
Research Opportunities for the Big Data Era of
Software Engineering

Robert DeLine

Microsoft Research

Redmond, WA, USA

rdeline@microsoft.com

Abstract—Big Data Analysis is becoming a widespread practice
on many software development projects, and statisticians and
data analysts are working alongside developers, testers and
program managers. Because data science is still an emerging dis-
cipline in software projects, there are many opportunities where
software engineering researchers can help improve practice. In
terms of productivity, data scientists need support for exploratory
analysis of large datasets, relief from clerical tasks like data
cleaning, and easier paths for live deployment of new analyses. In
terms of correctness, data scientists need help in preserving data
meaning and provenance, and non-experts need help avoiding
analysis errors. In terms of communication and coordination,
teams need more approachable ways to discuss uncertainty and
risk, and support for data-driven decision making needs to
become available to all roles. This position paper describes these
open problems and points to ongoing research beginning to tackle
them.

I. BIG DATA IN SOFTWARE ENGINEERING

The collection and analysis of large-scale data is becoming

a widespread practice among software development teams.

The big data era of software engineering arguably began

two decades ago. Early search engines, like Google’s, based

their services on the analysis of millions of web documents.

These engines, as well as early online retailers, like Amazon,

pioneered the collection of usage data to mine patterns of

customer behavior. Other companies used big data behind the

scenes to improve product quality, like Microsoft’s Windows

Error Reporting, which collects crashes to allow automatic

bucketing and triage [1].

Today, the adoption of cloud computing is turning big

data analysis into a core competency in software engineering.

Many teams are welcoming statisticians and data analysts

(collectively called data scientists) alongside existing roles

like developers, testers, and program managers. For software

engineering researchers, this transition creates the opportunity

to study, understand and improve these practices. This position

paper describes some of these research opportunities, based

both on recent studies of data scientists [2] [3] and discussions

at Microsoft about careers in data science.

To discuss these opportunities, it helps to establish the

landscape of how development teams use big data. We can

characterize current practice along several dimensions: the data

domain; the analysis goal; and the supported stakeholders and

activities. Development teams currently collect data in several

domains, including:

• data about customers (e.g. usage logs, product purchases,

game play);

• data about execution behavior (e.g. crash data, perfor-

mance metrics, server loads); and

• data about team work practices (e.g. the bug database,

the source repository).

The purpose of analyzing data is to surface insights to

improve some aspect of the software, including:

• the software’s user experience (e.g. enhancing data-driven

features like search results, experimentally releasing new

features through A/B testing);

• the software’s execution (e.g. reducing crashes, or decid-

ing when to scale out to more servers); and

• the team’s development process (e.g. closing bugs faster,

assigning testing resources)

Analyses also vary in the stakeholders and activities that

they support:

• ad hoc information seeking (e.g. a program manager

testing a hypothesis about feature usage, or a developer

analyzing crash data to find a bug’s root cause);

• decision making (e.g. a team presentation about the

results of A/B testing a potential feature, or a ”war room”

tracking open bugs to decide when to ship);

• online monitoring (e.g. a dashboard of signals about

software usage, or a display of status lights about server

availability); and

• product features (e.g. a player-matching algorithm in a

game, or advertisements served on web pages).

Some parts of this space are already well supported. For

example, analyzing customer data to support decision making,

called business intelligence, has been the subject of database

research and product development for many years. Other parts

of the space, for example, those involving online monitoring,

are newer and enjoy less tool support. This paper describes

some of the areas where researchers are currently working

and where further research would help.

II. RESEARCH OPPORTUNITIES IN PRODUCTIVITY

Back in the era of mainframe computing, software de-

velopers had separate tools for each stage of development

(compilation, linking, loading, performance analysis, debug-

ging), which coordinated by passing files from one program to

another. Many of these tools operated in a batch mode, which

2015 IEEE/ACM 1st International Workshop on Big Data Software Engineering

978-1-4673-7025-7/15 $31.00 © 2015 IEEE

DOI 10.1109/BIGDSE.2015.13

26

meant long waits for any output. Sadly, today’s tools for data

scientists are reminiscent of this bygone era [2] [3]. To turn a

huge dataset into an actionable result, a data scientist typically

cobbles together a workflow from a suite of tools, including

map-reduce frameworks like Hadoop, scripting software like

R or Python, visualization tools like Tableau, and spreadsheets

like Excel. They pass data from one tool to another through

intermediate files, and many of these tools operate in a batch

fashion.

A. Supporting Exploratory Behavior

No one likes waiting, but the batch-style operation in today’s

analysis tools is especially harmful for data scientists. Data

scientists often operate in an exploratory mode, sometimes

because they are pursuing speculative goals (e.g. evaluating

opportunities for new features), sometimes because they are

reacting to the contents of the data (e.g. exploratory data

analysis [4]). Needless to say, being exploratory is next to

impossible when each step takes hours to complete. Data

scientists currently work around the delays by exploring

small data samples before repeating the work on the whole

dataset. The easiest samples to acquire are typically biased,

for example, the first 10,000 lines of the file or today’s batch

of telemetry data. Unfortunately, results from biased samples

can be misleading. So, an exploration that seems promising

on the sample may be unprofitable on the whole dataset, or

vice versa.

Because of the obvious downside of long waits, there is

active research in interactive query engines. Tools like Dremel

[5] and PowerDrill [6] provide interactivity through fast pro-

cessing speed, using techniques like columnar representations

and storing data in memory. Other tools like DBO [7] and

Stat [8] instead provide progressive computation, where the

tool provides partial results that are updated as more data

are processed. In the case where the data are progressively

processed in random order, the data constitute a steadily

increasing population sample, and the tool can present steadily

decreasing error bounds [9].

B. Reducing Clerical Work

So far, data scientists do not enjoy the convenience of the

equivalent of an integrated development environment. Some

environments, like IPython, cover several steps, but many

workflows require the data scientist to coordinate several tools,

often using intermediate files. As a result, a data analysis

project is often a messy collection of files with implicit

relationships. Data scientists currently use vigilance to keep

their analysis materials organized. Without careful attention

to detail, it can be impossible to distribute an analysis to

colleagues or to resurrect it after months aways from it; bits

and pieces will be missing. Researchers have explored tools for

automatically bundling analysis materials [10]. Nonetheless,

the root cause, namely coordinating multiple tools with their

own notations and user interfaces, is an ongoing problem.

Some steps in a data analysis are themselves tedious and

clerical, particularly ”data cleaning,” that is, the initial steps

of transforming data from its format at collection to a format

suitable for algorithmic analysis. The ”dirtiness” of raw data

reflects the complexities of data collection, including faulty

collectors that lose data, human errors in data entry, and incon-

sistencies in the data domain (e.g. most people have surnames,

but some do not). Because these issues are erratic, human

intervention is needed. Researchers are working on mixed-

initiative tools for these clean-up tasks, in which software

amplifies the human effort [11] [12]. Of course, the ideal

would be data cleaning with no human intervention.

C. Smoothing the Path from Exploration to Deployment

Increasingly, teams collect data on a continuous basis, often

called telemetry. They use telemetry data to compute met-

rics, called key performance indicators, which are monitored

through periodic reports or live dashboards. Of course, over

time, a team’s software changes, customer behavior changes,

and the business environment changes. In response, the team

will want to change what it monitors. This suggests an

iterative development cycle, which Chandramouli et al. call

monitor-mine-manage (M3) [13]. First, a data scientist does

ad hoc explorations of historical telemetry data to invent new

metrics. To implement these new metrics, the team updates the

deployed software’s data collection and analysis logic. Finally,

the team monitors the new metrics, creating a new status quo

that starts the cycle again.

To carry out this cycle, a series of ad hoc queries eventually

becomes an operational part of the system. We can schemat-

ically represent the analysis logic’s migration path with the

following quadrants:

speculative analysis deployed analysis

historical data A B

live data C D

The M3 path takes an analysis from quadrant A to quadrant

D. Preferably, this migration path would go through quadrant

C, to allow the analysis to be tested first in a live setting before

deployment.

Ideally, the M3 cycle would be as routine and painless as

the edit-compile-debug cycle, but this is far from reality yet. In

a typical setup today, the live source of telemetry data and the

system that archives the data are often entirely separate, with

different schemas, access policies, and query languages. So,

any analysis logic written for the archival data would have to

be rewritten to be deployed in the live system. Indeed, dividing

the migration into two steps (A to C, C to D) may require two

rewritings.

III. RESEARCH OPPORTUNITIES IN CORRECTNESS

The results of analyzing big data often have serious conse-

quences. For instance, a team might analyze its bug database

to decide if their product is ready to ship, or it might analyze

usage data to choose which features to implement in the

next release. If such an analysis were wrong, the team could

make poor choices, causing the project to fail. Similarly, when

27

analysis results are exposed as software features, poor analyses

can lead to poor customer experiences, again threatening the

success of the project. Hence, researchers have the opportunity

to help software teams be confident about their data analysis

results.

A. Data Meaning and Provenance

Developers complain about the difficulty of understanding

code that others have written, which prompts the academic

study of program comprehension. Similarly, data scientists

complain about the difficulty of understanding data that oth-

ers have collected, manipulated and organized. (Is there an

opportunity for a field of data comprehension?)

We can divide issues about understanding data into two

distinct phases: data meaning, about how data are connected to

phenomena in the world that they record; and data provenance,

about how data are computed from other data. Misunder-

standings about meaning and provenance can lead to incorrect

analysis results. To prevent errors, the standard today is for

each person and tool touching the data to provide meticulous

records. Researchers from the life sciences are creating stan-

dards for this record keeping, like the Open Provenance Model

[14].

Understanding when data are ”correct” is a different prob-

lem than program correctness. (Indeed, many verification

regimens abstract away the details of data, for example, the

predicates in Hoare logic.) In the absence of a correctness

criterion for a data source, one approach is to treat the data’s

typical distribution as an implicit contract and to look for

anomalies [15]. Another approach to assuring the data’s mean-

ing would be turn domain knowledge into checks. In the same

way ‘assert‘ statements are a popular lightweight technique for

capturing and checking expectations about execution behavior,

perhaps there are similar lightweight ways for data scientists

to capture expectations about their data.

In terms of provenance, we need techniques for reasoning

about computations that transform data. There is emerging

research on checking probabilistic assertions in programs that

compute over uncertain data [16]. This involves propagating

statistical information through a program’s data flow, which

would be useful in analysis scripts. Such approaches are

an important step toward an overall goal of reasoning in a

statistically rigorous way through an entire workflow, from the

point at which data are recorded, through all transformations

in the data analysis, to an actionable conclusion.

Software systems evolve; therefore, the data about those

systems also evolve. These changes over time make reasoning

about the data even more difficult. For instance, a software

project’s code is often interlaced with logging statements that

produce data about user and execution behavior. As developers

change the code, they also change the logging statements,

which in turn changes the data available for analysis. Unless

these changes to the log format are explicitly tracked, it can

be easy to draw wrong conclusions. For example, when an

action is missing in the logs, did the action not occur or did it

occur before logging statements captured that type of action?

In short, tools to analyze telemetry data must carefully handle

telemetry evolution.

B. Provide ”Guard Rails” for Non-experts

Ideally, every development team would have an expert

statistician to ensure that the team’s decisions are based

on high-confidence analyses. Realistically, there will not be

enough statisticians to satisfy the demand, so non-experts will

carry out at least some analyses. This creates the opportunity

for end-user data science, analogous to end-user programming.

The standard today is self-service business intelligence, which

relies on a division of labor between experts and non-experts.

An expert data analyst schematizes the data and creates indices

and aggregations (data cubes), to provide a space of possible

queries for business users to run. While this approach is useful,

it limits exploration. A program manager, for example, might

like to understand user preferences by supplementing her

team’s schematized data with unstructured data, like Tweets

mentioning the product.

The early stages of a data science workflow, like cleaning,

searching, and aggregating, tend to be more approachable,

because they deal directly with the data and leverage skills

from spreadsheets. Later stages, like engineering features for

training a classifier or testing a correlation, require expertise.

Nonetheless, non-experts likely understand the goals of these

steps, e.g. separating classes of data or determining whether

a relationship exists. This suggests that it may be possible to

provide high-level commands for these steps, so long as there

are sufficient checks to ensure that the steps are sensible. When

fully integrated environments for data analysis emerge, the

integration will allow analyses to be tracked end-to-end, from

raw data to final results. This provides further opportunity for

error checking.

Looking for problems in a data analysis is a less black-

and-white problem than finding bugs in software. The safety

properties checked by verification and bug-finding tools are

indisputable: no one wants a null dereference or memory

corruption. The ”rules” of data analysis are more heuristic.

For example, many statistical tests have preconditions about

the distribution of the data, e.g. normality. However, tests for

normality have thresholds, which require human judgment.

Hence, an attempt to ”automate away” statistical knowledge,

for example, by fitting empirical data to probability dis-

tributions and choosing compatible tests, would be overly

preemptive. Instead, tools should allow non-experts to express

high-level data modeling choices based on their own insights,

while informing the user about the repercussions of those

choices.

IV. RESEARCH OPPORTUNITIES IN COMMUNICATION AND

COLLABORATION

A. Conveying Risk and Uncertainty

The purpose of many data analyses is to help teams make

critical decisions. Part of the decision-making process is

weighing the credibility of the insights from data analysis.

For analyses whose inputs are uncertain, decision makers also

28

need to understand this uncertainty and its risks. Probability

and statistics provide precise ways to convey these concepts,

but are difficult even for experts to interpret. Recently, even

classic validity measures, like p-values, have become open to

debate [17].

Of course, this communication problem exists for anyone

using big data to make decisions, but the context of software

engineering may allow opportunities for approaches that would

not generally apply. For example, software teams are skillful

at computational thinking, which means that simulation-based

techniques, like Monte Carlo methods, may provide a basis

for clearer communication.

B. Supporting Broad Participation

For most of the history of software engineering, developers

and testers were seen as different roles, with different knowl-

edge, skills, and career paths. However, with the rise of unit

testing and test-driven development, the boundary between the

roles has blurred. Today, developers themselves often write

tests, both to ensure continuous software quality and to drive

the design of programming interfaces. Testing has become less

of a distinct role and more of a skill set that multiple roles

possess.

Similarly, data science today is seen as a distinct role,

with its own knowledge, skills and career path. Indeed, data

mining, machine learning, and statistics are highly prized in

the current job market. Will data science remain a specialty,

or like testing, will some of its skills and knowledge spread

to other roles? The latter seems likely, since activities like ad

hoc information seeking are universal. Program managers, for

instance, have questions about customer behavior. Testers have

questions about crashes and the frequency of execution paths.

Developers are curious about how their features are used. Since

data collection is not free, the team will need to coordinate

the information needs of different roles.

V. CONCLUSION

This paper presents a handful of difficult problems that

software teams face as they exploit big data analysis, with

references to some ongoing research to address these problem.

Other existing big data problems are important, but omitted be-

cause they are universal to anyone working with big data, not

just software teams. Examples include data security, privacy,

and ethical uses of customer data. As software engineering

researchers tackle their community’s problems, they will hope-

fully participate in the larger conversation about these other

issues.

Tackling these open problems could fundamentally alter

how software development teams make decisions and create

new ideas. As Microsoft CEO Satya Nadella wrote in his

blog, ”We believe that with the right tools, insights can come

from anyone, anywhere, at any time. When that happens,

organizations develop what we describe as a ’data culture.’”

[18] Such a data culture would allow each team member to

make evidence-based choices in his or her individual role,

allow the team to make informed tradeoffs and decisions, and

allow plans to be made against predictions with measurable

uncertainty.

REFERENCES

[1] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan,
G. Nichols, D. Grant, G. Loihle, and G. Hunt, “Debugging in the (very)
large: ten years of implementation and experience,” in Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles.
ACM, 2009, pp. 103–116.

[2] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer, “Enterprise data
analysis and visualization: An interview study,” IEEE Transactions on
Visualization and Computer Graphics, vol. 18, no. 12, pp. 2917–2926,
2012.

[3] D. Fisher, R. DeLine, M. Czerwinski, and S. Drucker, “Interactions with
big data analytics,” ACM interactions, vol. 19, no. 3, pp. 50–59, 2012.

[4] J. W. Tukey, Exploratory data analysis. Reading, Mass., 1977.
[5] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,

and T. Vassilakis, “Dremel: Interactive analysis of web-scale datasets,”
in Proc. of the 36th Int’l Conf on Very Large Data Bases, 2010, pp.
330–339. [Online]. Available: http://www.vldb2010.org/accept.htm

[6] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and
R. Sears, “Mapreduce online.” in NSDI, vol. 10, no. 4, 2010, p. 20.

[7] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra, “Scalable approx-
imate query processing with the dbo engine,” ACM Transactions on
Database Systems (TODS), vol. 33, no. 4, p. 23, 2008.

[8] M. Barnett, B. Chandramouli, R. DeLine, S. Drucker, D. Fisher,
J. Goldstein, P. Morrison, and J. Platt, “Stat!: An interactive analytics
environment for big data,” in Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. ACM, 2013, pp.
1013–1016.

[9] D. Fisher, I. Popov, S. Drucker et al., “Trust me, i’m partially right:
incremental visualization lets analysts explore large datasets faster,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2012, pp. 1673–1682.

[10] P. J. Guo and M. Seltzer, “Burrito: Wrapping your lab notebook
in computational infrastructure,” in Proceedings of the 4th USENIX
Workshop on the Theory and Practice of Provenance, ser. TaPP’12.
Berkeley, CA, USA: USENIX Association, 2012. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2342875.2342882

[11] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer, “Wrangler:
Interactive visual specification of data transformation scripts,” in ACM
Human Factors in Computing Systems (CHI), 2011. [Online]. Available:
http://vis.stanford.edu/papers/wrangler

[12] R. Singh and S. Gulwani, “Learning semantic string transformations
from examples,” Proceedings of the VLDB Endowment, vol. 5, no. 8,
pp. 740–751, 2012.

[13] B. Chandramouli, M. Ali, J. Goldstein, B. Sezgin, and B. S. Raman,
“Data stream management systems for computational finance,” IEEE
Computer, pp. 45–52, December 2010.

[14] C. Tilmes, Y. Yesha, and M. Halem, “Tracking provenance of earth
science data,” Earth Science Informatics, vol. 3, no. 1-2, pp. 59–65,
2010.

[15] O. Raz, P. Koopman, and M. Shaw, “Semantic anomaly detection
in online data sources,” in Software Engineering, 2002. ICSE 2002.
Proceedings of the 24rd International Conference on. IEEE, 2002,
pp. 302–312.

[16] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley, D. Gross-
man, and L. Ceze, “Expressing and verifying probabilistic assertions,”
in Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation. ACM, 2014, p. 14.

[17] R. Nuzzo, “Scientific method: Statistical errors,” Nature, vol. 506, no.
7487, February 2014.

[18] S. Nadella, “A data culture for everyone.” [Online]. Available:
http://blogs.microsoft.com/blog/2014/04/15/a-data-culture-for-everyone/

29

