k.

We also define a pattern-matching syntax of processes for invertingη:

match u with η(e, m) in P
def
=

νs.(s〈u, u, u, u〉 | !s(i, m, j, e).match i m j e with
0 7→ P

1 m′ + 1 7→ s〈m′, m′, j, j〉
i′ + 2 m′ + 1 j′ + 1 e′ + 2 7→ s〈i′, m′, j′, e′〉

7→ 0)

match u with η(v1, . . . , vn) in P
def
=

match u with η(v1, u
′) in match u′ with η(v2, . . . , vn) in P

where we assume thats, u′, i, j do not occur inP . Wheneveru encodesn ∈ N,
the pattern matching completes and triggersP binding (encodings of)e,m ∈
N such thatη(e,m) = n (and, respectively, bindingv1, . . . vn ∈ N such that
η(v1, . . . , vn) = n). The clause ‘ 7→ 0’ is never selected. The correctness of
the decoding ofη(e,m) follows from the invariants2e−i(2m + 1 − i) − 1 = n,
i + j = m + e, 0 ≤ i ≤ m ≤ j, and0 ≤ i ≤ e. Its termination follows from
decreasingm’s.

34



Finally, we define a process encoding of finite association tablesρ from integers to
names typed inΣ, which we will refer to asΣ-tables. (The domain of ourΣ-tables
will consist of images[[z]] of namesz under the[[ ]] injection.) A Σ-table is either
the empty table∅, or the overriding extensionρ{y : τ / [[z]]} of another tableρ. The

general form of aΣ-table is thus∅{ ˜y : τ / [[z]]}. In the processPρ, we identifyρ

with its implied substitution—that is,P (∅{ ˜y : τ / [[z]]}) def
= P{ỹ/z}.

〈〈∅〉〉r
def
= 0

〈〈ρ{y : τ / uy}〉〉r
def
= νr′.(〈〈ρ〉〉r′ | 〈〈r

′{y : τ / uy}〉〉r)
〈〈r′{y : τ / uy}〉〉r

def
= !r(u, c).if u = uy then νz̃σ : σ.c〈z̃σ{y/zτ}〉 else r′〈u, c〉

wherez̃σ is a tuple of fresh names indexed by the types ofΣ, and wherẽzσ{x/zτ}
is z̃σ with the name at indexτ replaced byx. We need this tuple to ensure that the
encoding is well-typed; the type ofΣ-tables is thus〈ι, 〈Σ̃〉〉, whereι is the type of
integer encodings. We also give a correspondinglet-syntax for accessingΣ-tables.

let x : τ = r[m] in P
def
= νc.(r〈m, c〉 | c(z̃σ{x/zτ}).P )

let x0, x̃ : τ0, τ̃ = r[m0, m̃] in P
def
= let x0 : τ0 = r[m0] in let x̃ : τ̃ = r[m̃] in P

The next lemma relates processesP to the interpretation of their representation[[P ]].
As long as the interpreter can be finitely defined, the result is not surprising, since
the π-calculus has sufficient expressive power. In particular, similar interpreters
should be definable for most variants of theπ-calculus.

Lemma 34 (Finite Interpreter) In the π-calculus, with or without name match-
ing, letΣ be a finite set of types and letS be a finite set of typed names with types
in Σ. There is a processRu of sortS ]{u} such that, for everyΣ-proper processP
with sortS, we haveνu.(〈〈[[P ]]〉〉u |Ru) ≈l P .

PROOF. Let ρS be the finite table∅{ ˜y : τy / [[y]]}, wherey : τy ranges overS. We
define the interpreterRu

def
= Ru(ρS) in Figure 2, using the encodings for processes,

names, integers, types, andΣ-tables specified above, with an auxiliary replicated
input Dε that recursively performs pattern matching on the process coded byu in
the Σ-table coded byr. The interpreter closely follows the syntax and types for
processes. The last series of clauses is present only when the sourceπ-calculus has
a name matching prefix, and is implemented using the same prefix.

In Ru, reduction steps are either steps in strong correspondence with those of the
source process, on the same channel names and with the same arguments, or book-
keeping steps: steps for the encodings, and reductions onε. We write→d for those

35



Ru(ρ)
def
= νε.(Dε | νr.(〈〈ρ〉〉r | ε〈u, r〉))

Dε
def
= !ε(u, r).match u with η(t, u′) in match t with

0 7→ 0

1 7→ match u′ with η(u1, u2) in ε〈u1, r〉 | ε〈u2, r〉

For everyσ = 〈τ̃〉 ∈ Σ:

5[[σ]] + 2 7→ match u′ with η(mx, u1) in

νx, r′.(〈〈r{x : σ /mx}〉〉r′ | ε〈u1, r
′〉)

5[[σ]] + 3 7→ match u′ with η(mx, m̃y) in let x, ỹ : σ, τ̃ = r[mx, m̃y] in

x〈ỹ〉

5[[σ]] + 4 7→ match u′ with η(mx, m̃y, u1) in let x : σ = r[mx] in

x(ỹ).νr′.(〈〈r{ ˜y : τ /my}〉〉r′ | ε〈u1, r
′〉)

5[[σ]] + 5 7→ match u′ with η(mx, m̃y, u1) in let x : σ = r[mx] in

!x(ỹ).νr′.(〈〈r{ ˜y : τ /my}〉〉r′ | ε〈u1, r
′〉)

Only for theπ-calculus with matching:

5[[σ]] + 6 7→ match u′ with η(m, m′, u1) in let x, x′ : σ, σ = r[m, m′] in

[x = x′]ε〈u1, r〉

Fig. 2. Finite Interpreter

bookkeeping reduction steps. These bookkeeping steps are deterministic and nor-
malizing : for anyΣ-proper processP andΣ-tableρ, the process

R(P, ρ)
def
= νu(〈〈[[P ]]〉〉u |Ru(ρ))

has a→d-normal form, which is unique up to≡. Specifically, we have

Pρ ≡ νỹ. (I |∏ Gi.Piρi)

R(P, ρ) →∗
d ∼ νỹ. (I |∏ Gi.R(Pi, ρi)) in→d-normal form

whereI is a product ofΣ-proper output terms, eachGi is a guard (either input,
replicated input, or matching), eachPi is a subterm ofP (prior to α-conversion),
andρi is theΣ-table representing the substitution applied toPi (which may perform
α-conversion). We use the strong bisimulation in the second equation to replicate
or discardDε and representations of integers and tables, and move these under
guards. Note that the right-hand sides of both equations are unique up to structural
equivalence.

36



Structural equivalence in the source process corresponds only to labeled bisimilar-
ity in the interpreter—in particular,α-conversion may cause additional reductions
on integer indices in the interpreter. We avoid this problem by using the normal
forms; we let

R def
= {(P, Q) | P ≡ νỹ. (I |∏ Gi.Piρi), Q→∗

d ∼ νỹ. (I |∏ Gi.R(Pi, ρi))

for some names̃y, guardsGi, some product of outputsI,
and someΣ-proper processPi andΣ-tablesρi

such that the sort ofPi is included in the domain ofρi }

(Note that there is no type restriction onI.) We prove thatR is a labeled bisimula-
tion : if P R Q, then

• Asynchronous input and output steps ofP andQ match trivially, since they only
affect theI and ỹ components, which are identical in the normal forms ofP
andQ, and bookkeeping reductions inQ can only extendI andỹ.

• If P → P ′, we must haveI ≡ IM |M for someIM , M , and(M |Gj.Pjρj) →
Pjρjρ

′ for somej and substitutionρ′, such that

P ′≡ νỹ
(
IM |(Pjρj)ρ

′ |∏i6=j Gi.Piρi

)
whereGj is either an input or a name matching (withM = 0 if Gj is a matching).
We then have

Q→∗
d→Q′ ∼ νỹ.

(
IM |R(Pj, ρjρ

′) |∏i6=j Gi.R(Pi, ρi)
)

and we can further extend this computation with the bookkeeping steps that nor-
malizeR(Pj, ρjρ

′):

Q′→∗
d ∼ νỹ, ỹ′.

(
IM | I ′ | (

∏
G′

k.R(P ′
k, ρ

′
k)) |

(∏
i6=j Gi.R(Pi, ρi)

))
Since the condition onPj andρj implies that(Pjρj)ρ

′ = Pj(ρjρ
′) we then have

P ′ ≡ νỹ, ỹ′.
(
IM | I ′ | (

∏
G′

k.P
′
kρ

′
k) |

(∏
i6=j Gi.Piρi

))
, henceP ′ R Q′.

• if Q→ Q′, then eitherQ→d Q′, and thenP R Q′, or, as above, there are some
M , IM , j, ρ′ such thatQ′ →∗

d Q′′ ∼ νỹ. (IM |R(Pj, ρjρ
′) |∏ Gi.R(Pi, ρi)); then

we haveP → P ′ def
= νỹ (IM |(Pjρj)ρ

′ |∏ Gi.Piρi) and, as above, considering the
normal forms ofQ′′ andP ′ gives usP ′ R Q′.

The main result follows from the fact thatP = PρS R R(P, ρS).

We now need to show that our interpreter can emulateall processes of sortS, not
just Σ-proper ones. Because the interpreter must be a finite process, some prelim-
inary encoding is needed to eliminate arbitrarily-large syntactic constructs which
might occur in the process to be interpreted. The problem occurs for the channels

37



that are never extruded. These channels can have arbitrary types, unrelated toΣ,
and arbitrarily large arities. Since these channels are internal to the source process,
we can use a structural, type-driven translation that implements communication on
channels of these unrelated types with a series of communications on channels of
some uniform type, in the spirit of the encoding from the polyadicπ-calculus to
its monadic subset (see, e.g., [30]). The correctness of the encoding rests on the
following notion:

Definition 35 A set of channel typesΣ is closed under decomposition when, for
eachσ ∈ Σ, if σ = 〈σ1, . . . , σn〉, then alsoσ1, . . . , σn ∈ Σ (up to unfolding).

With the simple type system given in Section 2, any finite set of typeΣ has a finite
smallest supersetD(Σ) that is closed under decomposition.

Lemma 36 Let Σ be a finite set of types. There is a finite set of typesF (Σ) ⊇ Σ
such that, for any processP whose free names are typed inF (Σ), there existsP o

whose names are all typed inF (Σ) with P ≈l P o.

PROOF. We takeF (Σ)
def
= D(Σ)∪ {o}, whereo

def
= µo.〈 ˜D(Σ) ∪ {o}, o〉. Note that

F (Σ) is closed under decomposition. We define a translation(·)o on typed terms,
setting for typesσo def

= σ whenσ ∈ F (Σ) andσo def
= o whenσ 6∈ F (Σ).

For processes, the translation is compositional and type-driven. In the rules below,
the tuple indexσ in z̃σ ranges overF (Σ), while the i in τ̃i, ũi, ỹi, ranges over
{1, . . . , n}. (We assume that all names introduced in the translation are fresh.) The
top two rules apply when the type ofx is in F (Σ); the next two rules apply when
the type ofy0 is 〈τ̃i〉 6∈ F (Σ).

(x〈ũi〉)o def
= x〈ũi〉

(x(ũi).P )o def
= x(ũi).P

o

(y0〈ũi〉)o def
= ν̃zσ : σ.ν̃yi : o.

∏n
i=1 yi−1〈z̃σ{ui/zτi

o}, yi〉
(y0(ũi).P )o def

= y0(z̃σ{u1/zτ1o}, y1). . . . yn−1(z̃σ{un/zτn
o}, yn).P o

0o def
= 0 (P |Q)o def

= P o |Qo (!P )o def
= !P o

(νz : τ.P )o def
= νz : τ o.P o ([x = x′]P )o def

= [x = x′]P o

The translation leaves any name that may be exchanged with the environment un-
changed, and changes the type of some local names to reflect the use of a generic
communication protocol.

To prove the correctness of the translation up to labeled bisimilarity, we show that
the relation containing the pairs(I |P, I |P o) for all products of outputsI, and allP

38



whose free variables are all typed inF (σ), is a labeled bisimilarity up to expan-
sion [42]. Transitions in the translated process are either in direct correspondence
with transitions in the source process, or additional internal steps on local names
introduced by the encoding of output; these internal steps are deterministic. Us-
ing labeled expansion, we can perform all these additional steps immediately after
any internal step on an encoded channel, and obtain the translation of the resulting
source process after the internal step. Note that the closure property ofF (Σ) en-
sures that outputs inI can only interact withP or P o when they are typed inF (Σ),
and conversely that outputs ofP or P o remain typed inF (Σ).

Using the expanded type setF (Σ) of Lemma 36 in Lemma 34, the identity!P ≈l

νz.(z |!z.(P | z)) to replace general replication with replicated input, and the trans-
lationP o to eliminate types outsideF (Σ), we obtain a universal interpreter:

Corollary 37 (Interpreter) In theπ-calculus, with or without name matching, let
S be a finite set of typed names. There is a processRu of sortS]{u} such that, for
every processP of sortS, there exists a processQ such thatνu.(〈〈[[Q]]〉〉u |Ru) ≈l

Q ≈l P .

While our interpreter may be adapted to various type systems (e.g., Lemma 36 may
be weakened for theπ-calculus with an infinite system of variable sorts, where
D(Σ) can be infinite), its existence is not always guaranteed. For instance, in the
join calculus with polymorphism̀a la ML [18], the interpreter can be adapted to
polymorphic types but, surprisingly, there is no finite interpreter if we also add
name matching. In that setting, we still have≈ = ≈l but we cannot prove an
equivalent of Theorem 1. On the contrary:

Lemma 38 In the join calculus with both polymorphic types and name matching,
labeled bisimilarity is strictly finer than the congruence of barbed bisimilarity:
≈l ⊂

.≈◦.

PROOF. We give a counter-example in the join calculus, in the spirit of Brookes’
counter-example between limit bisimulations and bisimilarity.

For anyn ∈ N, we letPn be a process that performs a series of tests on a poly-
morphic namef : ∀α.〈Int , 〈〈α〉〉〉 encoding a function (in continuation passing
style, cf. [18]). After an initial call tof〈0, c〉 returns,Pn successively callsf〈i, c〉
twicefor eachi ∈ N, and tests, ifi < n, that (1) both calls return thesamenamevi

; and (2)vi 6= vj for any j < i. If any test fails, a singlet is emitted; otherwise,
if f passes all tests,Pn is nondeterministic, and may or may not emitt. Nothing
happens if the initial call does not return. We also letPω be a process that performs
the same calls tof , but ‘fails’ and emits a singlet irrespective of the results (as
long as the initial call returns). For instance, we can use the processes

39



Pn
def
= def x〈〉 | y〈〉 . 0 ∧ x〈〉 | z〈〉 . t〈〉 in

def e〈i, d〉 .
def c〈v〉 | c′〈v′〉 | c′′〈〉 .

[i < n][v = v′]d〈v〉 |
def d′〈u〉 . d〈u〉 | [u = v]x〈〉 in e〈i + 1, d′〉 in

f〈i, c〉 | f〈i, c′〉 | c′′〈〉 | [i < n]x〈〉 in
def c〈v〉 . (z〈〉 | def d〈v〉 . y〈〉 in e〈0, d〉) in f〈0, c〉

Pω
def
= def e〈i〉 .

def c〈v〉 | c′〈v′〉 | c′′〈〉 . e〈i + 1〉 in
f〈i, c〉 | f〈i, c′〉 | c′′〈〉 in

def c〈v〉 . t〈〉 | e〈0〉 in f〈0, c〉

The π-calculus equivalent of the two join definitions that involve some synchro-
nization would be here!y.x |!z.x.t, and !c′′.c(v).c′(v′).[ ], respectively. The other
join definitions are equivalent to replicated inputs; in all cases, thedef implies
scope restriction. The integer operations (comparison prefix, zero, and increment)
can be replaced with standard encodings.

For anyn ∈ N, if f honors the initial call, the processPn can lose the ability to
emit t (Pn 6 ⇓t ) if and only if f passes all tests at rankn. Conversely,Pω emitst as
soon as the initial call returns.

For a givenn ∈ N, it is straightforward to write a contextCn[ ] that defines a
function fn passing all tests fori ≤ n (and does not bindt). Conversely, in the
caseC[Pn] can pass all tests, the contextC[ ] must haven different names(vi)i<n

to return. Since each name must be returned twice, these names cannot be created
under a join pattern that definesf . By definition of the generalization criterion,
names with a polymorphic type cannot be received in a join pattern that definesf .
Hence, these returned values must already be defined inC[ ], and the size ofC[ ]
grows withn.

We now compare the processesS1 =
⊕

n<ω Pn andS2 =
⊕

n≤ω Pn, noting that if
Si →∗ P , then eitherP ≈ Si, or P ≈ Pn (with n < ω if i = 1), as thePn have no
transitions without a definition forf .

S1 6≈l S2: the reductionS2 → Pω cannot be matched byS1. In the caseS1 →∗≈
Pn, we add the contextCn[ ]; the processCn[Pn] can perform transitions and
reach a state where it has lost its barb ont, while Cn[Pω] cannot. Yet,S1 6≈l Pω

either, because no reductionS1 →∗ Pn can be matched byPω, for the same
reason.

S1
.≈◦ S2: any given contextC[ ] can perform tests only at a bounded depth, hence

there isn ∈ N such that, for anym ≥ n, we haveC[Pm]
.≈ C[Pω].

40



7.3 Universal Context

We are now ready to prove
.≈◦2 ⊆ ≈. We build a single contextUS[ ] that has

essentially the discriminating power of all contexts. We call this context a universal
context.

Lemma 39 (Universal Context) For all finite sets of typed namesS such that
x, y 6∈ S, there is an evaluation contextUS[ ] such that the relation

φS
def
= {(P, Q) | fv(P ) ∪ fv(Q) ⊆ S andUS[P ]

.≈2 US[Q]}

has the following properties:

(1) LetC[ ] be an evaluation context such thatfv(C[P ]) ⊆ {x, y} for anyP with
fv(P ) ⊆ S. For all P andQ, if P φS Q, thenC[P ]

.≈2 C[Q].
(2) Letσ range over injective substitutions on names. The relationφ

def
= {(Pσ, Qσ) |

∃S.P φS Q} is a congruence and a barbed bisimulation, henceφS ⊆ ≈.

PROOF. Let B[ ] be the evaluation contextB{x,y}[ ] = N [F{x,y}[ ]] that is given
by Lemma 32 for the set{x, y} with boundk ∈ N, and someint 6∈ S. LetRu be the
interpreter given by Corollary 37, for processes of sortS ∪{x, y}, for someu 6∈ S.
We build our context as follows:

Tu
def
= int〈u〉 ⊕ F{x,y}[Ru]

Gn
def
= νc.(c〈n〉 | !c(u).c〈u + 1〉 | c(u).Tu)

US,n[ ]
def
= N [νS.(Gn | [ ])]

US[ ]
def
= US,k[ ]

If P has sortS, thenRu has sortS]{x, y, u}, Tu has sortS]{int, u}, νS.(Gn |P )
has sort{int}, andUS,n[P ] has sort{x, y}. The processRu interprets aπ-calculus
process,R, encoded byu. The processTu either reveals the valueu as an integer
barb or silently reduces toF{x,y}[Ru]. The processGk chooses any integern ≥ k as
the result of an infinite internal choiceTk ⊕ (Tk+1⊕ (Tk+2⊕ · · · )): we haveGn ≈l

Tn ⊕ Gn+1 for any n ≥ k. Using these processes, the contextUS[ ] chooses an
(integer-encoded) contextνS.(R |[ ]) encoded byn, then either reveals this choice
of context or behaves like this context. We let the contextsKn[ ] andK ′

n[ ] be the
derivatives ofUS,n[ ] at these intermediate stages, after choosing this particularn
and after choosing to run the interpreterRu with this 〈〈n〉〉u, respectively, and letG′

andT ′ be the inert residues of these stages (G′ ∼l 0, T ′ ∼l 0):

41



G′ def
= νc.!c(u).c〈u + 1〉

T ′ def
= νt.(t.int〈u〉 |G′)

Kn[ ]
def
= N [νS. (νu.(G′ | 〈〈n〉〉u |Tu) |[ ])]

K ′
n[ ]

def
= B [νS. (νu.(T ′ | 〈〈n〉〉u |Ru) |[ ])]

We will use the following reduction property. LetQ be a process of sortS. If
US[Q] →∗ U ′, then there existsn ≥ k andQ′ such thatQ →∗ Q′ and one of the
following holds:

(G) US[Q]→∗ US,n[Q′] ≡ U ′.
(T) US[Q]→∗ Kn[Q′] ≡ U ′.
(R) US[Q]→∗ K ′

n[Q′]→∗ U ′

The proof is by induction on the length of the derivation, and relies on Lemma 32(2).
Crucially, onlyRu shares names with the process placed inUS,n[ ]. This processRu

is guarded untilK ′
n[ ] appears in the reduction. Till then, reductions in the context

and reductions fromQ always commute.

Assume thatP , Q, andC[ ] meet the hypotheses of(1). For all reductionsC[P ]→∗

V , we prove the existence ofW such thatC[Q]→∗ W andV
.≈2 W . There exists a

processR of sortS ∪ {x, y} such thatC[P ] ≡ νS.(P |R) andC[Q] ≡ νS.(Q |R),
with an integer encoding[[R]] ≥ k. Starting fromUS[P ], we build reductions rep-
resentingC[P ] →∗ V with an interpreted[[R]], we use

.≈2-bisimulations as given
in the definition ofφS, and we extract reductionsC[Q] →∗ W . The situation is
detailed in the diagram below, with the extracted reductions on the right.

(1) The upper square of the diagram deals with the internal choice ofn = [[R]]
in Gn. The top edge holds by definition ofφS. On the left, we have reductions

US[P ]→ US,k+1[P ]→ · · · → US,[[R]] → K[[R]][P ]

By
.≈2-bisimulation, we obtain reductionsUS[Q] →∗ U ′ on the right, with

K[[R]][P ]
.≈2 U ′. By construction,K[[R]][P ] →∗ .≈2 N[[R]] and, by bisimulation,

U ′ must have the same property. We show that the reductionsUS[Q] →∗ U ′

are in case (T) of the reduction property, withn = [[R]]. Otherwise:
(R) We haveK ′

n[Q′]
.≈ B[νS, u.(〈〈n〉〉u |Ru |Q′)] and, by Lemma 32(3),

K ′
n[Q′]→∗ .≈2 Nn only for n < k.

(T) with n 6= [[R]]. We have reductions to (R), as discussed above, and toNn

up to
.≈2, and thusU ′ →∗ .≈2 Nn impliesn 6= [[R]].

(G) We haveU ′ →∗ .≈2 Nn for somen > [[R]]. However, the symmetric
argument of the case above yieldsK[[R]][P ]→∗ .≈2 Nm impliesm 6= n.

(2) Below, the reductionK[[R]][P ] → K ′
[[R]][P ] discards the integer barb[[R]] used

as a marker for this particularC[ ] and starts the interpreter. Using Corol-
lary 37, the preservation of≈l by application of the evaluation contextB[ ],
and the inclusion≈l ⊆

.≈2, we obtainK ′
[[R]][P ]

.≈2 B[C[P ]].

42



(3) In the bottom-left square, the reductionsC[P ] →∗ V in contextB[ ] are sim-
ulated by someK ′

[[R]][P ]→∗ Z with B[V ]
.≈2 Z.

(4) In the central part of the diagram, the reductionsK[[R]][P ]→∗ K ′
[[R]][P ]→∗ Z

can be simulated byK[[R]][Q
′]→∗ Z ′ with Z

.≈2 Z ′.
SinceB[V ]

.≈2 Z ′ and, by Lemma 32(3), notB[V ] →∗ .≈2 N[[R]] , the reduc-
tionsK[[R]][Q

′]→∗ Z ′ must be in case (R) forn = [[R]] and, for someQ′′ with
Q′ →∗ Q′′, we can split these reductions intoK[[R]][Q

′] →∗ K ′
[[R]][Q

′′] →∗ Z ′.
(However, there is no central

.≈2 edge and no obvious way to relateC[P ] and
C[Q′′] at this stage.)

(5) In the bottom-right square, by Corollary 37, we obtain the top
.≈2 edge and, by

simulation,K ′
[[R]][Q

′′] →∗ Z ′ impliesB[C[Q′′]] →∗ Z ′′ for someZ ′′ .≈2 Z ′.
Composing the

.≈2 equivalences at the bottom, we obtainB[V ]
.≈2 Z ′′. By

Lemma 32(2), there existsW such thatC[Q′′]→∗ W andZ ′′ ≡ B[W ].
(6) Composing the reductions on the right, we finally obtainC[Q] →∗ W and

B[V ]
.≈2 B[W ], that is,V

.≈ W by Lemma 32(1).

US[P ]

∗

��

.
≈2 US[Q]

∗

��

C[Q]

∗

��
K[[R]][P ]

��

.
≈2 K[[R]][Q

′]

∗

��

C[Q′]

∗

��
B[C[P ]]

��

.
≈2 K ′

[[R]][P ]

∗

��

K ′
[[R]][Q

′′]

∗

��

.
≈2 B[C[Q′′]]

∗

��

C[Q′′]

∗

��
B[V ]

.
≈2

Z
.
≈2

Z ′
.
≈2 B[W ] W

We conclude the proof of property(1) of the lemma by showing that the relation
{(C[P ], C[Q]) | P φS Q} ∪ .≈2 is a double-barbed bisimulation. We have just es-
tablished a sufficient bisimulation property: ifC[P ]→∗ V , thenC[Q]→∗ W with
V

.≈2 W , and vice-versa. The preservation of the barbs⇓x and⇓y follows from the
special case of an empty series of steps (C[P ] = V ): we obtainC[Q]→∗ .≈2 C[P ],
henceC[P ] ⇓x impliesC[Q] ⇓x andC[P ] ⇓y impliesC[Q] ⇓y .

The proof of property(2) of the lemma combines several instances of property(1).
In the definition ofφ, we use the injective renamings to circumvent the limitation
{x, y} 6∈ S. AssumePσ φ Qσ with P φS Q.

43



Barbs: we letC[ ] = BS[ ], where the contextBS[ ] is given by Lemma 32, and
obtainBS[P ]

.≈2 BS[Q] by property(1). By Lemma 32(1), we haveP
.≈ Q. In

particularP andQ have the same weak barbs, andPσ andQσ have the same
barbs.

Bisimulation: if P →∗ P ′, by definition ofφS, we haveUS[P ]
.≈2 US[Q], and the

reductionsUS[P ]→∗ US[P ′] is simulated by someUS[Q]→∗ U ′. Both series of
reductions are in case(G) for n = k, since otherwise we don’t haveU ′ →∗ .≈2 Nn

for all n ≥ k (Lemma 32(3)). We obtainQ →∗ Q′ with U ′ ≡ US[Q′], and
finally P ′ φS Q′. Finally, for all injective renamingsσ and processesP , we have
Pσ → P ′σ if and only if P → P ′.

Context closure: for a given evaluation contextC ′′[ ], there exist an evaluation
contextC ′[ ] and an injective renamingσ′ such thatx, y /∈ fv(C ′[ ]), C ′′[Pσ] =
(C ′[P ])σ′, andC ′′[Qσ] = (C ′[Q])σ′. (If x appears in the sort ofC ′′[ ], we pick a
fresh namex′ and letσ′ = σ{x/x′}, and similarly fory.)
We letS ′ = S ∪ fv(C ′[ ]) andC[ ] = US′ [C ′[ ]]. By property(1) for S andC[ ],
we obtainUS′ [C ′[P ]]

.≈2 U ′
S[C ′[Q]], which is the definition ofC ′[P ] φS′ C ′[Q],

and thusC ′′[Pσ] φ C ′′[Qσ].

Proof of Theorem 1 To conclude, we prove the inclusion
.≈◦2 ⊆ ≈. AssumeP

.≈◦2
Q and letS = fv(P ) ∪ fv(Q). If x, y 6∈ S, by congruence property, we have
US[P ]

.≈2 US[Q]. By Lemma 39(2), we obtainP ≈ Q. If x or y appear inS, we
similarly obtainPσ ≈ Qσ for some injective renamingσ, henceP ≈ Q.

8 Labels instead of Barbs and Contexts

Bisimulation proofs of barbed congruences still require some explicit context clo-
sure, as for instance in most proofs of [15,3]. This is not the case for labeled bisimu-
lations, where congruence is a derived property instead of a requirement in the def-
inition of equivalence. Thus, purely co-inductive proof techniques suffice to estab-
lish equivalences. We write≈l for (weak) labeled bisimilarity, and refer to [43,6,17]
for various formulations of≈l for asynchronous process calculi and their impact on
proof techniques.

Considered as an auxiliary semantics for a reduction system, a labeled transition
system issoundat least when its silentτ -transitions coincide with the reductions
( τ−→ ∗ = →∗) and when its labeled transitions determine the observation predicates
⇓x . Then, any (weak) labeled bisimulation is also a barbed bisimulation. Consid-
ered as a proof technique for observational equivalences, labeled bisimulation is
sound (≈l ⊆ ≈) when, in addition, labeled bisimilarity is closed by application of
all contexts used in the definition of≈. This is usually the case, inasmuch as labels
are meant to represent elementary contexts.

44



In theπ-calculus, we haveP ↓x if and only if P
α−→ for some output label of the

form α = (z̃)x〈ỹ〉; ≈l is closed by restriction and parallel contexts (see [6]); hence
we have the well-known inclusions≈l ⊆ ≈ and≈l ⊆

.≈◦. The first inclusion is
strict because our evaluation contexts have less discriminating power than labels.
For instance, the key barbed congruence for equators, recalled in Proposition 8,
is not a labeled bisimulation. Whereas the processEy

x silently converts messages
betweenx andy, one can still distinguishx from y as an argument in output transi-
tions. For instance,Ey

x | z〈x〉 6≈l Ey
x | z〈y〉 because the labelsz〈x〉 andz〈y〉 are not

equated.

To fix this discrepancy, the usual approach is to extend the syntax with a name
matching prefix, such as[x = y]P . In the extended calculus, each label can then
be tested by a specific context through a series of name matchings, and thus barbed
congruence should coincide with some variant of labeled bisimulation. (Although
labeled bisimulations may be easier to establish, name matching is a mixed bless-
ing. It is usually not a primitive in higher-order settings. Technically, it also induces
additional subtleties [40], and breaks properties such as the stability of equivalence
by substitution. Many useful equations that are proper to asynchronous calculi dis-
appear [27]. Besides, labeled bisimulations may be too fine even in presence of
name matching in the syntax [1].)

In theπ-calculus with name matching, early bisimulation and barbed congruence
coincide, but the proof is delicate—this is mentioned as an open question in [32].
To our knowledge, the only general statement of their coincidence appears in San-
giorgi’s thesis [39], with a proof of the problematic inclusion

.≈◦ ⊆ ≈l for both CCS
and the monadicπ-calculus; the technique consists of building contexts that test
for all possible behaviors of a process under bisimulation, and that exhibit different
barbs accordingly. This technique requires infinite contexts with infinitely-many
recursive constants and free names. These extended contexts are never considered
in the usual congruence properties for theπ-calculus, and they cannot be expressed
using the simpler constructs of asynchronous calculi.

In other works, partial results are obtained for variants of the calculus (CCS [32],
the asynchronousπ-calculus [6]). The proof techniques are similar, but use only
finite contexts. As a result, the coincidence is established only forimage finitepro-
cesses. A processP is image finite when the set of its derivatives is finite. In the case
of weak relations, this means in particular that{P ′, P →∗ P ′} has to be finite. This
restriction is annoying, especially as many processes that use replication (or even
replicated input) are not image-finite by series of reductions. For instance, we have
!(τ.P )→∗!(τ.P ) |P | . . . |P and similarlyQ = x |!x.(P |x)→∗ Q |P | . . . |P .

Theorem 5 In theπ-calculus with name matching, we have
.≈◦ = ≈l.

We could adapt Sangiorgi’s proof by replacing all free names by integers, as Lem-
mas 31 and 34 would provide a finite encoding of his infinite contexts. Actually,

45



there is a much simpler proof at hand: we prove the inclusion≈ ⊆ ≈l then apply
Theorem 1. A proof of the inclusion≈ ⊆ ≈l already appears in [23], in a similar
setting. Our proof, however, is significantly shorter, and illustrates the advantage
of the congruence-and-bisimulation definition of equivalence. Instead of capturing
the whole synchronization tree in a huge context, we exhibit for every labeled tran-
sition a context that specifically detects this transition, then disappears up to barbed
congruence. The proof relies on the following technical lemma:

Lemma 40 (accommodating the extrusions)In the π-calculus, with or without
name matching, letP, Q be processes andy 6∈ fv(P, Q). We haveP ≈ Q if and
only if νx.(y〈x〉 |P ) ≈ νx.(y〈x〉 |Q).

Intuitively, the evaluation contextsEx,y[ ]
def
= νx.(y〈x〉 |[ ]) represent the residues of

contexts that test for output labels of the form(x)z〈w̃〉 that extrudex.

PROOF. Since≈ is closed by application of evaluation contexts, ifP ≈ Q, then
alsoEx,y[P ] ≈ Ex,y[Q]. Conversely, letR be the relation that contains all pairs of
processes(P, Q) such that, for somey not free inP , Q, we haveEx,y[P ] ≈ Ex,y[Q].
We show thatR is a congruence and a barbed bisimulation.

(Strong) bisimulation: reduction steps inP andEx,y[P ] are in direct correspon-
dence: ifP → P ′, thenEx,y[P ] → Ex,y[P

′], and conversely ifEx,y[P ] → T ,
then we can exhibit some processP ′ such thatP → P ′ and T ≡ Ex,y[P

′].
(Sincey 6∈ fv(P ), the messagey〈x〉 remains inert.)

(Strong) barbs: assumey, t 6∈ fv(P ). We never haveP ↓y . We haveP ⇓x if and
only if Ex,y[P ] | y(x).x(ũ).t ⇓t . For anyz 6∈ {x, y}, we haveP ↓z if and only if
Ex,y[P ] ↓z .

Context closure: without loss of generality, we consider only contexts of the form
C[ ]

def
= νṽ.(R |[ ]) and we exhibit a contextC ′[ ] such that for any processesP

with y, z 6∈ fv(P )∪{ṽ}, we can commute contexts up to equivalence:C ′[Ex,y[P ]] ≈
Ex,z[C[P ]]. WhenC[ ] does not restrictx (x 6∈ ṽ), we use:

C ′[ ]
def
= νy.νṽ.([ ] | y(x).(z〈x〉 |R))

Otherwise, we use the context

C ′[ ]
def
= Ex,z[0] | νy.νṽ.([ ] | y(x).R)

(In both cases, we actually prove a finer, labeled bisimulation; we omit these
proofs.) To conclude, supposeP R Q, that is,Ex,y[P ] ≈ Ex,y[Q]. Since≈
is a congruence, we haveC ′[Ex,y[P ]] ≈ C ′[Ex,y[Q]]. By transitivity, we obtain
Ex,z[C[P ]] ≈ Ex,z[C[Q]], that is,C[P ] R C[Q].

In combination with our previous results, this establishes the coincidence of labeled
bisimulation and barbed congruence in the presence of name matching:

46



Theorem 6 In theπ-calculus with name matching, we have≈ = ≈l.

PROOF. We prove≈ ⊆ ≈l by establishing that≈ is a labeled bisimulation. Let
P ≈ Q andP

α−→ P ′. We build a specific context for every labelα.

Internal step: in caseP → P ′, the bisimulation requirement of≈ suffices to ob-
tainQ→∗ Q′ with P ′ ≈ Q′.

Input action: in caseP
x(ỹ)−−→ P ′, we haveP ′ ≡ P |x〈ỹ〉. We always haveQ

x(ỹ)−−→
Q′ def

= Q |x〈ỹ〉. We use congruence for the context[ ] |x〈ỹ〉 to obtainP ′ ≈ Q′.

Output action: we only consider the caseP
(z)x〈y,z〉−−−−−→ P ′ where the processP

outputs a single free namey and a single bound namez (being extruded). The
general case easily follows. We apply the congruence property for the context

T [ ]
def
= t |x(y′, z).( u〈z〉 | [y = y′]t |∏y∈fv(P )[y = z]t )

wheret is a name that does not occur inP or Q. The messaget is used as a
barb that disappears only if the process inT [ ] produces an output with label
(z)x〈y,z〉−−−−−→. That is,T [P ]→→→ Ez,u[P

′] and, wheneverT [Q]→∗ T ′ with T ′ 6⇓t ,

there is a processQ′ such thatQ →∗ (z)x〈y,z〉−−−−−→→∗ Q′ andT ′ ≡ Ez,u[Q
′]. Then,

T [P ] ≈ T [Q] and T [P ] →∗ Ez,u[P
′] yields by bisimulation such aQ′ with

T [Q] →∗ Ez,u[Q
′] (sinceEz,u[P

′] 6⇓t ) andEz,u[P
′] ≈ Ez,u[Q

′]. We conclude by
Lemma 40.

9 A Family Portrait (Summary)

We finally gather our results in a hierarchy of equivalences. Figure 3 deals with the
general case of a reduction system equipped with a notion of evaluation context, and
compares the main congruences considered in this paper. All solid lines represent
inclusions between relations (which may or may not be strict). These inclusions
directly follow from the definitions. The same inclusions hold for any choice of
derived observation predicates: committed, existential, or committed-existential. In
practice, for process calculi, we expect the additional inclusion'fair ⊆ 'may, and
also that at least the tiers with dotted horizontal lines remain different:≈ ⊂ ≶ ⊂
'fair ⊂ 'may.

Figure 4 deals with our asynchronousπ-calculus, in the absence of name matching.
It combines results obtained for different variants of our equivalences, for different
choices of observation predicates, as discussed in Sections 5 and 6. We omit the
existential variants for the congruences≈, ≶, 'fair, and'may—they all coincide
with their base equivalence. With name matching, the two upper tier also coincide.

47



any sound labeled bisimilarity ≈l

name matching

barbed congruence ≈
universal contexts

CC
CC

CC
CC

C

internal choice
interleaved with
visible actions��

��
��

��
��

��
��

��

congruence of barbed bisimilarity
.≈◦


























barbed coupled congruence ≶

DDDDDDDDD

congruence of barbed coupled similarity
.
≶◦

abstract fairness
��

��
��

��
��

��
��

��
internal choice
between visible actions

CC
CC

CC
CC

C

fair testing 'fair

may testing 'may

Fig. 3. General inclusions between asynchronous congruences

labeled bisimilarity ≈l

barbed congruence ≈ =
.≈◦

OOOOOOOOOOO

��
��

��
��

��
��

��
��

congruences of limit and
existential bisimilarities

.≈◦∃ = (
.≈ω)◦

��
��

��
��

��
��

��
��

��
��

��
��

��

barbed coupled
congruence ≶

congruence of barbed
coupled similarity

.
≶◦

GGGGGGGGG

fair testing 'fair

may testing 'may

Fig. 4. Strict inclusions in the asynchronousπ-calculus

48



barbed congruence ≈ =
.≈◦

barbed coupled
congruence ≶

fair testing 'fair =
.≈◦∃ =

.
≶◦

may testing 'may

Fig. 5. Strict inclusions in the localπ-calculus

Figure 5 deals with the simpler hierarchy obtained for the localπ-calculus, with the
same conventions.

Almost all interesting results seem specific to theπ-calculus, inasmuch as their
proofs rely on specific contexts and encodings. However, we believe that the basic
techniques can be carried over to many variants of theπ-calculus and to similar pro-
cess calculi. This is certainly the case for the join calculus; despite the significant
differences discussed in Section 6, and a few twists in the main proofs [17,14,13].
Some techniques have also been usefully applied to Cardelli and Gordon’s calculus
of Mobile Ambients [19], and to mobile process calculi with cryptographic primi-
tives [3,2,1].

References

[1] Mart́ın Abadi and Ćedric Fournet. Mobile values, new names, and secure
communication. InPOPL 2001: Proceedings 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 104–115. ACM, January
2001.

[2] Mart́ın Abadi, Ćedric Fournet, and Georges Gonthier. Authentication primitives and
their compilation. In27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2000), pages 302–315. ACM, January 2000.

[3] Mart́ın Abadi, Ćedric Fournet, and Georges Gonthier. Secure implementation of
channel abstractions.Information and Computation, 174(1):37–83, April 2002.

[4] Mart́ın Abadi and Andrew D. Gordon. Reasoning about cryptographic protocols in
the spi calculus. In Mazurkiewicz and Winkowski [26], pages 59–73.

[5] Gul Agha, Ian Mason, Scott Smith, and Carolyn L. Talcott. A foundation for actor
computation.Journal of Functional Programming, 7(1):1–72, January 1997.

[6] Roberto M. Amadio, Ilaria Castellani, and Davide Sangiorgi. On bisimulations for the
asynchronousπ-calculus.Theoretical Computer Science, 195(2):291–324, 1998.

49



[7] Michele Boreale and Rocco De Nicola. Testing equivalence for mobile processes.
Information and Computation, 120(2):279–303, August 1995.

[8] Gérard Boudol. Asynchrony and theπ-calculus (note). Rapport de Recherche 1702,
INRIA Sophia-Antipolis, May 1992.

[9] Ed Brinksma, Arend Rensink, and Walter Vogler. Fair testing. In I. Lee
and S. A. Smolka, editors,6th International Conference on Concurrency Theory
(CONCUR’95), volume 962 ofLecture Notes in Computer Science, pages 313–327.
Springer-Verlag, 1995.

[10] Ed Brinksma, Arend Rensink, and Walter Vogler. Applications of fair testing. In
R. Gotzhein and J. Bredereke, editors,Formal Description Techniques IX: Theory,
Applications and Tools, volume IX. Chapman and Hall, 1996.

[11] R. Cleaveland, editor. Third International Conference on Concurrency Theory
(CONCUR’92), volume 630 ofLecture Notes in Computer Science. Springer-Verlag,
1992.

[12] Rocco De Nicola and Matthew C. B. Hennessy. Testing equivalences for processes.
Theoretical Computer Science, 34:83–133, 1984.

[13] C. Fournet and G. Gonthier. The join calculus: a language for distributed mobile
programming. In G. Barthe, P .Dybjer, , L. Pinto, and J. Saraiva, editors,Proceedings
of the Applied Semantics Summer School (APPSEM), Caminha, September 2000,
volume 2395 ofLecture Notes in Computer Science, pages 268–332. Springer-Verlag,
August 2002.

[14] Cédric Fournet.The Join-Calculus: a Calculus for Distributed Mobile Programming.
PhD thesis, Ecole Polytechnique, Palaiseau, November 1998.

[15] Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine and the
join-calculus. InConference record of the 23th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’96), pages 372–385. ACM, January
1996.

[16] Cédric Fournet and Georges Gonthier. A hierarchy of equivalences for asynchronous
calculi (extended abstract). In Larsen et al. [25], pages 844–855.

[17] Cédric Fournet and Cosimo Laneve. Bisimulations in the join-calculus.Theoretical
Computer Science, 266(1-2):569–603, September 2001.

[18] Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didier Rémy. Implicit typingà la
ML for the join-calculus. In Mazurkiewicz and Winkowski [26], pages 196–212.

[19] Cédric Fournet, Jean-Jacques Lévy, and Alan Schmitt. An asynchronous, distributed
implementation of mobile ambients. In J. van Leeuwen, O. Watanabe, M. Hagiya, P.D.
Mosses, and T. Ito, editors,Proceedings of IFIP TCS 2000, volume 1872 ofLecture
Notes in Computer Science. IFIP TC1, Springer-Verlag, August 2000.

[20] Rob J. van Glabbeek. The linear time—branching time spectrum II; the semantics
of sequential systems with silent moves (extended abstract). In E. Best, editor,4th
International Conference on Concurrency Theory (CONCUR’93), volume 715 of
Lecture Notes in Computer Science, pages 66–81. Springer-Verlag, 1993.

50



[21] Matthew Hennessy.Algebraic Theory of Processes. The MIT Press, 1988.

[22] Kohei Honda and Mario Tokoro. On asynchronous communication semantics. In
P. Wegner, M. Tokoro, and O. Nierstrasz, editors,Proceedings of the ECOOP’91
Workshop on Object-Based Concurrent Computing, volume 612 ofLecture Notes in
Computer Science, pages 21–51. Springer-Verlag, 1992.

[23] Kohei Honda and Nobuko Yoshida. On reduction-based process semantics.
Theoretical Computer Science, 152(2):437–486, 1995.

[24] Cosimo Laneve. May and must testing in the join-calculus. Technical Report UBLCS
96-04, University of Bologna, March 1996. Revised: May 1996.

[25] Kim Larsen, Sven Skyum, and Glynn Winskel, editors.Proceedings of the 25th
International Colloquium on Automata, Languages and Programming (ICALP ’98),
volume 1443 ofLecture Notes in Computer Science. Springer-Verlag, July 1998.

[26] A. Mazurkiewicz and J. Winkowski, editors.Proceedings of the 8th International
Conference on Concurrency Theory (CONCUR’97), volume 1243 ofLecture Notes in
Computer Science. Springer-Verlag, July 1997.

[27] Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing calculi. In
Larsen et al. [25], pages 856–867.

[28] Robin Milner. A Calculus of Communicating Systems, volume 92. Springer-Verlag,
1980. Lecture Notes in Computer Science.

[29] Robin Milner. Communication and Concurrency. Prentice Hall, New York, 1989.

[30] Robin Milner. The polyadicπ-calculus: a tutorial. In F. L. Bauer, W. Brauer,
and H. Schwichtenberg, editors,Logic and Algebra of Specification. Springer-Verlag,
1993.

[31] Robin Milner. Communication and Mobile Systems: theπ-Calculus. Cambridge
University Press, Cambridge, 1999.

[32] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In W. Kuich, editor,
Proceedings of ICALP’92, volume 623 ofLecture Notes in Computer Science, pages
685–695. Springer-Verlag, 1992.

[33] James H. Morris, Jr.Lambda-Calculus Models of Programming Languages. Ph. D.
dissertation, MIT, December 1968. Report No. MAC–TR–57.

[34] V. Natarajan and Rance Cleaveland. Divergence and fair testing. InProceedings of
ICALP ’95, volume 944 ofLecture Notes in Computer Science. Springer-Verlag, 1995.

[35] Uwe Nestmann and Benjamin C. Pierce. Decoding choice encodings.Information
and Computation, 163:1–59, Nov 2000.

[36] D. M. R. Park. Concurrency and Automata on Infinite Sequences, volume 104 of
Lecture Notes in Computer Science. Springer-Verlag, 1980.

[37] Joachim Parrow and Peter Sjödin. Multiway synchronization verified with coupled
simulation. In Cleaveland [11], pages 518–533.

51



[38] Joachim Parrow and Peter Sjödin. The complete axiomatization of cs-congruence.
In P. Enjalbert, E. W. Mayr, and K. W. Wagner, editors,Proceedings of STACS’94,
volume 775 ofLecture Notes in Computer Science, pages 557–568. Springer-Verlag,
1994.

[39] Davide Sangiorgi.Expressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms. Ph.D. thesis, Department of Computer Science, University of
Edinburgh, 1992.

[40] Davide Sangiorgi. A theory of bisimulation for theπ-calculus. Acta Informatica,
33:69–97, 1996.

[41] Davide Sangiorgi. On the bisimulation proof method.Journal of Mathematical
Structures in Computer Science, 8:447–479, 1998.

[42] Davide Sangiorgi and Robin Milner. The problem of “weak bisimulation up to”. In
Cleaveland [11], pages 32–46.

[43] Davide Sangiorgi and David Walker.The Pi-calculus: a Theory of Mobile Processes.
Cambridge University Press, July 2001.

52


	Introduction
	An Asynchronous Pi Calculus (Review)
	Congruences, Tests, and Bisimulations
	May Testing
	Bisimulations and Congruences

	Fair Testing and Coupled Simulations
	Fair Testing
	Coupled Simulations

	Equivalences with a Single Observation
	Equivalence Classes for Existential Bisimilarity
	Limit Characterization

	Committed Barbs
	Bisimilarity and Fair Testing
	The Semantics of Coupled Simulation

	Double-Barbed Bisimilarity
	Some Equivalence Classes
	Pi Calculus Interpreters
	Universal Context

	Labels instead of Barbs and Contexts
	A Family Portrait (Summary)
	References

