A Hierarchy of Equivalences
for Asynchronous Calculi*

Cédric Fournet, Georges Gonthiér

a Microsoft Research, 7 J J Thomson Avenue, Cambridge CB3 OFB, UK
b INRIA Rocquencourt, BP 105, 78153 Le Chesnay, France

Abstract

We generate a natural hierarchy of equivalences for asynchronous name-passing process
calculi from simple variations on Milner and Sangiorgi’s definition of weak barbed bisim-
ulation. Ther-calculus, used here, and the join calculus are examples of such calculi.

We prove that barbed congruence coincides with Honda and Yoshida'’s reduction equiva-
lence, and with asynchronous labeled bisimulation when the calculus includes name match-
ing, thus closing those two conjectures.

We also show that barbed congruence is coarser when only one barb is tested. For the
m-calculus, it becomes a limit bisimulation, whereas for the join calculus, it coincides with
both fair testing equivalence and with the weak barbed version @disjand Parrow’s
coupled simulation.

* A preliminary extended abstract appeared in [16]

To appear in JLAP special issue on the Pi-Calculus 10/2001 (revised:7/2003)

Contents

1 Introduction
2 An Asynchronous Pi Calculus (Review)
3 Congruences, Tests, and Bisimulations
3.1 May Testing
3.2 Bisimulations and Congruences
4 Fair Testing and Coupled Simulations
4.1 Fair Testing
4.2 Coupled Simulations
5 Equivalences with a Single Observation
51 Equivalence Classes for Existential Bisimilarity
5.2 Limit Characterization
6 Committed Barbs
6.1 Bisimilarity and Fair Testing
6.2 The Semantics of Coupled Simulation
7 Double-Barbed Bisimilarity
7.1 Some Equivalence Classes
7.2 Pi Calculus Interpreters
7.3 Universal Context
8 Labels instead of Barbs and Contexts
9 A Family Portrait (Summary)
References

11

11

13

17

18

20

24

25

26

28

29

33

41

44

47

49

1 Introduction

There is a large number of proposals for the “right” equivalence for concurrent
processes—see for instance van Glabbeek’s impressive overview of weak equiva-
lences [20]. Choosing the proper equivalence to state a correctness argument often
means striking a delicate balance between intuitively compelling statements and
manageable proof techniques. For instance, there are many effective, sometimes au-
tomated techniques for proving bisimulation-based equivalences, even for infinite
systems, but it can be quite hard to prove that two processe®#besimilar—and

to interpret this situation—because bisimulation does not directly correspond to an
operational model. On the other hand, the proof that two processes are not testing
equivalent is simply a failure scenario, but it can be quite hard to directly prove a
testing equivalence.

In this paper, we cast some of these equivalences in a simple unifying hierarchy—
summarized in Figures 3-5 of Section 9. While the equivalences are hardly new, our
results relate different styles of definition: trace-based versus bisimulation-based,
labeled semantics versus reduction semantics, fairness versus coupled simulations,
limit bisimulations versus co-inductive bisimulations. We identify four main equiv-
alences, with increasing discriminating power. In this hierarchy, one can start a
proof effort at the upper tier with a simple labeled bisimulation proof; if this fails,
one can switch to a coarser equivalence by augmenting the partial proof; if the proof
still fails for the testing equivalences in the last tiers, then meaningful counter-
examples can be found. The hierarchy is backed by several new results:

e We close a conjecture of Honda and Yoshida [23] by showing that barbed equiv-
alence equals their reduction-based equivalence, with or without name matching
(Theorem 1).

e We close a conjecture of Milner and Sangiorgi [32] by showing that labeled
bisimilarity equals barbed equivalence for all processes in the presence of name
matching (Theorem 5).

e We show that barbed equivalence with a single test is strictly coarser than the cor-
responding reduction-based equivalence. Initfealculus, it yields a surprising
limit bisimulation (Theorem 2). In the join calculus, or in thecalculus with an
adapted definition of observation, it yields fair testing equivalence (Theorem 3).

e We bridge the gap between bisimulation and testing equivalences by showing
that fair testing [9,34,10] coincides with a form of coupled simulation [37] (The-
orem 4).

e Conversely, we provide counter-examples that establish several strict inclusions
between equivalence relations.

Before discussing these technical subtleties, we spend some time to sketch a general
picture and to motivate our choices. Our framework is based on abstract reduction
systems(P,—, |.), whereP is a set of processes; C P x P is a reduction

relation on processes, ard is a family of predicates on processes. The predi-
cates|, are syntactic properties meant to detect the outcome of the computation
(e.g., “success”, convergence,...). This style of definition is relatively independent
of syntactic details, is adapted for higher-order settings, and is especially conve-
nient to relate different calculi. The most studied reduction system is probably the
A-calculus. In process calculi based on labeled transition systems, such as CCS or
the-calculus, the reductions are the interndl {fansitions and the predicates are
immediate communication capabilities—the barbs [32]. These predicates induce
equivalences and preorders on processes, which can then be refined by additional
requirements such as context-closure or bisimulation.

We are interested in equivalences for asynchronous concurrent systems. This mo-
tivates our choice of equivalences, exclusively defined in terms of weak reductions
(—*) and weak barbs-¢*|). However, many results on those equivalences do not
depend on asynchrony. Although our results were first obtained in the join calculus,
they are stated here in the more familiar asynchroneaalculus [6], which enjoys
similar properties in this respect. (The main exceptions are discussed in Section 6.)
Some inclusions between equivalences are general and easily established; others
are less immediate and more specific to 4healculus; their proofs typically rely

on some encoding.

The paper is organized as follows. In Section 2, we review the syntax, operational
semantics, and types for the asynchronausalculus. In Section 3, we define
evaluation contexts and barbs, introduce two basic equivalences, may testing and
barbed congruence, and discuss context-closure properties. In Section 4, we study
intermediate equivalences, fair testing and barbed coupled congruence. In Sections
5 and 6, we reconsider our choice of observations: we defiistential testend
committed testgespectively, and explore the resulting variants for all our equiv-
alences. In Section 7, we focus on an auxiliary notion of equivalence, doubled-
barbed bisimilarity, and use it to prove Theorem 1. In Section 8, we finally con-
sider labeled semantics. In Section 9, we summarize our results as a hierarchy of
equivalences, for reduction systems in general and for the asynchro+ealisulus

in particular.

Notations We write ¢ for a tuple of termg, ..., ¢, of lengthn > 0. All our
relations are binary. We usually adopt an infix notation for relations. We dite
for the identity relation. LefR and R’ be two relations. We writéR R’ for the
composition of relationg(z,y) | 3z.x R z R’ y}, R~ for the converse relation
{(y,z) | * R y}, R" for the repeated relation inductively defined By = Id
andR" = RR", R~ for the reflexive closurdd U R, andR* for the reflexive-
transitive closure),~, R". We usually adapt postfix notations for predicates. Every
relation’R defines an existential predicate, also writfendefined byzR = Jy |
rRy. Let | be a predicate; the relatioR refines| when for all P, Q such that
PRQ,P | impliesq |.

2 An Asynchronousr-calculus (Review)

In this paper, we focus on a core, polyadic, asynchroneaalculus. We assume
some knowledge of the-calculus, and refer to [30,31,43] for more details and ex-
planations. Our notations and definitions are mostly standard. We use the following
grammar for processes:

PQ,R = processes
T(21, .y 2Zn) asynchronous emission
| 2y, y0)-Q reception
| o null process
| P|P parallel composition
| '@ replication
| vy.P scope restriction
| [z =2]Q name matching (optional)

where the nameg, . . ., y,, are pairwise distinct. We say that a procesguarded
when it occurs under a reception, a replication, or a name matching (proc¢gsses
above). We use the following abbreviations for processést z(), . P for z().P,

x(y) for x(y).0, andvy, ..., y,.P forvy;. vy,.P.

We assume given a countable set of namgsg z,... € N. Names appearing in

a process can either be free, or be bound by a reception or a restriction (names
v1,---,Yn andy in the grammar above). We write(P) for the free names aP.

As for A-terms, we say that a process has sovthenfv(P) C S.

The operational semantics follows those given in [43]. Structural equivalence,
the smallest equivalence on processes that meets the equations below and is closed
by application of evaluation contexts and renamings of bound names:

P=P|O0 vr.0 =0
P|(Q|R)=(P|Q)|R ve.wy.P =vywve. P
PlQ=Q|P Plvz.Q = ve.(P|Q)whenz & fv(P)
P = P|IP

Reduction steps-, input transitions&n and output transitions”>”, are the
smallest relations on processes that meet the equations below. (We use here the
asynchronous input rule initially proposed by Honda and Yoshida [23].) In the
equations;~ ranges over any of these relations, dnh) andbv(a) are the free
names and bound namescafrespectively.

G| 2(2).Q — Q)
P5Q fv(R) Nbv(a) =0

[z =2]Q — Q o
. PR = QIR
0 — T<g> J2 «
B %0 x & fv(a) Ubv(a)
() W, g ve.P = vr.Q
P=%=(Q P Q te (@))\ fo}
P5Q vt.p L9,

We will need name matching and labeled transitions only in Sections 7 and 8. By
default, we always consider processes and contexts without the name matching
prefix. Otherwise, we explicitly mention terms in the-talculus with matching”.

Although the presence of a type system is usually irrelevant, some encodings de-
pend on its expressiveness. We rely on the (simple, recursive, pure) type system
given in [43, sections 6.4-6.7]. We use the following grammar for the types of
names:

o, T = communication types
(01, 00) channel type
| «,o,... type variable
| po.c recursive type

We identify types that are equal by renamingeibound variables, by folding, and

by unfolding of recursive types. We always assume that our terms are well-typed,
even though we usually omit type annotations; when we need to be explicit (e.g., in
Lemma 36), we only annotate the scope restriction construct, as in [43]. Likewise,
we usually keep the typing context implicit. We say that a name is nullary when it

has type() in this implicit context.

Our calculus does not have a primitive choice operator, or a silent action. Instead,
we define a derivethternal choiceoperator®, ; P; < vt. (£ |1, t.P;) wherel is a
finite set and is a name that does not appear in dyWe write P, & - - - ® P, for
®,-1.., F;, and writer. P, for @,_, ;. More generally, we say thdt = @p..p F;

is an internal choice of® for some equivalence when:

(1) for all P, € P, we haveP —*¢ P,.

(2) if P —* P', then eitherP’ is an internal choice o® with P ¢ P’, or there
existsP; € P with P, —*¢ P'.

(3) P does not communicate on free names.

For finite P, with the implementation above, this property holds for strong labeled
bisimilarity.

3 Congruences, Tests, and Bisimulations

In order to define observational equivalences, we first set up notions of context
closure and basic observation. As usual, contexts are processes with a hole, writ-
tenC|]. For some given family of contexts, and to every relati@n processes, we
associate its congruence closdre= {(P,Q) | YC[].C[P] ¢ C[Q]}. A relation

(resp. an equivalence)is a precongruence (resp. a congruence) wheng°.

We define our notions of congruence and precongruence for a particular class of
contexts: arevaluation contexs a context where the hold occurs exactly once,

and not under a guard— these contexts are called static contexts in [29]. Evaluation
contexts describe environments that can communicate with the process being ob-
served, but can neither replicate it nor prevent its internal reductions. Since we are
mostly interested in congruences for evaluation contexts, we will use plain relation
symbols ¢, =,...) for them, and dotted relation symbofs, (=,. . .) otherwise.

In ther-calculus, evaluation contexts are given by the grammar:

Cll==[11lcll | @ | va.Cl]

In this paper, all context closure properties refer to these contexts. Up to structural
equivalence, they are of the forti[| = vy.([]|Q): for all C[] that bind the
namesz, and for all processeB, there exist a procesg and distinct nameg such
thatC[P] = vy.(P{Y;}| Q).

Ourr-calculus is asynchronous in the sense of [8,6]: in a given process, emission on
a free name: can be observed using, for instance, an evaluation contgxtP || |

with a reception ornx that can trigger any proceg3. Conversely, reception an

is not directly observable using an emissionxgrbecause emissions don’t have
guarded processes; for example, the progesss not detectable. We define our
observation predicates accordingly:

Definition 1 The predicate| ,—the strong barb om—detects whether a process
emits on name in an evaluation contextP |, if and only if P = vy.(Z(2) | Q)

with z & {7}.

The barbs only detect the superficial behavior of a process—for instance they do
not separate&(y) from z(z)—but in combination with the congruence property
they provide a behavioral account of processes.

3.1 May Testing

Testing semantics have a long history, which can be traced back to the Morris equiv-
alence for the\-calculus [33]. As regards process calculi, they have been proposed

for CCSin[12,21,29] then extended to thecalculus [7] and the join calculus [24].

Testing semantics are usually defined as a preorder relatithe corresponding
equivalence bein@C N C~1). This preorder is commonly interpreted as the “cor-
rect implementation” relation: an implementation can rule out some traces, but not
exhibit traces whose behavior is not captured by their specification. This direct in-
terpretation is an advantage of testing equivalences over bisimulations, which are
typically strictly finer [29].

In general, a test is an observer plus a way of observing; here, observers are evalu-
ation contexts and observations are barbs:

Definition 2 Themay predicatel ,—the barb orx—detects whether a process can
emit onzx, possibly after performing some internal reductions. Thay testing
equivalence~,,,, (resp. themay testing preorder,,,,) is the largest congruence
(resp. precongruence) that respects the bafhs

Py, E3P.Pp—*pP |,

P Chay Q = VC[], 2. C[P] |}, impliesC[Q] |
P~y Q = VC[], 2. C[P] |}, if and only ifC[Q] I}

A typical example of may testing equivalenceisp 0 ~,,,, P for any process’.

May testing is most useful to prove safety properties: the specification of a program
says that bad things should never happen. Thus suitable behaviors are characterized
as those with no bad barbs. For example, it is adequate to specify security properties
in cryptographic protocols [4]. However, may testing says nothing on the presence
of suitable behaviors. In Section 4, we consider other testing semantics that address
this issue.

3.2 Bisimulations and Congruences

Bisimulation-based equivalences [36,29] are often preferred to testing semantics
for the w-calculus. Independently of their theoretical appeal, they can be estab-
lished by co-induction, by considering only a few reduction steps at a time instead
of whole traces. Moreover, numerous sophisticated techniques lead to smaller can-
didate bisimulations, and to modular proofs (see [41,43] for some examples).

Definition 3 ArelationR C P x P is a(weak, reduction-based) simulatidnfor
all P, P',@Q suchthatP R Q andP —* P’, there exists)’ such that) —*)’ and
P' R Q. Inshort: Rt'—* C —*RL.

Barbed bisimilarityhas been proposed by Milner and Sangiorgi [32] as a uniform
basis to define behavioral equivalences on different process calculi:

Definition 4 A simulation’R is a barbed simulatiowhen it refines all barbs: if
PR QandP |,,then@ |.. ArelationR is an barbed bisimulation when both
andR~! are barbed simulations. The largest barbed bisimulation is cdiedbed
bisimilarity, and is written~.

This style of definition is not entirely unrelated to testing semantics:

Proposition 5 In any reduction systertf?, —, | .), (1) the largest barbed simula-
tion is the preorder that refines all barljs;; (2) its precongruence, the may testing
preorderC,,.., is the largest precongruence that is a barbed simulation.

PROOF. (1) The preorder that refines all barbs is a weak simulation, since any
reduction steps can be trivially simulated by no step. Conversely, the largest weak
simulation is also a preorder.

(2) By definition,C,,,,, is a precongruence; using the first part of the theorem, it is
also a barbed simulation, hence it is included in the largest precongruence that is a
barbed simulation. The converse inclusion holds by definition. 0

Unlike may testing, however, barbed bisimulation reveals the internal branching
structure of processes, and thus it induces congruences finer than testing semantics.
Remarkably, there are at least two reasonable ways of ensuring the congruence

property:

e either take the largest congruence included in the largest barbed bisimulation;
this is the two-stage definition traditionally chosen for CCS andrticalculus,
e.g.[32,39,43];

e or take the largest congruence that is a barbed bisimulation; this is essentially
the “reduction-based” equivalence chosen forithalculus in [22,23], and the
barbed congruence used in our previous works [15,3,2,1].

Definition 6 Barbed equivalengevritten=°, is the largest congruence included in
barbed bisimilarity.Barbed congruengevritten =, is the largest congruence that
is a barbed bisimulation.

By definition, the two congruences coincide if and onbgifis itself a bisimulation,

but this is not necessarily the case (we give counterexamples in Sections 5, 6, and 7)
and in general we only have C ~°. The two diagrams below stress the difference
between the two definitions:

ClP|—==ClQ) iscoarserthan CIFI—=—C[Q]
- \ -~ \
T O T/ T ST T/

(As usual in bisimulation diagrams, we use plain and dotted lines to represent
universally- and existentially-quantified relations, respectively.) For processes re-
lated by=°, the relation that is preserved in bisimulation diagrams after applying
the congruence property4s, and not=°; on the contrary, the congruence property

of ~ is preserved through repeated applications of bisimulation and congruence
properties.

Technically, the two definitions also induce different kinds of candidate relations in
co-inductive proofs. As illustrated in this paperseems easier to establish thah
Fortunately, the two equivalences coincide in our setting:

Theorem 1 In ther-calculus, we have:°® = ~.

The proof relies on a variant of bisimilarity with two barbs and a series of encod-
ings. It is detailed in Section 7.

To conclude this section, we recall standard but useful properties of barbed congru-
ence. We omit their proofs. We begin with a convenient proof technique (see [43,
section 2.4]):

Lemma 7 To establishR C =, it suffices to show that, for alP R Q:

Q) if P |,, then@ |, ; conversely ifQ) |, thenP |}, ;

(2) if P — P, then there i)’ such that) —* @’ and P’ =R~~ @’ ;
if Q — @, then there ig”’ such thatP —* P’ and P’ ~*R== Q' ;

(3) For all evaluation contexts’, we haveC'[P] ~R~~ C[Q)].

The next proposition introduces Honda and Yoshida’s “equators” [23], that is, pro-
cesses that make two names indistinguishable by forwarding any messages sent on
one of those names to the other.

Proposition 8 (Equators) LetEY = 12:(2).57(2) |'y(%).z(Z). For all w-calculus pro-
cessed’ such thatP | EY is well-typed, we havex.(P | EY) ~ P{Y/,}.

The equation above relies on a key property of asynchronous systems: the pres-

ence of intermediate buffers on communication channels cannot be observed. As
discussed in Section 8, this equation holds only in the absence of name matching.

10

In our definition of congruence, we consider only evaluation contexts. However,
we can systematically use the equation above to obtain stronger context-closure
properties for congruences coarser than barbed congruence:

Corollary 9 Inther-calculus, (1) lety be a precongruence such thatC ¢. Then
¢ is also closed by substitutions on free names. (2) The relafigps, ~°, and~
are closed by application of arbitrary-calculus contexts.

PROOF. (1) Since any given processes related¢blyave a finite number of free
names, it suffices to prove thats closed by all single substitutiods/, }. If P ¢ Q,
thenvz.(EY | P) ¢ vax.(EY| Q) using the precongruence propertygfBy Propo-
sition 8, we havevx.(EY | P) ~ P{Y,}, hencevz.(EY|Q) ¢ P{Y,} and, by
transitivity, P{V/.} ¢ Q{Y/.}.

(2) The proofs are standard; they rely on (1) for the input guards. 0

4 Fair Testing and Coupled Simulations

In this section, we attempt to reconcile testing semantics and bisimulation-based
semantics by considering intermediate equivalences betwggnand~.

4.1 Fair Testing

We first consider how may testing can be refined to capture the positive behavior of
processes. The usual approach is to observe messages that are always emitted, in-
dependently of internal choices: theust predicateletects outputs that are present

on all finite tracesP 0], £ VP’ . P —* P’ /4 impliesP’ |,) and can be used

to define must testing and may-and-must testing equivalences as in Definition 2.
These relations, however, are not asynchronous, and they are unduly sensitive to
diverging behaviors: they interpret all infinite computations in the same manner.
Instead, one can modify the must predicate to incorporate a notion of “abstract fair-
ness”, and obtain a fine testing equivalence, initially proposed for variants of CCS
by Brinksma, Rensink, and Vogler [9,10] and Natarajan and Cleaveland [34].

Definition 10 Thefair-must predicatell}, detects whether a process always re-
tains the possibility of emitting on. Thefair testing preordef_;,;, is the largest
precongruence whose inverse refines the fair-must predicates The fair test-

ing equivalence~,;, is the largest congruence that refines the fair-must predi-
cates1|),.

11

Pol, £ VP .P—* P impliesP |,

P |;fair Q d:ef VC[],ZE. C[Q] D‘U’x ImplleSO[P] D‘U’x
P ~pn Q £ V0[], z. C[Q] O, if and only ifC[P] O,

For all processe®, if P 0!}, thenP |}, and if there are no infinite computations,

P 0|, andP Oy, coincide. Fairness is hidden in the fair-must predicatell) ,
succeeds if there is still a way to emit anafter any reduction. Intuitively, the
model is the set of barbs present on all finite and infinite fair traces. For instance,
we havevz.(z | 2.z |12.Z) ~p; T, although the left-hand-side process has infinite
reductions that never trigget

By definition, may testing and fair testing equivalences are generally unrelated, but
in ther-calculus fair testing is in fact strictly finer:

Proposition 11 In ther-calculus, we have,;, C T, and~g;, C ~p,y.

PROOF. L, € C,,y- We only have to prove thdLy,, refines the barbg,.

def

We use the evaluation conteX{ | = vr, z.(7(y) | (0).7(z) | r(u).@|[]) that trans-
forms the presence of the baify into the absence of the fair-must banky,.
For any processe® and @ of sort S with r,z,y ¢ S U v, we haveP |, if
and only if C[P] iZ{,. If P Cy,;, @ and P |}, then, by context-closure property,

C[P] Egir C[Q), C[P] T4, henceC'|Q] i), and@ |,

The inclusions are strict, SINGe® 0 ~,,,, T andz & 0 Ly, 7. 0

Fair testing equivalence is also the largest congruence that refines both may- and
fair-must- predicates. This property of fair testing also holds in CCS, in the join
calculus, and for Actors, where a similar equivalence is proposed as the main se-
mantics [5]. Conversely, we will establish that fair testing is strictly coarser than
barbed congruences(C ~,;.). Similar inclusions are established in [9,34]; the
authors remark that weak bisimulation equivalences incorporate a particular notion
of fairness, they identify sensitivity to the branching structure as an undesirable
property of bisimulation, and they propose simulation-based sufficient conditions
to establish fair testing.

In terms of discriminating power, fair testing is an appealing equivalence for asyn-
chronous systems: it is stronger than may testing, detects deadlocks, but remains in-
sensitive to termination and livelocks. (A process has a deadlock when it can reach
a state with no observable behavior; in an asynchronous setting, this is indepen-
dent of livelocks and termination.) In [10], for instance, distributed communication
protocols are studied using the fair testing preorder as an implementation relation.

12

Note, however, that “abstract fairness” is not enforced by practical scheduling poli-
cies. Fair testing suffers from another technical drawback: direct proofs of equiva-
lence are very difficult because they involve nested inductions for all quantifiers in
the definition of fair-must tests in all evaluation contexts. The redeeming feature of
fair testing is that it can be established using finer simulation-based equivalences.
Precisely, we will establish a tight characterization of fair testing usimgpled
simulationsin Section 6.

4.2 Coupled Simulations

Independently of fair testing, labeledupled simulatiofas been proposed in [37]

to address similar issues; this simulation-based preorder does not require an ex-
act correspondence between the internal choices, and thus abstracts some of the
branching structure revealed by bisimulati¥¥eakly-coupled simulatiois a vari-

ant that is insensitive to divergence [38]. It is used in [35] to establish the correct-
ness of an encoding of the choice operator in the asynchraonaatculus. (Here,

we use barbed weakly-coupled simulations, and we consider a single, self-coupled
simulation, rather than a pair of coupled simulations.)

Definition 12 A relation R is a barbed coupled simulatiowhen it is a barbed
simulation that satisfies the coupling propertyHAfR @, thenQ) —*R P.

Barbed coupled similaritywritten <, is the largest barbed coupled simulation.
Barbed coupled precongruenaeritten <, is the largest precongruence that is a
barbed coupled simulation.

def ° def

We writes £ <1 < £ <ns, ands £ <!, Barbed coupled congruence
written<, is< N >.

Using diagrams, the simulation and coupling requirements of the definition are:

/SIM V %PL *

xR R-1

N

If a coupled simulatiorR is also symmetricR = R~!), the coupling property is
trivially verified, andR is in fact a bisimulation. Thus, for any reduction system,
we have the inclusions C < and~ C <.

Typically, the discrepancy betweefiand> is used to describe processes that are
in a transient state, bisimilar neither to the initial state nor to any final state. For
example, for any processés @), R (and up tox after reducingd):

13

(P&Q)®R—=-P& (Qa&R)

/
reQ

In the 7-calculus, we obtain that the inclusions are strigt€ § and~ C) by
comparing, for instancéz ®y) ®ztoz @ (¥ @ 2).

The “upward-reduction closure” relation-* is always a barbed coupled simula-
tion. We give a more general proof technique for establishing barbed coupled sim-
ilarity using smaller candidate coupled simulations:

Lemma 13 (coupled simulation up to) To establishR C <, it suffices to show
thatR refines the barbg, and satisfies the diagram R

PROOF. We show thatp £ ~«*R== is a barbed coupled simulation:

e The relationsy, <, andR all refine barbs, hence so dags

e By bisimulation on the lefts, we have—* ¢ C ¢, S0¢ is a simulation.

e The diagram of the lemma trivially holds witR= instead ofR at the top. If
P & («*R7) & @ then, using this diagran? =~ (R~!)= —*&«*& @Q and,
by bisimulation on the rightz, we obtainQ’ such that? =~ (R 1)~ —*& Q' «*
Q, thatis,P ¢! Q' —* Q. O

As in the case of barbed bisimilarity in Section 3.2, there are two notions of con-
gruence for barbed coupled similarity, but with a different outcome here:

Lemma 14 In ther-calculus, we haves C <°.

PROOF. The inclusions C <° holds by definition, as usual.

The discrepancy between the two congruences stems from internal choices that are
spawned between visible actions. For instance, we prove that:

(1) ab®ac <° a.(b@e)
(2) ab®ac £ a(bd?)

14

Our proof illustrates the difficulty of dealing directly Wit§°, even for simple
equations. We lel B and AC be the processes defined by reducing the first sum:
a.b®at — AB ~ abanda.b® ac — AC =~ a.c. We begin with the second
statement.

(2) Assume thatwe hadb®a.c < a.(bdc). Then, the reduction.bda.c — AB
above must be simulated by no reduction (since @) /). Moreover,
AB +, hence the two processes are coupled, and wehave a.(b¢). By
congruence property, for the evaluation contexi.(a|[]), we obtain

vab.(@|a.b) S vab.(@|a.(b® 7))

and this equation is clearly false: only the process on the right has albarb
in two steps, hence these processes are not even may testing equivalent.

(1) After choosing a particular evaluation conte&xf |, however, the visible ac-
tion yields a potential internal reduction. In our processes, interaction with
the context is limited to reception an the contextC[| may interact with
our processes if and only if there is another evaluation coidtéxtsuch that
C[]—* C'a|[]]. We abbreviate this property 85|.

We establish the equivalence above in a mostly co-inductive style by apply-
ing Lemma 13. We leRR be the relation that contains the following pairs of
processes: for every evaluation contéxt],

Cla.b® a.c] R Cla.(b®)] (3)
Cla.(b®e)] R Cla.b® a.c 4)
Cla.(b®e)] R C|AB]when notC |} (5)
Cla.(b@)] R C[AC] when notC | (6)

In (5) and (6), the condition o[| makes all related processes behave as
C'[0] (up to=). In particular, the requirements of Lemma 13 are easily met.
In (3,4), the requirement on barbs can be reformulated as the simple may
testing equation.b @ a.¢ ~,,, a.(b @ ¢). The diagram requires more work.
In (3), assum&’[a.b & a.¢] —* T; We distinguish several cases:
(a) the suma.b @ a.c is not reduced. Hence the enclosing context cannot
interact with this process and, for some other contét|, we have
C[] —* C'[]andT = C'[a.b ® a.¢]. The same series of reductions
applied on the other side yields the procésg:.(b @ ¢)]. These two re-
sulting processes are related by (4).
(b) the processa.b @ a.cis reduced, e.gi.b ® a.c — AB, and
(i) either the enclosing context does not interact with this, and in-
stead we have'[| —* C'[] f andT = C’[AB]. We perform the
same series of reductions on the other side, and the two resulting
processes are related by (5).
(i) or the context emitg that interacts with the resulting proced$.
In that case('[a.(b @ ¢)] —*~ T by using the same series of re-

15

ductions, except for the internal choice which has to be deferred un-
til communication o enables it. The two resulting processes are
bisimilar.

(i) or this interaction does not occur, but the context can still emit:on
we havel' = C'[AB] —* C"[a| AB], thusT —*~ C”[b], and we
obtain reduction€’[a.b ® a.¢] —*~ C"[b] as in the previous case.

In (4), we perform a similar case analysis, but the situation is simpler:
(a) The context does not interact with the process (which is inert in isolation);

the two resulting processes are related by (3).

(b) The context provides a messageeceived by the process, and
(i) either the sund ¢ ¢ is reduced in the following reductions. We an-
ticipate the right choice in the left process by reducingdtB8 or
AC, then apply the same series of reductions and obtain bisimilar
processes.

(i) or the internal choice is not reduced. We select any branch of the
sum in the left process, then perform the same series of reductions.
The two resulting processes are related by the reductibrafthat
chooses the same branch in the right process, up to bisimilarity.

The exact relation between fair testing and barbed coupled congruence is intrigu-
ing. These equivalences are applied to the same problems, typically the study of dis-
tributed protocols where high-level atomic steps are implemented as a negotiation
between distributed components, with several steps that perform a gradual commit-
ment. Yet, their definitions are very different, and both have their advantages; fair

testing is arguably more natural than coupled congruence, but lacks efficient proof
techniques.

It is not too hard to establish that (the inverse of) barbed coupled simulations also
refine fair-must barbs. The proof uses simulations in both directions, which some-
how reflects the alternation of quantifiers in the definition of fair-must barbs.

Lemma 15 In any reduction system, (1) the inverse of barbed coupled simulations
refine all fair-must barbs: lefR be a barbed coupled simulation. F R~! Q

and P ol,, then also@ 0Ol,. Hence, (2) the precongruence of barbed coupled
similarity is finer than fair testing<® C C;,.

PROOF. (1) If Q@ —* ', these reductions can be simulatedby-* P’ R~ Q'.
Using the coupling condition, we also hay® —* P” R ('. By definition of
P 0ol,, we haveP” |,. Finally, R refines weak barbs, and th@s |} ,.

(2) > refines all fair testsll},, hences® refines them in any evaluation contexts.

In the w-calculus, this precongruence is strictly finer than fair testing:

16

Lemma 16 In the r-calculus, we have® c Cg,;, and §° C fair-

PROOF. For instance, we have (&)~;, a ® 0 but (2)a 5° (a & 0):

(1) Sincea & 0 —= q, if Cla @ 0] OJ,, then alsa”[a] O|},. Conversely, assume
C'la] 0l},. By induction on the number of reduction step% 0, we show that
Cla ® 0] =™ @ implies@ |}, for all evaluation context§’.

e n = 0: we have) = Cla ¢ 0] —»~ C[a] andC|[a] |, hence® |..
e Inductive case: it’[a & 0] — R —" @, then one of the following holds:

(@) R = C'[a® 0] andCla] — C’[a] for some evaluation context’. We
haveC’[a] OJ}, and conclude by induction hypothesis.

(b) R =~ C|a], hence® |}, by hypothesig[a] OJ},.

(c) R ~ C]0], hence® |}, by hypothesigs”[q] O}, and the general prop-
erty thatC’[a] |}, implies C'[0] |, (with the same reductions except
the one that consumes the inpuand a message.

(2) Otherwise, by applying the context| |, we would havez|a = @|(a @ 0).
The stepa |(a & 0) —~ @ is simulated by some |« —* T and, since |,
we havel = a|a. By coupling and simulation, we obtain the contradiction
0< @ O

Nonetheless, the distance between fair testing and barbed coupled precongruence
is rather small. As we shall see in Section 6, both relations coincide in the join cal-
culus, and can be made to coincide in thiealculus with a small restriction on the
barbs.

5 Equivalences with a Single Observation

We complete our exploration of asynchronous equivalences with a discussion of
alternate definitions of observation. So far, we have used a specific output predi-
cate |, for every name, but there are other natural choices. In the initial paper on
barbed equivalences [32], and in most definitions of testing equivalences, a single
predicate is used instead of an indexed family. Either there is a special observable
actionw, or all barbs are merged into one. Accordingly, for every family of ob-
servation predicates (e.gl,), we define an existential observation predicate that
tests any of these predicates (e®.} £ 3z.P |.,) and, for every equivalence, we

define its existential variant (e.gv3) that refines only}, at least by definition.

Existential equivalences that are closed by application of evaluation contexts usu-
ally coincide with their base equivalence. In thecalculus, for example, for any
processP of finite sortS, we haver(S \ {z}).P | if and only if P |},, and thus

17

we easily prove~ .y 3 = ~mays i3 = hain S3 = S, and~3 = ~ using evalu-

ation contextsz.[]. In contrast, when bisimulation and congruence are not jointly
required in the definition, existential equivalences can be significantly coarser. The
question arises for the existential variants=gf and <°. Next, we establish the
strict inclusion~°5 C ~3. Precisely, we show that weakbarbed congruence is
aninductive or limit, bisimulation.

5.1 Equivalence Classes fer;

We first characterize the equivalence classes for existential barbed bisimitarity

In Section 7, we show that observing barbs on just two different names created a
rich hierarchy of equivalence classes, from which an infinite set of prefix codes

could be selected (Lemma 31). If only a single test is available, then this construc-
tion collapses.

In the w-calculus, besides the obviously-different procesges- 0 and7; = 7,

we have the process, = 7 |z whose only and peculiar behavior is to rescind
its | .-barb to become®. Starting from these three processes, one can construct a
guasi-linear sequence of processes, sefting=7; ® T; ;.

In addition, we can code a limit proce$5 ~ @,y 7;, as detailed below—by
induction onn, the equivalence given after the definition holds for any 0.

T, & vs,to,t1,ta.(s(t).1| 120 (5(t:) | t:.T}) |)
vg.(g(to, t1, t2) 'g(a, b, ¢).vd.(g(b, c,d) | 3(d) | d.(@a® b))))

Vs, to, ..., tuso-(s().T| TIIEG (5(t:) | ¢:.T5) | B
Vg.(G{tn tarts tuse) [1g(a, b, ¢).vd.(Gb, ¢, d) | 5(d) | d.(@ & b))))

e
2

18

We use these processes to partition processes, as follows:

Definition 17 The signatureZ’(P) of a processP is the set of indices of the;
reachable fromP up to bisimilarity:

T(P)={ieN| P—"237T;}

By definition,~3-equivalent processes must have the same signature; the converse
also holds, because the sequelf€g;<., spans exactly the equivalence classes
of ~3:

Proposition 18 For anyr-calculus proces#, there is a uniqug € NuU{w} such
that P ~5 T; and, moreover, if = wthenT'(P) = N;if j < wthenj = maxT'(P)
and7T'(P) ={0,...,7—2,7}.

PROOF. First, note that by construction of thi&,,),,cn, we haveT,, —* 7" if and
only if 77 = T; for somei € {0,...,n—2,n}; also,T,, —* T" ifand only T’ ~ T;

for some; < w. The second half of the proposition therefore follows directly from
the first half.

Let P be any process; iP | thenP ~ T;. Otherwise, we show that f(P) # N,
then P ~5 T,., wheren = min(N \ 7'(P)), by induction onn. Assuming this
holds for alli < n, we define the relatio®R™ = {(P, T,,11)|P | andn = min(N \
T(P))} and show thaR" U~ is a barbed existential bisimulation. Suppds&™
T,+1; then bothP || andT},., ||. If P —* P’, then eithet®” R" T},,,, or P’ =5 T;
for somei < n:takei = 0if P’) andi = 1 + min(N \ 7'(P’)) otherwise.
Furthermore; € T'(P), so actually; < n, and therl,,;;, —~ T;. Conversely, if
T,1 —* T' thenT’ =~ T, for somei < n, hencei € T(P), thatis,P —*~3
T;. Similarly, the relation{(P,T,,) | T(P) = N} U =3 is a barbed existential
bisimulation.

This shows the existence ofjasuch thatP =5 T}; this j is unique, becausg, is
the only7; |, T,, is the onlyT; such thatl'(T;) = N, and7,,., is the onlyT; such
thatn + 1 € T(T;) butn & T(T;). O

Next, we provide a shortcut for computingax 7'(P) for a set of processed € A
without actually performing a bisimulation proof. Intuitively, the s@scontain
processes thamustbe reached fromd, whereas thé&, contain additional processes
that maybe reached frorpd. Moreover, all processes in any given &t B. are
equivalent.

Lemmal19 For k > 0 andk’ > 0, let A, By,..., B, By, ..., B} be sets of pro-
cesses such that

19

(@) forany P € A, and anyi, 1 <i < k, we haveP —* () for someQ € B;;
(b) foranyP € A,if P - Q,thenQ € AUB, U...UB,UB U...UBj,;
(c) there are integergy, .. ., jk, J1, - - - » jrr Such that

max 7' (Q) = j; for all @ € B;, and

max 7'(Q) = j! forall Q € B..

LetJ = {5,....,5}, J ={ji,- - Jw} J = maxJ U J', and assumg > 0. We
have:

Q) ifj—1¢JuJ andj € JthenmaxT(P) = jforall P € A;
(2 ifj—1¢JuJ andbothj — 2,5 —3 € JthenmaxT(P) = jforall P € A;
(3) ifbothyj,j — 1 € JthenmaxT(P) = j + 2 forall P € A.

PROOF. Let j' stand forj in cases (1) and (2), and+ 2 in case (3). We will
successively establish thite T'(P) for all P € A, then thatj’ — 1 ¢ T(P) for
all P € A. Then for anyP € A, the only possibility allowed by Proposition 18 for
T(P)is{0,...,7 —2,j'}, whencemax T'(P) = j'.

To show thatj’ € T'(P) for any P € A, we first note that conditiong:) and(c)
imply T(P) 2 J. Thus in case (1) we hayé= j € T(P); in cases (2) and (3) we
only get{;’ —2,j'— 3} C T(P), but then Proposition 18 implies that we must also
havej’ € T'(P).

Now assume that — 1 € T'(P) for someP € A; by definition there must be some
P" =5 T;_y such that? —* P'. NowT'(P') = T(Tj_1) # j', soP’ ¢ A by the
first part of the proof. Lef) be the first process in the reductibn—* P’ that is not
in A, then by condition (b} is in someB; or B;; in either case, by condition (c)
we havemax 7'(Q) = j” for somej” € JU J', andT(Q) = {0,...,5"—2,5"} by
Proposition 18. Buj’ — 1 € T(Q) sinceQ) —* P’, and sincg’ > j > j” we must
have;’ — 1 = j”. In cases (1) and (2) this would megh= 5 — 1, which is ruled
out, and in case (3), = j + 1, which is also impossible. O

5.2 Limit Characterization

Definition 20 Inductive bisimilarity is the limit of the monotone operator associ-
ated with the definition of barbed bisimulation:

PAYQ E Ve . P, iffQ |,

P A" Q £ P —* P impliesQ —* & P and, conversely,
Q —* Q' impliesP —* 2" ()

PA*Q ZvVn.PA"Q

20

By definition, this limit bisimilarity is coarser than the co-inductive oreC ~~.

In the r-calculus, as usual, this inclusion is strict, although the two equivalences
coincide for all image-finite processes. Consider, for instaﬁ’pé&' T,@y, P~
Dicn Py andQ ~ D;enuyuy P (Wherey # x, and the infinite sum can be coded
as above). The reductio —= T, cannot be simulated by, henceP % Q.
Conversely, for any > n, we havel; =" T,,, and thusP = Q.

There are several other ways to define limit bisimilarity and its congruence. For in-
stance, one can define a “reduction-based” limit equivalence with a context-closure
property,~“, such that, at every level, an evaluation context can be applied before
bisimulation. In fact, our limit bisimilarity is very weak. A variant of the above
example shows that=~)° is strictly weaker tharx*, and thus weaker than the
classical (labeled) limit bisimilarity, as defined for CCS by Milner [28].

Theorem 2 In ther-calculus, we havesd = (=+)°.

The proof that¥g O (&~)° is fairly easy, since by induction an P =" Q ~3 T,
implies P ~5 T,,. For the converse, we need to show that for any proceBséks

if C[P] =3 C[Q] for all execution context€§’[|, thenP ~* Q. Clearly it is enough
to show this for allP, Q whose free names lie in a fixed, finite, but arbitrary Set
Let U be the set of these processes. Having fisedve can use contexts of the
form v:S.(C|[]); in the following, we writeC|| P for the processS.(C|P). We
also assume without loss of generality that the chamneded in the construction
of theT,, isnotinS.

We thus need to find processgéshat will allow us to refine the equivalence classes
of ~5 into those of=~. We use the definition below:

Definition 21 A subset4 of U/ is separableat someN € N, using a sequence
(Cm)m>n+2 Of processes, when, for ady € U/ and any integetn > N + 2, we
havemax T'(C,,||P) = mif P € AandmaxT(CA||P) = N if P & A.

For example, we have:

(1) The set/ itself is separable aV,; = 0, usingC% = T,,..

(2) Foranyy € S,thesetd, = {P cU | P |,} is separable a¥4, = 0, using
CAv = y(2).T,.

(3) Any separable setl is closed by inverse reduction: i is separable alv
using (Cy)m>n12 @and P — @Q € A, thenN + 2 = maxT(Cn2]|@) <
max T'(Cyy2||P), somax T'(Cy42||P) # N, henceP € A.

Furthermore, the separation ind&xcan always be increased:

Lemma 22 If A is separable at som&’, using(C,,)m>n+2, it iS also separable at
anyN' > N + 2, using(Cy,)m>nr2 = (Cr @ TNt)m>nNr42-

21

PROOF. We use Lemma 19 to compute the signatures. Forrany N’ + 2,
considerd’ = {C/ |P | P ¢ A}; anyC! ||P € A" must must have reduc-
tions to bothTy/||P and C,,|| P; all other derivatives remain it!’, since A is
closed by inverse reduction. By assumptionax 7'(C,,||P) = N for any P ¢
A, andmaxT'(Tn/||P) = N' > N + 2, so by Lemma 19, case (1), we have
max T'(Cy,||P) = N'.

Now considerd” = {C!.|P | P € A}; anyC,,|| P € A” must must have reduc-
tions to bothT|| P andC,,|| P; it may also reduce to son&,,||Q € A'. By as-
sumptionmax 7'(C,,||P) = m > N'+2foranyP € A, andmax T (Ty/||P) = N’,
and we have just shown thatax 7'(C,,||Q)) = N’, so again by Lemma 19, case
(1), we havenax 7'(C,, || P) = m. O

Let us denote by.4] . the closure under inverse reductionfC U/, i.e.,[A]- =
{P | 3Q € A, P —* @Q}. Up to this closure, separable sets are closed under set
theoretical operations:

Proposition 23 If A and B are separable, thepd U B, AN B, and[A \ B]. are
separable.

PROOF. Using Lemma 22, we can assume thé&tand B are separable at the
sameN > 2, using(C:),, and(C%),,, respectively.

This immediately implies thatl U B is separable aW, using(C,,),, = (CA @
CB),.: asin Lemma 22, we directly apply Lemma 19 to compute the signatures.

For the intersection, the contexts,,,),, need to be defined recursively, using the
formulaC,,.3 = C,,®C,,.1, except for the base cases appearing in the first column
of the table below.

The four other columns of the table give the valuenefx 7'(C,,|| P), for P in

U\ (AUB), A\ B, B\ A, and.A N B, respectively. The table can be filled in
top-down, left-to-right, using Lemma 19. The lines for the base cases, Cy 3,
Cn14, andCy ¢ can be filled in directly from the assumptions. For the other lines,
we note that”,, || P must reduce to botly),, || P andC,,_s|| P, and may reduce

to someC,,||@, if P — @, which is in a different cell only i) € U \ (AU B)

or P € AN B. Extending, by induction om, the pattern established in the last
three lines of the table completes the proof tdat B is separable a¥V + 6 using

(Cm)mZNJrS-

The computation fofA\ B] < is similarly summarized in the table below. Note that
the.4N B column has been partitioned intb\ [A\ B] - andBN[A\ B] - columns:
obviously A\ [A\ B]= C B, and[A\ B]- C A because of the closure property
of A. The latter inclusion also impligsA \ Bl = (A\ B) U (BN [A\ B]-). The

22

separating sequence (U \ (AUB)| A\B B\ A ANB

Cni2 = Oty N N +2 N N +2
Cnis = CR 4 N N N+3 N+3
Cnia = Oy N N+4 N N +4
Cn+s5 = Cny2 @ Cnys N N+2 | N+3 | N+5
Cn+6 = Tnso N+6 N+6 | N+6 | N+6
Cnt7 = Cnya B Cnys N N +4 N+3 N+ 7

CN+8ECN+5@CN+6 N+6 N+6 N+6 N+8
Cny9 = Cniye @ Cnyr N+6 N +6 N+6 N+9
CN+1OECN+7@CN+8 N +6 N +6 N +6 N + 10

separating sequence U\ (AUB)| A\ B | B\ A |A\ [A\ B]<|BN[A\ Bl

Cy =C8 ¢ N N |N+6| N+6 N+6
Cni1 = CRuy N N+3| N N +3 N +3
Cni2 = Oty N N+2| N N +2 N+2
Cnt3 = Cn & Cn1 N N+3|N+6 N+6 N +6
Cnia = Oy N N+4| N N +4 N +4
Cnis = Cngo @ Ciys N N+5|N+6| N+6 N +8
Cni6 = Tvie N+6 |N+6[N+6| N+6 N+6
Cnt7 = Cn3a B Cnys N N+T7|N+6 N+6 N +10
Cnis = Cngs ® Chys N+6 |N+8|N+6| N+6 N +8
Cn+o = Tnio N4+9 |[N+9|N+9| N+9 N+9
Cnt10 = Cng7 ® Cngs N+6 |[N+10|N+6| N+6 N +10
Cn+11 = Onys @ Chio N+9 |[N+11|N+9| N+9 N +11
Cni12=CNnig®Cny0| N+9 |[N+12/N+9| N+9 N 412
Cni13 = COnt10D Cny11| N4+9 |[N+13|N+9 N+9 N +13

signature computations are similar to those for.the 5 table; however they rely
on the fact thatifP € BN [A\ B]., thenC,, || P mustreduce to somé€’,, ||Q with
Q € A\ B, whileif P € A\ [A\ B] therecannotbe a transitior®? — @ € A\ B.
Again, the table is extended by induction to establish fdat 5] is separable at
N+9 USing(Cm>m2N+11.

23

Proof of Theorem 2 For any@ € U, we show by induction om that the set
I,(Q)={P eU | P —*=" @} is separable, and that there is a finite number of
such sets (that i4,/,,(Q)|Q € U} is finite). Forn = 0, we just have

1(Q) = [(U NNy, Ay) \ (Ugy. A:)] -

which is separable by the above, and there2&tesuch sets. For the inductive case,
we have

Lis1(Q) = | (No—rqr 1o(@)) \ (Uogr.(m In(R))]

and there are at most/»(@IQ<U}| sych sets.

=

We conclude by contradiction: assunffe~3 @ and notP (=“)° Q. For some
P’ = C[P], Q' = C[Q], andn > 0, we haveP’ "' Q" and P’ =3 Q'. (Since
~9 C A9, we cannot havé” #° Q'.)

By definition of =" *1, there exists some processsuch that)’ —* R and not
P" —*=" R, hence)’ € I,(R)andP" ¢ I,(R) (or conversely some process
such thatP’ € I,(R) and@’ ¢ I,(R)). The setl,(R) is separable at som&
using somgC,,)m>n-12, hence for anyn > N + 2 we haveC,,||P’ =3 T and
Cnl|@Q' %3 T,,.

Using P’ = @' with the contextS.(C,,|[]) finally yields Ty ~5 T,,, which
contradicts Proposition 18. O

6 Committed Barbs

Another variation on barbs is directly inspired by the join calculus. Assuming that
the basic observation predicates reveal the outcome of a computation, rather than
its transient state, one may be interested ongoimmitted observatiortbat cannot

be rescinded by the process being observed. As regards asynchronous equivalences,
this can be abstractly achieved by adding a requirement to the definition of barbs:

Definition 24 A strong barb| , is committedwhenP |, impliesP Oy ,.

By extension, we say that a balll) is committedwvhen its defining strong barb is
committed. In the join calculus, the locality property guarantees that messages sent
on free names are never used in internal reductions. Hence, strong barbs are refined
by the reduction relation/{ |, andP —* P’ implies P’ |,), and barbs are always
committed.

In the m-calculus, the situation is not so simple. Consider the pro¢ess 7 |z
used in Section 5: we have |, andT, — 0, hence clearly noP —*0{},. This

24

phenomenon is unfortunate, since names intfealculus are typically either in-
tended for internal steps or for interaction with the environment, but not both. In
the rest of this section, we therefore only test and compare processes that comply
with a locality restriction that excludes communication on free names.

Definition 25 A m-calculus process ikcal when reception occurs only on names
bound by a restriction (not on free names and not on received names).

The localr-calculus is the subcalculus of local processes. It is closed by structural
equivalence, reduction, and application of local contexts. All barbs in the local
w-calculus are committed.

The localr-calculus is not as limited as it may seem. In fact, most of the encodings
appearing in this paper are expressed using only local terms. Except for Sections 5.1
and 5.2, reconsidered below, and Section 8, which requires a labeled semantics, all
our definitions, results, and proofs apply unchanged to loazdlculus processes.
Besides, one can design labeled semantics that are compatible with locality, then
obtain results similar to those of Section 8 [27,17].

6.1 Bisimilarity and Fair Testing

We first reconsider the existential bisimilaritys, with a single committed barb.
The resulting equivalence is far less exotic than with transient barbs; it has only
three classes. The situation is displayed below for the leaallculus:

N

Theorem 3 In any reduction system, the barbed bisimilarity that refines a sin-
gle, committed barly partitions processes into at most three classes characterized
byoy, ¥, and{ A i7]}. In the localr-calculus, we have:d = ~;,.

X

PROOF. The three predicates of the lemma induce a partition on process&s; let
be the corresponding equivalence relation. We checkRhat ~5 by establishing
thatR is a single-committed-barbed bisimulation.

e R refines the barly by construction: it refineg,|f} by splitting the first class
in two, according to the predicatg}, which always implies}.

e R is a weak bisimulation: the two lower classe$ and|/ are closed by reduc-
tion, hence processes in these classes are trivially bisimilar. Besides, processes
in the upper class always have reductions leading to both lower claBsés:

25

implies P —* P' 0} follows from the definition of committed barbs, aiti/|
isP —* P).

In the localr-calculus,0 a'ég 7 and all three classes are separated-hy hence
~3 = R. Fair testing equivalence refinggl by definition and|} by Lemma 11,
hence~,;, C =S. Conversely, the number of barbs makes no difference-fgr,
which is a congruence, hencg,;, = ~¢., 3 2 ~2. O

6.2 The Semantics of Coupled Simulation

Next, we provide another, more useful characterization ofthge equivalence. We
establish that, in the local-calculus, we have,,, = <°. To proveCy,;, C <°,

we develop a semantic model of coupled similarity with committed barbs. We first
consider processes whose behavior is especially simple. We say that a gfocess
is committedwhen, for all tests},, we haveP |, if and only if P 0Ol},. Then, no
reduction may visibly affecP: let S be the set of names

S E {z| P} ={z| POy}

Forall P', if P —* P’, thenP’ is still committed taS. In a senseP has converged
to S, which entirely captures its behavior.

To every proces®, we now associate the semantie defined as the set of sets
of namessS, for all committed derivatives aP:
EASCN|IP.P—*PandS={z|P |,}={z|P0Ol,}}

For example(’ is the singletor{(})} and(z & 7)” is {{x}, {y}}. As is the case for
weak barbsP® decreases with reduction.

Remark 26 In ther-calculus,P” # 0.

PROOF. Although we use the remark only for local processes, our proof applies
to any pi calculus procesB. Consider all series of processgsfori = 0...n
(n > 0) such that

P=pP—-*P—-"..5*P —=*... 5*P, =P

and such that the size ¢f | P, |}, } strictly decreases with We have at least one
such seriesp, for n = 0, andn is bounded by the number of free namesHn
so there exists a series of maximal length. By construction, the prétasghen
committed and yields an element Bf. 0

26

By definition, our semantics is closely related to the testing preorders:

def

Lemma 27 Let C, be the preorder defined a8 C,) =
n-calculus, we have) = Cy,;,.

P’ C . In the local

PROOF. The predicateg, anddl}, can be recovered as follows: we hakel ,
if and only if z € U P*, andP 0!, if and only if z € N P°. By definition of may
testing and fair testing preorders, we thus obtajnC Cq,;, C T,

In the localr-calculus, the first inclusion is an equality. For any finite sets of names
S andN such thatS C N andt,t’ ¢ N, we use the evaluation context:

T 2 vS it ([ees@El2t) | Toenms 2| D) [£.F)

We check thafi')'| | fair-tests exactly one set of names in our semanticgin],
each process in the first parallel product sendstil it receivesz and performs a
stept |t — 0; each process in the second parallel product sewmtien it receives;
finally, t.t forwards a message frotrto ¢'. Hence, untilP commits toS and pro-
vides[[,s 7, the proces§)[P] can send the messageFor all P of sort N, we
haveT[P] 0|, if and only if S & P°. We conclude by definition df ,;,. 0

We now establish that our semantics corresponds to barbed coupled similarity:

Lemma 28 In the localr-calculus, we have, = <.

PROOF. We successively check that, refines the barbs, is a simulation, and
meets the coupling condition. AssumeC, Q).

e P, ifandonlyifz € U P’ and, since” C Q’, we also have) |,.
e SinceP”’ decreases with reductiors, is trivially a simulation: if P —* P’, then

P C,PC, Q.
e Using Remark 26, there is sontec P°. By hypothesisS € Q" and, for some
processy’, we havel) —* Q' andQ” = {S} C P, thatisP D, Q'. 0

From Lemmas 27 and 28, we conclude that the precongruence of barbed coupled
similarity yields fair testing, and is thus strictly coarser than barbed coupled pre-
congruence.

Theorem 4 In the localr-calculus, we have® = Ly, <° C <, and thus§o =
eair and §O C §

27

7 Double-Barbed Bisimilarity

We now give a proof of° C = in the asynchronous-calculus. Our proof holds
for both ther-calculus and for the locat-calculus; it depends on the presence or
absence of name matching only in Lemma 34, which handles both cases.

We rely on several encodings of values into thealculus. These standard contin-
uation-passing-style encodings use only a deterministic fragment ofthé&ulus,
see, e.g., [30]. In the-calculus, messages carry only names; hence, a proCgss
that sends a message carrying the valua the domain of the encoding is trans-
lated asvu.({V'), | 7(u)) whereu is a fresh name an¢ll’), is a replicated input
onu that receives continuatiot@sand, depending on the structurelof sends back
(name-encoded) valués on one of those continuatiors < ¢.

We first give an encoding for integers and their operationsul et v range over
names representing integers in processes (with communication¥pe .((), (1))
and letn > 0 represent integer constants. We use the encoding:

(0), = lu(z,s)z
(v+1), = lu(z,s).
{n+1), = vo.(fn), | (v+1),)
matchu withO— Porv+1— Q = vz,s.(u(z,s)|z.P|s(v).Q)
if u=1u'then Pelse) =
ve.(e(u,u’) | le(i,j)matchi j with
0 0 =P
0 Jj+1-0Q

i+ 1 0 —Q
i'+1 J+ 1=, g))

In the definition above, the multiple matching is the usual shorthand for nested
primitive matchings, and we assume that, ¢, 7, 5,4, j* do not occur inP or Q.

We also use an injective functidn] from names: € N to integergz] € N.
Next, we define a series of auxiliary equivalences:

Definition 29 Let (z;);cn be a family of distinct nullary names. We ket, be the
largest symmetric bisimulation that refines the bagbs . . . , |}, , and letx~,, be the
largest such bisimulation that is preserved by application of evaluation contexts.

By construction, we have: C =~,, ~ C ~, C &2, and~° C &°, and the

discriminating power of these-barb equivalences increases withObviously,~§
relates all processes. In thecalculus, we haves; = ~$ and~, = =~ for any

28

n > 1. In addition, we are going to show that, for any> 2, we have in fact
~° = =. To this end, we focus o#,, and letz andy be the two nullary names

n

associated with the barls and|}, refined by~..
7.1 Some Equivalence Classes 4or

We first build a family of processes that are rRgtequivalent and retain this prop-

erty by reduction. Informally, these processes represent infinitely many ways of
hesitating between two messages in a branching semantics. The construction is
general, and relies on an operafir) that maps every set of procesgasC P to

the set of its (strict, finite) internal sums:

Lemma 30 LetS(P;) = {@pep P | P'is afinite subset oP; and|P’| > 2}. For
some given set of processBs C P, letP,.; = S(P,) forn > 0 and P, =
UnZO Pn

We say thaS C P is R-discrete when, foralP,Q € S, P R Q impliesP = Q.

If Py is (—*=,)-discrete, then (1P, is (—*=,)-discrete, and (2P, is ~,-discrete.

PROOF. We first show that:

() If P,Q € Py, P—"~ R,andR —*~,), thenP = Q.
By bisimulation, we can compose the relations above and obtain‘~, Q.
By hypothesis orP, we obtainP = Q).

(4) If P € PyandR € P, then we cannot havB —*=, R.
By construction ofP;, we havek —*=, @, for at least two differenf); € Py,
whereas, by3), P —*~, Ryields P = Q; for all ;.

To prove(l), considerP,) € P, such thatP —*=, @, thatis,P —* P" =,)
for someP”. SinceP is an internal choice on some subsetRyffor ~,, and(4)
excludesP’ —*=, P" ~, () for any P’ € Py, we actually have® ~, P" =, ().
Let Q' € P, be a summand of). By bisimulation, we have® —*=, (Q'. Since
(4) excludesQ’ =, P, there exists?’ € P, such thatP —*~y P' —*~y Q.
By hypothesis orP,, we obtainP’ =)’, and thus®’ is also a summand aP.
Symmetrically, every summand éfis a summand of), and finallyP = Q.

To prove(2), by induction onn, we show that every’, is —*=,-discrete, that
P e P, Q € Pom andP —*=, @ imply P = @, and that, in particular,
P,Q e P,andP =, Q imply P = Q. O

def

We apply Lemma 30 to the s, = { 0, Z, 7 }. This set is clearly—*~s)-
discrete, since its processes have distinct barbs and no reductions. The size of each

29

layerP, grows exponentially, and thi, contains infinitely many processes unre-
lated by=,. (Of course~, has more classes than those represent@& jsuch as
processes that can reach an infinite number of clasges)iNote that the construc-
tion also applies to the existential bisimilarities of Sections 5.1 and 6, but quickly
converges. Starting from the sgt, 7}, we obtain a third, unrelated process =

at rank 1, then the construction yields no further classes.

The next lemma states that, thanks to the discriminating powes od process can
effectively pass any integer to its context by hesitating between the two exclusive
barbsl}, and{},, without actually sending messagesoandy. To every integer,

we associate a particular equivalence class:ofn the hierarchyP,, (as depicted

in Figure 1 below), then we write a process that receives an integer encoding and
conveys its value by conforming to its characteristic class. Hence, the canéxt
transforms integer-indexed barlvg(n) (whereint is an ordinary name of the-
calculus) into the barbg, and{,,.

Lemma 31 There is ar-calculus evaluation context| | such that:

(1) N[]has sort{z,y}, binds{int}, and receives a single message on int.
(2) LetN, = NI[int(n)]. For all n,m € N, if N,, —*~, N,,, thenn = m.
(3) Forall n € N, we haveV,, %, N|0].

PROOF. We program the evaluation conteXt[| as follows, and we locate the
derivatives of eaclV,, in the family (P;)., obtained from Lemma 30.

I € \e(u,x,y, z)match uwith 0 — T
or v+ 1 (¢(v, z,2,y) ®¢(v,y, 2, 7))
Jy = (u,x,y,2) Bu, z,x,y) ®eu,y, 2,)
N[] & vint.([]]int(u).ve, 2.(I].J,))
Intuitively, messages oa carry an integer loop index and a permutation of the

namese, y, andz; the replicated inpuf is used to iterate a binary internal choice
fromu to 1, whereas/, is a single, initial, ternary internal choice.

Let p be the substitution that mags, y, z) to (z, z,). Let o range ovep*, k > 0.
Let Q7 &£ ve, 2.(I|E(n, xo,yo, z0)), with Q,, £ Q. By construction, for any
n > 0, we have:

Qr~=Q & Q" (7)
Nn ~ Qn—l D sz—l D pr—l (8)

The equivalence classes and their reductions are displayed in Figure 1, up to the
permutation of)s,,+1 and@s, ., forn > 0.

30

N, o€ Py

Qn QZ 7,01,0 é26 Pn
Y P

T 690><CL’EB Y 0Dy P
xT 0 Yy Po

Fig. 1. Reduction classes fo¥,,, n > 0.

We say thatP € P, is abinary processwhen eithern = 0 or P is the sum of
two distinct binary processes 4, ;. Binary processes are closed by reduction up
fo ~.

By induction onn, we show that),, ~ P, for some binary procesB, € P,. At
rank0, we have)), ~ 7, Qf ~ 0, andQ}’ ~ 7. For the inductive case, we apply (7)
to our hypotheses, and the substitutjoiguarantees that the two summands are
distinct. By composing this result with (8), we obta\y, ~ N, for some process
N} € P, thatis a ternary sum of binary processes.

Property(1) directly follows from our definitions. For proper(®), if N,, —*~,
N,, then alsoN] ~—*=y~ N/ for some ternary suma’ € P,,; andN/ €
Pmi1. Sincerx C =~y and~, is a bisimulation, we havd/! —*=, N/ . Either
N/ =5 N/ ,and thusn = m by Lemma 30(2), otN/ —*~, P, —*=~, N/
for some binary procesB,. The latter case implies that’ is also a binary pro-
cess, and contradicts the construction/\jf. Finally, property(3) follows from
Lemma 30(2), sincé&/,, = N/, € P,,+1 andN[0] &, 0 € Py. O

The next lemma uses this result to restrict the class of contexts being considered in
congruence properties to contexts with at most two free nullary variables. (State-

31

ments(2) and(3) of the lemma are specifically used in the proof of Lemma 39.)

Lemma 32 Let.S be a finite set of names. L&t[| be the context of Lemma 31 for
def

some intZ S. There are evaluation contexig| | of sort{int} and Bs = N[Fs] ||
such that, for all processeR and @ of sortS, we have:

(1) If Bs|[P] =2 Bs[Q], thenP = Q).
(2) If Bs[P] —=* T —*=5 Bs|Q]|thenP —* P’ andT = Bg[FP'] for someP’.
(3) Forsomek € N, if Bg[P] —*~5 N, thenn < k.

PROOF. Leta,b ¢ S be two nullary names. For all € S & {a,b}, letw, be a
tuple of fresh names whose length matches the arity. @o build Bs| |, we use
the additional terms:

X = D-esuiany 2(W:)-INL([2])
Fs[] = vS,a,b.([1]a|b] X)

(where[] is our injective function from names to integers). By construction, for
any P of sortS, we havels[P] of sort{int} and Bs[P] of sort{x,y}. As soon as

a messag@et([z]) is sent by a derivative ok, the resulting process is bisimilar
to Np.;, independently of the rest of the process enclosed jir). For any P of
sortS, we thus always have the reductions:

Bg|P| —* B.|P] foranyz € S
Bg[P] —* B.[P] =y N foratleast: =aandz =0

whereB.| | is obtained fromBs|] by choosing:(w.).int([z]) in X.

We first show that, for all reduction8s[P] —* T, there existd”’ such thatP —*
P’ and one of the following holds:

(X) T = Bs[P).
(z?) Forsome: € S,T = B.[P'].
(z) Forsome: € SU{a,b}, N,y —*=, T and(P’|a@|b) |..

The proof is by induction on the length of the derivation, and case analysis on the
first reduction step that reducés Before this stepBs[| does not interact witl®

and we remain in case (X). After this step,zife S, the contextB.| | interacts

with P only if P sends a message arand z(w,).int([z]) receives it. Until this

step occurs, we remain in case (z?). When it occurs, we arrive in case (z). After the
step that leaves (X), if = a or z = b is chosen, communication ancan always
occur independently aP, so we are already in case (2).

32

We now establish proper{) of the lemma. LefP be a process of soft such that
Bg[P] —=* T =5 N,. In case (X) and case (z?) wittl ||, we havel’ —*~, N[
for somez € S U {a,b}, and thenn = [z] by Lemma 31(2). In case (z), we
have N, —*~, T and similarlyn = [z]. In case (z?) with?" },, we have

~, N[0], which contradicts Lemma 31(3). Thusjs bounded by the largekt]
for z € SU {a, b}.

To prove property(2), assumeBs[P] —* T —*=, Bg[Q]. We rely on the case
analysis above for the reductiofs[P] —* T'. To conclude, we show that we are
always in case (X). Otherwise, letbe the name chosen Bs[P] —* B.[P/] —*

T. We haveBg|Q] —*~, N, for at least one value # [z] (eithern = [a] or

n = [b]). By bisimulation, we obtaitB[P'] —* T —* T" =5 N,,.

We use our case analysis again, for the reducti8pg®’] —* B.[P'| —* T". In
case (z), we havéVj,; —*~, 1", henceN,; —*~, N, and, by Lemma 31, we
obtain the contradictiofiz] = n. In case (z?), we hav&’ = B/[P"], with two
subcases. IP” ||, thenT” —*~, Np.j andT’ =, N, also yields the contradiction
[2] = n. Otherwise P” |{,), we haveT” =, N|[0] and thusN,, =, N[0], which
contradicts Lemma 31(3).

To prove property(1), let R be the relation that contains all paif®, ?) with
fv(P) U fv(Q) C S and Bg[P] =~ Bs[Q]. We show thatR is a barbed bisimu-
lation, and thusk C =. For anyP R Q:

Barbs Let z € S. If P |}., thenBs[P] —*~, Np.;. By hypothesisBg[P] ~;
Bs[Q], hence, by bisimulation, we obtaiis[()] —*~, N[.j. Using the case
analysis aboveBs[Q] —*=~, N yieldsQ ..

Bisimulation: If P —* P’, thenBg[P] —* Bs[P'] and, sinceBs[P] =, Bs[Q],
we haveBs[Q] —* T with Bg[P'] ~, T'. Using property(2), we obtain reduc-
tions@ —* Q' such thatl’ = Bs[Q'], henceP’ R Q'. O

7.2 m-calculus Interpreters

For a given finite sortS, we define an interpreter proceR&s with free variables
Sw{u} thatinterprets as the integer-coded representation of@alculus process.
Wheneveru encodes a proceds with sort S, the interpreter behaves like up

to labeled bisimilarity R, ~; P). As opposed to most lemmas in Section 7, the
actual definition of the interpreter is sensitive to small variations in the calculus,
including its type system. We first give a finite interpreter for processes that use
only replicated input and a finite number of channel types, then use preliminary
internal encodings to extend the interpreter to arbitrary processes.

Definition 33 Let X be a finite set of types; we say that a procéss X-proper
when (1) all free and bound names Bfare typed inX, and (2) for all subterms

33

of P of the form!Q, @ is of the formz(7).Q)".

Next, we give an integer encoding for the syntaXBproper processes. We write
[P] for the integer that represents the (typed) abstract syntax treé fas defined
in Section 2. The encoding relies on our injective function from nam&sinte-
gers|z] and on an arbitrary injective function from the types X to integerdo].

The process syntax encoding is basically @& numbering with type indexes
inserted for input, output and restriction constructs. We usll anN — N bijec-
tion, defined byy(j, k) = 2/(2k + 1) — 1; we also use)(ji, . . ., j,) as shorthand
for n(j1,m(je, - - - s M(Jn-1,74n) - ..). If the channel name has typesr € X in the
context of the translation, we take:

[o] =0
[P1Q] = n(1,[P],1QD)
vz : 0.P] = n(5[0] + 2, [2], [P])
[=@) = n(5lo] + 3. []. [y])
[+@®)-P1 = n(5lo] + 4, [«], [y]. [P])
['=(5).P] = (5[] + 5. [«], [y], [P])
[le = 2]P] = (5[] + 6, [=], [+']. [P])

Since[0 | P] > [P], for anyk and P, there exists som@ = P with [Q] > k.

We also define a pattern-matching syntax of processes for inverting

match u with n(e,m) in P £
vs.(5(u, u, u,u) | !s(i,m,j,e).matchim j e with

0 - _ _ =P
1 m' + 1 _ _ = 3(m/,m' g, 5)
i'+2 m'+1 41 +2—3G,m 7€)
- - - - =0
match u with n(vy,...,v,) in P &
match u with n(vy,v’) in match o’ with n(ve,...,v,) in P

where we assume thatu/, i, 7 do not occur inP. Wheneveru encodes: € N,
the pattern matching completes and triggétsinding (encodings ofp,m €

N such thatn(e,m) = n (and, respectively, binding,,...v, € N such that
n(vi,...,v,) = n). The clause ‘ — 0’ is never selected. The correctness of
the decoding ofj(e, m) follows from the invariant2¢~*(2m + 1 — i) — 1 = n,
i+j=m+e0<i<m<j and0 < i < e. Its termination follows from
decreasingn’s.

34

Finally, we define a process encoding of finite association tabiiesn integers to
names typed iix, which we will refer to as:-tables (The domain of ouk-tables
will consist of imageqz] of names: under the[| injection.) AX-table is either
the empty tablé), or the overriding extension{y : 7 / [z]} of another table. The

general form of a&-table is thus){y : 7 / [z]}. In the processp, we identify p

—_—

with its implied substitution—that isP(0{y : 7/ [2]}) & P{.}.

(0), = o
(oly =7/ ug}), = v ({1 (' {y = 7/ uy}),)

(r'{y 7 /uy}), E N (u, c).if u = u, then Vzy : 0.¢(2,{Y..}) else ' {u,c)

wherez, is a tuple of fresh names indexed by the type&p&ind wherez, {*/,_}

is z, with the name at index replaced by:. We need this tuple to ensure that the
encoding is well-typed; the type &f-tables is thus., (i>>, where: is the type of
integer encodings. We also give a correspondisigsyntax for accessing-tables.

def

letz:7=7r[m|in P = ve.(T(m,c) | c«(2,{"..})-P)

let xg, @ : 79,7 = r[mo,m] in P £ let ¢ : 7y = 7[mg) in let & : 7 = r[m] in P

The nextlemma relates proces#ew® the interpretation of their representatjar.

As long as the interpreter can be finitely defined, the result is not surprising, since
the w-calculus has sufficient expressive power. In particular, similar interpreters
should be definable for most variants of thealculus.

Lemma 34 (Finite Interpreter) In the w-calculus, with or without name match-
ing, let> be a finite set of types and I8tbe a finite set of typed names with types
in 2. There is a procesR,, of sortSw{u} such that, for every.-proper process®
with sort.S, we haveru.({[P]), | R.) ~i P.

—_—

PROOF. Let pg be the finite tablé{y : 7, / [y]}, wherey : 7, ranges overs. We
define the interpreteR, £ R, (ps) in Figure 2, using the encodings for processes,
names, integers, types, ahdtables specified above, with an auxiliary replicated
input D, that recursively performs pattern matching on the process codedrby
the Y -table coded by. The interpreter closely follows the syntax and types for
processes. The last series of clauses is present only when the sezaloeilus has

a name matching prefix, and is implemented using the same prefix.

In R,, reduction steps are either steps in strong correspondence with those of the
source process, on the same channel names and with the same arguments, or book-
keeping steps: steps for the encodings, and reductioas\Me write —; for those

35

Ru(p) = ve.(De|vr.({p), |E(u,r)))

D. = le(u,r).match v with (¢, v') in match ¢ with
0—0

1 +— match v with n(ui, us) in &(uy, r) |E(us, r)

For everys = (7) € X:
5[c] + 2 — match «’ with n(m,,u;) in
va, ' ((r{ - o fma}), [E(ur,)
5[c] + 3 — match v with n(m,,m,) in let =,y : 0,7 = r[m,,m,] in
z(y)
5[c] + 4 — match v’ with n(mg, my,u;) in let z: 0 = r[m,] in

w(@).vr’ ({rdy = 7/ my}),, [E(ur, "))
5[c] +5 +— match v’ with n(m,,my,u;) in let x : 0 = 7[m,] in
Le(g).vr' ((riy 7/ my i), |, 1))
Only for ther-calculus with matching:

5[c] + 6 +— match v’ with n(m,m/,u;) in let x, 2’ : 0,0 = rim, m/] in

[z = 2'|g(uq, r)

Fig. 2. Finite Interpreter

bookkeeping reduction steps. These bookkeeping steps are deterministic and nor-
malizing : for anyX-proper proces® andX-tablep, the process

R(P,p) = vu({[P), | Ru(p))

has a—4-normal form, which is unique up te. Specifically, we have

Pp = vy (I|11Gi.Pip:)
R(P,p) =5~ vy. (I |I1G;.R(P;,p;)) in—4-normal form

where! is a product of-proper output terms, eacH; is a guard (either input,
replicated input, or matching), eadh is a subterm ofP (prior to a-conversion),

andp; is theX-table representing the substitution applie@tdwhich may perform
a-conversion). We use the strong bisimulation in the second equation to replicate
or discardD. and representations of integers and tables, and move these under
guards. Note that the right-hand sides of both equations are unique up to structural
equivalence.

36

Structural equivalence in the source process corresponds only to labeled bisimilar-
ity in the interpreter—in particulary-conversion may cause additional reductions
on integer indices in the interpreter. We avoid this problem by using the normal

forms; we let

RE {(P,Q)| P=vy.(I|IIG:i-Pip;), Q =5~ vy (I|T1Gi.R(P;, pi))
for some nameg, guards7;, some product of outputs
and some_-proper proces$; andX-tablesp;
such that the sort aP; is included in the domain of; }

(Note that there is no type restriction @r) We prove thaRR is a labeled bisimula-
tion:if PR @, then

Asynchronous input and output stepsfoind) match trivially, since they only
affect thel andy components, which are identical in the normal formsrof
and(), and bookkeeping reductionsdhcan only extend andy.

If P — P’, we must havd = I,,| M for somel,,, M, and(M | G;.P;p;) —
P;p;p’ for somej and substitution’, such that

P'=vj (I [(Pipy)p' | Tlig; G- Pipi)

whereG; is either an input or a name matching (with = 0 if GG; is a matching).
We then have

Q—i—Q ~ vii. (Lu | R(P;, pip') | Ty G- R(Ps, pi))

and we can further extend this computation with the bookkeeping steps that nor-
malize R(P;, p;p'):

Q =i ~vi.§ (I | I' | (TTGLR(PL) | (i Go-R(P;, 1))

Since the condition o; andp; implies that(P;p,)p’ = P;(p;p') we then have
P' = vy, i (In | I'|(T1Gy-Piph) | (T Gi-Pipi)) henceP' R Q.

if Q — @', then eithe) —, @', and then” R (', or, as above, there are some
M, Iy, 3, p suchthat)' —% Q" ~ vy. (In | R(P;, pip') | T1 Gi.R(P;, pi)); then
we haveP — P’ = v (I |(P;p;)p' | T1 Gs. P,p;) and, as above, considering the
normal forms of)” and P’ gives usP’ R ()’.

The main result follows from the fact thét = Ppgs R R(P, ps). O

We now need to show that our interpreter can emuddltprocesses of soff, not

just X-proper ones. Because the interpreter must be a finite process, some prelim-
inary encoding is needed to eliminate arbitrarily-large syntactic constructs which
might occur in the process to be interpreted. The problem occurs for the channels

37

that are never extruded. These channels can have arbitrary types, unrelated to
and arbitrarily large arities. Since these channels are internal to the source process,
we can use a structural, type-driven translation that implements communication on
channels of these unrelated types with a series of communications on channels of
some uniform type, in the spirit of the encoding from the polyadicalculus to

its monadic subset (see, e.g., [30]). The correctness of the encoding rests on the
following notion:

Definition 35 A set of channel types is closed under decomposition when, for
eacho € X, if 0 = (0y,...,0,), thenalsary, ..., 0, € ¥ (up to unfolding).

With the simple type system given in Section 2, any finite set of tyfas a finite
smallest supersd?(X) that is closed under decomposition.

Lemma 36 Let X be a finite set of types. There is a finite set of typ€s) O X
such that, for any proces8 whose free names are typediitX), there exists?
whose names are all typed (X)) with P ~; P°.

PROOF. We takeF (%) £ D(X) U {o}, whereo & 1i0.(D(X) U {0}, o). Note that
F(X) is closed under decomposition. We define a translatighon typed terms,
setting for typesr® £ o wheno € F(X) ando® = o wheno ¢ F(X).

For processes, the translation is compositional and type-driven. In the rules below,
the tuple indexs in z, ranges overr'(X), while theid in 7;, u;, y;, ranges over
{1,...,n}. (We assume that all names introduced in the translation are fresh.) The
top two rules apply when the type ofis in '(3); the next two rules apply when

the type ofy, is (7;) & F'(X).

@) = w(w)
(2(ui).P)° = (ug). P°
Gy f oo T 5ei(E e)
(yo(@).P) = yolz{u/zne b p0)- - Ynor (Zo{un/ 20 yn) P°
o =0 (PIQPE QT (P E1p
(vz:7.P)° & vz:7°.P° ([x = 2'1P)° & [z =] P°

The translation leaves any name that may be exchanged with the environment un-
changed, and changes the type of some local names to reflect the use of a generic
communication protocol.

To prove the correctness of the translation up to labeled bisimilarity, we show that
the relation containing the pait$ | P, I | P°) for all products of output$, and allP

38

whose free variables are all typed #(c), is a labeled bisimilarity up to expan-

sion [42]. Transitions in the translated process are either in direct correspondence
with transitions in the source process, or additional internal steps on local names
introduced by the encoding of output; these internal steps are deterministic. Us-
ing labeled expansion, we can perform all these additional steps immediately after
any internal step on an encoded channel, and obtain the translation of the resulting
source process after the internal step. Note that the closure propertgfen-

sures that outputs ihcan only interact withP or P° when they are typed if'(X),

and conversely that outputs 6for P° remain typed inf'(X). O

Using the expanded type sEt>)) of Lemma 36 in Lemma 34, the identity ~;
vz.(z|'z.(P | %)) to replace general replication with replicated input, and the trans-
lation P to eliminate types outsidE'(X), we obtain a universal interpreter:

Corollary 37 (Interpreter) In ther-calculus, with or without name matching, let
S be a finite set of typed names. There is a proé¢essf sortS'w {u} such that, for
every process’ of sort.S, there exists a proces3 such thatvu.(([Q]), | B.) ~

Q | P.

While our interpreter may be adapted to various type systems (e.g., Lemma 36 may
be weakened for the-calculus with an infinite system of variable sorts, where
D(X) can be infinite), its existence is not always guaranteed. For instance, in the
join calculus with polymorphisna la ML [18], the interpreter can be adapted to
polymorphic types but, surprisingly, there is no finite interpreter if we also add
name matching. In that setting, we still hase = ~; but we cannot prove an
equivalent of Theorem 1. On the contrary:

Lemma 38 In the join calculus with both polymorphic types and name matching,
labeled bisimilarity is strictly finer than the congruence of barbed bisimilarity:

%l C éo.

PROOF. We give a counter-example in the join calculus, in the spirit of Brookes’
counter-example between limit bisimulations and bisimilarity.

For anyn € N, we let P, be a process that performs a series of tests on a poly-
morphic namef : Va.(Int ., ({a))) encoding a function (in continuation passing
style, cf. [18]). After an initial call tof (0, ¢) returns,P, successively callg (i, ¢)
twicefor eachi € N, and tests, if < n, that (1) both calls return theamenameu;

; and (2)v; # v, for anyj < i. If any test fails, a single is emitted; otherwise,

if f passes all testd;, is nondeterministic, and may or may not emitNothing
happens if the initial call does not return. We alsoffetbe a process that performs
the same calls tg, but ‘fails’ and emits a singlé irrespective of the results (as
long as the initial call returns). For instance, we can use the processes

39

P, € def () |y b0 A z()|2()>t() in
def e(i,d) >
def c(v) | (V') | " () >
[i < n]lv="12"]d{v) |
def d'(u)> d(u) | [u =v]x() ine(i +1,d') in
fl ey | fGE) ") i < na() in
def c(v)> (2() | def d(v)>y() in e(0,d)) in f(0,c)

P, = def e(i) >
def c(v) | (V) |c"<>l>e<i +1) in
fli,e) | fi,c) | () in
def ¢(v) >£() | e(0) in (0, c)

The m-calculus equivalent of the two join definitions that involve some synchro-
nization would be heréy.x |!z.z.t, and!c”.c(v).c/(v').[|, respectively. The other

join definitions are equivalent to replicated inputs; in all cases.ddfeimplies
scope restriction. The integer operations (comparison prefix, zero, and increment)
can be replaced with standard encodings.

For anyn € N, if f honors the initial call, the proced3, can lose the ability to
emitt (P, t7l,) if and only if f passes all tests at rank ConverselyP,, emitst as
soon as the initial call returns.

For a givenn € N, it is straightforward to write a context,,| | that defines a
function f,, passing all tests foi < n (and does not bind). Conversely, in the
case(C'[P,] can pass all tests, the contéXt | must have. different namesv;);<,

to return. Since each name must be returned twice, these names cannot be created
under a join pattern that defings By definition of the generalization criterion,
names with a polymorphic type cannot be received in a join pattern that d¢fines
Hence, these returned values must already be definéd jnand the size of’| |

grows withn.

We now compare the processgs= @, ., P, andS; = @, P, noting that if
S; —* P, then eitherP =~ §;, or P ~ P, (withn < w if i = 1), as theP,, have no
transitions without a definition fof.

Sy %, S, the reductionS; — P, cannot be matched b¥,. In the cases; —*~
P,, we add the context’,| |; the process”,[P,] can perform transitions and
reach a state where it has lost its barl¢pwhile C,,[P,] cannot. Yet,S; #; P,
either, because no reductiegh —* P, can be matched by, for the same
reason.

S1 /~° Sy: any given context’[| can perform tests only at a bounded depth, hence
there isn € N such that, for anyn > n, we haveC'[P,,] = C[F,]. O

40

7.3 Universal Context

We are now ready to proves C ~. We build a single context/s| | that has
essentially the discriminating power of all contexts. We call this context a universal
context.

Lemma 39 (Universal Context) For all finite sets of typed nameS such that
x,y ¢ S, there is an evaluation contekls| | such that the relation

¢s = {(P,Q) | tv(P)Ufv(Q) C S andUs[P] &, Us[Ql}
has the following properties:

(1) LetC[] be an evaluation context such tHatC[P]) C {z,y} for any P with
fv(P) C S.Forall PandQ, if P ¢s Q, thenC[P] =, C[Q)].

(2) Leto range over injective substitutions on names. The relatiéh {(Po, Qo) |
34S.P ¢5 QQ} is a congruence and a barbed bisimulation, hengeC ~.

PROOF. Let B[| be the evaluation contex®, ,3[| = N[F, ;[]| thatis given
by Lemma 32 for the sdtr, y} with boundk € N, and somént ¢ S. Let R, be the
interpreter given by Corollary 37, for processes of sbrt{z, y}, for someu ¢ S.
We build our context as follows:

T, = nt(u) ® Frp)[R

Gn E ve.(e(n) |le(u).elu+1) | e(uw).T,)
[] = NwS(Gn [[])]

Usl] = Usil]

If P has sortS, thenR,, has sortSw {x,y,u}, T, has sortSw {int, u}, vS.(G, | P)
has sort{int}, andUg,[P] has sorf{z,y}. The process, interprets ar-calculus
processR, encoded by:.. The procesd’, either reveals the value as an integer
barb or silently reduces tB;, ,; [R,]. The proces&:,, chooses any integer> £ as
the result of an infinite internal choi@e, @ (111 & (Tx12 ® - -+)): we haveG,, ~;
T, ® G, foranyn > k. Using these processes, the contEx{ | chooses an
(integer-encoded) contextS.(R || |) encoded by, then either reveals this choice
of context or behaves like this context. We let the contéxts | and K| | be the
derivatives ofUg,,[| at these intermediate stages, after choosing this partieular
and after choosing to run the interprefey with this (n),,, respectively, and let’
andT7” be the inert residues of these staggs+; 0, 7" ~; 0):

41

G = vele(u).clu+ 1)

T = vt.(tint(u) | G')
Ku[] = NS (vu. (G| {n), T [])]
K [] = BvS. (vu(T' [{n), | R [[])]

We will use the following reduction property. L&) be a process of so. If
Us[@Q] —* U’, then there exists > k and@’ such that) —* @’ and one of the
following holds:

(G) Us[Q] =~ USn[]E

(T) Us[Q] =" K,[Q']
(R) US[Q]_) K [Q']

l |||

The proofis by induction on the length of the derivation, and relies on Lemma 32(2).
Crucially, only R, shares names with the process placeddn| |. This process,

is guarded untilK [| appears in the reduction. Till then, reductions in the context
and reductions frong) always commute.

Assume thaP, @), andC| | meet the hypotheses (). For all reduction&’[P] —
V', we prove the existence &f such thatC[Q] —* W andV =, . There exists a
processk of sortS U {x, y} such thaC[P] = vS.(P | R) andC[Q] = vS.(Q | R),
with an integer encodin§R] > k. Starting fromUs[P], we build reductions rep-
resentingC[P] —* V with an interpreted R], we use~,-bisimulations as given
in the definition of¢g, and we extract reductions[Q)] —* W. The situation is
detailed in the diagram below, with the extracted reductions on the right.

(1) The upper square of the diagram deals with the internal choiece-6f[R]
in G,,. The top edge holds by definition gf. On the left, we have reductions

Us|P] = Usgy1[P] = -+ — Us g — Kr)[P]

By ~,-bisimulation, we obtain reductiongs[Q)] —* U’ on the right, with

Kir[P] =, U'. By construction Kzj[P] —*~, Nz) and, by bisimulation,

U’ must have the same property. We show that the reductigh@] —* U’

are in case (T) of the reduction property, with= [R]. Otherwise:

(R) We haveK[Q'] = B[vS,u.({n), | R.|Q")] and, by Lemma 32(3),
K![Q'] =*~4 N,, only forn < k.

(T) with n # [R]. We have reductions to (R), as discussed above, ang, to
up to=,, and thud)’ —*~, N,, impliesn # [R].

(G) We haveU’ —*=~, N, for somen > [R]. However, the symmetric
argument of the case above yieligg) [P] —*~, N,, impliesm # n.

(2) Below, the reduction<|)[°] — K{p[P] discards the integer bafl#] used
as a marker for this particular’[| and starts the interpreter. Using Corol-
lary 37, the preservation ¢, by application of the evaluation conte® |,
and the inclusiony; C =, we obtainK{y [P] =, B[C[P]].

42

(3) In the bottom-left square, the reductiofi§”?] —* V' in contextB] | are sim-
ulated by soméf[[P] —* Z with B[V] =, Z.

(4) Inthe central part of the diagram, the reductidtig,[P°] —* Kz [P] =" Z
can be simulated by [Q'] —* Z' with Z ~, Z'.

SinceB[V] =, Z' and, by Lemma 32(3), ndB[V] —*=, Nz , the reduc-
tions Kz[Q'] —* Z' must be in case (R) for = [R] and, for some&)” with

Q" —* Q", we can split these reductions inkqr)[Q)] —* K[[Q"] = Z".

(However, there is no central, edge and no obvious way to relateéP] and
C[Q"] at this stage.)

(5) Inthe bottom-right square, by Corollary 37, we obtain thetgmedge and, by
simulation, K [Q"] —* Z' implies B[C[Q"]] —* Z" for someZ" ~, Z'.
Composing thex, equivalences at the bottom, we obtd¥V | ~, Z”. By
Lemma 32(2), there exisi& such thatC[Q"] —* W andZ” = B[W].

(6) Composing the reductions on the right, we finally obt&ffd)] —* W and
B[V] =y B[W], thatis,V =~ W by Lemma 32(1).

Us[P]—=—Us[Q)] Cla)
K[R]*[P] """" s K[R\];Q] C[v*f]
B[CO[P]] —=— Kip] KiRﬂv;@”] rrrrrr . . B[C[Q"]] C[V;,,]
B[V] P é “ ZV 3 Bﬁ;/] VVV

We conclude the proof of propert) of the lemma by showing that the relation
{(C[P],C[Q)) | P ¢s Q} U=, is a double-barbed bisimulation. We have just es-
tablished a sufficient bisimulation propertyGf P| —* V, thenC[Q)] —* W with

V =, W, and vice-versa. The preservation of the barpand.}, follows from the
special case of an empty series of steapgH{]| = V'): we obtainC[Q] —*~5 C[P],
henceC[P] |}, impliesC[Q] |, andC[P] |}, impliesC[Q] {,.

The proof of property2) of the lemma combines several instances of prop@nty

In the definition of¢, we use the injective renamings to circumvent the limitation
{z,y} & S. AssumePo ¢ Qo with P ¢g Q.

43

Barbs: we letC] | = Bg| |, where the contexBg| | is given by Lemma 32, and
obtain Bs[P] ~y Bs|Q] by property(1). By Lemma 32(1), we hav® =~ Q. In
particular P and @ have the same weak barbs, aRd and Qo have the same
barbs.

Bisimulation: if P —* P, by definition of¢s, we haveUs[P] =, Us[@)], and the
reductiond/s[P] —* Ug[P’] is simulated by som&s[Q] —* U’. Both series of
reductions are in cag€’) for n = k, since otherwise we don’t havgé —*~, N,
for all n > k (Lemma 32(3)). We obtai) —* @’ with U’ = Ug[Q'], and
finally P" ¢s Q. Finally, for all injective renamings and processeB, we have
Po — Pgifandonlyif P — P'.

Context closure: for a given evaluation context”| |, there exist an evaluation
contextC’[| and an injective renaming such thate,y ¢ fv(C'[]), C"[Po| =
(C'[P])o’, andC”[Qo] = (C'[Q))o’. (If x appears in the sort @[], we pick a
fresh name’ and lete’ = o{*/,»}, and similarly fory.)

We letS’ = SUfv(C'[]) andC| | = Ug/[C'[]]. By property(1) for S andC| |,
we obtainUs [C'[P]] =2 UL[C'[Q]], which is the definition of2’[P] ¢s C'[Q)],
and thusC”[Po] ¢ C"[Qo]. O

Proof of Theorem 1 To conclude, we prove the inclusie#, C ~. AssumeP =3
Q@ and letS = fv(P) U tv(Q). If z,y ¢ S, by congruence property, we have
Us[P] =2 Us[@Q]. By Lemma 39(2), we obtai? ~ Q. If = or y appear inS, we
similarly obtainPo ~ Qo for some injective renaming, henceP ~ Q. O

8 Labels instead of Barbs and Contexts

Bisimulation proofs of barbed congruences still require some explicit context clo-
sure, as for instance in most proofs of [15,3]. This is not the case for labeled bisimu-
lations, where congruence is a derived property instead of a requirement in the def-
inition of equivalence. Thus, purely co-inductive proof techniques suffice to estab-
lish equivalences. We write; for (weak) labeled bisimilarity, and refer to [43,6,17]

for various formulations of; for asynchronous process calculi and their impact on
proof techniques.

Considered as an auxiliary semantics for a reduction system, a labeled transition
system issoundat least when its silent-transitions coincide with the reductions
(& * = —*) and when its labeled transitions determine the observation predicates
lz. Then, any (weak) labeled bisimulation is also a barbed bisimulation. Consid-
ered as a proof technique for observational equivalences, labeled bisimulation is
sound €&; C ~) when, in addition, labeled bisimilarity is closed by application of

all contexts used in the definition ef. This is usually the case, inasmuch as labels
are meant to represent elementary contexts.

44

In the r-calculus, we have” |, if and only if P % for some output label of the
form a = (2)z(y); ~; is closed by restriction and parallel contexts (see [6]); hence
we have the well-known inclusions; C ~ and~; C =°. The first inclusion is

strict because our evaluation contexts have less discriminating power than labels.
For instance, the key barbed congruence for equators, recalled in Proposition 8,
is not a labeled bisimulation. Whereas the procBssilently converts messages
between: andy, one can still distinguish from y as an argument in output transi-
tions. For instancel? | z(x) %, EY | z(y) because the labegx) andz(y) are not
equated.

To fix this discrepancy, the usual approach is to extend the syntax with a name
matching prefix, such as = y|P. In the extended calculus, each label can then

be tested by a specific context through a series of name matchings, and thus barbed
congruence should coincide with some variant of labeled bisimulation. (Although
labeled bisimulations may be easier to establish, name matching is a mixed bless-
ing. Itis usually not a primitive in higher-order settings. Technically, it also induces
additional subtleties [40], and breaks properties such as the stability of equivalence
by substitution. Many useful equations that are proper to asynchronous calculi dis-
appear [27]. Besides, labeled bisimulations may be too fine even in presence of
name matching in the syntax [1].)

In the w-calculus with name matching, early bisimulation and barbed congruence
coincide, but the proof is delicate—this is mentioned as an open question in [32].
To our knowledge, the only general statement of their coincidence appears in San-
giorgi's thesis [39], with a proof of the problematic inclusisf C =; for both CCS

and the monadier-calculus; the technique consists of building contexts that test

for all possible behaviors of a process under bisimulation, and that exhibit different
barbs accordingly. This technique requires infinite contexts with infinitely-many
recursive constants and free names. These extended contexts are never considered
in the usual congruence properties for thealculus, and they cannot be expressed
using the simpler constructs of asynchronous calculi.

In other works, partial results are obtained for variants of the calculus (CCS [32],
the asynchronous-calculus [6]). The proof techniques are similar, but use only
finite contexts. As a result, the coincidence is established oniyrfage finitepro-
cesses. A proced3is image finite when the set of its derivatives is finite. In the case

of weak relations, this means in particular th&, P —* P’} has to be finite. This
restriction is annoying, especially as many processes that use replication (or even
replicated input) are not image-finite by series of reductions. For instance, we have
I(7.P) =*I(r.P)| P|...| P and similarlyQ =7 |lz.(P|Z) =* Q| P|...| P.

Theorem 5 In the r-calculus with name matching, we hasé = =;.

We could adapt Sangiorgi’s proof by replacing all free names by integers, as Lem-
mas 31 and 34 would provide a finite encoding of his infinite contexts. Actually,

45

there is a much simpler proof at hand: we prove the inclusiof =; then apply
Theorem 1. A proof of the inclusiorr C =; already appears in [23], in a similar
setting. Our proof, however, is significantly shorter, and illustrates the advantage
of the congruence-and-bisimulation definition of equivalence. Instead of capturing
the whole synchronization tree in a huge context, we exhibit for every labeled tran-
sition a context that specifically detects this transition, then disappears up to barbed
congruence. The proof relies on the following technical lemma:

Lemma 40 (accommodating the extrusions)n the w-calculus, with or without
name matching, leP, () be processes ang ¢ fv(P, Q). We haveP ~ () if and

only if ve.(y(x) | P) = va.(y({x) | Q).

def

Intuitively, the evaluation contexis, , [| = vx.(y(z) || |) represent the residues of
contexts that test for output labels of the fofm)z(w) that extruder.

PROOF. Since= is closed by application of evaluation contextsPif~ (), then
alsoE, ,[P] ~ E,,[Q]. Conversely, leRR be the relation that contains all pairs of
processe§P,) such that, for somgnot free inP, @), we haveE, ,[P] ~ E, ,[Q)].
We show thafR is a congruence and a barbed bisimulation.

(Strong) bisimulation: reduction steps i® and E,, ,[P] are in direct correspon-
dence: ifP — P/, thenE, ,[P] — E,,[P’], and conversely i, ,[P] — T,
then we can exhibit some process such thatP — P andT = E,,[F].
(Sincey ¢ fv(P), the messagg(z) remains inert.)

(Strong) barbs: assumey,t & fv(P). We never have” |,. We haveP |}, if and
only if £, ,[P]|y(z).z(u).t .. Foranyz ¢ {z,y}, we haveP |, if and only if
Eaz,y[P] lz

Context closure: without loss of generality, we consider only contexts of the form
C[] € vu.(R|[]) and we exhibit a context’[| such that for any processés
withy, z ¢ fv(P)U{v}, we can commute contexts up to equivaleri¢er, ,[P]] ~
E, .[C[P]]. WhenC] does not restrict (z ¢ v), we use:

C'[] = vyvo([]|y(e).(Z(z) | R))
Otherwise, we use the context
C'[] £ E..[0]|vy.vv.([]]y(x).R)

(In both cases, we actually prove a finer, labeled bisimulation; we omit these
proofs.) To conclude, suppode R @, that is, £, ,[P] ~ E,,[Q]. Sincex

is a congruence, we have/ [E, ,[P]] ~ C'[E,,[Q]]. By transitivity, we obtain
E,.[C[P]] = E..[C[Q]], thatis,C[P] R C[Q]. 0

In combination with our previous results, this establishes the coincidence of labeled
bisimulation and barbed congruence in the presence of name matching:

46

Theorem 6 In the r-calculus with name matching, we have= =;.

PROOF. We provex C = by establishing that: is a labeled bisimulation. Let
P~ @QandP % P'. We build a specific context for every lahel

Internal step: in caseP — P’, the bisimulation requirement ef suffices to ob-
tain@Q —* Q' with P’ = ()'.

Input action: in caseP =), P’, we haveP’ = P |z(y). We always haveé) =),
Q' £ Q|z(7). We use congruence for the contéxt z(7) to obtainP’ ~ Q'.

Output action: we only consider the casg B2, prwhere the proces®

outputs a single free nameand a single bound name(being extruded). The
general case easily follows. We apply the congruence property for the context

T1] = Ty, 2)(ul2) | Iy = ¥t Tyenir)ly = 2IF)

wheret is a name that does not occur ihor). The messagé is used as a

barb that disappears only if the processTip] produces an output with label

B2, Thatis,T[P] ——— E.,[P] and, wheneveT[Q] —* T" with 7" {,

EFwa, ' andT’ = E.,[Q). Then,

there is a proces®’ such that) —* %)
T[P] ~ T|Q] andT[P] —* E,,[P'] yields by bisimulation such &’ with
T[Q] —* E..|Q'] (sinceE. ,[P'] ;) andE, ,[P'] ~ E., ,[Q’]. We conclude by

Lemma 40. O

9 A Family Portrait (Summary)

We finally gather our results in a hierarchy of equivalences. Figure 3 deals with the
general case of a reduction system equipped with a notion of evaluation context, and
compares the main congruences considered in this paper. All solid lines represent
inclusions between relations (which may or may not be strict). These inclusions
directly follow from the definitions. The same inclusions hold for any choice of
derived observation predicates: committed, existential, or committed-existential. In
practice, for process calculi, we expect the additional inclusign C ~,,,,, and

also that at least the tiers with dotted horizontal lines remain different < C

Xair C may-

Figure 4 deals with our asynchronousalculus, in the absence of name matching.

It combines results obtained for different variants of our equivalences, for different
choices of observation predicates, as discussed in Sections 5 and 6. We omit the
existential variants for the congruencess, ~,;,, and~,,,,—they all coincide

with their base equivalence. With name matching, the two upper tier also coincide.

a7

any sound labeled bisimilarity

barbed congruence -

congruence of barbed bisimilarity

barbed coupled congruence -

congruence of barbed coupled similarity <°

fair testingm S fr

may testing A

2

name matching

~
T~

U niversal contexts

mternal choice
mterleave_d with
visible actions

internal choice
between visible actions

: —falr

abstract fairness

~Y
- —may

Fig. 3. General inclusions between asynchronous congruences

labeled bisimilarity

barbed congruence

congruences of limit and
existential bisimilarities

barbed coupled
congruence

congruence of barbed
coupled similarity

fair testing

may testing

2

Q

§

o

S \
tair
2may

Fig. 4. Strict inclusions in the asynchronausalculus

48

I
&

barbed congruence ~

barbed coupled <
congruence =
fair testing Ny = XY = S°
may testing ~may

Fig. 5. Strict inclusions in the local-calculus

Figure 5 deals with the simpler hierarchy obtained for the laeahlculus, with the
same conventions.

Almost all interesting results seem specific to thealculus, inasmuch as their
proofs rely on specific contexts and encodings. However, we believe that the basic
techniques can be carried over to many variants oftbalculus and to similar pro-

cess calculi. This is certainly the case for the join calculus; despite the significant
differences discussed in Section 6, and a few twists in the main proofs [17,14,13].
Some techniques have also been usefully applied to Cardelli and Gordon’s calculus
of Mobile Ambients [19], and to mobile process calculi with cryptographic primi-
tives [3,2,1].

References

[1] Martin Abadi and @dric Fournet. Mobile values, new names, and secure
communication. InPOPL 2001: Proceedings 28th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languageges 104-115. ACM, January
2001.

[2] Martin Abadi, G&dric Fournet, and Georges Gonthier. Authentication primitives and
their compilation. In27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 200Ppages 302—-315. ACM, January 2000.

[3] Martin Abadi, Gedric Fournet, and Georges Gonthier. Secure implementation of
channel abstractiongnformation and Computatiqri74(1):37-83, April 2002.

[4] Martin Abadi and Andrew D. Gordon. Reasoning about cryptographic protocols in
the spi calculus. In Mazurkiewicz and Winkowski [26], pages 59-73.

[5] Gul Agha, lan Mason, Scott Smith, and Carolyn L. Talcott. A foundation for actor
computation.Journal of Functional Programming(1):1-72, January 1997.

[6] Roberto M. Amadio, llaria Castellani, and Davide Sangiorgi. On bisimulations for the
asynchronous-calculus.Theoretical Computer SciencE95(2):291-324, 1998.

49

[7] Michele Boreale and Rocco De Nicola. Testing equivalence for mobile processes.
Information and Computatiqri20(2):279-303, August 1995.

[8] Gérard Boudol. Asynchrony and thecalculus (note). Rapport de Recherche 1702,
INRIA Sophia-Antipolis, May 1992.

[9] Ed Brinksma, Arend Rensink, and Walter Vogler. Fair testing. In I. Lee
and S. A. Smolka, editorgth International Conference on Concurrency Theory
(CONCUR'95) volume 962 ofLecture Notes in Computer Sciengages 313-327.
Springer-Verlag, 1995.

[10] Ed Brinksma, Arend Rensink, and Walter Vogler. Applications of fair testing. In
R. Gotzhein and J. Bredereke, editofsrmal Description Techniques IX: Theory,
Applications and Toolssolume IX. Chapman and Hall, 1996.

[11] R. Cleaveland, editor. Third International Conference on Concurrency Theory
(CONCUR’92) volume 630 ofLecture Notes in Computer Scien&pringer-Verlag,
1992.

[12] Rocco De Nicola and Matthew C. B. Hennessy. Testing equivalences for processes.
Theoretical Computer Science4:83-133, 1984.

[13] C. Fournet and G. Gonthier. The join calculus: a language for distributed mobile
programming. In G. Barthe, P .Dybjer, , L. Pinto, and J. Saraiva, edRooseedings
of the Applied Semantics Summer School (APPSEM), Caminha, September 2000
volume 2395 ot ecture Notes in Computer Scienpages 268—-332. Springer-Verlag,
August 2002.

[14] Cédric FournetThe Join-Calculus: a Calculus for Distributed Mobile Programming
PhD thesis, Ecole Polytechnique, Palaiseau, November 1998.

[15] Cédric Fournet and Georges Gonthier. The reflexive chemical abstract machine and the
join-calculus. InConference record of the 23th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL'963ges 372—385. ACM, January
1996.

[16] Cédric Fournet and Georges Gonthier. A hierarchy of equivalences for asynchronous
calculi (extended abstract). In Larsen et al. [25], pages 844—-855.

[17] Cédric Fournet and Cosimo Laneve. Bisimulations in the join-calcultrgoretical
Computer Scienc®66(1-2):569-603, September 2001.

[18] Cédric Fournet, Cosimo Laneve, Luc Maranget, and Didiemi Implicit typinga la
ML for the join-calculus. In Mazurkiewicz and Winkowski [26], pages 196—212.

[19] Cédric Fournet, Jean-Jacqueavy, and Alan Schmitt. An asynchronous, distributed
implementation of mobile ambients. In J. van Leeuwen, O. Watanabe, M. Hagiya, P.D.
Mosses, and T. Ito, editor®roceedings of IFIP TCS 2000olume 1872 ol_ecture
Notes in Computer Sciend&IP TC1, Springer-Verlag, August 2000.

[20] Rob J. van Glabbeek. The linear time—branching time spectrum II; the semantics
of sequential systems with silent moves (extended abstract). In E. Best, dtlitor,
International Conference on Concurrency Theory (CONCUR'8®jume 715 of
Lecture Notes in Computer Scienpages 66—81. Springer-Verlag, 1993.

50

[21] Matthew HennessyAlgebraic Theory of Processeshe MIT Press, 1988.

[22] Kohei Honda and Mario Tokoro. On asynchronous communication semantics. In
P. Wegner, M. Tokoro, and O. Nierstrasz, editdPspceedings of the ECOOP'91
Workshop on Object-Based Concurrent Computiragjume 612 ofLecture Notes in
Computer Scien¢@ages 21-51. Springer-Verlag, 1992.

[23] Kohei Honda and Nobuko Yoshida. On reduction-based process semantics.
Theoretical Computer SciencE52(2):437-486, 1995.

[24] Cosimo Laneve. May and must testing in the join-calculus. Technical Report UBLCS
96-04, University of Bologna, March 1996. Revised: May 1996.

[25] Kim Larsen, Sven Skyum, and Glynn Winskel, editor®roceedings of the 25th
International Colloquium on Automata, Languages and Programming (ICALPR, '98)
volume 1443 ol ecture Notes in Computer Scien&pringer-Verlag, July 1998.

[26] A. Mazurkiewicz and J. Winkowski, editorsProceedings of the 8th International
Conference on Concurrency Theory (CONCUR;90lume 1243 ot ecture Notes in
Computer Sciencé&pringer-Verlag, July 1997.

[27] Massimo Merro and Davide Sangiorgi. On asynchrony in name-passing calculi. In
Larsen et al. [25], pages 856—-867.

[28] Robin Milner. A Calculus of Communicating Systenaslume 92. Springer-Verlag,
1980. Lecture Notes in Computer Science.

[29] Robin Milner. Communication and ConcurrenciPrentice Hall, New York, 1989.

[30] Robin Milner. The polyadicr-calculus: a tutorial. In F. L. Bauer, W. Brauer,
and H. Schwichtenberg, editotspgic and Algebra of SpecificatioBpringer-Verlag,
1993.

[31] Robin Milner. Communication and Mobile Systems: theCalculus Cambridge
University Press, Cambridge, 1999.

[32] Robin Milner and Davide Sangiorgi. Barbed bisimulation. In W. Kuich, editor,
Proceedings of ICALP'92volume 623 ofLecture Notes in Computer Scienpages
685-695. Springer-Verlag, 1992.

[33] James H. Morris, JrLambda-Calculus Models of Programming Languagg$. D.
dissertation, MIT, December 1968. Report No. MAC-TR-57.

[34] V. Natarajan and Rance Cleaveland. Divergence and fair testingrolceedings of
ICALP '95, volume 944 ot_ecture Notes in Computer Scien&pringer-Verlag, 1995.

[35] Uwe Nestmann and Benjamin C. Pierce. Decoding choice encodind@mation
and Computation163:1-59, Nov 2000.

[36] D. M. R. Park. Concurrency and Automata on Infinite Sequensedume 104 of
Lecture Notes in Computer Scien&pringer-Verlag, 1980.

[37] Joachim Parrow and Peterd8ljn. Multiway synchronization verified with coupled
simulation. In Cleaveland [11], pages 518-533.

51

[38] Joachim Parrow and Peterddjn. The complete axiomatization of cs-congruence.
In P. Enjalbert, E. W. Mayr, and K. W. Wagner, editoBspceedings of STACS'94
volume 775 ofLecture Notes in Computer Scienpages 557-568. Springer-Verlag,
1994,

[39] Davide SangiorgiExpressing Mobility in Process Algebras: First-Order and Higher-
Order Paradigms Ph.D. thesis, Department of Computer Science, University of
Edinburgh, 1992.

[40] Davide Sangiorgi. A theory of bisimulation for thecalculus. Acta Informatica
33:69-97, 1996.

[41] Davide Sangiorgi. On the bisimulation proof methodournal of Mathematical
Structures in Computer Scien@&447-479, 1998.

[42] Davide Sangiorgi and Robin Milner. The problem of “weak bisimulation up to”. In
Cleaveland [11], pages 32-46.

[43] Davide Sangiorgi and David Walkef.he Pi-calculus: a Theory of Mobile Processes
Cambridge University Press, July 2001.

52

	Introduction
	An Asynchronous Pi Calculus (Review)
	Congruences, Tests, and Bisimulations
	May Testing
	Bisimulations and Congruences

	Fair Testing and Coupled Simulations
	Fair Testing
	Coupled Simulations

	Equivalences with a Single Observation
	Equivalence Classes for Existential Bisimilarity
	Limit Characterization

	Committed Barbs
	Bisimilarity and Fair Testing
	The Semantics of Coupled Simulation

	Double-Barbed Bisimilarity
	Some Equivalence Classes
	Pi Calculus Interpreters
	Universal Context

	Labels instead of Barbs and Contexts
	A Family Portrait (Summary)
	References

