Cohort Modeling for Enhanced Personalized Search

Jinyun Yan

University

Wei Chu

Rutgers Microsoft Bing

Ryen White

Microsoft

Research

Personalized Search

- Many queries have multiple intents
 - e.g., [H2O] can be a beauty product, wireless,
 water, movie, band, etc.

- Personalized search
 - Combines relevance and the searcher's intent
 - Relevant to the user's interpretation of query

Challenge

- Existing personalized search
 - Relies on the access to personal history
 - Queries, clicked URLs, locations, etc.

- Re-finding common, but not common enough
 - Approx. 1/3 of queries are repeats from same user[Teevan et al 2007, Dou et al 2007]
 - Similar statistics for <user, q, doc> [Shen et al 2012]

2/3 queries new in 2 mo. - 'cold start' problem

Motivation for Cohorts

- When encountering new query by a user
 - Turn to other people who submitted the query
 - e.g., Utilize global clicks
- Drawback
 - No personalization

Cohorts

- A group of users similar along 1+ dimensions,
 likely to share search interests or intent
- Provide useful cohort search history

Situating Cohorts

Not personalized

Conjoint Analysis Learning across Users Collaborative Grouping/Clustering Cohorts ... Hard to Handle New Queries Hard to Handle New Documents Sparseness (Low Coverage)

Related Work

- Explicit groups/cohorts
 - Company employees [Smyth 2007]
 - Collaborative search tools [Morris & Horvitz 2007]
- Implicit cohorts
 - Behavior based, *k*-nearest neighbors [Dou et al. 2007]
 - Task-based / trait-based groups [Teevan et al. 2009]
- Drawbacks
 - Costly to collect or small n
 - Uses information unavailable to search engines
 - Some offer little relevance gain

Problem

 Given search logs with <user, query, clicks>, can we design a cohort model that can improve the relevance of personalized search results?

Concepts

- **Cohort:** A cohort is a group of users with shared characteristics
 - E.g., a sports fan
- Cohort cohesion: A cohort has cohesive search and click preferences
 - E.g., search [fifa] → click fifa.com
- Cohort membership: A user may belong to multiple cohorts
 - Both a sports fan and a video game fan

Our Solution

Cohort Generation

Identify particular cohorts of interest

Cohort Membership

Find people who are part of this cohort

Cohort Behavior

Mine cohort search behavior (clicks for queries)

Cohort Preference

Identify cohort click preferences

Cohort Model

Build models of cohort click preferences

User Preference

Apply that cohort model to build richer representation of searchers' individual preferences

Cohort Generation

- Proxies
 - Location (U.S. state)
 - Topical interests
 (Top-level categories in Open Directory Project)
 - Domain preference
 (Top-level domain, e.g., .edu, .com, .gov)
 - Inferred from search engine logs
 - Reverse IP address to estimate location
 - Queries and clicked URLs to estimate search topic interest and domain preference for each user

Cohort Membership

- Multinomial distribution
 - Smoothed

$$p(C_j|u) = w(u, C_j) = \frac{SATClicks(u, C_j) + 1}{\sum_{j} SATClicks(u, C_j) + K}$$
Smoothing parameter

– Example:

$$C = [Arts, Business, Computers, Games]$$

SATClicks =
$$[0, 1, 2, 5]$$
 (clicks w/ dwell $\geq 30s$)

$$w(u, C) = [0.083, 0.167, 0.25, 0.5]$$

Cohort Preference

- Cohort click preference
 - Cohort CTR:

$$CTR(d, q, C_j) = \frac{\sum_{u} SATClicks(d, q, u) \cdot w(u, C_j)}{\sum_{u} Impressions(d, q, u) \cdot w(u, C_j)}$$

- Global CTR:

$$CTR(d,q) = \frac{\sum_{u} SATClicks(d,q)}{\sum_{u} Impressions(d,q)}$$

- Simplified example:
 - Global preference:

$$- [CTR(d1,q), CTR(d2,q)] = \left[\frac{4}{100}, \frac{3}{100}\right]$$

- Cohort preference
 - Cohort 1: $[CTR_C(c1, d1, q), CTR_C(c1, d2, q)] = \left[\frac{4}{100}, 0\right]$
 - Cohort 2: $[CTR_C(c2, d1, q), CTR_C(c2, d2, q)] = \left[0, \frac{3}{100}\right]$

Cohort Model

• Estimate individual click preference by cohort preference

$$z(d,q,u,C_j) = p(d,q,C_j) \cdot p(C_j|u) = CTR(d,q,C_j) \cdot w(u,C_j)$$

Experiments

Setup

- Randomly sampled 3% of users
- 2-month search history for cohort profiling: cohort membership, cohort CTR
- 1 week for evaluation:3 days training, 2 days validation, 2 days testing
- 5,352,460 query impressions in testing

Baseline

- Personalized ranker used in production on Bing
- With global CTR, and personal model

Experiments

- Evaluation metric:
 - Mean Reciprocal Rank of first SAT click (MRR)* Δ MRR = MRR(cohort model) MRR(baseline)

- Labels: Implicit, users' satisfied clicks
 - Clicks w/ dwell ≥ 30 secs or last click in session
 - 1 if SAT click, o otherwise

^{*} Δ MAP was also tried. Similar patterns to MRR.

Results

Cohort-enhanced model beats baseline

Group Type	ΔMRR ±SEM	Re-Ranked@1
ODP (Topic interest)	0.0187 ± 0.00143	0.91%
TLD (Top level domain)	0.0229 ± 0.00145	0.96%
Location (State)	0.0113 ± 0.00142	0.90%
ALL (ODP + TLD + Location)	0.0211 ± 0.00146	0.98%

- Positive MRR gain over personalized baseline
 - Average over many queries, with many $\Delta MRR = 0$
 - Gains are highly significant (p < 0.001)
- ALL has lower performance, could be noisier:
 - Re-ranks more often, Combining different signals

Performance on Query Sets

New queries

- Unseen queries in training/validation
- **↑** 2× MRR gain vs. all queries

Queries with high click-entropy

$$ClickEntropy(q) = -\sum_{d} CTR(d,q) \cdot \log(CTR(d,q))$$

↑ 5× MRR gain vs. all queries

Ambiguous queries

- 10k acronym queries, all w/ multiple meanings
- **↑** 10× MRR gain vs. all queries

Cohort Generation: Learned Cohorts

- Thus far: Pre-defined cohorts
 - Manual control of cohort granularity
- Next: Automatically learn cohorts
 - User profile <location, search interests, domain preference>
 - Cluster users into cohorts: K-means
 - Cohort membership:
 - Soft cluster membership

$$w(u,C_j) = p(C_j|u) =$$

• Simplified version of Gaussian $\sum_{i=1}^{K}$ mixture model w/ identity covariance

Distance between user vector and cohort vector

$$\exp\left(-\frac{\alpha(x_u, \mu_j)}{\sigma^2}\right)$$

$$G_{i=1}^K \exp\left(-\frac{d(x_u, \mu_i)^2}{\sigma^2}\right)$$

Finding Best *K*

- Baseline: Predefined cohorts (from earlier)
- Focus on different query sets e.g., those with higher click entropy
- Probed K = 5, 10, 30, 50, 70
- Learned (for one set)
 - Top gain at K=10, sig
- Future work:
 - Need moreexploration ofresults at 5 < K < 30

Learned cohort vs. pre-defined cohort (at diff K)

Summary

- Cohort model enhanced personalized search
 - Enrich models of individual intent using cohorts
 - Automatically learn cohorts from user behavior

- Future work:
 - More experiments, e.g., parameter sweeps
 - More cohorts: Age, gender, domain expertise, political affiliation, etc.
 - More queries: Long-tail queries, task-based and fuzzy matching rather than exact match

Thanks

• Questions?