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ABSTRACT

The Web is an important resource for understanding and
diagnosing medical conditions. Based on exposure to online
content, people may develop undue health concerns, believ-
ing that common and benign symptoms are explained by se-
rious illnesses. In this paper, we investigate potential strate-
gies to mine queries and searcher histories for clues that
could help search engines choose the most appropriate infor-
mation to present in response to exploratory medical queries.
To do this, we performed a longitudinal study of health
search behavior using the logs of a popular Web search en-
gine. We found that query variations which might appear
innocuous (e.g. “bad headache” vs “severe headache”) may
hold valuable information about the searcher which could
be used by search engines to improve performance. Fur-
thermore, we investigated how medically-concerned users re-
spond differently to search engine result pages (SERPs) and
find that their disposition for clicking on concerning pages
is pronounced, potentially leading to a self-reinforcement
of concern. Finally, we studied to which degree variations
in the SERP impact future search and real-world health-
seeking behavior and obtained some surprising results (e.g.,
viewing concerning pages may lead to a short-term reduction
of in-world healthcare utilization).

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—=Search process, Query formulation

Keywords
Health search, medical search, diagnosis, log/behavioral anal-
ysis, cyberchondria

1 INTRODUCTION

Health anxiety is a significant problem in our modern
medical system [2,28]. The belief that one’s common and
benign symptoms are explained by serious conditions may
have several adverse effects such as quality-of-life reduc-
tion, incorrect medical treatment and inefficient allocation
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of medical resources. The Web has been shown to be a
significant factor in fostering such attitudes [32,33]. A re-
cent study found that 35% of U.S. adults had used the Web
to perform diagnosis of medical conditions either for them-
selves or on behalf of another person, and many (>50%)
pursued professional medical attention concerning their on-
line diagnosis [12]. Motivated by the popularity of online
health search, we investigated how search engines might im-
prove their health information offerings. We hypothesize
that searchers are less likely to develop unrealistic beliefs
when they are given unbiased and well-presented informa-
tion about their medical state. Thus, we believe an ideal
search engine should use queries, and available search his-
tories, to extract medically-relevant information about the
individual, and detect and account for health anxieties.

Let us give a (negative) example of a possible medical
search session. A user experiencing anxiety about a headache
might first spend some time searching for information on a
serious condition such as “brain tumor” and then switch to
a symptom query about headache (a type of transition that
prior work shows occurs frequently [8]). The user might
choose the query wording “severe headache explanations”
because of the subjective concern they experience at query
time. The engine, registering the words “severe” and “expla-
nations” as well as the phrase “brain tumor” present in the
user’s search history might compile a search engine result
page (SERP) that is biased towards serious conditions. The
user, viewing the SERP through the lens of their current
health anxiety, may be attracted towards serious conditions
in captions [36] and hence select a concerning page, height-
ening their anxiety further.

In this paper, we highlight a range of challenges and op-
portunities in working towards improving exploratory health
search and thus hope to outline an agenda that frames this
problem. Achieving this requires an understanding of both
user and search engine behavior, and their interactions. Users
play a role in the search process in two ways - (i) through
their choice of query formulation, and (ii) through their sub-
jective consumption of information on the SERP and in the
resources that they select. This naturally led us to formulate
three research questions:

Q1 How does a user’s subjective medical concern shape
his or her choice of wording for medical queries?

Q2 How does the search engine interpret the subjective
medical concern and objective medical information ex-
pressed in the query as well as other measurable char-
acteristics (such as medical search history) when com-
piling the SERP?



Q3 How do users respond to the SERP, both in terms of
the consumption of the information on the SERP as
well as changes in future behavior caused by viewing
the SERP and pages clicked on?

Q1 and Q3 relate to user behavior whereas Q2 relates to
search engine behavior. Results pertaining to these ques-
tions are found in Sections 4, 5, and 6 respectively. To
answer them, we studied the search logs of 190 thousand
consenting users of the Microsoft Bing commercial search
engine. Search logs are a valuable resource for studying in-
formation seeking in a naturalistic setting, and such data has
been used by several studies to explore how searchers obtain
medical information [8,32]. The pipeline used to process this
data and the features extracted for analysis are further de-
scribed in Section 3.

The main contributions from our analysis are:

e Revealing how certain users have specific preferences
for certain query formulations (e.g. “i have muscle
pain” vs. “muscle pain”) which also has a significant ef-
fect on search results, and potentially health outcomes.

e Finding evidence that users might not be swayed by
concerning content appearing on SERPs as we might
expect based on prior studies.

e Quantifying the extent to which users with prior medi-
cal concern receive more concerning SERPs in response
to health queries and choose the most concerning pages
to click on, potentially leading to a vicious cycle of con-
cern reinforcement.

e Determining to how users directly and indirectly influ-
ence the level of concern expressed in the SERP they
receive, both through query choice and other factors
(e.g., personalization).

In future work, we hope to use the insights gained in this
study to guide the development of personalization and query
analytics systems designed specifically for health search. We
discuss our findings and their implications in Section 7 and
conclude in Section 8.

2 RELATED WORK

Related research in this area falls into three main cate-
gories: health search behavior; the quality of online health
content; and health anxiety and the impact of reviewing
health content on the Web.

There continues to be interest in search and retrieval stud-
ies on expert and consumer populations in a variety of do-
mains, typically conducted as laboratory studies of search
behavior [7,16]. Benigeri and Pluye [5] showed that ex-
posing novices to complex medical terminology puts them
at risk of harm from self-diagnosis and self-treatment. It is
such consumer searching (rather than expert searching) that
we focus on in the remainder of this section.

Search engine log data can complement laboratory stud-
ies, allowing search behavior to be analyzed at scale in a nat-
uralistic setting and mined for a variety of purposes. Logs
have been used to study how people search [17], predict fu-
ture search and browsing activity [21], model future inter-
ests [9], improve search engine quality [18], and learn about
the world [26]. Focusing on how people perform exploratory
health searching, Cartright et al. [8] studied differences in
search behaviors associated with diagnosis versus more gen-
eral health-related information seeking. Ayers and Kronen-
feld [3] explored changes in health behavior associated with
Web usage, and found a positive correlation between it and

the likelihood that a user will change their health behavior
based on the content viewed.

The reliability of the information in search results is im-
portant in our study; unreliable information can drive anx-
iety. The quality of online healthcare information has been
subject to recent scrutiny. Lewis [23] discussed the trend to-
ward accessing information about health matters online and
showed that young people are often skeptical consumers of
Web-based health content. Eysenbach and Kohler [11] stud-
ied users engaged in assigned Web search tasks. They found
that the credibility of Web sites was important in the focus
group setting, but that in practice, participants largely ig-
nored the information source. Sillence and colleagues [27]
studied the influence of design and content on the trust and
mistrust of health sites. They found that aspects of design
engendered mistrust, whereas the credibility of information
and personalization of content engendered trust.

The medical community has studied the effects of health
anxiety, including hypochondriasis [2], but not in Web search.
Health anxiety is often maladaptive (i.e., out of proportion
with the degree of medical risk) and amplified by a lack of
attention to the source of their medical information [20,28].
Such anxiety usually persists even after an evaluation by a
physician and reassurance that concerns lack medical basis.
A recent study showed that those whom self-identified as
hypochondriacs searched more often for health information
than average Web searchers [33]. By estimating the level of
health concern via long-term modeling of online behavior,
search engines can better account for the effect that results
may have and help mitigate health concerns. Our research
makes progress in this important area.

Searchers may feel too overwhelmed by the information
online to make an informed decision about their care [14].
Performing self-diagnosis using search engines may expose
users to potentially alarming content that can unduly raise
their levels of health concern. White and Horvitz [32] em-
ployed a log-based methodology to study escalations in med-
ical concerns, a behavior they termed cyberchondria. Their
work highlighted the potential influence of several biases of
judgment demonstrated by people and search engines them-
selves, including base-rate neglect and availability. In a fol-
low up study [34], the same authors showed a link between
the nature and structure of Web page content and the like-
lihood that users’ concerns would escalate. They built a
classifier to predict escalations associated with the review of
content on Web pages (and we obtained that classifier for
the research described in this paper). Others have also ex-
amined the effect of health search on user’s affective state,
showing that the frequency and placement of serious illnesses
in captions for symptom searches increases the likelihood
of negative emotional outcomes [22]. Other research has
shown that health-related Web usage has been linked with
increased depression [6].

Moving beyond the psychological impact of health search,
researchers have also explored the connection between health
concerns and healthcare utilization. In one study [35], the
authors estimated that users sought medical attention by
identifying queries containing healthcare utilization inten-
tions (HUIs) (e.g., [physicians in san jose 95113]). Eastin
and Guinsler [10] showed that health anxiety moderated the
relationship between health seeking and healthcare utiliza-
tion. Baker and colleagues [4] examined the prevalence of
Web use for healthcare, and found that the influence of the
Web on the utilization of healthcare is uncertain. The role of
the Web in informing decisions about professional treatment



headache, headaches, severe headache what do I do, which remedy for headache, headache top of head with back pain

headache do I have a tumor, headache rack, my job gives me a headache, headache national parks of california

a, low, be, he, sick, she, helps, standing, black, speech, male, between, acute, shaking, sensitive, bending, an, testing

Table 1: Examples of landmark queries (top), of non-landmark queries (middle; secondary topics and medical conditions are
italic) and of admissible words we used to find potential landmark queries (bottom)

needs to be better understood. One of our contributions in
this paper is to demonstrate the potential effect of health-
related result pages on future healthcare utilization.

Our research extends previous work in a number of ways.
By focusing on the first query pertaining to a particular
symptom observed in a user history, we show that small
differences in query formulation can reflect significant dif-
ferences amongst health searchers and their health-related
search outcomes. To date, no research has demonstrated the
impact and insight afforded from analyzing such landmark
queries and the behavior around them. To our knowledge,
we are also the first to use the search logs to devise statistical
experiments which allow us to quantify effects such as user
response to medical search results amongst real user popu-
lations and provide evidence for causal relationships where
possible. We believe that such an approach is necessary to
formulate definitive implications for search engine design as
well as measuring search engine performance.

3 STUDY

We describe various aspects of the study that we per-
formed, including the data, the features extracted, and the
statistical methods used for analysis.

3.1 Log Data

To perform our study we used the anonymized search logs
of the Microsoft Bing Web search engine. Users of this en-
gine give consent to having information about their queries
stored via the terms of use of the engine. During this study,
we focused on medical queries related to headache, as it
is among the most common health concerns [30]. We use
the phrase headache query to refer to queries that contain
the substring “headache” and occurred during the six month
period from September 2012 to February 2013. Amongst
those, we call a landmark query a query that shows an intent
to explore the symptom “headache”; that does not already
contain a possible explanation for headache (e.g., migraine,
tumor) and that is not otherwise off-topic. We found these
landmark queries by manually assessing frequent headache
queries and creating a list of 682 “admissible” terms that
we believed could occur in landmark queries. The assess-
ment was conducted by the authors. We then compiled all
queries that exclusively contain terms from that list into a
dataset. For simplicity, we did not include queries contain-
ing misspelled occurrences of admissible terms. Examples
of landmark queries, non-landmark queries, and admissible
words can be found in Table 1. From manual inspection, we
concluded with confidence that the dataset captured over
50% of all landmark queries present in the logs and that
over 95% of captured queries are proper landmark queries,
the rest being headache queries which contain a significant
secondary topic. We then excluded all but the first landmark
query instance for each user, ensuring that each user only
appears once in the dataset. Overall, our dataset contains
over 50,000 unique queries and over 190,000 query instances,
all coming from different users. We used all available data
from searches conducted on Bing in the US in the specified
time period.

We focus on headache since it a common medical symp-
tom (e.g., over 95% of adults report experiencing headaches

Name Description

Number of medical queries containing the
pasttopserious most frequent serious condition amongst
all serious conditions present

Number of medical queries containing the
pasttopbenign  most frequent benign condition amongst
all benign conditions present

Number of distinct serious conditions in

pastdiffserious . .
medical queries

pastdiffbenign Nun}ber of d'istinct benign conditions in
medical queries

pastmedical Number of medical queries
Number of medical queries containing

pastheadache  “headache” or a condition that is an ex-
planation for headache

pasthui Number of HUI queries

pasthuiclicked Number of HUI queries where at least one

page on the SERP was clicked

Table 2: User search behavior features

in their lifetime [25]) and there are a variety of serious and
benign explanations (from caffeine withdrawal to cerebral
aneurism), facilitating a rich analysis of content, behavior,
and concern. While we believe that headache searching is
sufficiently rich and frequent to warrant its own study, in-
vestigating queries related to symptoms other than headache
could solidify our findings. A large-scale analysis similar to
that reported here, but focused on multiple symptoms, is an
interesting and important area for future work.

3.2 Features

For each landmark query in our dataset, we generated
features. To frame our three research questions, we modeled
the search process around a landmark query as five separate
stages: (i) the user’s search behavior prior to the landmark
query, (ii) the user’s choice of wording of the landmark query,
(iii) the SERP returned to the user by the search engine,
(iv) the user’s decision about which pages to click on (if
any), and (v) the user’s search behavior after the landmark
query. Our research questions inquire about the relationship
of these five stages. Hence, the features we extracted come
in five groups.

BeforeSearching. This group of features describes the level
of medical searching before the landmark query (stage (i)).
For each query in the user’s search log, we first extracted
whether that query was of a medical nature. For this, we
used a proprietary classifier. From manual inspection, we
concluded with confidence that its Type I and II errors are
< 0.1. Queries so classified as medical will be called med-
ical queries. Secondly, we extracted phrases present in the
query that describe medical conditions, such as “common
cold” or “cerebral aneurism”. The list of phrases we consid-
ered was based on the International Classification of Diseases
10th Edition (ICD-10) published by the World Health Orga-
nization as well as the U.S. National Library of Medicine’s
PubMed service and other Web-based medical resources. We
also used manually curated synonyms from online dictionar-
ies and standard grammatical inflections to increase cover-
age. For more information see the approach used by [32].



Name Description (query ..) Example Frequency
audience . is about specific population “headache in adults” 3.6%
filler . contains a filler such as ’a’ or ’and’ “headache and cough” 3.6%
goal . contains a specific search goal “definition of headache” 26.3%
goal:condition . indicates the goal of diagnosis “reasons for headache” 8.2%
goal:symptom . indicates the goal of related symptoms “headache symptoms” 2.1%
goal:treatment . indicates the goal of treatment “headache cure” 14.7%
goal:medication . indicates the goal of treatment through medication “headache pills” 2.4%
goal:alternative . indicates the goal of alternative treatment “natural headache remedy” 5.4%
symptomhypothesis .. states another symptom as cause “headache caused by back pain” 1.7%
eventhypothesis . relates the headache to a life event “headache after hitting head” 3.3%
duration .. specifies a duration for the headache “chronic headache” 10.9%
intensity . specifies that the headache is strong “severe headache” 5.0%
location . specifies the location of the headache “headache left side of head” 17.3%
pronoun .. contains a pronoun “i have headache” 5.8%
kindofheadache . specifies the kind of pain “stabbing headache” 2.5%
othersymptom . specifies an additional symptom “headache reflux” 27.9%
triggered . indicates a headache trigger “headache when bending over” 1.4%
timeofday . indicates a daily pattern “headache in afternoon” 3.2%
openquestion . is phrased as an open question “what to do about headache” 11.1%

Table 3: High-level QueryFormulation features. Note that queries may have multiple features, such as “severe headache on
top of head and cough”, so the percentages in the far-right column do not sum to 100%.

The list was also separated into benign and serious medical
conditions and we determined which conditions are possible
explanations for headache. Thirdly, we extracted phrases
that indicate the query is linked to an intention of real-
world healthcare utilization (HUT), such as “emergency care”
or “hepatologist”. We call those queries HUI queries [35].
Finally, the individual-query-level features were aggregated
over a time window just before the landmark query to form
8 distinct features, which are shown in Table 2. In our ex-
periments, we considered five different aggregation windows:
1 hour, 1 day, 1 week, 30 days and 90 days. All experiments
involving BeforeSearching features were replicated for each
aggregation window.

We believe that intense medical searching may be a sign
of health concerns or anxieties. White and Horvitz [33] ex-
tensively demonstrated that users believing their symptoms
may be explained by a serious condition conduct longer med-
ical search sessions and do so more frequently. Of course,
there are many potential reasons for increased medical search
such as different web search habits, random noise or even a
recent visit to a physician [35]. Overall, we believe that it
makes sense to view BeforeSearching in light of possible med-
ical concern experienced. However, even if there are signifi-
cant other factors at play, we believe that the phenomenon
of health search intensity remains interesting.

QueryFormulation. The choice of wording for the query
(stage (ii)) was modeled, firstly, using 19 high-level features.
We arrived at these by manually inspecting admissible words
and landmark queries (such as in Table 1) and noting the
most important high-level ideas expressed through them.
We believe that those 19 features capture a significant por-
tion of the semantic variation within queries. The features
are shown in Table 3, along with an indication of their fre-
quency in our data. They offer a useful characterization of
the broad range of different types of search intent associated
with headache-related queries. Four of these features (oth-
ersymptom, duration, intensity and location) were further
divided by which key phrase was used to express this fea-
ture, yielding an additional 117 low-level features (examples
are shown in the graph annotation of Figure 1.2-1.5). All
feature extraction functions are based on substring matches
joined by logical operators. The extraction functions were

written and tuned by the authors. From manual inspection,
we concluded with confidence that the Type I and II errors
of the extractors of all these features was low. All features
in this category are binary.

SERPConcern. We scored the level of medical concern
expressed in each of the top 8 pages on the SERP (stage
(iii)) using a logistic regression classifier designed to predict
searching for serious conditions and shown in [34] to have
significant predictive power. Note that during the time pe-
riod analyzed in this study, the search engine only returned
eight results on a large number of SERPs so we disregarded
possible further results. It has been shown that users rarely
click below the eighth rank position, including for health
queries [36]. The classifier is based on page features from
the URL and HTML content similar to those shown in Ta-
ble 2. It also includes features that attempt to measure
page quality (e.g., expressed through the Health on the Net
Foundation certificate [1]) to estimate the impact of this
on the user. The classifier is then trained to discriminate
between pages that lead to serious condition searches (con-
cerning) and pages that lead to benign condition searches
(non-concerning). The concern score of an arbitrary page is
then the inner product between its feature vector and the
learned weight vector. Finally, we take the weighted sum
of the eight scores for the individual pages on any SERP
to produce a single feature value for the full SERP. Note
that even though we consider pages leading to benign con-
dition searches less concerning than those leading to serious
condition searches, throughout this study, we still consider
benign condition searching as an indicator for medical con-
cern experienced by the user, albeit less strong than serious
condition searching.

ClickFeatures. To better understand users’ examination
behavior (stage (iv)), we record whether the user clicked a
page on the SERP. If the user did, we also recorded the
concern score of the page clicked (as described in the last
paragraph) as well as the rank position of the clicked page
on the SERP. We call these three features hasclicked, click-
concern and clickposition respectively. (Users who did not
click are excluded from analysis involving features clickcon-
cern and clickposition.)
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Figure 1: Association between query formulation and search behavior features. From left to right: Blue: pastmedical

(aggregation window: 90 days); Green: pastmedical (window:

1 hour); Black: futuremedical (window: 1 hour); Red:

futuremedical (window: 90 days). All bars show the relative change of medical search intensity of users whose landmark query
has a certain formulation relative to the global mean. Error bars are 95% confidence intervals.

AfterSearching. The same 8 features as BeforeSearching,
but aggregated over a window just after the landmark query
(stage (v)). In the name, we replace “past” with “future” (e.g.
one feature is called futuremedical).

3.3 Statistical Methodology

Let X be a dataset where each entry corresponds to a user
/ landmark query (either our full dataset of 190,000 entries
or a subset of it.). Write z1,..,xn for the data points and
zl, .., 22 for the components / feature values of data point
Zy. Throughout our analysis, we wish to measure whether
there is a significant association between two feature values
i and j, say between pastmedical and SERPConcern. By
this we mean that the p-value of a suitable independence
test on the two variables is low. To measure this simply and
robustly, we will choose a threshold t* and split the data set
into two subpopulations X< and X such that for all =,
n € {1,.., N}, we have z, € Xo <= z{ < t'. We also call
the two subpopulations the lower bucket and upper bucket
respectively. Then, we either perform a two-sample t-test
on the population means of X< and X (Figure 3.3) or we
consider a 95%-confidence interval around the mean of the
smaller bucket if it is significantly smaller than the other
bucket (Figures 1 and 2). (In practice, all our subpopula-
tions are large enough to warrant the use of gaussian con-
fidence intervals / tests.) A statistical association between
features 7 and j is a symmetric relation, we may choose to
split on either feature and compare the means of the other,
based on convenience of presentation.

Several times, we will encounter a more challenging case
where we want to answer the question whether two feature
values ¢ and j are associated while controlling for a third
feature value k. We do this by first dividing the dataset into
many subpopulations according to the exact value of feature

k k
Ek to obtain X°t, .., X"~N*, where v, ..,vlk\,k are the values
z¥ can take. Then, we split each of these subpopulations

further according to thresholds on feature i as before. Hence,

. ok ok ok ok s
we obtain X ', .., X V" and X.', .., X,V". Because it is
nontrivial to jointly compare this potentially large number
of buckets, we adopt the following two-step procedure.

First, we take the union of all lower and upper buckets
respectively and perform a two-sample t-test as before. For
this to control for feature k, each lower bucket must be of
the same size as its corresponding upper bucket. If, for some

k
X"n there is no threshold that achieves this, we randomly re-
move data points whose feature value is equal to the median

across XU until this is possible.  While this significantly
reduces the number of data points entering the analysis, we
do not believe this threatens validity or generalizability.

In the second step, we first individually compare each
lower bucket to its corresponding upper bucket. Because
many of these buckets are small (e.g. of size 1), we use
the Mann-Whitney U statistic to obtain a p-value for each
pair of buckets. Then, we aggregate all of those p-values
by Stouffer’s Z-score method where each p-value is weighted
according to the size of its respective buckets.

Finally, we wish to combine p-values obtained in both
steps to either accept or reject the null-hypothesis at a given
significance level. This is achieved by taking the minimum of
both values and multiplying by 2. The cumulative distribu-
tion function of that combined quantity is below that of the
uniform distribution under the null hypothesis and is thus at
least as conservative in rejecting the null as each individual
p-value, while gaining a lot of the statistical power of both
tests. We quote this value in Figure 3.1-3.2 and 3.4-3.7.
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Figure 2: Association between query formulation features and SERPConcern. All bars show the difference in SERPConcern
of users whose landmark query has a certain formulation relative to the global mean, measured in standard deviations of the

global distribution.

4 QUERY FORMULATION

We began our analysis by investigating how users with dif-
ferent levels of BeforeSearching phrase their queries. Figure
1.1 shows the mean value of pastmedical for each high-level
QueryFormulation feature relative to the population mean,
both aggregated over 1 hour and 90 days. Error bars indicate
95% confidence intervals. We chose the feature pastmedical
to represent BeforeSearching because it is the least sparse
and hence has the smallest confidence interval.

To our surprise, we found that most QueryFormulation
features are highly discriminative, i.e. users choosing queries
with certain features have conducted significantly more med-
ical searching than users choosing queries that have different
features. In fact, every one of these 19 features is associated
with a significant change in prior medical search activity dur-
ing the hour before the landmark query. This effect could be
explained by users near the beginning of their medical search
process choosing different query patterns compared to users
near the end of their medical search process. However, most
QueryFormulation features are still discriminative when ag-
gregated over a 90-day window (blue bars), and we found
that the majority of medical searches in that window do
not occur immediately prior to the landmark query. Fig-
ure 1.1 also shows the feature futuremedical. We find that
most QueryFormulation features have the same association
with past and future search activity, even over a 90-day win-
dow. This is evidence that these QueryFormulation features
characterize users and that heavy medical searchers prefer
certain formulations compared to other users in a consistent
fashion over the long term.

Over the one-hour window, users entering an additional
symptom in their landmark query show the highest level of
search activity. This might be because experiencing a larger
number of symptoms causes the user to want to find in-
formation about each individual symptom, thus increasing
the search need. Surprisingly, intensity is not one of the
strongest predictors of increased searching even though it
appears to be the most intuitive indicator of increased con-
cern. Also, the features openquestion and pronoun indicate
less prior searching. Hence, the presence of sentence-like
structures in queries is potentially associated with lower user
health concern. It is difficult to intuitively interpret most of
the QueryFormulation features. Figures 1.2-1.5 show low-
level QueryFormulation features relating to high-level fea-
tures duration, intensity and othersymptom. Unfortunately,
the sparseness of pastmedical leads to large margins of er-

ror, the exact size of which are also difficult to determine.

Nonetheless, certain features which are more common and
thus have lower margins or error such as “constant” or “ter-
rible” are as discriminative as high-level features, suggest-
ing they are useful for making inferences about the user.
For example, our analysis suggests the very counterintuitive
conclusion that users searching for “headache everyday” ex-
perience a different level of concern than users searching for
“daily headache” (see difference in feature pastmedical be-
tween daily and everyday (blue / green bars) in Figure 1.2).
Similarly, different symptoms are associated with their own
level of past search activity. We chose to display 10 relatively
concerning symptoms (Figure 1.4) and 10 relatively benign
symptoms (Figure 1.5). The choice was made using the find-
ings of a separate crowdsourcing study that we omit from
the paper due to space reasons. In that study, many partic-
ipants were asked to estimate the level of medical concern
associated with a set of symptoms. Even though we do not
present this study, the difference between the two groups of
symptoms is intuitively clear. Surprisingly, we do not see a
clear trend that users under Figure 1.4 have searched more,
which weakens the hypothesis that objective medical state
is linked to search activity.

In summary, we find that both high-level QueryFormu-
lation features as well as individual word choices reveal in-
formation about the searcher, which is not necessarily ex-
pected. While some QueryFormulation features are inter-
pretable, more work is necessary to understand their precise
meaning. Also, more data is needed to better study their
effect on rarer search events such as HUI queries.

S EFFECT ON SERP

When personalization is employed by search engines a “fil-
ter bubble” can be created whereby only supporting informa-
tion is retrieved [24]. As highlighted in the earlier example,
this can be problematic in the case of health searching. In
this section, we investigate in what ways the user influences
the content of the SERP and the medical concern expressed
therein. This question can be separated into two aspects -
(i) the variations among SERPs for a fixed query and (ii)
the variations between SERPs for different queries.

5.1 Same Query, Different SERPs

To determine the impact of the user on SERPs within each
query, we first investigated how diverse those SERPs were to
begin with. We analyzed the composition of SERPs of the
29 most frequent queries from our data set. (Each of these
occurred at least 500 times.) We found that on average,
92% of SERPs contain the same top result. For example,



the page “www.thefreedictionary.com/headache” appears as
the top result for the query “headache definition” for almost
every user. The three most common top results together
covered over 99% of SERPs. If we consider the Top 8 results
on the SERP, we find that eight specific pages are enough to
account for 61% of all results. Hence, most SERPs returned
for a given query are highly similar. We do see considerably
more diversity when we consider the ordering of pages on
the SERP. Hence, we conclude that factors such as time of
day, user location and user personalization may shuffle the
ordering of pages, especially in the lower half of the SERP,
but do not have the power to promote completely different
pages to the top the majority of the time (one notable ex-
ception to this is personal navigation [29], which agressively
promotes pages that an individual visits multiple times, but
the coverage of this approach is small). Since user outcomes
are driven chiefly by top results, we thus expect the impact
of non-query factors on user outcomes to be limited.

Nonetheless, we investigated the impact of prior search
activity on the SERP by measuring the association between
BeforeSearching features and SERPConcern while control-
ling for query choice. We measure significance as described
in section 3.3. We split on SERPConcern and compared
the empirical means of the BeforeSearching features. Figure
3.1 shows the percentage difference between the mean of the
union of the upper buckets and the mean of the union of the
lower buckets, aggregated over a 24-hour window before the
landmark query (the largest window where significance was
obtained). The p-value is shown above the bars. We only
show BeforeSearching features that were significant.

We see that users who received concerning SERPs relative
to other users entering the same query searched for 3% more
serious conditions and 2% more for the most frequent serious
conditions in the 24 hours before the landmark query than
than those receiving less concerning SERPs. So, there is an
impact of prior searching on the SERP, albeit, as expected,
a small one. The difference between the buckets becomes
much larger when we consider only users who receive the
10% most and least concerning SERPs within each query.
Figure 3.2 shows that users receiving especially concerning
SERPs search for 12% more serious conditions, search 18%
more for their most frequent serious condition and conduct
10% more medical searches overall in the 24 hours before
the landmark query. If it was the case that prior searching
indicates heightened concern, then search engines present
significantly more concerning search results to already con-
cerned users, which may be undesirable.

5.2 Different Queries, Different SERPs

We now turn our attention to how SERPs vary across
queries. As a starting point, we tested the association be-
tween BeforeSearching and SERPConcern (without control-
ling for query choice). Results are shown in Figure 3.3. Be-
foreSearching values shown were aggregated over a one hour
window. This window size yielded the most significant re-
sults, but significance was preserved over all window sizes up
to 90 days. Interestingly, users receiving concerning SERPs
are now significantly less likely to engage in medical search-
ing before the landmark query. They search for 14% less
benign conditions and 17% less for their most frequent be-
nign condition. Since these values (and p-values) are much
larger than in Figure 3.1, we conclude that the choice of
query is the cause for the majority of this effect. At face
value, this effect may be either desirable or counterproduc-
tive depending on whether BeforeSearching is an indicator
of subjective concern or objective health state.

In Figure 2.1, we break down SERPConcern by high-level
QueryFormulation features. FError bars are much smaller
than those for pastmedical because the SERP scoring func-
tion is not sparse. We see that including an additional symp-
tom in the landmark query (feature: othersymptom) signifi-
cantly lowers the level of concern in the SERP. This might
be because most of these symptoms are not indicative of
a serious brain condition (e.g. cough, stomach pain, hot
flashes etc.), thus providing evidence to the search engine
that such a condition might not be the underlying reason
of the user’s health state. We note that this association is
the opposite of the association between othersymptom and
pastmedical. We hypothesize that this effect might be re-
sponsible for the negative association in Figure 3.3. Indeed,
if we exclude searches that include additional symptoms, all
negative associations in Figure 3.3 disappear and we obtain
significant positive associations between SERPConcern and
prior serious condition searching.

In contrast, searching specifically for conditions that ex-
plain headache (feature: goal:condition) yields the most con-
cerning pages. This is logical given what makes a page most
concerning is content about (serious) conditions. Again, it
is difficult to interpret the meaning of most of the Query-
Formulation features intuitively, but each feature is highly
discriminative with respect to SERPConcern and therefore
warrants further study.

Figure 2.2-2.5 breaks down SERPConcern by low-level
QueryFormulation feature. It appears that search engines do
a decent job at ranking different symptoms based on their
level of medical severity. Overall, SERPConcern is much
higher amongst relatively concerning symptoms versus rela-
tively benign symptoms, showing that the search engine does
respond to this factor. Furthermore, we see a form of con-
sistency in the search engine in that queries with additional
symptoms consistently receive below average concern scores.
We compared this against different key phrases describing
the feature location (see Table 3) such as “above eye”, “tem-
poral” and “base of skull”. If we model the SERPConcern
value associated with each additional symptom as well as
each location descriptor as normally distributed, then the
difference in mean between the two normals is highly signif-
icant (two-sample t-test: p < 1076).

Nonetheless, we still see that there is a considerable amount
of unexplained variation in SERPConcern values. For exam-
ple, a user entering “bad headache” will receive a less con-
cerning SERP than a user entering “terrible headache”. We
hypothesize that it is unlikely that this difference is always
due to hidden semantics, but may often be attributable to
random noise. This suggests that there is still significant
scope for search engines to better reflect the medical con-
tent of queries and become more consistent. One caveat is
that some of this noise might be caused by our classifier that
is used to assign SERPConcern values to the search results.
The presence of this noise implies that different user popula-
tions which have a preference for certain query formulations
may be inadvertently led down completely different page
trails to different health outcomes.

5.3 Summary

In summary, we find that search engines do seem to show
the ability to return less concerning SERPs for benign symp-
toms in queries as opposed to more serious symptoms. How-
ever, there is significant work to be done to achieve a state
where search results reflect the medical information given in
the query while being robust to irrelevant nuances. Also, we
find that past user searching does have a direct impact in



Fig 3.1: splitting on SERPConcern
controlling for query, window: 1 day

effective sample size: 143,118 effective sample size: 25,908

Fig 3.2: splitting on SERPConcern (top/bottom 10%)
controlling for query, window: 1 day

Fig 3.3: splitting on SERPConcern
window: 1 hour
effective sample size: 193,524

Fig 3.4: splitting on clickconcern
controlling for query and SERP, window: 30 days
effective sample size: 22,896
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Figure 3: Association between user search features
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and features related to the landmark query. Analysis was conducted as

described in section 3.3. In each case, we show the ratio between the search behavior feature value across all upper buckets
and across all lower buckets. Hence, positive values imply a positive association between features and vice versa. The p-value
is noted next to the bar. We do not show results that were not significant, except in Figure 3.7, were only futurehuiclicked
was significant. The effective sample size refers to the total number of individuals / datapoints included in the analysis. This
varies for three reasons. (1) Some features are unavailable for some users. For example, in Figure 3.6, we cannot include users
who did not click on the SERP. (2) In some Figures, we only include a specific subset of users. For example, in Figure 3.2, we
only include users receiving the 10% most / least concerning SERPs for each query. (3) We have to subsample for statistical

reasons (see section 3.3).

making SERPs more concerning, which might not be desir-
able. Further analysis might discover the exact cause.

6 RESPONSE OF USER TO SERP

In this section, we investigate how users respond to the
SERP returned in response to the landmark query. We
phrase this as two sub-problems: (i) How do users with dif-
ferent levels of prior searching interpret the SERP by making
click choices? And (ii) what impact does the SERP have in
altering the behavior of the user?

6.1 Impact on Click Behavior

First, we looked at the impact of BeforeSearching on click
decisions. For this, we measured the association between Be-
foreSearching and ClickFeatures. However, to capture the
impact of user predisposition, we can only compare users
against each other who not only entered the same query,
but also received identical SERPs, to control for those two
confounders. Unfortunately, this means we cannot include
users in our study who received a SERP no-one else received,
which significantly reduces the size of our effective dataset to
between 20,000 and 50,000 and users. We split each subpop-
ulation based on high / low values of hasclicked, clickconcern
and clickposition and compared the means of BeforeSearch-
ing features. Results are shown in Figures 3.4 (window: 30
days), 3.5 (window: 30 days) and 3.6 (window: 24 hours)
respectively.

We found that users who select more concerning pages on
any given SERP are significantly more likely to have con-
ducted medical searches in the 30 days before the landmark
query. They have searched for 19% more serious conditions
over this time period. This is quite large given the size of
the aggregation window and obfuscating factors such as the
limited amount of information available about a page in a
SERP caption, the ad hoc nature of a click decision in gen-
eral and the overall preference for pages ranked near the top.
This suggests that people are selectively seeking information

and concerned users reinforce their opinion by focusing on
concerning content on the SERP. Selective exposure to infor-
mation has been studied in detail in the psychology commu-
nity [13] and recently in the retrieval community (e.g. [32]).
The fact that the significance of these results is highest for a
large aggregation window illustrates a user’s page preference
is formed over the medium term, suggesting it is an attitude
rather than a momentary state. Furthermore, this result
points to past medical search activity as a good proxy for
level of health concern, making our previous analyses more
meaningful.

We found that users with more prior health searching are
more likely to click lower positions on the SERP and are
less likely to click overall. This might be because users who
have searched about similar topics before are likely to look
for specific kinds of information and are thus more likely
to reject pages as unsuitable, leading them further down
the SERP and ultimately to abandon more of their queries.
Indeed, connections between topic familiarity and search be-
havior have been noted in previous work [19]. Interestingly,
huiclicked breaks that trend and is positively associated with
clicking on the SERP. This might be because huiclicked is
by definition associated with a user’s general disposition to
click on a SERP, which in turn affects the probability of the
user clicking in response to the landmark query.

6.2 Impact on Future Behavior

Now we turn to measuring the impact that the SERP has
on the state of the user as measured by AfterSearching. Pre-
vious research (e.g., survey responses in [12,32]) showed that
online content can have a direct impact on people’s health-
care utilization decisions. It also has been shown that the
content of pages viewed can be used to predict future seri-
ous condition searches [34]. We believe that finding evidence
in logs that different SERPs cause users to respond differ-
ently would strengthen the motivation for improving search
engine performance during health searches.
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Before proceeding, we must point out that this task is
quite challenging. We have already shown that users have a
myriad of significant predispositions which shape the SERP.
Hence, it is impossible to tell whether any change in user
behavior after the landmark query was really caused by the
SERP or is the result of a predisposition.

One way to mitigate this is, again, to control for query
choice. Unfortunately, the group of users receiving concern-
ing SERPs within each query is very different from the group
of users receiving concerning SERPs overall, as within-query
variation of SERPConcern is much smaller than between-
query variation (see Section 5). Hence, the true impact of
the SERP on users is likely much larger than is measurable
in this experiment.

Splitting on SERPConcern and comparing the means of
AfterSearching features yielded no significant differences over
any aggregation window. However, looking at the top 10%
vs. bottom 10% of SERPs within each query yielded surpris-
ing results. They are shown in Figure 3.7 (window: 1 hour).
Users receiving especially concerning SERPs perform 20%
less HUI queries in the hour following the landmark query
when compared to their peers who entered the same query
but received an especially unconcerning SERP. Additionally,
these users had a larger empirical probability of expressing
HUT in the preceding hour (non-significant), amplifying the
drop. The ratio of HUI queries between users receiving con-
cerning vs. non-concerning SERPs changes from +20% to
-20% from past to future. To solidify this result, we reran
our experiment under exclusion of users who had performed
any medical searching over the last 1 hour, 24 hours, etc.
We found that the negative association of futurehui and fu-
turehuiclicked with SERPConcern remained significant even
when excluding users who had performed no medical search-
ing in the preceding 30 days. (Note that the more users we
exclude, the less data we have and the more difficult it is to
achieve significance.) This is a surprising result that war-
rants further investigation.

Even though there is no causal argument to be made,
we were still interested in the outright association of SER-
PConcern and AfterSearching. We made the interesting
observation that the association of topserious and diffseri-
ous actually decreased from past to future. For example,
users receiving concerning SERPs issued 2% more searches
for their most frequent serious condition during the hour
before the landmark query, but 1% less afterwards (both
non-significant). On the contrary, users receiving concern-
ing SERPs searched 17% less for their most frequent benign
conditions in the hour before the landmark query and only
8% less in the hour after. These results are difficult to in-
terpret. However, they do provide some evidence that the
impact of the SERP on user concern might be more subtle
than expected.

6.3 Summary

In summary, we found that concerned users are signifi-
cantly more likely to click concerning pages, which may be
a serious problem. Additionally, we found only weak ev-
idence that concerning SERPs cause an increase in user’s
health concerns. To the contrary, users receiving concerning
SERPs may be less likely to pursue HUI in the short term.
Both of these effects need to be investigated further.

7 DISCUSSION AND IMPLICATIONS

In this section, we summarize our findings and discuss im-
plications, limitations and opportunities for future research.
Our main findings are as follows:

e Innocuous details in query formulation can hold char-
acterizing information about the search engine user.

e While the search engine does respond to general trends
in query formulation sensibly, there is a lot of variation
in SERPs for different but similar word choices.

e While users with a history of medical searching are sig-
nificantly more likely to pick out especially concerning
content, the search engine also serves those users more
concerning SERPs to begin with.

e There was only weak evidence for the effect of intensifi-
cation of health concerns through concerning SERPs;
but some evidence that concerning SERPs might re-
duce HUI queries and hence real-world health seeking
in the short term.

We believe there is significant potential in refining our un-
derstanding of the meaning of query formulation for inferring
users’ health state and perception. In this paper, we have
shown how landmark queries might be used to better infer
levels of health concern. A lot more can be done. We have
not yet considered formulation nuances of queries other than
the landmark query, which might hold much richer informa-
tion. Word choices might reveal the age of the user [31],
which in turn would have implications for the medical mean-
ing of symptoms. Word choices might indicate the level of
domain expertise [15] of searchers, which would have impli-
cations for the accuracy of medical information present in
queries. We may also combine query analysis with other
information such as user location and temporal signals.

Our ultimate goal is to improve search engine results in
response to medical queries through query analysis and user
personalization, possibly by promoting more medically trusted
pages that discuss a wide variety of possible causes objec-
tively if we suspect health anxiety in the searcher. Our find-
ing that users who conduct more medical searching have a
preference for concerning content, which might indicate a
cycle of self-reinforcing concern, suggests a benefit of ad-
justing to anxiety. Our paper also highlights the need for
a rigorous quantification of the extent to which concern in
SERPs influences users’ levels of health concern. To achieve
our goal, we would also need to move beyond health con-
cern and detect actual health anxiety, which we may achieve
through methodologies to study consenting user cohorts in
detail. In doing so, we would have to find the right balance
between preventing health anxiety and the potential delay
of important medical treatment when users are confronted
with benign explanations when they are actually sick.

Although we studied the behavior of many searchers, one
limitation of this paper is that we used a single search en-
gine, meaning our findings pertaining to user behavior might
not generalize. Another limitation is the imperfect measure-
ment of SERPConcern. Due to the fact that some queries
occur very frequently (e.g. “headache”), any error incurred
by our scoring function on the top results for those queries
might have a big impact on the outcome. Finally, query logs
offer only a limited view on health concerns, and we need to
work with searchers directly to more fully understand the
motivations behind their search behaviors.

8 CONCLUSIONS

We presented a log-based longitudinal study of medical
search behavior on the web. We investigated the use of
medical query formulation as a lens onto searchers’ health
concerns and found that those features were predictive for
this task. We evaluated how a major search engine responds
to changes in medical query formulation and saw that there



were some trends and a lot of variance, which might have
adverse effects by way of misinformation. We showed that
a significant tendency for medically-concerned users to view
concerning content makes it important for engines to man-
age this effect (e.g., by considering estimated level of health
concern as a personalization feature). Finally, we raised the
need for detailed study of the impact of SERP composition
on users’ future behavior. We believe that our results can
function as an initial guide for developing practical tools for
better health search and to inform deeper investigations of
concerns and anxieties on the Web and in general.

9 ACKNOWLEDGMENTS

We thank Eric Horvitz for insightful discussions, and Dan
Liebling and Shane Williams for their technical support.

10 REFERECES

[1] Health on the Net Foundation. www.hon.ch/HONcode.

[2] G.J. C. Asmundson, S. Taylor, and B. Cox. Health
Angziety: Clinical and Research Perspectives on
Hypochondriasis and Related Conditions. Wiley, 2001.

[3] S. Ayers and J. Kronenfeld. Chronic illness and
health-seeking information on the internet. Health,
11(3):327-347, 2007.

[4] L. Baker, T. H. Wagner, S. Singer, and M. Bundorf.
Use of the internet and e-mail for health care
information. J. Am. Med. Assoc., 289(18):2401-2406,
2003.

[5] M. Bengeri and P. Pluye. Shortcomings of
health-related information on the internet. Health.
Prom. Int., 18(4):381-387, 2003.

[6] K. Bessiere, S. Pressman, S. Kiesler, and R. Kraut.
Effects of internet use on health and depression: a
longitudinal study. J. Med. Int. Res., 12(1), 2010.

[7] S. K. Bhavnani. Domain-specific search strategies for
the effective retrieval of healthcare and shopping
information. In SIGCHI, pages 610-611, 2002.

[8] M. Cartright, R. W. White, and E. Horvitz. Intentions
and attention in exploratory health search. In SIGIR,
pages 65—74, 2011.

[9] G. Dupret and B. Piwowarski. A user browsing model
to predict search engine click data from past
observations. In SIGIR, pages 331-338, 2008.

[10] M. S. Eastin and N. M. Guinsler. Worried and wired:
effects of health anxiety on information-seeking and
health care utilization behaviors. Cyber. and Behav.,
9(4):494-498, 2006.

[11] G. Eysenbach and C. Kohler. How do consumers
search for and appraise health information on the
world wide web? qualitative studies using focus
groups, usability test, and in-depth interviews. Brit.
Med. J., 324:573-577, 2002.

[12] S. Fox and M. Duggan. Health topics. Pew Internet &
Amer. Life Project, 2013.

[13] D. Frey. Recent research on selective exposure to
information. Adv. in Ezp. Soc. Psych., 19:41-80, 1986.

[14] A. Hart, F. Henwood, and S. Wyatt. The role of the
internet in patient-practitioner relationships: findings
from a qualitative research study. J. Med. Int. Res.,
6(3):e36, 2004.

[15] H. Hembrooke, G. Gay, and L. Granka. The effects of
expertise and feedback on search term selection and
subsequent learning. JASIST, 56(8):861-871, 2005.

[16] W. R. Hersh and D. H. Hickam. How well do
physicians use electronic information retrieval
systems? a framework for investigation and systematic
review. J. Am. Med. Assoc., 280:1347, 1998.

[17] B. J. Jansen, A. Spink, and T. Saracevic. Real life,
real users, and real needs: a study and analysis of user
queries on the web. Inf. Process. Manage.,
36(2):207-227, 2000.

[18] T. Joachims. Optimizing search engines using
clickthrough data. In SIGKDD, pages 133-142, 2002.

[19] D. Kelly and C. Cool. The effects of topic familiarity
on information search behavior. In JCDL, pages
74-75, 2002.

[20] A. M. Kring, S. Johnson, G. C. Davison, and J. M.
Neale. Abnormal Psychology. Wiley, 2007.

[21] T. Lau and E. Horvitz. Patterns of search: analyzing
and modeling web query refinement. In UM, pages
119-128, 1999.

[22] C. Lauckner and G. Hsieh. The presentation of
health-related search results and its impact on
negative emotional outcomes. In SIGCHI, pages
333-342, 2013.

[23] T. Lewis. Seeking health information on the internet:
lifestyle choice or bad attack of cyberchondria? Media
Cult. Soc., 28(4):521-539, 2006.

[24] E. Pariser. The Filter Bubble: What is the Internet
Hiding from You? Penguin Press, 2011.

[25] B. Rasmussen, R. Jensen, M. Schroll, and J. Olesen.
Epidemiology of headache in a general population—a
prevalence study. J. Clinical Epidemiology,
44(11):1147-1157, 1991.

[26] M. Richardson. Learning about the world from
long-term query logs. TWEB, 2(4):21, 2009.

[27] E. Sillence, P. Briggs, L. Fishwick, and P. Harris.
Trust and mistrust of online health sites. In SIGCHI,
pages 663-670, 2004.

[28] S. Taylor and G. J. C. Asmundson. Treating Health
Anziety: A Cognitive- Behavioral Approach. Guilford
Press, 2004.

[29] J. Teevan, D. Liebling, and G. R. Geetha.
Understanding and predicting personal navigation. In
WSDM, pages 85-94, 2011.

[30] The Nielsen Company. Nielsen Global Health Survey.
2007.

[31] S. Torres and I. Weber. What and how children search
on the web. In CIKM, pages 393-402, 2011.

[32] R. W. White and E. Horvitz. Cyberchondria: studies
of the escalation of medical concerns in web search.
TOIS, 27(4):23, 2009.

[33] R. W. White and E. Horvitz. Experiences with web
search on medical concerns and self diagnosis. In
AMIA, pages 696-700, 2009.

[34] R. W. White and E. Horvitz. Predicting escalations of
medical queries based on web page structure and
content. In SIGIR, pages 769-770, 2010.

[35] R. W. White and E. Horvitz. Web to world:
predicting transitions from self-diagnosis to the
pursuit of local medical assistance in web search. In
AMIA, pages 882-886, 2010.

[36] R. W. White and E. Horvitz. Captions and biases in
diagnostic search. TWEB, page in press, 2013.



